

1 Chromosome Engineering in Tropical Cash Crops

2 Pablo Bolaños-Villegas

3 Fabio Baudrit Agricultural Research Station, University of Costa Rica, La Garita, Alajuela 20101, Costa Rica.
4 Corresponding author. E-mail: pablo.bolanosvillegas@ucr.ac.cr. ORCID ID: 0000-0003-1729-0561.

5 **Abstract:** Tropical and subtropical crops such as coffee, cacao, and papaya are valuable
6 commodities, and their consumption is a seemingly indispensable part of the daily lives of billions
7 of people worldwide. Conventional breeding of these crops is long, and yields are threatened by
8 global warming. Chromosome engineering and synthetic biology principles could be used to
9 enhance the synthesis of key metabolites and transmission of wild traits to improve resistance to
10 stress and disease in these crops. This review gives an overview of these approaches. The adoption
11 of these approaches may enhance the resilience of agricultural communities, lead to economic
12 growth and secure the availability of key resources for generations to come.

13 **Keywords:** tropical cash crops; coffee; cacao; papaya; chromosome engineering; synthetic biology

14

15 Introduction

16 The global demand for food is hypothesized to grow by at least 70% as the population increases
17 to 9 billion people by 2050¹. Unfortunately, climate change has far-reaching implications for global
18 food security, including increased frequency of drought and intense precipitation events as well as
19 elevated temperatures, which may exacerbate the instability caused by low diversity and the high
20 intensity of agricultural inputs¹. For instance, current estimates indicate that an increase of 1°C might
21 cause a 10% to 20% reduction in the world's production of maize². In fact, meta-analyses of climate
22 change and its impact suggest that by 2030, decreases in crop yields may amount to approximately
23 50%³.

24 The livelihood of millions of smallholder farmers and the survival of several national economies
25 in Africa, Latin America and Asia depends on crops usually considered commodities, or minor or
26 orphan crops; examples are coffee (*Coffea* sp.) and cacao (*Theobroma cacao*)⁴⁻⁶. These crops are also
27 believed to be at risk due to climate change^{4,6}. For a tropical crop such as cacao, which is mostly
28 grown in West Africa, the maximum temperature tolerated (38 °C) could be exceeded during hot and
29 dry *El Niño* years, and the dry season may extend for one additional month⁶. In Colombia, rising
30 temperatures, longer droughts, and excessive rainfall have reduced coffee yields by 30% since 2008⁷.
31 Also for coffee, rapid deforestation and climate change may lead to the extinction of many wild
32 African species and the permanent loss of diversity for future plant breeding⁴.

33 Papaya is considered an important tropical crop because of its high nutritional value⁸, especially
34 its high content of vitamin A, vitamin C, potassium, folate, niacin, thiamine, riboflavin, iron, and
35 calcium⁸. Papaya is also cultivated for papain, an important proteolytic enzyme found in the latex of
36 the unripe fruit⁹. This enzyme improves digestion and can cure ulcers⁹. Papain is also used in
37 softening wool, preparing concentrated fish protein for animal feed, preparing cosmetics (toilet soap,
38 toothpaste, and shampoo), tenderizing meat, and brewing beer⁹. Unfortunately, damage to
39 photosynthetic carbon assimilation due to environmental stress, including water deficits, can reduce
40 the biomass production and net carbon assimilation in papaya⁹. Therefore, a better understanding of
41 its physiology and reproductive biology may facilitate its adaptation to climate change⁹.

42 Unlike in major crops, minor tropical minor crops do not benefit from large public and private
43 breeding programs that stress genomic and marker-assisted recurrent selection but rather focus on
44 simple methods that prioritize backcrossing⁵. Hence, new approaches are urgently needed⁵. The
45 following outlines potential new approaches.

46 **Fertility and enhanced meiotic pairing**

47 The development of new plant varieties by conventional plant breeding is based on the selection
48 of traits already present in plant species. It relies heavily on sexual reproduction to accumulate
49 favorable alleles for stress tolerance/resistance, nutritional quality, or other agronomic and
50 horticultural traits in a plant genome. Genes that contribute to stress tolerance/resistance or other
51 traits can be obtained from local germplasm resources or via introduced landraces or breeding lines
52 from other breeding programs, wild species, or genera¹⁰. In *T. cacao* ($2n=2=20$ chromosomes, 430-445
53 Mb)¹¹, the improvement of and selection for desirable traits has also caused accelerated
54 accumulation of deleterious mutations because of population bottlenecks that started 3600 years ago
55^{12,13}. Some of the mutations are suspected to be due to the process of fertilization itself¹². However, as
56 compared with non-domesticated *T. cacao* varieties such as *Marañón* (1.68×10^{-5}) and *Purís* (1.23×10^{-4}),
57 in the varieties *Amelonado*, *Contamana*, *Criollo* and *Guianna*, the same domestication process may
58 account for differentially high recombination rates (in cM/Mb, 4.04×10^{-6} to 3.91×10^{-3})¹⁴. Thus, selecting
59 for high meiotic recombination rates during conventional breeding might help ameliorate the low
60 individual fitness of modern varieties.

61 Relatively little is known about the chromosomes of the 22 *Theobroma* species (*Malvaceae*)¹⁵. All
62 *Theobroma* species have the same diploid number ($2n = 20$) and chromosomes with similar
63 morphology, ranging in size from 0.5 and 2.0 mm¹⁵. Positive staining with Chromomycin A3 revealed
64 that the prophase chromosomes of *T. cacao* and *T. grandiflorum* exhibit only one pair of terminal
65 heterochromatic bands, which co-localize with a single 45S rDNA site. Each chromosomal
66 complement displays a single 5S rDNA site in the proximal region of another chromosome pair¹⁵.
67 Despite this apparent chromosome uniformity within the genus, meiotic analyses in some cultivars
68 of *T. cacao* have revealed the occurrence of univalents and several multivalent associations, thereby
69 suggesting structural rearrangements¹⁵.

