
Article Not peer-reviewed version

Beyond Wave-Nature Signatures: h-

Independent Transport in Strongly-

Scattering 2D Quantum Channels

Er'el Granot *

Posted Date: 23 June 2025

doi: 10.20944/preprints202506.1791.v1

Keywords: quantum tunneling; Quantum Channels; Quantum to Classical transition; Quantum conductance

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/468733


 

 

Article 
Beyond Wave-Nature Signatures: h-Independent 
Transport in Strongly-Scattering 2D Quantum 
Channels 

Er'el Granot 

Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israe; erel@ariel.ac.il 

Abstract 

The Landauer-Büttiker formalism provides a fundamental framework for mesoscopic transport, 
typically expressing conductance in units of the quantum of conductance, e2/h. Here, we present a 
theoretical study of electron transport in a two-dimensional (2D) quantum wire. This system features 
a wide transverse confinement and a longitudinal, high-energy, narrow potential barrier. The 
derivation, performed within the Landauer framework, yields an analytical expression for the total 
conductance that is explicitly independent of Planck's constant (h). Instead, the conductance is found to 
depend solely on the Fermi energy, the electron effective mass, the wire width, and the effective 
barrier strength.We interpret this as an emergent phenomenon where the explicit signature of the 
electron's wave-like nature, commonly manifest through h in the overall scaling of conductance, is 
effectively absorbed within the energy- and geometry-dependent sum of transmission probabilities. 
This allows the conductance to be primarily governed by the Fermi energy, representing a 'state-
counting' quantum parameter rather than more wave-like characteristic. 

Keywords:  
 

1. Introduction 

The Landauer-Büttiker [1,2] has served as a cornerstone of mesoscopic physics for decades, 
providing an elegant and powerful framework for describing electrical conduction in quantum 
systems. A central tenet of this approach is the quantization of conductance, universally expressed 
as an integer or fractional multiple of the quantum of conductance, e2/h.  Hence, in the case of an 
orifice with N transverse mode  the conductance and resistance are respectively. This fundamental 
constant, derived from the core principles of quantum mechanics, unequivocally establishes Planck's 
constant (h) as an indispensable parameter in characterizing quantum transport phenomena [3,4]. Its 
explicit appearance reflects the wave-particle duality and the inherent quantization of energy and 
momentum, underpinning phenomena ranging from ballistic transport in semiconductor nanowires 
[5,6] to the precise plateaus observed in the integer and fractional quantum Hall effects [7,8]. 

N
h
eG

2

0 2= , and 20 2Ne
h=ℜ  (1)

Here, we investigate the longitudinal conductance of a two-dimensional (2D) quantum wire 
subjected to a highly localized potential barrier. Such systems are central to modern quantum 
electronic devices, forming the basis for quantum point contacts, tunable field-effect transistors, and 
components in quantum computing architectures [3,9]. Our theoretical model considers a wide 2D 
wire (width W) where 1>>Fwk , allowing for a multitude of propagating transverse modes. 
Crucially, the wire incorporates a strong and narrow potential barrier characterized by height ( )xVD  
and width a2 , satisfying FD EV >>max   and 1<<Fak . These conditions place the system squarely 
in a tunneling regime, where electrons interact strongly with the barrier, yet its narrowness permits 
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an accurate approximation as a short-range scatterer, a limit widely explored in quantum scattering 
theory [10]. 

Contrary to the ubiquitous presence of Planck's constant in quantum transport laws, the 
derivation of the conductance for this specific system yields an analytical expression that is explicitly 
independent of Planck's constant (h) and the electron density, depending solely on the Fermi energy 
( FE ), the electron effective mass ( *m ), the wire's width (w), and the barrier's integrated strength (

( ) xdxVD ). This finding is particularly striking because the system operates in a 'heavy quantum 

regime' where tunneling through a classically impenetrable barrier is the dominant transport 
mechanism. While the Fermi energy itself is unequivocally a quantum mechanical concept, 
originating from the Pauli exclusion principle and the filling of discrete quantum states [11], its 
definition does not, in itself, necessitate an explicit reliance on the electron's wave-like properties in 
the same manner as interference or typical tunneling probabilities do. The quantum of conductance, 
e2/h, on the other hand, is a direct consequence of the wave nature of charge carriers propagating 
through quantum channels [3]. 

