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Abstract: This study investigates the application of Light Detection and Ranging (LiDAR) sensor 

technology for data collection at signalized intersections characterized by a high rate of traffic 

crashes. The research aims to provide valuable insights into the potential of LiDAR-based data 

analysis to enhance road safety and traffic management at signalized intersections. The research 

methodology involved the deployment of LiDAR sensors at Marlboro Pike & Brooks Dr. signalized 

intersection in Coral Hills, Maryland. Two LiDAR sensors installed in this intersection to collect 

high-resolution, three-dimensional data of the intersection area from June, 1st to July, 7th 2023. The 

data included information on vehicle trajectories, speeds, and behaviors, as well as pedestrian and 

cyclist movement patterns. Concurrently, historical traffic crashes recorded and traffic flow data 

were obtained for the same intersection. The analysis of LiDAR data involved several key aspects 

including LiDAR data allowed for a precise evaluation of traffic flow patterns, including congestion 

points, traffic volume fluctuations, and peak-hour behavior. This information provided insights into 

potential factors contributing to crashes. By analyzing LiDAR data, the study identified near-miss 

incidents, which are often precursors to actual crashes. This proactive approach could assist in 

identifying crash-prone areas within the intersection. The LiDAR data analysis also focused on 

pedestrian and cyclist movements, including jaywalking and bike lane usage. The aim was to 

identify areas where infrastructure improvements could enhance safety for vulnerable road users. 

LiDAR data was compared with historical crash data to identify specific locations within the 

intersection that exhibited a high frequency of crashes. This information can guide targeted safety 

interventions. Last but not least, the study explored opportunities to optimize traffic signal timings 

based on real-time traffic data from LiDAR. Adaptive signal control could help mitigate congestion 

and reduce the risk of crashes. The results of this study demonstrated the potential of LiDAR sensor 

technology in collecting detailed data for traffic analysis in signalized intersections. By combining 

LiDAR data with historical crash records and traffic flow data, traffic engineers and urban planners 

can develop evidence-based strategies to reduce the frequency and severity of crashes in high-risk 

areas. Ultimately, this research contributes to a comprehensive understanding of how LiDAR 

technology can be employed to enhance road safety and traffic management, providing valuable 

insights for traffic engineers, urban planners, and policymakers seeking to improve the safety and 

efficiency of signalized intersections with a history of high traffic crashes. 

Keywords: LiDAR sensor technology; signalized intersections; historical crash data; traffic safety; 

vulnerable road users 

 

Introduction 

Signalized intersections serve as critical junctures in urban and suburban transportation 

networks, facilitating the orderly flow of vehicular and pedestrian traffic [1]. However, they are also 

well-known hotspots for traffic crashes, often resulting in substantial human and economic costs. 

Understanding and mitigating the factors contributing to crashes at these intersections is of 

paramount importance for enhancing road safety and optimizing traffic management. This study 
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delves into the application of LiDAR sensor technology as a potent tool for comprehensive data 

collection and analysis at signalized intersections characterized by a high rate of traffic crashes. 

LiDAR technology has emerged as a groundbreaking means of collecting precise and high-

resolution spatial data in a variety of applications, including autonomous vehicles, environmental 

monitoring, and urban planning [2]. Its unique ability to capture detailed three-dimensional 

information about the surrounding environment in real-time makes it an ideal candidate for traffic 

analysis at signalized intersections. By leveraging LiDAR's capabilities, this research seeks to provide 

a deeper understanding of the intricate dynamics at play within these crash-prone areas and to 

develop data-driven strategies for improving safety and efficiency. 

The motivation behind this study arises from the pressing need to address traffic crashes at 

signalized intersections. Such crashes often result in injuries, fatalities, property damage, and traffic 

disruptions, impacting both individuals and communities. Despite advancements in traffic 

engineering and safety measures, crashes continue to occur with alarming frequency, necessitating 

innovative approaches to data collection and analysis. LiDAR technology offers a promising avenue 

for gaining insights into traffic behavior, identifying crucial hotspots, and devising evidence-based 

interventions. 

In this context, the primary objectives of this research are as follows: 

1) Data Collection: Deploy LiDAR sensors at a selected signalized intersection known for a high 

rate of traffic crashes to collect comprehensive data on vehicular, pedestrian, and cyclist 

movements, as well as other environmental factors influencing traffic dynamics. 

2) Data Analysis: Utilize advanced data analysis techniques to extract valuable information from 

the LiDAR-generated datasets, including traffic flow patterns, near-miss crashes, pedestrian and 

cyclist behavior, and crucial hotspots. 

3) Integration with Historical Data: Combine LiDAR data with historical crash records and traffic 

flow data to identify patterns and correlations that may shed light on the root causes of crashes 

at the selected intersection. 

4) Safety and Efficiency Enhancements: Develop evidence-based recommendations for safety 

enhancements, traffic signal optimization, and infrastructure improvements aimed at reducing 

the frequency and severity of accidents. 

5) Policy Implications: Provide insights and recommendations to inform policy decisions, urban 

planning, and traffic management strategies, with the ultimate goal of improving road safety 

and optimizing traffic flow at signalized intersections. 

Hereupon, this study represents a significant step forward in the realm of traffic safety and 

management by harnessing the power of LiDAR technology to comprehensively analyze and address 

the challenges posed by high-crash signalized intersections. By doing so, it seeks to contribute to the 

ongoing efforts to create safer and more efficient transportation systems while minimizing the human 

and economic toll of traffic accidents. The following sections will delve into the methodology, data 

analysis, findings, conclusion, and references. 

Methodology 

The first step in the methodology was the careful selection of a signalized intersection with a 

documented high rate of traffic crashes. Criteria for selection included historical crash data, severity 

of crashes, traffic volume, and the presence of vulnerable road users such as pedestrians and cyclists. 

Two LiDAR sensors were strategically installed at key vantage points within and around the selected 

intersection. These LiDAR sensors were chosen for their ability to capture detailed, three-dimensional 

data with high precision and accuracy. Two sensors were synchronized to ensure comprehensive 

coverage of the intersection. The LiDAR sensors continuously collected data over an extended 

monitoring period. The data included: 

1) Vehicle Movement: LiDAR sensors recorded the trajectories, speeds, and behaviors of vehicles 

approaching, traversing, and exiting the intersection. This included information on lane 

changes, accelerations, decelerations, and potential violations of traffic rules. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 October 2023                   doi:10.20944/preprints202310.1401.v1

https://doi.org/10.20944/preprints202310.1401.v1


 3 

 

2) Pedestrian and Cyclist Behavior: Data collection also encompassed the movement patterns of 

pedestrians and cyclists within the intersection, including jaywalking, adherence to crosswalks, 

and interaction with vehicles. 