70 In terms of breeding strategies, cacao has a long juvenile period of up to 5 years, so selecting for
71 fruit-related traits is time-consuming and expensive because the trees must be maintained for at least
72 3 more years to visually evaluate the pods¹¹. Moreover, cacao mostly involves outbreeding and is
73 highly heterozygous; thus, generating inbred lines from crosses is laborious, and doubled haploid
74 lines are notoriously difficult to develop¹¹. Nonetheless, there are a few self-compatible cacao clones,
75 such as the Ecuadorean CCN51¹¹ and Costa Rican CATIE-R1 (Figure 1A). Cacao tree plantations also
76 require a large area of land and labor¹¹. Each year, the infection of cacao by a variety of pathogens
77 severely cripples global production, with up to 30% of all pods destroyed before harvest¹⁶. In West
78 Africa, severe *Phytophthora* spp. outbreaks can destroy all cacao fruit on a single farm¹⁶. Witches'
79 broom disease caused by the fungal pathogen *Moniliophthora perniciosa* is also known to reduce cacao
80 yields in many cultivation areas in Ecuador and Brazil¹¹. Because diseases are a persistent problem
81 for cacao, improved disease resistance through breeding is imperative¹⁶.

82 Cultivated coffee mostly represents the species *Coffea canephora* Pierre ($2n=2x=22$ chromosomes,
83 364 Mb), and *C. arabica* L. ($2n=4x=44$ chromosomes), which was likely derived from hybridization of
84 *C. canephora* and *C. eugenoides*¹⁷. The basic chromosome number for the genus *Coffea* is considered
85 $n=11$, which is common for most genera of the family *Rubiaceae*¹⁸. Most *Coffea* species are diploid
86 ($2n=2x=22$) and self-incompatible; however, *C. arabica* L. is the only polyploid species ($2n=4x=44$) of
87 the genus, and it is self-compatible¹⁸. Although morphologically distinct, *Coffea* species present some
88 common meiotic features, such as a small variation in chiasmata number and a high frequency of
89 bivalents in interspecific hybrids¹⁸. *In situ* hybridization with total genomic DNA from *C. arabica* and
90 *C. canephora* as probes showed considerable cross hybridization to chromosome preparations from *C. arabica*,
91 *C. canephora*, and a *C. liberica*-introgressed *C. arabica* genotype¹⁹. All chromosomes can be
92 moderately to highly labeled with probes after GISH analysis, which indicates a close genetic relation
93 between *C. arabica* and *C. canephora* and between the *C* genome of *C. canephora* and the *Ea* subgenome
94 (from *C. eugenoides*) present in *C. arabica*¹⁹.

95 *C. arabica* accounts for 60% of the world's total output. The species is cultivated in Latin America
96 and parts of Africa, including Ethiopia, Tanzania, and Kenya (see Figure 1B), whereas *C. canephora* is
97 cultivated in central Africa, eastern Asia, and southern Brazil²⁰. One of the key limitations of coffee

98 breeding programs is the low genetic variability present among the cultivars of *C. arabica*. This
 99 bottleneck is due to a founder effect resulting from the small number of cv. Típica and cv. Bourbon
 100 individuals that were introduced in the American tropics to initiate commercial plantations at the
 101 beginning of the 17th century ²⁰. It typically takes 25 years to develop a new coffee variety ²⁰. Caffeine
 102 is a purine alkaloid synthesized by several eudicot plants, including coffee and cacao. Caffeine is
 103 synthesized in coffee leaves, where it has insecticidal properties, and in fruits and seeds, where it
 104 inhibits seed germination of competing species ¹⁷. In the Arabica variety Caturra, famous for its good
 105 beverage quality, the caffeine content is approximately 1.15% (which is high); unfortunately, Caturra
 106 is susceptible to infection with *Hemileia vastatrix* (coffee leaf rust) and coffee berry disease
 107 (*Colletotrichum kahawae* infection) ²⁰.

108 Papaya is a diploid organism ($2n=18$) with a small genome, 372 Mb, and has a sex chromosome
 109 system²¹. Papaya pachytene chromosomal domains, brightly stained with DAPI, account for
 110 approximately 17% of the total papaya genome, which suggests that it is largely euchromatic ²².
 111 Papaya is an herbaceous plant with a very short juvenile period, about 4 months ⁸. Once it reaches
 112 the reproductive stage, flowers are produced continuously at each leaf axil ⁸. Papaya is also a
 113 trioecious species with three sex forms: female (X), male (Y or MSY) and hermaphrodite (Yh or
 114 HSY)²³. Wild papaya populations are dioecious — one-half male and one-half female plants —
 115 whereas cultivated papaya is predominantly gynodioecious, with two-thirds hermaphrodite and
 116 one-third female plants ²³. Hermaphrodite flowers develop into fruits that tend to be elongated and
 117 have a small fruit cavity as compared with female plants (see Figure 1C), and these traits are
 118 commercially desirable ^{24,25}; thus, great effort has been placed on determining the sex of plants grown
 119 in the field. The X region is only 3.5 Mb, whereas the HSY and MSY regions are about 8.1 Mb and are
 120 located within chromosome 1²³. Notably, any combination of the MSY and HSY chromosomes is
 121 inviable ²³, which indicates that the MSY and HSY chromosomes lack genes that are essential for
 122 embryo development ²⁶. MSY and HSY are extremely methylated and heterochromatic as compared
 123 with regions located on the X chromosome ²⁶.

124

125 **Figure 1.** Tropical crops that may be amenable to genome editing and chromosome engineering. A)
 126 Cacao field plot of variety CATIE-R1 at the CATIE Research Center (Limón province, Costa Rica). B)
 127 Arabica coffee plants, Catuai cultivar (León Cortés county, Costa Rica). C) Papaya, Pococí hybrid
 128 (Alajuela province, Costa Rica). Credits, A-C: Allan Mata-Quirós (CATIE, The Tropical Agricultural
 129 Research and Higher Learning Center, Costa Rica), Emmanuel López (Passiflora Coffee Farm, Costa
 130 Rica), Eric Mora-Newcomer (University of Costa Rica).

