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Abstract: This research aims to determine and improve accuracy of a water leakage detection model
proposed in preliminary research. The poor results for water leakage sound (recall) and background
noise (specificity) were clarified using countermeasures in accordance with each condition.
Additionally, frequency amplification in the range of 500-600 Hz, attenuation of weak components,
and a band-stop filter were used to remove the 50 Hz component and harmonics. Pre-processing
was carried out in the form of amplification with weak noise removed using a band-stop filter. The
results showed that application of the proposed model improved detection accuracy by 80% at
observation points that initially had poor accuracy. Thus, the proposed method was effective in
improving performance of the RP-CNN model in detecting leakage.

Keywords: convolutional neural network; noise reduction; poor accuracy cases; principal
component analysis; recurrence plot; water leakage detection

1. Introduction
1.1. Background

The deteriorating state of urban infrastructure in Japan, including maintenance and upgrades,
is estimated to cost huge amounts of money to rectify. Therefore, to address these challenges,
Infrastructure Maintenance, Renewal, and Management Technology designated a national project by
the Council for Science, Technology, and Innovation called the Strategic Innovation Promotion
Program (SIP) FY 2014-2018. During the SIP, the authors participated in Research and Development
of Sensing Data Collection, Transmission, and Processing Technology for Social Infrastructure
(Underground Structures). It was reported that the water supply pipeline network facility had a total
length of 18 times the circumference of the equator, covering approximately 70% of water supply
assets worth 40 trillion yen. As the proportion of old pipe that exceeds its service life of 40 years
increases, it becomes necessary to switch from conventional methods to the use of advanced
technologies. In order to address the issue of water supply pipeline infrastructure, SIP conducted
research on the development and placement of high-sensitivity sensor terminals to construct a
leakage detection model based on field test data acquired in the cities of Kawasaki and Kitakyushu.

In accordance with the first stage of SIP results, a discrimination method integrating
visualization and image recognition of sound data was designed. Further research was conducted on
leakage discrimination based on the test data obtained in the field. Geometric visualization was
performed to analyze the characteristics of leakage sounds depending on the strength of deterministic
properties. This included the use of water leakage sounds, background noise (data measured when
there is no leakage), and tests to determine whether the data were probabilistic [1]. Second, there was
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a focus on the differences in the deterministic properties of leakage sound time series data.
Additionally, the acquired data were visualized on a two-dimensional plane using a recurrence plot
(RP). The visualized images served as input data for machine learning used to fabricate a leakage
discrimination model with a convolutional neural network (CNN) [2]. Third, the RP-CNN model was
applied to the actual data to verify accuracy of leakage discrimination. An average accuracy of more
than 80% was obtained, confirming effectiveness of the proposed combined RP-CNN method [3].
Meanwhile, accuracy of model assessment was improved by applying filter processing focusing on
the frequency components of the acoustic data [4].

The results of leakage detection did not show improvement in some points even after pre-
processing. This also led to the inability of BA (balanced accuracy), an indicator of accuracy in
machine learning, to exceed 80% [4]. In addition, points 3-B and 4-B had less accurate results, leading
to the need for discrete research conducted by water leakage investigators (five engineers with more
than 10 years of experience in a water leakage detection company) using human hearing. Identifying
the causes of inaccuracy at these points is a challenge that should be overcome by developing new
technologies exceeding the level of conventional methods used by leakage investigators.

In this research, Section 1 focuses on the background to improving accuracy of the water leakage
detection model previously proposed [4]. It also aims to identify and improve the causes of low
accuracy. Additionally, this section reviews the latest trends in water leakage detection, clarifying the
originality of the present research. Section 2 describes the acoustic data used during the analysis,
including items and observation equipment. This also provides an overview of a RP-CNN model
applied to water leakage detection. In Section 3, dimension reduction of acoustic data (features based
on frequency components) is performed using principal component analysis (PCA). This visualizes
the uniqueness of the points showing inaccuracy by positioning samples based on principal
component scores. This section examines two types of inaccuracies — inaccuracy of results to leakage
(recall) and background noise (specificity) — including considering improvement measures for each
result. However, to improve recall, an amplification is specifically proposed within the frequency
range of 500-600 Hz estimated as the characteristic range of water leakage sound, combined with
weak frequency reduction. In order to improve specificity, the use of a band-stop filter is proposed
to remove the frequency component of 50 Hz and respective harmonics considered as AC noise (noise
from the electric current source), to improve specificity. Additionally, in this section, the pre-
processing proposed in the previous section is applied (centered on the characteristics of leakage
sound and removal of electric current noise in acoustic data). Leakage detection testing using the RP-
CNN model is carried out, verifying the usefulness of this research. Finally, in Section 4, the
conclusions are reported, along with future work to explore more effective ways to apply the
proposed pre-processing method.