3) Traffic Conflict: The LiDAR sensors are capable of recording Post Encroachment Time (PET) as 

one of key surrogate safety measures at signalized intersections. LiDAR sensors emit laser 

beams, and when these beams encounter objects, they bounce back to the sensor. By analyzing 

the time, it takes for the laser pulses to return and the angle at which they return, LiDAR sensors 

can create a 3D point cloud map of the objects in their vicinity. The data generated by LiDAR 

sensors is processed by computer algorithms as explained in author’s previous studies [3–8] to 

identify and classify objects. Machine learning and computer vision techniques were used to 

differentiate between various object types. PET refers to the time interval between the moment 

a traffic signal turns red (the end of the green phase) and when the last vehicle or pedestrian has 

cleared the intersection. At a signalized intersection, traffic signals cycle through different 

phases, including green (go), yellow (warning), and red (stop). PET specifically focuses on the 

time during the red phase. When the signal turns red, it's essential for all vehicles and 

pedestrians within the intersection to have enough time to clear the area safely. The time 

required for the last vehicle or pedestrian to exit the intersection after the signal turns red is 

known as the clearance time. PET is the duration of time after the signal turns red but before the 

intersection is entirely cleared of vehicles and pedestrians. It represents the potential conflict 

zone where vehicles and pedestrians are still present within the intersection while cross traffic 

may be starting to move on the green signal. 

The significance of PET lies in its role in intersection safety and efficiency. In terms of “safety”, 

a sufficient PET ensures that vehicles and pedestrians have ample time to clear the intersection, 

reducing the risk of collisions and conflicts between cross traffic and those still within the intersection. 

In terms of “efficiency”, longer PET can lead to longer delays for cross-traffic, reducing the overall 

efficiency of the intersection. Balancing PET with the needs of different road users is essential for 

optimizing traffic flow. Traffic engineers use data and analysis to determine the appropriate duration 

for PET based on factors such as traffic volume, pedestrian activity, road geometry, and local 

regulations. The goal is to strike a balance between safety and traffic flow, making sure that all road 

users can safely exit the intersection before cross traffic is given the green light. Proper signal timing 

and coordination play a crucial role in achieving this balance and minimizing conflicts at signalized 

intersections. 

In order to provide an accurate research, this study combines the LiDAR-generated data with 

historical crash records obtained from relevant authorities (e.g., traffic police, transportation 

departments). This integration will facilitate the identification of crash locations within the LiDAR 

data. Near-miss incidents were identified by analyzing LiDAR data for instances where vehicles or 

pedestrians came close to collision without actually colliding. Then, the crucial areas of the 

intersection were identified where pedestrian and cyclist safety can be improved. Additionally, the 

real-time traffic data was used from LiDAR to assess the effectiveness of current traffic signal timings.  

Statistical analyses were performed, including correlation and regression analyses, to identify 

relationships between variables and crash occurrences [9–14]. Based on the findings, evidence-based 

recommendations were developed for safety improvements, traffic management strategies, and 

infrastructure enhancements at the selected intersection. Consequently, this methodology outlines 

the systematic approach to collecting, analyzing, and interpreting LiDAR sensor data at a signalized 

intersection with a high rate of traffic crashes. It aims to provide a data-driven understanding of the 

factors contributing to crashes and to offer actionable recommendations for improving road safety 

and traffic management. The methodology is designed to be adaptable to various intersection 

contexts and serves as a valuable tool for addressing traffic safety challenges. 

Data Analysis 

This study concentrates on Marlboro Pike & Brooks Dr. intersection in Coral Hills, Maryland. 

The LiDAR data from June, 1st to July, 7th 2023 was analyzed to provide a practical accurate 
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understanding of the intersection safety conditions. Figure 1 shows the intersection and the main 

land-uses around the intersection’s location. The installation locations of the LiDAR sensors are 

shown by two red circle-shaped figures. 

 

Figure 1. Marlboro Pike & Brooks Dr. intersection. 

The vehicle volume, pedestrian and bicyclists volume were analyzed over the specified interval. 

In the investigated intervals, morning, midday, and afternoon peak hours were identified based on 

diurnal vehicle, pedestrian, and bicycle counts.  Figure 2 demonstrates the morning, Figure 3 shows 

mid-day, and Figure 4 shows afternoon peak hours’ vehicle volumes of peak day of the interval 

(Friday, June 2nd). It is worth mentioning that 07:30 – 08:30 AM, 13:00 – 14:00 PM, and 17:00 – 18:00 

PM were identified as the morning, mid-day, and afternoon peak hours.  

 

Figure 2. Morning peak hour, Peak Day Vehicle and Pedestrian Volumes on Friday, June 2nd. 
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Figure 3. Mid-day peak hour, Peak Day Vehicle and Pedestrian Volumes on Friday, June 2nd. 

 

Figure 4. Afternoon peak hour, Peak Day Vehicle and Pedestrian Volumes on Friday, June 2nd. 

The speed changes at the intersection are illustrated in Figure 5. 
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Figure 5. Speed Changes In Different Intersection's Approaches From June, 1st to July, 7th 2023 . 

As can be seen in Figure 5, 23.5 mph (=37.8 km/h), 18.3 mph (=29.4 km/h), 25.5 mph (=41 km/h), 

and 18.7 mph (=30.1 km/h) are collected by the LiDAR sensors as the average speed of NS (SBT), EW 

(WBT), SN (NBT), and WE (EBT) directions. It is evident from the speed diagram that the north-south 

approach to the intersection experiences higher diurnal speeds. 

Considering the frequency and severity of vehicle-vehicle conflicts over the specified interval, 

the heat map of vehicle-vehicle conflicts was provided as shown in Figure 6.  

 

Figure 6. Vehicle – Vehicle Conflicts Heat map from June, 1st to July, 7th. 