131 Transcriptome and whole-genome sequencing analyses of papaya have revealed the existence
 132 of a putative gene on the sex chromosome, called *Short Vegetative Phase (SVP)-like*, which might be
 133 involved in male-hermaphrodite flower differentiation and is present in naturally all-hermaphrodite
 134 populations grown in Pingtung, Taiwan ²⁵. The *SVP-like* gene is expressed specifically in papaya with
 135 the male form (Y or MSY chromosome) and hermaphrodite form (HSY chromosome) but is absent in
 136 papaya with the X chromosome ²⁵. The Y chromosome appears to code for an intact SVP-like protein
 137 with both MADS- and K-box domains. The HSY chromosome codes for a partial K-box domain, and
 138 the X chromosome codes for an even shorter fragment ²⁵. Close analysis suggests that in the HSY

139 chromosome, the *SVP-like* gene has two insertions of *copia*-like retrotransposons²⁵, and a single
140 polymorphism allows for identifying each insertion²⁵. Other genes located on the HSY chromosome,
141 such as the chromatin assembly factor 1 subunit A-like (*CpCAF1AL*), and the somatic embryogenesis
142 receptor kinase (*CpSERK*) are also believed to mediate development of hermaphrodite flowers²⁶.

143 Mechanisms of meiosis and fertility

144 The process of meiosis has a dual role: to generate the genetic diversity transmitted by the
145 gametes but also to ensure proper segregation of chromosomes into the gametes²⁷. Defects in
146 recombination and meiosis are a major source of sterility²⁷. In *Arabidopsis*, meiotic recombination is
147 initiated by the programmed formation of DNA double-strand breaks (DSBs), catalyzed by the
148 topoisomerase-like protein, SPO11-1, and several other associated proteins such as MTOPVIB, PRD1-
149 3, and DFO²⁸. These breaks are processed by several proteins including MRE11, RAD50, NBS1 (the
150 MRX complex) and Exo1 for endonucleolytic cleavage and removal of SPO11, COM1 and CtIP for
151 end processing, for RPA1A-D and RPA2-3 for binding of single-strand DNA breaks at 3' ends, and
152 for loading recombinases²⁸. Meiotic recombination results from the activity of RAD51, RAD51B-D,
153 XRCC2, XRCC3, DMC1 and BRCA2²⁸, among others.

154 Meiotic crossovers shuffle homologous chromosomes to produce unique combinations of alleles
155 that are transmitted to offspring²⁹. The formation of meiotic crossovers is crucial for plant breeding
156 and genetic analyses such as the detection of quantitative trait loci or gene mapping²⁹. In the absence
157 of crossovers, the homologs segregate randomly, which is a source of infertility²⁷. Thus, the formation
158 of balanced and viable gametes requires an “obligate crossover” per chromosome pair²⁷.

159 Two major crossover formation pathways exist in plants. The major one depends on the ZMM
160 protein complex (MSH4, MSH5, MER3, HEI10, ZIP4, SHOC1, PTD) plus MLH1/3 and produces
161 interfering crossovers, whereas the minor pathway relies on MUS81 and produces non-interfering
162 crossovers²⁸. Crossovers are relatively rare events because active mechanisms limit their formation
163²⁹. In the model plant *Arabidopsis*, 3 anti-crossover pathways operate and rely on the activity of
164 RECQL, FANCM, and FIGL1, respectively²⁹. RECQL is a DNA helicase homologue of yeast Sgs;
165 FANCM encodes another conserved DNA helicase (which requires cofactors MHF1-2); and FIGL1
166 encodes an AAA-ATPase²⁹. In *Arabidopsis*, the *recql*^{4a}/*recql*^{4b} mutant showed a four-fold increase in
167 recombination, whereas in *fancm*^{-/-} the increase was three-fold²⁹. The *recql*^{4a}/*recql*^{4b}/*figl* mutant showed
168 an impressive 8-fold increase in recombination²⁹. Work in peas, tomato and rice has shown that the
169 identification of allele mutants for meiotic anti-helicases may boost recombination in crops to
170 facilitate introgression of agriculturally valuable alleles²⁹.

171 Plants have two, and possibly three, homologous recombination pathways: 1) the canonical DSB
172 repair (DSBR) pathway and 2) synthesis-dependent strand annealing (SDSA)³⁰. DSBR and SDSA
173 pathways share common steps in the induction of breaks but differ in how the resulting displacement
174 loop (D-loop) is resolved³⁰. In the DSBR pathway, strand exchange results in double Holliday
175 junction (dHJ) formation, and resolution of the dHJ leads to crossover creation between homologous
176 chromosomes in meiotic recombination³⁰. In the SDSA pathway, the HJ is dissolved, which results
177 in non-crossover gene conversion³⁰. In plant somatic cells, all homologous recombination of DSBs is
178 believed to proceed through the non-crossover SDSA pathway³⁰. Plants have another HDR pathway,
179 single-strand annealing (SSA), which uses homologous sequences within the same DNA sequence
180 for the repair of DSBs³⁰. In the SSA pathway, the two free ends of the break anneal at the adjoining
181 region of complementarity, and the non-complementary ends are trimmed³⁰. Thus, the SSA pathway
182 results in loss of sequences located between the two repeat regions³⁰. The FANCM helicase is
183 believed to be involved in both the SDSA and SSA pathways³⁰, and its cofactors MHF1-2 are also
184 considered to have a similar role in limiting crossovers and to act genetically in the same pathway²⁸.