The explicit cancellation of h and n in our final conductance formula therefore points to a 
profound emergent behavior. It suggests that in this specific parameter regime—a wide wire with a 
high, narrow barrier—the 'wave-like' quantum characteristics, normally encoded in the explicit 
appearance of h, are effectively suppressed or averaged out in the global transport observable. This 
leaves a conductance value primarily dictated by the Fermi energy, which appears to function as a 
more fundamental 'state-counting' quantum parameter. This unique manifestation of quantum 
transport, where the 'residual' signature of the wave nature of the electron seemingly vanishes from 
the conductance, is puzzling and invites a re-examination of how and when different facets of 
quantum mechanics (state quantization vs. wave phenomena) explicitly shape macroscopic 
observables. Our work highlights a subtle yet significant departure from typical quantum 
conductance scaling, potentially offering new insights into the interplay of fundamental constants in 
mesoscopic systems and hinting at novel regimes for electronic device design. 

The remainder of this paper is organized as follows. Section II details the theoretical framework 
for a generic analytical approximate expression for the resistance of a 2D quantum wire. Section III 
provides an exact numerical derivation for a rectangular barrier case, and illustrate the validity of the 
generic expression. Section IV presents a possible experimental realization.  Finally Section V 
concludes with a summary of our findings and outlines potential avenues for future theoretical and 
experimental investigations. 

2. Generic Approximate Solution 

The system, illustrated in Figure 1, comprises a wide, planar quantum wire (extending in the y-
direction) featuring a narrow, high barrier of width 2a placed along the electron transport direction 
(x-axis). This system is governed by the stationary Schrödinger equation: 
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where the potential consists of two parts:  

( ) ( ) ( )xVyUyxV DW +=,  (3)

The wire’s boundaries and the narrow membrane (barrier) 
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It should be emphasized that these two requirements can be less restrictive, i.e., the wire’s 
boundaries potential do not have to be infinite, and the barrier does not have to vanish beyond the [-
a,a] domain. It just needs to be localized there.

Figure 1. System schematic of a wide, planar wire with a narrow, high barrier across which there is a voltage 
drop ΔV.

Due to the Cartesian symmetry of the system, the propagating eigenstates can be written simply 
as 

( ) ( )x
w
ynyx nn χ





 π=ψ sin, (6)

In case where the barrier width is considerably narrower than the electron’s de-Broglie 

wavelength, i.e., 1<<Fak , or 1/2 * <<FEma , where the subscript “F” represents the Fermi 

wavenumber and Fermi-energy respectively, the solution for the longitudinal component can be 
written using the one-dimensional (1D) Green function
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Therefore, in the narrow barrier regime, the solution reads
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After substituting the Green function ( )xKn in (9), the stationary solution reads
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where
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Therefore, beyond the barrier, 
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and the transmission coefficient of the nth transverse propagating mode is  
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When the barrier has a rectangular profile, i.e., ( ) VxVD =  then 
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Eqs. (13) and (14) are consistent with the transmission of a delta function potential barrier, i.e., 

( ) ( ) ( )δ= '' xVdxxxV DD . The conductance is reached by substituting (13) in [3] 
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where   



=π= hEmwwkN FF /22/ *  is the number of propagating modes. 

In the regime, where the wire’s width is much wider than the electron’s Fermi wavelength, i.e. 
1>>Fwk , and therefore the number of modes is very large 1>>N  the summation in the 

conductance formula can be replaces with a corresponding integral 
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This integral has an exact analytical solution 
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This generic solution depends on the Planck constant both in the universal conductance /2 2e  
and in D , however, in case 1>>D  
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Therefore, the resistance can be written 
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The first term in (20) correspond to the resistance of a free wire ( )Neh 2
0 2/=ℜ . However, the 

second term in (20), which represents the resistance of the barrier, is independent of the Planck 
constant: 

( )
2

2/3

*

2

2

4
2

2
3




















 π≅ℜΔ  xdxV
E
m

we D
F

 (21)

In case the barrier has rectangular profile  

( )2
2/3

*

2

2 2
2
3 aV

E
m

we F












 π≅ℜΔ  (22)

While Eqs. (21) and (22) show a dependence on the Fermi energy, a quantum mechanical 
property, no residue of its wave-like nature is evident. 