According to the collected LiDAR data, frequency of vehicle – vehicle conflicts chart (Figure 7), 

severity (1/pet) of vehicle – vehicle conflicts chart (Figure 8), hourly distribution of vehicle-vehicle 

conflict – frequency chart (Figure 9), hourly distribution of vehicle-vehicle conflict – severity chart 

(Figure 10), normalized vehicle-vehicle conflicts by vehicle volume (Figure 11), normalized vehicle 

volume by vehicle-vehicle conflicts (Figure 12) were drawn.  
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Figure 7. Daily Frequency of Vehicle – Vehicle Conflicts Chart. 

 

Figure 8. Daily Severity of Vehicle – Vehicle Conflicts Chart. 
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Figure 9. Hourly Distribution of Vehicle-Vehicle Conflict – Frequency Chart. 

 

Figure 10. Hourly Distribution of Vehicle-Vehicle Conflict – Severity Chart. 
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Figure 11. Normalized Vehicle-Vehicle Conflicts by Vehicle Volume. 

Figure 12 illustrates the frequency of vehicles entering the intersection involved in one vehicle-

vehicle conflict (=The mean number of vehicles across all days is 142). 

 

Figure 12. Normalized Vehicle Volume by Vehicle-Vehicle Conflicts. 

Considering the author’s previous studies in terms of high-risk V2X conflicts at signalized 

intersection [2–8], serious vehicle-vehicle conflicts (conflicts with PET <0.7) were analyzed over the 

specified time interval. Table 1 illustrates the results of serious conflicts.  
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Table 1. Serious Conflicts Analysis Results (PET <0.7). 

PET Value 1/PET 

Conflict's 

responsible 

object's speed 

(km/h) 

Leading 

Movement 

Following 

Movement 

Leading Object 

Speed (km/h) 

Following 

Object Speed 

(km/h) 

Date 

0.5 2.0 51.1 NS WN 51.1 11.5 06/07/2023 

0.4 2.5 14.2 WN NE 12.2 14.2 06/23/2023 

0.3 3.3 20.1 NS SW 15 20.1 06/23/2023 

0.5 2.0 18.1 WN NS 18.1 14.2 06/23/2023 

0.6 1.6 21.3 NS SW 21.3 11.2 06/24/2023 

0.6 1.6 18 ES SN 18 10.9 06/30/2023 

0.5 2.0 14.9 WN NS 14.9 13 06/30/2023 

0.5 2.0 13.4 EN NS 13.4 11.2 07/02/2023 

0.6 1.6 15 NS EN 13.2 15 07/02/2023 

0.4 2.5 15.3 WN NS 15.3 13.4 07/04/2023 

In terms of “vehicle-pedestrian” conflicts, Figure 13 shows the vehicle-pedestrian conflicts heat 

map over the specified time interval.  

 

Figure 13. Vehicle-Pedestrian Conflicts Heat map from June, 1st to July, 7th. 

Signalized intersections, while designed to regulate the flow of vehicular and pedestrian traffic, 

can become sites of significant safety concerns when they experience a high rate of traffic crashes. 

One critical aspect of this safety challenge is the occurrence of vehicle-pedestrian conflicts, which can 

result in crashes, injuries, and fatalities. Understanding the dynamics of vehicle-pedestrian conflicts 

at such intersections is essential for developing effective safety measures and reducing the incidence 

of crashes. Vehicle-pedestrian conflicts refer to situations where vehicles and pedestrians interact 

within the same space, and the potential for collisions exists. These conflicts can occur at various 

points within a signalized intersection, including crosswalks, turning lanes, and pedestrian islands. 

Key factors contributing to vehicle-pedestrian conflicts include: 

1) Crosswalk Usage: Pedestrians are expected to use designated crosswalks to safely cross the road. 

However, conflicts arise when pedestrians jaywalk or do not adhere to traffic signals. 

2) Turning Movements: Vehicle turning movements, especially right turns on red, can intersect 

with pedestrian paths, leading to conflicts. 

3) Pedestrian Visibility: Poor visibility due to factors such as inclement weather, obstructed 

sightlines, or inadequate street lighting can increase the likelihood of conflicts. 

4) Driver Behavior: Inattentive or aggressive driving behavior, such as failing to yield to 

pedestrians or disregarding traffic signals, can escalate conflicts. 
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In signalized intersections with a high rate of traffic crashes, several contributing factors can lead 

to vehicle-pedestrian conflicts: 

1) High Traffic Volume: Congestion and heavy traffic increase the complexity of interactions 

between vehicles and pedestrians, potentially leading to conflicts. 

2) Traffic Signal Timing: Inefficient or poorly coordinated signal timings can create situations 

where pedestrians may be in conflict with turning vehicles. 

3) Pedestrian Behavior: Pedestrian actions, including distraction (e.g., smartphone use) or 

misjudging vehicle speeds, can result in conflicts. 

4) Infrastructure Design: Poorly designed crosswalks, inadequate pedestrian signage, and 

insufficient pedestrian islands can contribute to conflicts. 

5) Intersection Geometry: The layout and geometry of the intersection, including the width can 

contribute to conflicts. 

To provide an accurate vehicle-pedestrian conflicts analysis, vehicle-pedestrian frequency chart 

(Figure 14), vehicle-pedestrian severity chart (Figure 15), hourly distribution of vehicle-pedestrian 

conflict – frequency chart (Figure 16), hourly distribution of vehicle-pedestrian conflict – severity 

chart (Figure 17), normalized vehicle-pedestrian conflicts by pedestrian’s volume (Figure 18), 

normalized vehicle-pedestrian conflicts by vehicles volume (Figure 19), and the frequency of 

pedestrians are involved in one "vehicle-pedestrian" conflict in each approach (Figure 20) are 

presented. 

 

Figure 14. Vehicle-Pedestrian Frequency Chart. 
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Figure 15. Vehicle-Pedestrian Severity Chart. 

 

Figure 16. Hourly Distribution of Vehicle-Pedestrian Conflict – Frequency Chart. 
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Figure 17. Hourly Distribution of Vehicle-Pedestrian Conflict – Severity Chart. 

 

Figure 18. Normalized Vehicle-Pedestrian Conflicts by Pedestrians Volume. 
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Figure 19. Normalized Vehicle-Pedestrian Conflicts by Vehicles Volume. 