185 Besides using homologous repair, plants may repair DNA DSBs by non-homologous end joining
186 (NHEJ), via the Ku-dependent, “canonical” NHEJ pathway or the highly error-prone Ku-
187 independent backup-EJ pathway, especially in somatic tissues or cells, which are often used for
188 genetic engineering³⁰. The backup-EJ pathway is also called microhomology-mediated end joining³⁰.
189 In canonical NHEJ, DSBs are recognized and bound by the Ku70-Ku80 heterodimer and the XRCC4

190 ligase, with minimal end processing, which results in minimal DNA loss (1 to 4 nt)³⁰. In backup EJ,
191 DSBs are bound by poly (ADP-ribose) polymerase proteins and the MRX complex to promote end-
192 resection and generation of homology between the two DNA strands; however, the broken DNA
193 ends are extensively resected and then extended by the error-prone DNA polymerase θ, which results
194 in large deletions, inversions and translocations³⁰. Downregulation of NHEJ genes is believed to shift
195 most DNA repair toward homologous recombination and thus increase the efficiency of
196 CRISPR/Cas9 editing^{31,32}.

197 Possibilities for genome editing in coffee, cacao and papaya

198 Genome editing, an unprecedented technological breakthrough, has provided a means of
199 creating targeted mutations and sequence replacement in plant genomes with high specificity³³. The
200 CRISPR/Cas9 editing technology is based on bacterial *clustered regularly interspaced, short palindromic*
201 *repeats* (CRISPR)-associated protein (Cas) adaptive immune systems that protect against invading
202 foreign DNA via RNA-guided DNA cleavage³³. The system is simple, versatile, cheap and efficient
203³³.

204 The structure-based physical mechanism of the CRISPR gene editing process relies on the
205 formation of DSBs and appears to have 2 stages³⁴. The first stage is palindrome (PAM) recognition
206^{34,35}. This stage is determined by the PAM sequence and PAM-Cas9 interactions and chromatin
207 accessibility³⁴. The second stage is the formation of the R-loop, also known as the target DNA/signal
208 guide RNA (sgRNA)-bound structure³⁴. A full-length (20 base pairs) RNA-DNA hybrid helix may
209 not be mandatory for sgRNA-target recognition and Cas9 cleavage, and shorter protospacers may
210 also ensure high targeting efficiency. The Cas9 endonuclease may tolerate mismatches in the PAM-
211 distal (non-seed) region, although perfect base-pairing in the PAM-proximal (seed) region is
212 preferred³⁴.

213 In contrast to animal cells, plant zygotic cells are difficult to transform with CRISPR/Cas9
214 directly because of technological limitations. Currently, tissue culture is required for the
215 transformation of most plant species, preferentially mediated by *Agrobacterium*. Thus, for most plants,
216 callus cells are exposed to gene editing reagents for initial targeting³⁵. The efficiency of
217 transformation may depend on the codons used for Cas9 translation and the promoters used for both
218 the sgRNAs and Cas9 gene expression³⁵.

219 For cacao, cells isolated from somatic embryo cotyledons and young leaves (Scavina 6 variety)
220 can be transiently transformed by using *Agrobacterium* carrying a CRISPR/Cas9 construct¹⁶.
221 Apparently stable expression was achieved with the vector pGSh16.1010, which carries the CaMV
222 35S promoter¹⁶. For the *C. canephora* clone 197, the *C. canephora* U6 promoter was used to transform
223 6-month-old embryogenic calli derived from leaf segments for 10 min with a solution containing *A.*
224 *tumefaciens* strain EHA105 that were selected for tolerance to cefotaxime and hygromycin and grown
225 into plants³³. A pCAMBIA 5300 binary vector carrying the Cas9 sequence was successfully used for
226 these transformants³³. Approximately 7% of all transformants tested homozygous for mutations of
227 the phytoene desaturase gene (*CcPDS*, *Cc04_g00540*)³³.

228 For papaya, genetic engineering has mostly involved biolistic-mediated transformation related
229 to tolerance to the papaya ringspot virus, a single-strand, positive-sense RNA Potyvirus and quite
230 possibly the most serious viral disease of papaya worldwide^{36,37}. Nonetheless, *Agrobacterium*-
231 mediated transformation of somatic and zygotic embryos has also been reported³⁷. CRISPR/Cas9-
232 mediated genome editing against several viruses simultaneously in papaya may be technically
233 feasible and within reach³⁷.

234 Chromosome structure editing in crops

235 Besides the targeted editing of key genes, the targeted modification of the chromosome structure
236 is also a possibility in genome engineering³². Theoretically, if several DSBs are introduced into the
237 genome, chromosomes might be modified in a directed manner, to create new combinations of
238 chromosomal fragments³². For instance, if two DSBs are induced on the same chromosome,
239 intrachromosomal rearrangements may occur by deleting or inverting the area between the 2 breaks.

240 However, interchromosomal rearrangements may be obtained by inducing 2 or more DSBs on
241 different chromosomes ³². Depending on the type of tissue, a somatic or meiotic crossover may be
242 produced by inducing breaks on one or both homologues ³².

243 In *Arabidopsis*, inversions up to 18 kb were successfully transmitted to the next generation by
244 using an egg cell-specific promoter (EC1.1) for Cas9 (SaCas9) expression, and inversion and deletion
245 frequencies were greater in a *ku70-1* mutant than the wild type, which suggests increased inversion
246 formation by mutagenic microhomology-mediated backup EJ ³⁸. This process has been observed in
247 mice as well ³⁹. In agriculture, this approach may help reverse natural inversions between related
248 species to facilitate outcrossing and transmission of beneficial alleles ^{38,39}. For example, in papaya,
249 crosses of species from the related genus *Vasconcellea* might promote transmission of tolerance to
250 ringspot virus and the fungus *Phytophthora palmivora*, which destroys the plant root meristem and
251 also causes fruit rot ⁴⁰. However, meiosis is usually defective in these wild species⁴⁰, and lagging
252 chromosomes and polyads are observed⁴⁰, which suggests the existence of chromosomal barriers to
253 the formation of chiasmata.