3. Exact Numerical Solution 

Even when the number of modes is finite and the barrier has a finite width (unlike a delta 
function potential), Eqs.(20-22) remain valid. To show this, we numerically solve for the conductance 
of a finite-width wire with a finite-width barrier. The rectangular barrier case, i.e.,     ( ) VxVD = , can 
be solved analytically (see, for example, Ref. [12]). In this case the longitudinal wavefunction obeys  
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boundary conditions on the wavefunction and its derivative (for details, see [12]). The final 

transmission coefficients 2
nn tT =  can be substituted in (15) to obtain 
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From (24), the exact barrier resistance can be derived 0/1 ℜ−=ℜΔ G  . Figure 2 displays the plot 
against the barrier's normalized width. It can be observed that the approximate expression is 
consistent with the accurate one over at least an order of magnitude. 
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Figure 2. Normalized barrier resistance as a function of its normalized width. The solid curve represents the 
exact solution (24) while the dashed curve represets the approximate expression (22). The calculation parameters 
were: 310=Fwk , and 210/ =FEV . 

4. Experimental Realization 

To observe this effect in GaAs/AlGaAs 2DEG we suggest choosing realistic parameters: electron 
density    and low temperature ( K1< ) giving Fermi energy meV10~FE . Since the 

electron mass is Kgmm e
32* 101.6067.0 −×==  then the Fermi wavelength is nm48≅λF [13]. 

Choosing wire width m1μ≅w correspond to 40>N  modes. Modern MBE and e-beam lithography 
produce ~2 nm barriers via AlGaAs insertion or split-gate depletion [14–16]. Accordingly , we take 
barrier width nm2=a  and height J102meV200 -19×==V , i.e. 20/ ≅FEV . For these parameters 

Ω≅=ℜ 3152/ 2
0 Neh  while Ω≅ℜΔ M3 . 

These values can eaily be fabricated and measured. In the presence of disorder, finite 
temperature, or contact resistance fluctuations, extracting ℜΔ  may require careful subtraction of 
background contributions [5,15]. Nonetheless, the predicted Ω≅ℜΔ M3  is large enough to appear 
above such noise floors. 

5. Summary 

In this work, we have presented a theoretical investigation of electron transport through a two-
dimensional (2D) quantum wire containing a narrow but high potential barrier. The system was 
analyzed under specific conditions: a wide wire ( 1>>Fwk ) ensuring multiple open transverse modes, 
and a barrier characterized by extreme parameters ( FD EV >>max  and 1<<Fak ), allowing for its 
treatment as a short-range scatterer dominating the longitudinal transport. 

The central finding is the derivation of an analytical expression for the wire's conductance, 
performed within the Landauer-Büttiker formalism, that exhibits an unexpected independence from 
both Planck's constant (h) and the electron density ( sn ). Instead, the conductance is found to depend 

solely on the Fermi energy ( FE ), the electron effective mass ( *m ), the wire width (w), and the effective 

strength of the potential barrier ( ( ) xdxVD ). This result, given by ( )
2
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, underscores a unique limit of quantum transport.  
The h-independence of the overall conductance is particularly intriguing because the system 

operates in a profoundly quantum regime, where transport occurs via tunneling through a classically 
impenetrable barrier. We suggest that while the Fermi energy is undeniably a quantum mechanical 
concept rooted in the Pauli exclusion principle and state counting, its definition does not, by itself, 
explicitly rely on the wave-like properties of the electron that are intrinsically tied to h. Thus, the 
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absence of h in our final conductance formula indicates that for this specific set of physical conditions, 
the 'wave-like' signatures of quantum mechanics, usually manifest through h in the explicit scaling 
of conductance, appear to be effectively absorbed or cancelled within the energy- and geometry-
dependent sum of transmission probabilities. This leads to an emergent transport behavior primarily 
dictated by the system's energy scale ( FE ) and scattering strength, rather than the explicit quantum 
unit of conductance or carrier concentration. 

This work sheds new light on an unconventional manifestation within the Landauer framework, 
demonstrating how the intricate interplay of system geometry and potential characteristics can lead 
to unexpected forms of scaling in macroscopic observables. Our findings offer a unique perspective 
on how different facets of quantum mechanics (e.g., state quantization versus wave phenomena) 
contribute to observable transport properties. 

Looking forward, several avenues for future research emerge from these results. It would be 
valuable to explore whether similar h-independent transport regimes can be found in other low-
dimensional systems or with different types of scatterers. Investigating the robustness of this 
behavior against small deviations from the ideal conditions (e.g., finite barrier width effects, 
intermediate barrier heights) would also be crucial. Furthermore, our findings could stimulate 
experimental efforts to detect this intriguing quantum phenomenon, providing empirical validation 
and potentially opening new pathways for the design of quantum electronic devices with tailored 
transport characteristics. 
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