 

Figure 20. The Frequency of Pedestrians are involved in one "vehicle-pedestrian" conflict in each 

approach. 

Vehicle-pedestrian serious conflicts (conflicts with PET <0.7) were analyzed as can be seen in 

Table 2. As shown in Table 2, five serious vehicle-pedestrian conflicts occurred from June 1st to July 

7th.  
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Table 2. Vehicle-Pedestrian Serious Conflicts (PET <0.7). 

PET 

Value 

Type of 

Conflict 
1/PET 

Speed 

(km/h) 

Leading 

Movement 

Following 

Movement 

Leading Object 

Speed (Km/h) 

Following 

Object Speed 

(km/h) 

Date 

0.4 
Serious 

Conflict 
2.500 15.4 N/A NS 3.9 15.4 06/09/2023 

0.3 
Serious 

Conflict 
3.333 10.4 N/A SE 3.6 10.4 06/14/2023 

0.3 
Serious 

Conflict 
3.333 13.7 NW N/A 13.7 5.6 06/23/2023 

0.5 
Serious 

Conflict 
2.000 11.7 EW N/A 11.7 4.5 06/23/2023 

0.3 
Serious 

Conflict 
3.333 16.5 ES N/A 16.5 2.8 07/05/2023 

Considering the numerical values of collected PETs, vehicle-pedestrian conflicts with 0.7 < PET 

< 1.31 were considered as general conflicts [2–6]. As shown in Table 3, 39 general conflicts collected 

from June 1st to July 7th.  

Table 3. Vehicle-Pedestrian General Conflicts (0.7 < PET < 1.31). 

PET 

Value 
1/PET Leading Movement Following Movement 

Leading Object 

Speed (km/h) 

Following Object 

Speed (km/h) 
Date 

1.1 0.909 SN N/A 22.5 5.9 06/02/2023 

1.1 0.909 NW N/A 10.1 2.3 06/02/2023 

1.1 0.909 SN N/A 23.3 3.2 06/03/2023 

0.8 1.250 WN N/A 12.4 4.3 06/04/2023 

1.2 0.833 WS N/A 10.6 2.9 06/04/2023 

1.3 0.769 SN N/A 17.8 2.4 06/04/2023 

1.2 0.833 WS N/A 14.5 6.4 06/04/2023 

1.3 0.769 SW N/A 15.4 6.2 06/05/2023 

1.1 0.909 WN N/A 12.6 2.3 06/06/2023 

1.3 0.769 ES N/A 11.8 2.8 06/09/2023 

1 1.000 WN N/A 13.4 2.2 06/09/2023 

1.3 0.769 WS N/A 12 2.8 06/11/2023 

1.3 0.769 WN N/A 16.9 2.3 06/11/2023 

1.1 0.909 WS N/A 11.4 3.3 06/13/2023 

1.1 0.909 WS N/A 17.3 4.1 06/13/2023 

1.3 0.769 NE N/A 12.3 2.3 06/13/2023 

1.2 0.833 NS N/A 13.8 4.3 06/14/2023 

1.1 0.909 ES N/A 10 3.9 06/15/2023 

1.2 0.833 NW N/A 18.7 4.2 06/16/2023 

1.3 0.769 NW N/A 10.5 4.3 06/22/2023 

0.8 1.250 N/A EW 2.1 17.5 06/23/2023 

1.3 0.769 NS N/A 21.6 2.8 06/24/2023 

1 1.000 SN N/A 25.9 6.2 06/24/2023 

1.3 0.769 WN N/A 13.1 3.2 06/24/2023 

1 1.000 SN N/A 16.3 8 06/25/2023 

1.3 0.769 NS N/A 27.8 6.2 06/25/2023 

1.3 0.769 SN N/A 14.2 2.6 06/25/2023 

1.3 0.769 NW N/A 43.7 3.4 06/25/2023 

1.3 0.769 EN N/A 11.7 2.6 06/25/2023 

1.3 0.769 WE N/A 18.5 4 06/25/2023 

0.9 1.111 SN N/A 23.6 7.7 06/25/2023 

0.8 1.250 EN N/A 14.3 4 06/26/2023 

1 1.000 WS N/A 10.4 4.5 06/27/2023 

1.2 0.833 WS N/A 11 3.3 06/28/2023 

1.2 0.833 EN N/A 19.2 2.5 06/28/2023 

1.3 0.769 NW N/A 11.6 3.3 06/28/2023 

1.3 0.769 NW N/A 11.8 5.5 06/30/2023 

0.9 1.111 N/A EW 3.1 13.3 06/30/2023 

1.3 0.769 WN N/A 10.2 3.1 07/03/2023 
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Table 4 shows the frequency and severity of general conflicts – critical movements. As can be 

seen in Table 4, SN (=NBT), WS (=EBR), NW (=SBR), and WN (=EBL) are crucial movements in terms 

of the frequency and severity of vehicle-pedestrian conflicts.  

Table 4. General Conflicts – Critical Movements. 

Movement 
Leading or 

Following 
Frequency Severity (1/PET) 

EN Leading Object 3 2.852 

ES Leading Object 2 1.678 

NE Leading Object 1 0.769 

NS Leading Object 3 2.371 

NW Leading Object 6 4.818 

SN Leading Object 7 6.467 

SW Leading Object 1 0.769 

WE Leading Object 1 0.769 

WN Leading Object 6 5.466 

WS Leading Object 7 6.086 

EW Following Object 2 2.361 

Jaywalking Conflicts 

Jaywalking conflicts at signalized intersections with a high rate of traffic crashes pose significant 

risks to pedestrian and driver safety [5]. This issue arises when pedestrian’s cross streets at locations 

other than designated crosswalks or against traffic signals, leading to potentially dangerous conflicts 

with vehicles. This comprehensive explanation will delve into the various facets of this problem, its 

contributing factors, consequences, and potential mitigation strategies. Addressing this issue requires 

a multi-faceted approach that combines education, infrastructure improvements, signal optimization, 

enforcement, and urban planning. By addressing the contributing factors and consequences of 

jaywalking conflicts, cities can work towards safer and more efficient traffic management at these 

critical intersections. 

Factors Contributing to Jaywalking Conflicts: 

1) Pedestrian Behavior: Jaywalking often occurs due to pedestrians' disregard for traffic signals, 

impatience, or a desire for more direct routes. Some may underestimate the risks associated with 

crossing outside of crosswalks. 