254 Another yet theoretical possibility for crops would be to induce an inversion to create new
255 linkage groups and purposely suppress recombination ³². Suppression of recombination is also
256 observed in chromosomal blocks that control apomixis, a form of reproduction characterized by
257 deregulation of meiosis and embryo development ⁴¹. Apomixis is an effective strategy to retain
258 genome-wide parental heterozygosity; recently, apomixis has been successfully engineered in rice to
259 facilitate clonal propagation of hybrids by seed ⁴².

260 Metabolite harvesting

261 Industrial biotechnology relies on methods of foreign gene introduction to engineer new
262 pathways for the biosynthesis of products ⁴³. Gene deletion and introduction strategies have been
263 successfully demonstrated in an increasing number of industrial microbes, including *Escherichia coli*,
264 *Saccharomyces cerevisiae*, *Clostridium beijerinckii* for the synthesis of acetone and butanol, and
265 *Corynebacterium glutamicum* for the synthesis of aminoacids ^{43,44}. In contrast to the traditional focus on
266 optimizing endogenous pathways or reconstituting natural pathways to produce metabolites ⁴⁴,
267 advances in synthetic biology have enabled the design of new and highly specific metabolic pathways
268 for desired chemicals ⁴⁴.

269 Indeed, the *E. coli* strain BL21(DE3) is able to synthesize caffeine (and possibly theobromine)
270 with glucose as the only carbon source ⁴⁵. To achieve this synthesis mechanism, several genes
271 including the tea caffeine synthase gene *TCS1* from *Camellia sinensis*, the coffee xanthosine
272 methyltransferase gene *CaXMT* from *C. arabica*, the methionine adenosyltransferase gene *SAM2* from
273 *S. cerevisiae*, the *Vitreoscilla* hemoglobin gene *vgb*, and the guanine deaminase gene *GUD1* from *S.*
274 *cerevisiae* have been codon-optimized, commercially synthesized, introduced into plasmids and then
275 transferred into competent *E. coli* cells by chemical transformation ⁴⁵. Genetic engineering has also
276 been suggested in *C. canephora* and *C. arabica* to create new metabolic pathways for the synthesis of
277 caffeine and vitamin B3 ⁴⁶. In addition, the expression of N1-demethylase genes from the *Pseudomonas*
278 *putida* strain CBB5 in *E. coli* allowed for the recovery of theobromine from caffeine ⁴⁷. The synthesis
279 of soluble papain has been achieved in cells of *S. cerevisiae* and the *Pichia pastoris* strain KM71H, with
280 yields comparable to those of pure papaya latex in the latter ⁴⁸.

281 However, the full replication of sensorial traits for complex products (e.g., cacao paste, an
282 arabica espresso, or papaya concentrate) may involve extensive synthetic genome engineering in the
283 organism of choice. For example, analysis of the genome of *T. cacao* revealed a high number of genes
284 involved in terpenoid synthesis (for aroma) (55 genes); most are clustered in chromosomes 6, 7 and
285 10¹³. The number of genes involved in flavonoid biosynthesis (for cancer effects and neuroprotective
286 activities) is approximately 96, whereas that for lipid biosynthesis is 84¹³. Moreover, the genomes of
287 coffee and cacao are highly heterochromatic and rich in transposable elements^{13,49}, so genome editing
288 approaches may need to consider that transcriptionally repressed chromatin reduces the rate at
289 which mutations form by seven-fold, particularly when the intracellular concentration of Cas9 is low
290 ⁵⁰. Also, CpG methylation is negatively associated with the binding of Cas9 ⁵¹.

291 Taken together, these results suggest that the demand for simple metabolites found in cacao,
292 coffee or papaya may be met by engineering synthetic microbial strains, but a full product may
293 require agricultural genome editing or engineering of very complex synthetic systems.

294 **Concluding remarks**

295 Advances in understanding agricultural genomes in the tropical crops coffee, cacao and papaya
296 may allow for adaptation to climate change and increased output. Nonetheless, industrial
297 engineering of microbial organisms may also meet the demand, either partially or completely. In any
298 case, the economic impact may exceed current expectations and facilitate adaptation to climate
299 change and ecological disturbance.

300

301 **Acknowledgments:** Work at the Bolaños-Villegas laboratory is supported by grants B8069, B6602,
302 B5A52 and B5A49 from Vicerrectoría de Investigación (University of Costa Rica), which also covered
303 publication costs for this article. Pablo is a young member affiliate of TWAS/UNESCO and a member
304 of the American Society of Plant Biologists. This manuscript was kindly edited by Ms. Laura Smales
305 (BioMedEditing, Toronto, Canada).

306

307 **Conflicts of Interest:** The author declares no conflicts of interest. The sponsors had no role in the
308 design, execution, interpretation, or writing of the study.