1.2. Literature Review

This section reviews certain previous research on water leakage detection conducted in recent
years to show the latest trends. Asada et al. [5] proposed a water leakage detection method using
transient test-based techniques (TTBTs). The method uses transient phenomena in pipes depending
on optimization processes and characteristics of pressure wave propagation associated with
reflection to detect leakage. Furthermore, it was successfully used to detect leakage in spiral pipe, as
well as network connections with different diameters (pipe reducers). Pressure gauges were installed
at pipe connection points, with operated valves at the bottom to detect leakage throughout the pipe
network.

Meniconi et al. [6] used the TTBT approach to detect faults on long main transmission lines,
which are difficult to inspect due to limited access. The analysis results indicated that this approach
can reduce the adverse effects of changes in initial conditions and flow boundaries, allowing
identification of issues in the system. However, only specific areas could be thoroughly eliminated,
with two leaks detected with good precision. The system’s complexity, as a result of branching off
the main pipeline and interactions with pressure waves during transients, complicated the
implementation of TTBTs, as additional pressure waves produced by the branching must be


https://doi.org/10.20944/preprints202411.1042.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1042.v1

identified [7,8]. The development of methods focusing on transient phenomena at pipe branches aims
to expand leak detection to more complex systems [9-11].

Duan [12] investigated the effect of pipe joints on transient frequency response using numerical
simulations in the frequency and time domains and the linear transfer matrix method. The results
indicated that this method is more effective for detecting pipe leaks than measuring leaks. Kim et al.
[13] and Kim [14] also conducted experiments on transient-based leak detection for multi-branch
pipes.

Shirahata & Numazu [15] conducted research using several ensemble learning methods,
including applying CNN on infrared images of rigid PVC pipe used for sewers and then compared
the results. The verified results showed that the AdaBoost method had the highest F-value (0.75) and
accuracy among the ensemble learning methods. Furthermore, the artificial neural network was the
second highest-performing method, with accuracy of 0.72 and F-value of 0.73.

In recent years, research on water leakage detection focusing on the application of machine
learning methods and IoT technology using sensor or camera data was introduced [16-19].
Quantitative data often used included hydraulic physics variables such as water pressure and flow
in pipe. This also comprised acoustic data from sensors installed on pipe. In general, the purpose of
using IoT communication technology was to monitor pipe networks. The machine learning methods
adopted comprised feature extraction using PCA [20,21], ensemble learning [22,23], and CNN [24-
26]. Specific research used deep learning such as CNN, and this method needs to be considered for
developing leakage detection technology.

Hu et al. [27] classified various methods for detecting and determining leakage locations in water
distribution systems into two categories: model and data-based methods. They also reviewed leakage
detection methods. They stated that the weakness of model-based method was due to the lack of a
calibrated hydraulic model used to distinguish water leakage. The discrimination results were also
greatly influenced by model and measurement errors. The weakness of the data-based method was
because it required a large amount of data to identify water leakage, and the detection results were
greatly influenced by data shortages, abnormal values, and noise. Therefore, the preference for model
or data-based methods depends on the amount of data obtained from the actual network and
difficulty in developing a hydraulic model of the network in question. Tina et al. [28] proposed a
leakage detection method combining pipe flow rate measurements using sensors and an Arduino
system merged with IoT technology. The sensors were placed at the start and end points of the pipe,
while the flow data obtained from the two were compared to detect leakage. This research verified
leakage detection using the proposed method prototype. The results showed that assuming no
difference in flow between the start and end points, then no leakage was detected.

Recent research on monitoring water distribution networks and leakage detection using IoT
technology and hydraulic and deep learning model are important themes. Based on the literature
review, our research focuses on two attributes that have not been adequately considered. First, this
is centered on leakage detection methods when acoustic data are used for analysis. In previous
research, data such as changes in water pressure, pipe vibrations, or infrared images were used for
analysis or training. However, research on the use of acoustic data to detect leakage is lacking. This
method was considered suitable for continuous monitoring of leakage in pipelines, due to the easy
acquisition of acoustic data, and the conventional process adopted by water management companies,
namely the survey procedure relying solely on human hearing.

Second, there is a focus on the usefulness of deep learning method in this context. This method
is associated with the black box problem — the process of information generated that cannot be clearly
understood. Therefore, research may be conducted without discerning the fundamental reasons
behind the ability of deep learning to detect leakage. Ito et al. [4] explored the CNN model using a
RP-CNN model, and reported that at certain points, detection accuracy was below 80%. However,
the causes of this low accuracy were not properly investigated.

