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Abstract

The Landauer-Biittiker formalism provides a fundamental framework for mesoscopic transport,
typically expressing conductance in units of the quantum of conductance, e%/h. Here, we present a
theoretical study of electron transport in a two-dimensional (2D) quantum wire. This system features
a wide transverse confinement and a longitudinal, high-energy, narrow potential barrier. The
derivation, performed within the Landauer framework, yields an analytical expression for the total
conductance that is explicitly independent of Planck’s constant (h). Instead, the conductance is found to
depend solely on the Fermi energy, the electron effective mass, the wire width, and the effective
barrier strength.We interpret this as an emergent phenomenon where the explicit signature of the
electron's wave-like nature, commonly manifest through / in the overall scaling of conductance, is
effectively absorbed within the energy- and geometry-dependent sum of transmission probabilities.
This allows the conductance to be primarily governed by the Fermi energy, representing a 'state-
counting’ quantum parameter rather than more wave-like characteristic.

Keywords:

1. Introduction

The Landauer-Biittiker [1,2] has served as a cornerstone of mesoscopic physics for decades,
providing an elegant and powerful framework for describing electrical conduction in quantum
systems. A central tenet of this approach is the quantization of conductance, universally expressed
as an integer or fractional multiple of the quantum of conductance, e/h. Hence, in the case of an
orifice with N transverse mode the conductance and resistance are respectively. This fundamental
constant, derived from the core principles of quantum mechanics, unequivocally establishes Planck's
constant (h) as an indispensable parameter in characterizing quantum transport phenomena [3,4]. Its
explicit appearance reflects the wave-particle duality and the inherent quantization of energy and
momentum, underpinning phenomena ranging from ballistic transport in semiconductor nanowires
[5,6] to the precise plateaus observed in the integer and fractional quantum Hall effects [7,8].
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Here, we investigate the longitudinal conductance of a two-dimensional (2D) quantum wire
subjected to a highly localized potential barrier. Such systems are central to modern quantum
electronic devices, forming the basis for quantum point contacts, tunable field-effect transistors, and
components in quantum computing architectures [3,9]. Our theoretical model considers a wide 2D
wire (width W) where wk, >>1, allowing for a multitude of propagating transverse modes.
Crucially, the wire incorporates a strong and narrow potential barrier characterized by height 7}, (x)
and width 2a, satisfying maxV,, >>E; and ak; <<1. These conditions place the system squarely

in a tunneling regime, where electrons interact strongly with the barrier, yet its narrowness permits
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an accurate approximation as a short-range scatterer, a limit widely explored in quantum scattering
theory [10].

Contrary to the ubiquitous presence of Planck's constant in quantum transport laws, the
derivation of the conductance for this specific system yields an analytical expression that is explicitly
independent of Planck's constant (/) and the electron density, depending solely on the Fermi energy
(Ey), the electron effective mass (m" ), the wire's width (w), and the barrier's integrated strength (

I dxVp(x)). This finding is particularly striking because the system operates in a 'heavy quantum

regime' where tunneling through a classically impenetrable barrier is the dominant transport
mechanism. While the Fermi energy itself is unequivocally a quantum mechanical concept,
originating from the Pauli exclusion principle and the filling of discrete quantum states [11], its
definition does not, in itself, necessitate an explicit reliance on the electron's wave-like properties in
the same manner as interference or typical tunneling probabilities do. The quantum of conductance,
e2/h, on the other hand, is a direct consequence of the wave nature of charge carriers propagating
through quantum channels [3].

The explicit cancellation of & and n in our final conductance formula therefore points to a
profound emergent behavior. It suggests that in this specific parameter regime—a wide wire with a
high, narrow barrier—the 'wave-like' quantum characteristics, normally encoded in the explicit
appearance of &, are effectively suppressed or averaged out in the global transport observable. This
leaves a conductance value primarily dictated by the Fermi energy, which appears to function as a
more fundamental 'state-counting' quantum parameter. This unique manifestation of quantum
transport, where the 'residual’ signature of the wave nature of the electron seemingly vanishes from
the conductance, is puzzling and invites a re-examination of how and when different facets of
quantum mechanics (state quantization vs. wave phenomena) explicitly shape macroscopic
observables. Our work highlights a subtle yet significant departure from typical quantum
conductance scaling, potentially offering new insights into the interplay of fundamental constants in
mesoscopic systems and hinting at novel regimes for electronic device design.