309 **References**

- 310 (1) Dhankher, O. P.; Foyer, C. H. Climate Resilient Crops for Improving Global Food Security and Safety. *Plant
311 Cell Environ.* **2018**, *41*, 877–884. <https://doi.org/10.1111/pce.13207>.
- 312 (2) Tito, R.; Vasconcelos, H. L.; Feeley, K. J. Global Climate Change Increases Risk of Crop Yield Losses and
313 Food Insecurity in the Tropical Andes. *Glob. Chang. Biol.* **2018**, *24*, e592–e602.
314 <https://doi.org/10.1111/gcb.13959>.
- 315 (3) Bruce M, C.; James, H.; Janie, R.; Clare M, S.; Stephen, T.; Eva, (Lini) Wollenberg. Urgent Action to Combat
316 Climate Change and Its Impacts (SDG 13): Transforming Agriculture and Food Systems. *Curr. Opin.
317 Environ. Sustain.* **2018**, *34*, 13–10. <https://doi.org/10.1016/j.cosust.2018.06.005>.
- 318 (4) Davis, A. P.; Chadburn, H.; Moat, J.; O'Sullivan, R.; Hargreaves, S.; Lughadha, E. N. High Extinction Risk
319 for Wild Coffee Species and Implications for Coffee Sector Sustainability. *Sci. Adv.* **2019**, *5*, eaav3473.
320 <https://doi.org/10.1126/sciadv.aav3473>.
- 321 (5) Farrell, A. D.; Rhiney, K.; Eitzinger, A.; Umaharan, P. Climate Adaptation in a Minor Crop Species: Is the
322 Cocoa Breeding Network Prepared for Climate Change? *Agroecol. Sustain. Food Syst.* **2018**, *42* (7), 812–833.
323 <https://doi.org/10.1080/21683565.2018.1448924>.
- 324 (6) Schroth, G.; Läderach, P.; Martinez-Valle, A. I.; Bunn, C.; Jassogne, L. Vulnerability to Climate Change of
325 Cocoa in West Africa: Patterns, Opportunities and Limits to Adaptation. *Sci. Total Environ.* **2016**, *556*, 231–
326 241. <https://doi.org/10.1016/j.scitotenv.2016.03.024>.
- 327 (7) van der Vossen, H.; Bertrand, B.; Charrier, A. Next Generation Variety Development for Sustainable
328 Production of Arabica Coffee (*Coffea Arabica* L.): A Review. *Euphytica* **2015**, *204*, 243–256.
329 <https://doi.org/10.1007/s10681-015-1398-z>.
- 330 (8) Liao, Z.; Yu, Q.; Ming, R. Development of Male-Specific Markers and Identification of Sex Reversal Mutants
331 in Papaya. *Euphytica* **2017**, *213*, 53. <https://doi.org/10.1007/s10681-016-1806-z>.
- 332 (9) Campostrini, E.; Schaffer, B.; Ramalho, J. D. C.; González, J. C.; Rodrigues, W. P.; da Silva, J. R.; Lima, R. S.
333 N. Environmental Factors Controlling Carbon Assimilation, Growth, and Yield of Papaya (*Carica Papaya*
334 L.) Under Water-Scarcity Scenarios. In *Water Scarcity and Sustainable Agriculture in Semiarid Environment*;
335 Elsevier, 2018; pp 481–500. <https://doi.org/10.1016/b978-0-12-813164-0.00019-3>.
- 336 (10) Gaur, R. K.; Verma, R. K.; Khurana, S. M. P. Genetic Engineering of Horticultural Crops. In *Genetic
337 Engineering of Horticultural Crops*; Academic Press, 2018; pp 23–46. [https://doi.org/10.1016/b978-0-12-810439-2.00002-7](https://doi.org/10.1016/b978-0-12-
338 810439-2.00002-7).
- 339 (11) Wickramasuriya, A. M.; Dunwell, J. M. Cacao Biotechnology: Current Status and Future Prospects. *Plant
340 Biotechnology Journal*. 2018, pp 4–17. <https://doi.org/10.1111/pbi.12848>.
- 341 (12) Cornejo, O. E.; Yee, M.-C.; Dominguez, V.; Andrews, M.; Sockell, A.; Strandberg, E.; Livingstone, D.; Stack,
342 C.; Romero, A.; Umaharan, P.; et al. Population Genomic Analyses of the Chocolate Tree, *Theobroma Cacao*
343 L., Provide Insights into Its Domestication Process. *Commun. Biol.* **2018**, *1* (1), 1–16.

344 https://doi.org/10.1038/s42003-018-0168-6.

345 (13) Argout, X.; Salse, J.; Aury, J. M.; Guiltinan, M. J.; Droc, G.; Gouzy, J.; Allegre, M.; Chaparro, C.; Legavre, T.;
346 Maximova, S. N.; et al. The Genome of Theobroma Cacao. *Nat. Genet.* **2011**, *43* (2), 101–108.
347 https://doi.org/10.1038/ng.736.

348 (14) Schwarzkopf, E. J.; Motamayor, J. C.; Cornejo, O. E. Genetic Differentiation and Intrinsic Genomic Features
349 Explain Variation in Recombination Hotspots among Cocoa Tree Populations. *bioRxiv* **2018**.
350 https://doi.org/10.1101/482299.

351 (15) Dantas, L. G.; Guerra, M. Chromatin Differentiation between Theobroma Cacao L. and T. Grandiflorum
352 Schum. *Genet. Mol. Biol.* **2010**, *33* (1), 94–98. https://doi.org/10.1590/S1415-47572009005000103.

353 (16) Fister, A. S.; Landherr, L.; Maximova, S. N.; Guiltinan, M. J. Transient Expression of CRISPR/Cas9
354 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma Cacao. *Front. Plant Sci.* **2018**, *9*,
355 268. https://doi.org/10.3389/fpls.2018.00268.

356 (17) Denoeud, F.; Carretero-Paulet, L.; Dereeper, A.; Droc, G.; Guyot, R.; Pietrella, M.; Zheng, C.; Alberti, A.;
357 Anthony, F.; Aprea, G.; et al. The Coffee Genome Provides Insight into the Convergent Evolution of
358 Caffeine Biosynthesis. *Science (80-.).* **2014**, *345* (6201), 1181–1184. https://doi.org/10.1126/science.1255274.

359 (18) Pinto-Maglio, C. A. F. Cytogenetics of Coffee. *Brazilian J. Plant Physiol.* **2006**, *18* (1), 37–44.

360 (19) Herrera, J. C.; D'Hont, A.; Lashermes, P. Use of Fluorescence in Situ Hybridization as a Tool for
361 Introgression Analysis and Chromosome Identification in Coffee (*Coffea Arabica* L.). *Genome* **2007**, *50* (7),
362 619–626. https://doi.org/10.1139/G07-034.

363 (20) Moncada, M. D. P.; Tovar, E.; Montoya, J. C.; González, A.; Spindel, J.; McCouch, S. A Genetic Linkage Map
364 of Coffee (*Coffea Arabica* L.) and QTL for Yield, Plant Height, and Bean Size. *Tree Genet. Genomes* **2016**, *12*
365 (1), 1–17. https://doi.org/10.1007/s11295-015-0927-1.