2) Signal Timing: Inadequate signal timing, such as long pedestrian wait times or short crossing 

times, can lead pedestrians to ignore traffic signals and cross against the light. 

3) Infrastructure: Lack of clearly marked crosswalks, poorly designed pedestrian facilities, and 

insufficient signage can encourage jaywalking behavior. 

4) Safety Perception: Pedestrians may perceive certain intersections as unsafe due to high traffic 

crash rates or inadequate lighting, leading them to cross outside designated areas. 

Consequences of Jaywalking Conflicts: 

1) Increased Crash Risk: Jaywalking pedestrians are at a higher risk of being struck by vehicles, 

leading to injuries or fatalities. 

2) Traffic Disruptions: Vehicles may be forced to brake suddenly or swerve to avoid jaywalkers, 

leading to traffic disruptions and potential rear-end collisions. 

3) Legal Implications: Both pedestrians and drivers involved in jaywalking conflicts may face legal 

consequences, including fines, penalties, or liability in civil cases. 

Mitigation Strategies: 

1) Education and Awareness: Public awareness campaigns can inform pedestrians about the risks 

of jaywalking and promote adherence to traffic signals and crosswalks. 
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2) Improved Infrastructure: Designing pedestrian-friendly infrastructure with well-marked 

crosswalks, countdown timers, and proper lighting can discourage jaywalking. 

3) Signal Timing Adjustments: Signal timings should be optimized to minimize pedestrian wait 

times and ensure adequate crossing opportunities. 

4) Enforcement: Law enforcement efforts, including issuing citations for jaywalking, can act as a 

deterrent and promote compliance with traffic rules. 

5) Technological Solutions: Implementing pedestrian detection systems or pedestrian-activated 

signals can enhance pedestrian safety at high-risk intersections. 

6) Urban Planning: Consideration of pedestrian safety in urban planning, including the placement 

of crosswalks and traffic calming measures, can reduce jaywalking conflicts. 

From June 1st to July 7th, 1000 jaywalking events were recorded by tow LiDAR sensors at 

Marlboro Pike & Brooks Dr. intersection in Coral Hills, Maryland. Figure 21 illustrates jaywalking 

frequency and trajectories, Figure 22 shows hourly distribution of jaywalking event’s frequency, and 

Figure 23 demonstrates jaywalking events frequency based on the jaywalking duration. 

 

Figure 21. jaywalking frequency (left) and trajectories (right). 
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Figure 22. Hourly Distribution of Jaywalking event’s Frequency. 

 

Figure 23. Jaywalking Events Frequency based on the Jaywalking Duration. 

As can be seen in Figure 23, 86% of jaywalking events were recorded in less than 10 seconds 

duration. The duration of jaywalking, or the time interval during which pedestrians engage in the 

illegal act of crossing streets outside designated crosswalks or against traffic signals, is a critical factor 

at signalized intersections with a high rate of traffic crashes. Understanding the duration of 

jaywalking is essential for traffic engineers, urban planners, and law enforcement agencies as it 

impacts safety, traffic flow, and the overall efficiency of intersections. By addressing the factors that 

influence jaywalking duration and implementing mitigation strategies, cities can work towards safer 

and more efficient traffic management, reducing the risks associated with illegal pedestrian behavior 

at these critical intersections. 
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Factors Influencing the Duration of Jaywalking: 

1) Pedestrian Behavior: The duration of jaywalking is influenced by how long pedestrians wait for 

a perceived safe gap in traffic before crossing against the signal. 

2) Traffic Signal Timing: Signal cycle lengths, including pedestrian walk intervals, impact how long 

pedestrians have to wait at the intersection. Longer wait times may encourage jaywalking. 

3) Intersection Geometry: The layout of the intersection, such as its width, the number of lanes, and 

the presence of medians, can affect the perceived difficulty of crossing at designated crosswalks. 

Implications of Jaywalking Duration: 

1) Safety Risks: Longer jaywalking durations increase the exposure of pedestrians to moving 

vehicles, elevating the risk of crashes, injuries, and fatalities. 

2) Traffic Disruptions: Prolonged jaywalking events can disrupt the flow of vehicular traffic, 

leading to congestion, delays, and a higher likelihood of rear-end collisions. 

3) Legal and Enforcement Challenges: Extended jaywalking incidents may require more significant 

law enforcement efforts and present challenges in terms of identifying and penalizing violators. 

4) Public Perceptions: Public perception of safety at intersections can be negatively influenced by 

lengthy jaywalking incidents, impacting trust in traffic management. 

Mitigation Strategies: 

1) Signal Timing Optimization: Traffic engineers can adjust signal timings to minimize pedestrian 

wait times, reducing the incentive for jaywalking. 

2) Crosswalk Enhancement: Well-marked crosswalks, pedestrian countdown timers, and audible 

signals can encourage pedestrians to use designated crossing points. 

3) Pedestrian Education: Public awareness campaigns can educate pedestrians about the benefits 

of using crosswalks and adhering to traffic signals. 

4) Enforcement: Law enforcement agencies can target areas with frequent jaywalking incidents, 

issuing citations to deter violations. 

5) Physical Barriers: Installing physical barriers or bollards can prevent pedestrians from 

jaywalking at dangerous locations. 

6) Technological Solutions: Advanced pedestrian detection systems (visual or audible signs) can 

trigger pedestrian signals or traffic signal changes based on real-time pedestrian activity, 

improving safety. 

Yellow and Red Light Runner Analysis 

Yellow and red light runners at signalized intersections with a high rate of traffic crashes pose 

significant risks to road safety and traffic management. Addressing this issue requires a multi-

pronged approach that encompasses signal timing adjustments, enforcement measures, public 

education, and infrastructure improvements [15–21]. By tackling the contributing factors and 

consequences of light running, cities can work toward safer and more efficient traffic management at 

these critical intersections, ultimately saving lives and reducing crashes. Running a yellow or red 

traffic signal can have severe consequences, including collisions, injuries, and fatalities. In traffic 

safety analysis, a "red light runner" refers to a motorist who enters an intersection after the traffic 

signal has turned red. In other words, they disregard the red light and continue through the 

intersection, often in violation of traffic laws. This behavior is highly dangerous as it can lead to 

collisions with vehicles crossing from other directions that have the right of way [22–25]. To address 

this issue, many intersections are equipped with red light cameras, which automatically capture 

images or video footage of vehicles that run red lights. Additionally, law enforcement can then use 

this evidence to issue citations to the drivers who violated traffic laws. Additionally, public 

awareness campaigns, educational efforts, and stricter enforcement are often used to discourage red 

light running and promote safer driving behavior. 
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Factors Contributing to Yellow and Red Light Running: 

1) Driver Behavior: Human factors play a significant role in light running incidents. This includes 

aggressive driving, impatience, inattentiveness, and a disregard for traffic laws. 