The remainder of this paper is organized as follows. Section II details the theoretical framework
for a generic analytical approximate expression for the resistance of a 2D quantum wire. Section III
provides an exact numerical derivation for a rectangular barrier case, and illustrate the validity of the
generic expression. Section IV presents a possible experimental realization. Finally Section V
concludes with a summary of our findings and outlines potential avenues for future theoretical and
experimental investigations.

2. Generic Approximate Solution

The system, illustrated in Figure 1, comprises a wide, planar quantum wire (extending in the y-
direction) featuring a narrow, high barrier of width 2a placed along the electron transport direction
(x-axis). This system is governed by the stationary Schrodinger equation:

2m" ox? 9y

{—h—i(iﬁ—ijw(x,y)}w(x,y):Ew(x,y> ®

where the potential consists of two parts:
Vo y)=Uy )+ Vp(x) ©

The wire’s boundaries and the narrow membrane (barrier)
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v, (x) _ {V(x) |x| <a 5)

0 else

It should be emphasized that these two requirements can be less restrictive, i.e., the wire’s
boundaries potential do not have to be infinite, and the barrier does not have to vanish beyond the [-
a,a] domain. It just needs to be localized there.
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Figure 1. System schematic of a wide, planar wire with a narrow, high barrier across which there is a voltage
drop AV.

Due to the Cartesian symmetry of the system, the propagating eigenstates can be written simply
as

o) =sinf 2 1, (0 ©

In case where the barrier width is considerably narrower than the electron’s de-Broglie
wavelength, ie., akp<<1, or a1/2m*EF /h<<1, where the subscript “F” represents the Fermi
wavenumber and Fermi-energy respectively, the solution for the longitudinal component can be

written using the one-dimensional (1D) Green function

_2m exp(ikn|x|)

TR )
2
where &k, =k; 1—( n: j . The Green function (7) solves the differential equation
WK
n 9o (k, )’ _
o5 Ko bk =00 ©

Therefore, in the narrow barrier regime, the solution reads

de Vp (x)explik,x)
X ()= explik, x)- K, () ©)
1+ jdeD (x)K, (Ix|)

After substituting the Green function K, (|x|) in (9), the stationary solution reads

D
iign exp(ik,,|x|) (10)

2, 1) = explik, )

where
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Therefore, beyond the barrier,
1 .
Xalx>a)= D, explik, x) (12)
and the transmission coefficient of the nth transverse propagating mode is
1
T, = 3
m" 1 (13)
1+ hTEIdXVD(X)
When the barrier has a rectangular profile, i.e., ¥j(x)=V then
_ 1
" “2av ) 14
1+ m ar (14)
n k,

Egs. (13) and (14) are consistent with the transmission of a delta function potential barrier, i.e.,

Vp(x)= S(x)J‘ dx'Vp(x"). The conductance is reached by substituting (13) in [3]

G=2%ZT,, (15)

where N=|wk,/n|= LwaIZm*E r/ hJ is the number of propagating modes.

In the regime, where the wire’s width is much wider than the electron’s Fermi wavelength, i.e.
wkp >>1, and therefore the number of modes is very large N >>1 the summation in the

conductance formula can be replaces with a corresponding integral

1

2
k
G=2"-" [ax i) (16)
Ty 1+D/Ml-x
where
© 2
m
Dz(h—zg J' deD(x)j 17)
This integral has an exact analytical solution
2 -1/ ieh
G=2¢ wk 1_Dtanh (1/ 1+D) (18)
h = \/1+D

This generic solution depends on the Planck constant both in the universal conductance 2e¢*/%
and in D, however, in case D >>1
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G=2° wk 1 (19)
h m 6/5+(3/2)D
Therefore, the resistance can be written
h = 1 3
R=R)+AR=— l+—+=D
pram=t 1o )

The first term in (20) correspond to the resistance of a free wire R, =5/ (2e2N ) However, the

second term in (20), which represents the resistance of the barrier, is independent of the Planck
constant:

AR = ELi EJ{ J' dx,, (x)j2 1)

2| ®w 4E;/2

In case the barrier has rectangular profile

3[ n’ W}(QVV

2 3/2
e‘w Ep

AR ==

; 22)

While Egs. (21) and (22) show a dependence on the Fermi energy, a quantum mechanical
property, no residue of its wave-like nature is evident.