366 (21) Ming, R.; Hou, S.; Feng, Y.; Yu, Q.; Dionne-Laporte, A.; Saw, J. H.; Senin, P.; Wang, W.; Ly, B. V.; Lewis, K.
367 L. T.; et al. The Draft Genome of the Transgenic Tropical Fruit Tree Papaya (*Carica Papaya* Linnaeus).
368 *Nature* **2008**, *452*, 991–997. https://doi.org/10.1038/nature06856.

369 (22) Zhang, W.; Jiang, J. Molecular Cytogenetics of Papaya. In *Genetics and Genomics of Papaya, Plant Genetics and*
370 *Genomics: Crops and Models 10*; Ming, R., Moore, P. H., Eds.; Springer Science+Business Media: New York,
371 2014; pp 157–168. https://doi.org/10.1007/978-1-4614-8087-7_9.

372 (23) VanBuren, R.; Zeng, F.; Chen, C.; Zhang, J.; Wai, C. M.; Han, J.; Aryal, R.; Gschwend, A. R.; Wang, J.; Na, J.
373 K.; et al. Origin and Domestication of Papaya Yh Chromosome. *Genome Res.* **2015**, *25* (4), 524–533.
374 https://doi.org/10.1101/gr.183905.114.

375 (24) Jiménez, V. M.; Mora-Newcomer, E.; Gutiérrez-Soto, M. V. Biology of the Papaya Plant. In *Genetics and*
376 *Genomics of Papaya, Plant Genetics and Genomics: Crops and Models 10*; Ming, R., Moore, P. H., Eds.; Springer
377 Science+Business Media: New York, 2014; pp 17–33. https://doi.org/10.1007/978-1-4614-8087-7_2.

378 (25) Chen, J. R.; Urasaki, N.; Matsumura, H.; Chen, I. C.; Lee, M. J.; Chang, H. J.; Chung, W. C.; Ku, H. M.
379 Dissecting the All-Hermaphrodite Phenomenon of a Rare X Chromosome Mutant in Papaya (*Carica*
380 *Papaya* L.). *Mol. Breed.* **2019**, *39*, 14. https://doi.org/10.1007/s11032-018-0918-7.

381 (26) Lee, C. Y.; Lin, H. J.; Viswanath, K. K.; Lin, C. P.; Chang, B. C. H.; Chiu, P. H.; Chiu, C. T.; Wang, R. H.;
382 Chin, S. W.; Chen, F. C. The Development of Functional Mapping by Three Sex-Related Loci on the Third
383 Whorl of Different Sex Types of *Carica Papaya* L. *PLoS One* **2018**, *13* (3), e0194605.
384 https://doi.org/10.1371/journal.pone.0194605.

385 (27) Fayos, I.; Mieulet, D.; Petit, J.; Meunier, A. C.; Périn, C.; Nicolas, A.; Guiderdoni, E. Engineering Meiotic
386 Recombination Pathways in Rice. *Plant Biotechnol. J.* **2019**, 1–16. https://doi.org/10.1111/pbi.13189.

387 (28) Wang, Y.; Copenhaver, G. P. Meiotic Recombination: Mixing It up in Plants. *Annu. Rev. Plant Biol.* **2018**, *69*,
388 577–609. https://doi.org/10.1146/annurev-arplant-042817-040431.

389 (29) Mieulet, D.; Aubert, G.; Bres, C.; Klein, A.; Droc, G.; Vieille, E.; Rond-Coissieux, C.; Sanchez, M.; Dalmais,
390 M.; Mauxion, J.-P.; et al. Unleashing Meiotic Crossovers in Crops. *Nat. Plants* **2018**, *4*, 1010–1016.
391 https://doi.org/10.1038/s41477-018-0311-x.

392 (30) Que, Q.; Chen, Z.; Kelliher, T.; Skibbe, D.; Dong, S.; Chilton, M.-D. Nd Their Applications in Genome
393 Engineering. In *Plant Genome Editing with CRISPR Systems*; Qi, Y., Ed.; Springer Science+Business Media,
394 LLC: New York, 2019; pp 3–24. https://doi.org/10.1007/978-1-4939-8991-1.

395 (31) Que, Q.; Chilton, M. D. M.; Elumalai, S.; Zhong, H.; Dong, S.; Shi, L. Repurposing Macromolecule Delivery
396 Tools for Plant Genetic Modification in the Era of Precision Genome Engineering. In *Methods in Molecular*
397 *Biology*; Springer Science+Business Media, 2019; pp 3–18. https://doi.org/10.1007/978-1-4939-8778-8_1.

398 (32) Schmidt, C.; Schindele, P.; Puchta, H. From Gene Editing to Genome Engineering: Restructuring Plant
399 Chromosomes via CRISPR/Cas. *aBIO TECH* **2019**.

400 (33) Breitler, J. C.; Dechamp, E.; Campa, C.; Zebral Rodrigues, L. A.; Guyot, R.; Marraccini, P.; Etienne, H.
401 CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis Has the Potential to Accelerate the Domestication

402 of *Coffea Canephora*. *Plant Cell. Tissue Organ Cult.* **2018**, *134* (3), 383–394. <https://doi.org/10.1007/s11240-018-1429-2>.

403 (34) Xu, X.; Duan, D.; Chen, S. J. CRISPR-Cas9 Cleavage Efficiency Correlates Strongly with Targets gRNA
404 Folding Stability: From Physical Mechanism to off-Target Assessment. *Sci. Rep.* **2017**, *7*, 143.
405 <https://doi.org/10.1038/s41598-017-00180-1>.