2) Signal Timing: Inadequate signal timing, such as short yellow signal durations or a lack of 

proper transition times between green and red phases, can catch drivers off guard and 

encourage light running. 

3) Traffic Volume: High traffic volume can lead to congestion and increased driver frustration, 

potentially prompting some drivers to run lights to save time. 

4) Impaired Driving: Drivers under the influence of alcohol or drugs may have impaired judgment 

and reaction times, increasing the likelihood of running lights. 

Consequences of Yellow and Red Light Running: 

1) Collisions: Running a red or yellow light often leads to intersection collisions, which can result 

in property damage, injuries, or fatalities. 

2) Safety Risks: Pedestrians and cyclists are vulnerable road users who may be struck by light 

runners, leading to serious injuries or fatalities. 

3) Traffic Disruptions: Light running incidents can disrupt traffic flow, causing congestion and 

increasing the risk of secondary crashes. 

4) Legal and Insurance Consequences: Drivers who run lights may face legal penalties, including 

fines, license suspension, and increased insurance premiums. 

Mitigation Strategies: 

1) Signal Timing Adjustments: Traffic engineers can optimize signal timing to provide adequate 

warning time, including lengthening yellow signal intervals to give drivers more time to stop 

safely. 

2) Red-Light Cameras: Installing red-light cameras at intersections can deter light runners by 

capturing photographic evidence of violations and issuing citations. 

3) Public Awareness Campaigns: Educational campaigns can inform drivers about the dangers of 

light running and encourage compliance with traffic signals. 

4) Improved Intersection Design: Intersection design enhancements, such as clearer signage, 

countdown timers, and dedicated left-turn signals, can reduce the likelihood of light running. 

5) Enforcement: Law enforcement agencies can actively patrol intersections prone to light running 

and issue citations to violators. 

6) Technological Solutions: Advanced vehicle detection systems can trigger traffic signal changes 

based on real-time traffic conditions, reducing the likelihood of light running incidents. 

In different phases of the traffic signal, the frequency of yellow and red light runners were 

analyzed.  

Phase 2 (ø2): 3480 red light runners were recorded for North Bound Straight Thru (NBT or SN), 

and 2531 events were recorded for North Bound Left Turn (NBL or SW). 

 

Figure 24. Red Light Runners in Phase #2 of the traffic signal. 
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Phase 3 (ø3): 327 red light runners were recorded for East Bound Straight Thru (EBT or WE), 

and 3755 events were recorded for East Bound Left Turn (EBL or WN).  

 

Figure 25. Red Light Runners in Phase #3 of the traffic signal. 

Phase 4 (ø4): 395 red light runners were recorded for West Bound Straight Thru (WBT or EW), 

and 528 events were recorded for West Bound Left Turn (WBL or ES).  

 

Figure 26. Red Light Runners in Phase #4 of the traffic signal. 

Phase 5 (ø5): Only one red light runners were recorded for North Bound Straight Thru (NBT or 

SN), and one events were recorded for North Bound Left Turn (NBL or SW). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 October 2023                   doi:10.20944/preprints202310.1401.v1

https://doi.org/10.20944/preprints202310.1401.v1


 22 

 

 

Figure 27. Red Light Runners in Phase #5 of the traffic signal. 

Phase 6 (ø6): 3119 red light runners were recorded for South Bound Straight Thru (SBT or NS), 

and 204 events were recorded for South Bound Left Turn (SBL or NE).  

 

Figure 28. Red Light Runners in Phase #6 of the traffic signal. 

Historical Crash Data Analysis 

Analyzing historical crash data is a critical aspect of road safety management and transportation 

planning [26–31]. This process involves collecting, processing, and interpreting data related to traffic 

crashes that have occurred over time. By examining historical crash data, transportation authorities, 

researchers, and policymakers can identify trends, patterns, and risk factors that contribute to 

crashes. In this discussion, we will explore the importance of historical crash data analysis, the steps 

involved, and its practical applications. 
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Importance of Historical Crash Data Analysis [32]: 

i. Safety Improvement: Historical crash data analysis helps identify high-risk locations, such as 

intersections or stretches of road with a high frequency of crashes. This information is essential 

for implementing safety measures, such as traffic signals, roundabouts, or road redesigns, to 

reduce the likelihood of future crashes. 

ii. Resource Allocation: It allows for the allocation of resources, such as law enforcement personnel 

and emergency response teams, to areas with a history of frequent crashes. This proactive 

approach can save lives and reduce property damage. 

iii. Policy Development: Policymakers can use historical crash data to create evidence-based 

policies and regulations that address specific safety concerns. For example, data might lead to 

the implementation of stricter seatbelt laws or alcohol-impaired driving prevention measures. 

iv. Transportation Planning: Planners can use crash data to inform decisions about road design, 

maintenance, and expansion. Understanding where and why crashes occur can help in creating 

safer transportation systems. 

Steps in Historical Crash Data Analysis: 

i. Data Collection: Gather comprehensive data on each crash, including location, time, weather 

conditions, vehicle types, road conditions, and severity of injuries. This data is often collected 

by law enforcement agencies and compiled into a centralized database. 

ii. Data Cleaning: The collected data may contain errors or inconsistencies, so it needs to be cleaned 

and standardized. This involves removing duplicates, correcting inaccuracies, and ensuring 

consistency in data format. 

iii. Data Integration: Combine crash data with other relevant datasets, such as road infrastructure 

data, traffic flow data, and demographic information, to provide a more comprehensive picture 

of crash causes and effects. 

iv. Descriptive Analysis: Perform initial descriptive analyses to identify trends, such as the most 

common types of crashes, contributing factors (e.g., speeding, distracted driving), and locations 

with a high accident rate. 

v. Spatial Analysis: Utilize Geographic Information Systems (GIS) to map crash locations and 

identify hotspots where accidents cluster. This helps in pinpointing areas in need of safety 

improvements. 

vi. Temporal Analysis: Analyze crash data over time to identify seasonal, monthly, or daily 

patterns, which can inform the allocation of resources and the implementation of targeted safety 

campaigns. 

vii. Statistical Modeling: Employ statistical techniques to develop predictive models that can 

estimate the likelihood of crashes based on various factors. These models can assist in risk 

assessment and prioritization of safety measures. 