3. Exact Numerical Solution

Even when the number of modes is finite and the barrier has a finite width (unlike a delta
function potential), Eqs.(20-22) remain valid. To show this, we numerically solve for the conductance
of a finite-width wire with a finite-width barrier. The rectangular barrier case, i.e., Vp(x)=V, can

be solved analytically (see, for example, Ref. [12]). In this case the longitudinal wavefunction obeys

explik, x)+r, exp(- ik, x) xX<-a
x,(x)=1a, exp(- o, x)+b, exp(+ o, x) |x| <a (23)
t, explik, x) x>a

2
where o, =kg r_ 1| E . The coefficients a,,b,,r, and ¢, can be derived from the
Eg wk

boundary conditions on the wavefunction and its derivative (for details, see [12]). The final
|2

transmission coefficients 7, = |tn can be substituted in (15) to obtain

2
J sinh?(20,a) (24)

RN mV
G=2—) |1+

h ; (hzknocn
From (24), the exact barrier resistance can be derived AR=1/G-R,, .Figure 2 displays the plot

against the barrier's normalized width. It can be observed that the approximate expression is
consistent with the accurate one over at least an order of magnitude.
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Figure 2. Normalized barrier resistance as a function of its normalized width. The solid curve represents the
exact solution (24) while the dashed curve represets the approximate expression (22). The calculation parameters
were: wk =10, and V/E, =107,

4. Experimental Realization

To observe this effect in GaAs/AlGaAs 2DEG we suggest choosing realistic parameters: electron

density n, =1x10""cm™

and low temperature (< 1K) giving Fermi energy E ~10meV . Since the
electron mass is m =0.067m, =6.1x10?Kg then the Fermi wavelength is A, =48nm [13].
Choosing wire width w=lum correspond to N >40 modes. Modern MBE and e-beam lithography
produce ~2 nm barriers via AlGaAs insertion or split-gate depletion [14-16]. Accordingly , we take

barrier width ¢ =2nm and height V =200meV =2x10""7J, i.e. V/Ep =20. For these parameters
Ry, =h/2¢*N =315Q while AR =3MQ.

These values can eaily be fabricated and measured. In the presence of disorder, finite
temperature, or contact resistance fluctuations, extracting AR may require careful subtraction of
background contributions [5,15]. Nonetheless, the predicted AR =3MQ is large enough to appear
above such noise floors.

5. Summary

In this work, we have presented a theoretical investigation of electron transport through a two-
dimensional (2D) quantum wire containing a narrow but high potential barrier. The system was
analyzed under specific conditions: a wide wire (wk >>1) ensuring multiple open transverse modes,
and a barrier characterized by extreme parameters (maxVy, >>E, and ak, <<1), allowing for its

treatment as a short-range scatterer dominating the longitudinal transport.

The central finding is the derivation of an analytical expression for the wire's conductance,
performed within the Landauer-Biittiker formalism, that exhibits an unexpected independence from
both Planck's constant (1) and the electron density (7, ). Instead, the conductance is found to depend

solely on the Fermi energy ( E ), the electron effective mass ( m"), the wire width (w), and the effective

2 * 2
strength of the potential barrier (I dxVp(x)). This result, given by AR = 3 2—@ U‘ dxVp, (x)j
2| e*w 4E};
, underscores a unique limit of quantum transport.

The h-independence of the overall conductance is particularly intriguing because the system
operates in a profoundly quantum regime, where transport occurs via tunneling through a classically
impenetrable barrier. We suggest that while the Fermi energy is undeniably a quantum mechanical
concept rooted in the Pauli exclusion principle and state counting, its definition does not, by itself,
explicitly rely on the wave-like properties of the electron that are intrinsically tied to h. Thus, the
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absence of h in our final conductance formula indicates that for this specific set of physical conditions,
the 'wave-like' signatures of quantum mechanics, usually manifest through h in the explicit scaling
of conductance, appear to be effectively absorbed or cancelled within the energy- and geometry-
dependent sum of transmission probabilities. This leads to an emergent transport behavior primarily
dictated by the system's energy scale ( E ) and scattering strength, rather than the explicit quantum
unit of conductance or carrier concentration.

This work sheds new light on an unconventional manifestation within the Landauer framework,
demonstrating how the intricate interplay of system geometry and potential characteristics can lead
to unexpected forms of scaling in macroscopic observables. Our findings offer a unique perspective
on how different facets of quantum mechanics (e.g., state quantization versus wave phenomena)
contribute to observable transport properties.

Looking forward, several avenues for future research emerge from these results. It would be
valuable to explore whether similar h-independent transport regimes can be found in other low-
dimensional systems or with different types of scatterers. Investigating the robustness of this
behavior against small deviations from the ideal conditions (e.g., finite barrier width effects,
intermediate barrier heights) would also be crucial. Furthermore, our findings could stimulate
experimental efforts to detect this intriguing quantum phenomenon, providing empirical validation
and potentially opening new pathways for the design of quantum electronic devices with tailored
transport characteristics.
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