406 (35) Feng, C.; Su, H.; Bai, H.; Wang, R.; Liu, Y.; Guo, X.; Liu, C.; Zhang, J.; Yuan, J.; Birchler, J. A.; et al. High-
407 Efficiency Genome Editing Using a Dmc1 Promoter-Controlled CRISPR/Cas9 System in Maize. *Plant
408 Biotechnol. J.* **2018**, *16*, 1848–1857. <https://doi.org/10.1111/pbi.12920>.

409 (36) Geetika, S.; Ruqia, M.; Harpreet, K.; Neha, D.; Shruti, K.; Singh, S. P. Genetic Engineering in Papaya. In
410 *Genetic Engineering of Horticultural Crops*; Academic Press, 2018; pp 137–154. <https://doi.org/10.1016/b978-0-12-810439-2.00007-6>.

411 (37) Hamim, I.; Borth, W. B.; Marquez, J.; Green, J. C.; Melzer, M. J.; Hu, J. S. Transgene-Mediated Resistance to
412 Papaya Ringspot Virus: Challenges and Solutions. *Phytoparasitica* **2018**, *46* (1), 1–18.
413 <https://doi.org/10.1007/s12600-017-0636-4>.

414 (38) Schmidt, C.; Pacher, M.; Puchta, H. Efficient Induction of Heritable Inversions in Plant Genomes Using the
415 CRISPR/Cas System. *Plant J.* **2019**, *98*, 577–589. <https://doi.org/10.1111/tpj.14322>.

416 (39) Park, C. Y.; Sung, J. J.; Kim, D. W. Genome Editing of Structural Variations: Modeling and Gene Correction.
417 *Trends Biotechnol.* **2016**, *34* (7), 548–561. <https://doi.org/10.1016/j.tibtech.2016.02.011>.

418 (40) Narducci Da Silva, E.; Neto, M. F.; Pereira, T. N. S.; Pereira, M. G. Meiotic Behavior of Wild Caricaceae
419 Species Potentially Suitable for Papaya Improvement. *Crop Breed. Appl. Biotechnol.* **2012**, *12* (12), 52–59.
420 <https://doi.org/10.1590/S1984-70332012000100007>.

421 (41) Bolaños-Villegas, P.; Thangasamy, S.; Jauh, G.-Y. *Rise of the Clones: Apomixis in Plant Breeding*; 2013.

422 (42) Khanday, I.; Skinner, D.; Yang, B.; Mercier, R.; Sundaresan, V. A Male-Expressed Rice Embryogenic Trigger
423 Redirected for Asexual Propagation through Seeds. *Nature* **2018**.

424 (43) Donohoue, P. D.; Barrangou, R.; May, A. P. Focus on Applications of CRISPR Advances in Industrial
425 Biotechnology Using CRISPR-Cas Systems. *Trends Biotechnol.* **2018**, *36* (2), 134–146.
426 <https://doi.org/10.1016/j.tibtech.2017.07.007>.

427 (44) Choi, K. R.; Jang, W. D.; Yang, D.; Cho, J. S.; Park, D.; Lee, S. Y. Systems Metabolic Engineering Strategies:
428 Integrating Systems and Synthetic Biology with Metabolic Engineering. *Trends in Biotechnology*. 2019, pp
429 817–837. <https://doi.org/10.1016/j.tibtech.2019.01.003>.

430 (45) Li, M.; Sun, Y.; Pan, S. A.; Deng, W. W.; Yu, O.; Zhang, Z. Engineering a Novel Biosynthetic Pathway in:
431 *Escherichia Coli* for the Production of Caffeine. *RSC Adv.* **2017**, *7* (89), 56382–56389.
432 <https://doi.org/10.1039/c7ra10986e>.

433 (46) Ashihara, H. Biosynthetic Pathways of Purine and Pyridine Alkaloids in Coffee Plants. *Nat. Prod. Commun.*
434 **2016**, *11* (7), 1047–1054.

435 (47) Algharrawi, K. H. R.; Summers, R. M.; Subramanian, M. Production of Theobromine by N-Demethylation
436 of Caffeine Using Metabolically Engineered *E. Coli*. *Biocatal. Agric. Biotechnol.* **2017**, *11*, 153–160.
437 <https://doi.org/10.1016/j.bcab.2017.06.014>.

438 (48) Thomas Hirth, N. W.; Susanne Zibek, S. R. Expression of a Codon-Optimized *Carica Papaya* Papain
439 Sequence in the Methylotrophic Yeast *Pichia Pastoris*. *J. Microb. Biochem. Technol.* **2015**, *7* (5), 313–317.
440 <https://doi.org/10.4172/1948-5948.1000231>.

441 (49) Nunes, R. D. C.; Orozco-Arias, S.; Crouzillat, D.; Mueller, L. A.; Strickler, S. R.; Descombes, P.; Fournier, C.;
442 Moine, D.; De Kochko, A.; Yuyama, P. M.; et al. Structure and Distribution of Centromeric
443 Retrotransposons at Diploid and Allotetraploid *Coffea* Centromeric and Pericentromeric Regions. *Front.
444 Plant Sci.* **2018**. <https://doi.org/10.3389/fpls.2018.00175>.

445 (50) Kallimasioti-Pazi, E. M.; Thelakkad Chathoth, K.; Taylor, G. C.; Meynert, A.; Ballinger, T.; Kelder, M. J. E.;
446 Lalevée, S.; Sanli, I.; Feil, R.; Wood, A. J. Heterochromatin Delays CRISPR-Cas9 Mutagenesis but Does Not
447 Influence the Outcome of Mutagenic DNA Repair. *PLoS Biol.* **2018**, *17* (2), e3000160.
448 <https://doi.org/10.1371/journal.pbio.2005595>.

449 (51) Verkuijl, S. A.; Rots, M. G. The Influence of Eukaryotic Chromatin State on CRISPR-Cas9 Editing
450 Efficiencies. *Curr. Opin. Biotechnol.* **2019**, *55*, 68–73. <https://doi.org/10.1016/j.copbio.2018.07.005>.

451

452