Practical Applications: 

i. Traffic Engineering: Engineers can use crash data analysis to optimize traffic signal timings, 

design safer road layouts, and implement traffic calming measures. 

ii. Law Enforcement: Police departments can focus their enforcement efforts on locations and times 

with a high likelihood of accidents, improving traffic safety. 

iii. Insurance Industry: Insurance companies use historical crash data to assess risk and set 

premium rates for policyholders. 

iv. Research and Education: Researchers can use crash data to study the effectiveness of safety 

interventions and develop educational materials for drivers. 

v. Emergency Response: Emergency services can plan their response strategies based on accident 

data, ensuring faster and more efficient assistance to accident victims. 

By using “The Maryland Open Crash Dataset” [33], a total of 20 crashes were reported at the 

intersection of Marlboro Pike and Brooks Dr. These crashes were recorded by various agencies that 

submitted their respective crash reports. Fatal, Injury, and Property damage crashes are described. 
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Fatal Crashes: Out of a total of 571 fatal crashes, 2 crashes occurred in close proximity to the 

intersection of Marlboro Pike and Brooks Dr. Figure 29 shows the location of fatal crashes.  

 

Figure 29. Two Fatal Crashes Locations. 

Injury Crashes: Out of a total of 21,598 injury crashes, 17 crashes occurred in close proximity to 

the intersection of Marlboro Pike and Brooks Dr. As shown in Figure 30, the movements SN, EN, WS, 

SW, and NS are critical movements. Figure 30 illustrates the location of injury crashes.  

 

Figure 30. Injury Crashes Locations. 

Property Damage Crashes: Out of a total of 77,638 property damage crashes, 1 crash occurred 

in close proximity to the intersection of Marlboro Pike and Brooks Dr. Figure 31 illustrates a property 

damage crash occurred by movements SN or SW. 
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Figure 31. Property Damage Crash Location. 

To determine the safety risk for each intersection, an intersection crash rate, as shown in Eq. (1) 

was developed to describe the crashes per million entering vehicles to the intersection. 𝑅 ൌ  1,000,000 ∗ 𝐶365 ∗ 𝑁 ∗ 𝑉     (1)

Where, 

R = Crash rate for the intersection expressed as crashes per million entering vehicles  

C = Total number of intersection crashes in the study period 

N = Number of years of data 

V = Traffic volumes entering the intersection daily 

In this study, 

C = 20 total crashes over the past 5 years 

N = 5 years of data 

V = 26,956 entering vehicles per day 𝑹 ൌ  𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎 ∗𝟐𝟎𝟑𝟔𝟓 ∗𝟓 ∗𝟐𝟔,𝟗𝟓𝟔 = 0.406 crashes per million entering vehicles 

Findings 

Followings are the key findings of this research study. 

1) The passing vehicle volumes in Marlboro Pike approaches is significantly more than Brooks Dr. 

approaches. 

2) From June 1st to July 7th, 2776, 5473, 1725, and 1849 pedestrians passed by southbound, 

westbound, northbound, and eastbound approaches, respectively. It emphasizes that 70% of 

pedestrians crossed the westbound and southbound of the intersection. 

3) From June 1st to July 7th, 385, 794, 116, and 402 bicyclists passed by southbound, westbound, 

northbound, and eastbound approaches, respectively. It indicates that the westbound and 

southbound approaches were used by 47% and 23% of the overall bicyclists, respectively.  

4) The average vehicles speed in Marlboro Pike is 24% more than the average speed in Brooks Dr.  

5) In terms of “vehicle-vehicle” conflicts, the hours 20:00 – 21:00 PM (=660 conflicts), 19:00 – 20:00 

PM (=624 conflicts), and 18:00 – 19:00 PM (=623 conflicts) are critical hours. By considering 608 

conflicts at 21:00 – 22:00 PM, it highlights that the time interval from 18:00 PM to 22:00 PM is 
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more critical for vehicle-vehicle conflicts at Marlboro Pike & Brooks Dr. intersection. Conflicts 

might be increased as a result of the darkness and insufficient lighting. Additionally, the vehicle-

vehicle conflicts are more severe from 18:00 to 22:00 PM as shown on hourly severity graph. 

6) PET is the time difference between the time when the first vehicle ends encroachment over the 

conflict area and when the second vehicle enters the conflict area. It is assumed that 0 indicates 

a crash, while non-zero PET values indicate a close proximity to a crash. PET Analysis for 

“vehicle-vehicle” conflicts demonstrated that “NS and WN” movements are critical leading 

movements. Furthermore, “NS and SW” are critical following movements. Taking into account 

both leading and following movements, NS (or SBT) is critical movement of this intersection for 

vehicle-vehicle conflicts.  

7) Regarding the “serious vehicle-pedestrian conflicts (PET <0.7)”, the safety considerations should 

be implemented for “westbound (Eastern Approach). 

8) Regarding the “General vehicle-pedestrian conflicts (0.7 <PET <1.31)”, SN (or NBT) and WS (or 

EBR) are critical movements.  

9) Vehicle-Pedestrian analysis highlighted that 52% of total conflicts occurred from 16:00 PM to 

23:00 PM. Also, 26% of conflicts occurred from 19:00 PM to 22:00 PM.  

10) Vehicle-Pedestrian conflicts are more severe from 16:00 PM to 23:00 PM. The results showed that 

53% of severe conflicts occurred from 16:00 PM to 23:00 PM. 

11) Jaywalking analysis results showed that westbound and southbound are approaches with 45% 

and 33% of jaywalking frequency. Additionally, Jaywalking events occur most frequently 

between 20:00 - 21:00 PM (=83 jaywalking events). 

12) There are a number of factors that influence a crossing decision (e.g., origin and destination, 

complexity and length of the route), infrastructure (e.g., types of pedestrian facilities, road 

geometry, and traffic conditions), and individual characteristics (e.g., age and gender, and safety 

awareness). 

13) As the frequency of jaywalking increases, vehicle-pedestrian conflicts will occur more frequently 

and with greater severity. In addition, jaywalking speed increases the likelihood of severe 

vehicle-pedestrian conflicts. Also, jaywalking is affected by the weather to a considerable extent, 

since the weather motivates the jaywalkers to cross illegally.  

14) The analysis of red and yellow runners showed that phases 2, 3, and 6 of the traffic signal have 

a higher frequency of yellow and red light runners. Hereupon, the timing and the split of these 

phases should be revised.  

15) The crash analysis revealed that the movements SN, NS, EN, SW, and WS are critical in terms of 

the frequency of crashes. The findings align with the LiDAR conflict analysis. 

Conclusion 

In conclusion, traffic safety data analysis at signalized intersections with a high rate of traffic 

crashes is a multifaceted and critical endeavor aimed at understanding, mitigating, and ultimately 

improving road safety. This comprehensive analysis encompasses several key components: 

1) Traffic Volumes: Understanding the flow and distribution of vehicular and pedestrian traffic is 

essential for effective traffic management and intersection design. Data on traffic volumes 

provide insights into congestion levels and the potential for conflicts. 

2) Speed: Analyzing vehicle speeds at intersections helps identify potential safety hazards. 

Excessive speeds can lead to more severe crashes, and managing speed is crucial for minimizing 

the impact of collisions. 

3) Vehicle-Vehicle and Vehicle-Pedestrian Conflicts: Identifying and analyzing conflicts between 

vehicles and pedestrians, as well as vehicle-vehicle conflicts, are pivotal for recognizing high-

risk areas within an intersection. This data informs safety improvements and interventions. 

4) Jaywalking Conflicts: Examining instances of jaywalking, including the duration and frequency 

of such incidents, sheds light on pedestrian behavior at intersections. Addressing jaywalking 

conflicts is vital for enhancing pedestrian safety and compliance. 
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5) Red Light Runners: Studying incidents of red light running, their frequency, and contributing 

factors are critical for reducing intersection collisions and improving overall traffic safety. 

The comprehensive analysis of these data points reveals the challenges and vulnerabilities 

present at signalized intersections with a high rate of traffic crashes. It provides the foundation for 

evidence-based decision-making and the development of targeted mitigation strategies to enhance 

safety. 

To address the issues identified through data analysis, several strategies can be employed: 

1) Infrastructure Improvements: Enhancements to intersection design, such as clear signage, 

pedestrian-friendly features, and optimized signal timing, can reduce conflicts and enhance 

safety. 

2) Enforcement: Law enforcement agencies can play a crucial role in deterring risky behavior, such 

as red light running and jaywalking, through active patrolling and the use of automated 

enforcement systems. 

3) Public Education: Awareness campaigns aimed at both drivers and pedestrians can inform them 

about the risks associated with non-compliance with traffic laws and promote safe behavior. 

4) Technological Solutions: Advanced traffic management systems, including adaptive signal 

control and detection technologies, can improve intersection safety and efficiency. 

In summary, comprehensive traffic safety data analysis is an essential tool for identifying, 

understanding, and mitigating the risks associated with signalized intersections experiencing a high 

rate of traffic crashes. By integrating data-driven insights with targeted interventions, communities 

and transportation authorities can work towards safer roadways, reducing crashes, injuries, and 

fatalities for all road users. This holistic approach to traffic safety ultimately contributes to more 

efficient and secure urban transportation systems. 

As we look to the future of traffic safety, understanding the dynamics of traffic flow, identifying 

conflict points, and implementing effective mitigation strategies are essential for improving road 

safety. This future study outlines key areas of focus and potential advancements in traffic safety data 

analysis. By embracing advanced data collection methods, AI-driven analytics, predictive models, 

and a holistic approach to safety, researchers and policymakers can work together to create safer and 

more efficient transportation systems. This future study paves the way for innovative solutions that 

prioritize road safety in an ever-evolving urban landscape. 

1) Advanced Data Collection Methods: Future research should explore innovative data collection 

methods. This may include the use of more advanced sensor technologies, such as LiDAR, 

machine vision, and IoT (Internet of Things) devices, to provide real-time, high-resolution data 

on traffic volumes, speeds, and conflicts. 

2) Big Data and Artificial Intelligence: Harnessing big data analytics and artificial intelligence (AI) 

will play a significant role in the future of traffic safety analysis. AI algorithms can process vast 

datasets, identify patterns, and predict potential safety risks, allowing for proactive 

interventions. 

3) Predictive Analytics: Future studies should focus on developing predictive models that can 

forecast traffic safety issues before they escalate. These models can factor in historical data, 

weather conditions, and other variables to provide early warnings and inform traffic 

management decisions. 

4) Connected and Autonomous Vehicles (CAVs): The integration of CAVs into traffic 

environments will require specialized data analysis. Studying how CAVs interact with 

traditional vehicles and pedestrians, as well as their impact on safety, will be a critical area of 

research. 

5) Pedestrian and Cyclist Safety: Future studies should emphasize pedestrian and cyclist safety, 

particularly at signalized intersections. This includes analyzing pedestrian and cyclist behavior, 

improving infrastructure design, and developing technologies to enhance their safety. 
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6) Behavioral Analysis: In-depth analysis of driver, pedestrian, and cyclist behavior, including 

factors like distraction and impairment, will be essential for developing targeted interventions 

and educational campaigns. 

7) Simulation and Virtual Testing: Advanced simulation tools and virtual testing environments 

will allow researchers to model and evaluate the safety impact of various intersection designs 

and traffic management strategies before implementation. 

8) Human-Machine Interaction: Studying the interaction between humans and emerging 

transportation technologies, such as autonomous vehicles and smart traffic management 

systems, will be crucial for ensuring safe coexistence. 

9) Policy and Regulatory Frameworks: Future research should also consider the development of 

policy and regulatory frameworks that encourage the adoption of safety-enhancing technologies 

and practices. 

10) Cross-Disciplinary Collaboration: Interdisciplinary collaboration between transportation 

engineers, data scientists, urban planners, and social scientists will be essential for addressing 

complex traffic safety challenges effectively. 
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