The present research analyzes past failure cases, by using PCA to reduce the dimensions of
features based on frequency components and to investigate the causes of inaccuracy. The
distinctiveness of points with low accuracy was visualized through a sample plot diagram obtained
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from the principal component scores. This method was used to address the earlier-mentioned
problems, serving as a differentiating element from previous research. Additionally, our research
refers to the results of the blind test conducted by leakage investigators using human hearing,
particularly when evaluating statistical analysis and model accuracy. This increased the reliability of
the results, providing original values not recorded in previous research.

2. Materials and Methods
2.1. Overview of Dataset

Acoustic data collection, focusing on water leakage sound and background noise in fields
located in the Kanto region, was carried out using sensors. Additionally, the water leakage sound
was recorded before carrying out repairs, and recording the background noise depended on
reinstalling the sensors after repairs had been completed. Regarding background noise, other
conditions remained the same except for the presence or absence of water leakage. When leakage
occurred, a location was selected enabling the installation of sensors, such as gate valves, water
control valves, or a fire hydrant, at the shortest distance. This ensured the sound label did not only
contain noise. Sensors A and B installed at two locations closest to leakage point were used to collect
both sounds. The measurement distance from each sensor to the leakage point differed, and there
may also have been branches or bends in pipe from the location. Despite there being only one leakage
point at each location, the sounds obtained from the two sensors differed. Leakage was detected using
a correlation formula to compare the sound when it occurred and the background noise after repairs
had been completed. The dataset focused on ductile iron pipe, because this research aimed to conduct
a basic analysis of acoustic data recorded from such a pipe network.

Water leakage sound and background noise were recorded before and after repairs at the same
location. The data about the existing conditions of leakage location were the same. This resulted in a
quality dataset for machine learning, perceived as a significant advantage. Furthermore, acoustic data
obtained at five leakage locations using 10 observation points, were used. When leakage occurred at
a particular location, the sound data were collected at two points: sensors A and B. Therefore, the
acoustic data were symbolized in pairs as {I-A | 1-B},..., {5-A | 5-B}, with a sampling frequency of
10,000 Hz. Frequency components greater than 5,000 Hz (Nyquist frequency) could not be
reproduced accurately due to aliasing effects, leading to exclusion from the data analysis. The
information about 10 acoustic data used as the research object are shown in Table 1, including leakage
volume (L/min), measurement distance (m), sensor installation location (m), causes of leakage, water
pressure (MPa), pipe diameter (mm), and soil cover (mm). The results of the blind test conducted by
leakage investigators using the acoustic data are shown in Table 2.

Table 1. Detailed information on acoustic data.

Leakage Water Pipe Soil
. Measurement Sensor Cause of .
Point volume distance (m) location (m) leakage pressure diameter cover
(L/min) 8 (MPa)  (mm) _ (mm)
1-A 23.30 gate valve  water faucet-
61.10 0.40 75 1250
B 21.90 fire hydrant bolt corrosion
2-A 113.00 gate valve  water faucet-
4. . 1 1
2-B 3435 24.30 gate valve  bolt corrosion 035 >0 350
3-A 51.60 gate valve  water faucet-
106.49 0.35 100 1230
3-B 47.90 fire hydrant corrosion
4-A 0.13 gate valve
3.58 fl loose-bolt  0.44 100 1200
4-B 38.07 gate valve range 0ose- bo
5-A 93.05 13.70 gate valve  water fa‘ucet— 0.50 100 1290
5-B 44.80 gate valve corrosion
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Table 2. Blind test results conducted by water leakage investigators.

Point Water leak sound Background noise
LA A high-pitched, resonant sound. Easy to A general noise (buzzing). No sound of water
determine water leak. leak is heard.
1B A distinctive high-pitched sound (koo). Some noise, but no sound of water leak is
Easy to determine water leak. heard.

Difficult to distinguish, but a low resonant
2-A  sound (rumble). Determined to be a water
leak.
A low-pitched sound of water leak. Easy
to determine.

A general noise (rumble). No sound of water
leak is heard.

No sound of leaking can be heard.

A distinctive high-pitched and resonant A general noise (rumble). No water leak sound

3-A
sound. Easy to determine. is heard.

Noise and a constant low resonance.

3B Cannot be determined as the sound of a A general noise (rumble). No sound of leaking

water can be heard.

water leak.
LA A high-pitched, distinctive sound (goo). It sounds like running water. There are no
Easy to determine. other characteristic sounds of leakage.
4B Noise and low-pitched sound. Cannot be A high, constant sound (transformer sound).
determined as a water leak sound. No sound of leakage can be heard.
5 A A distinctive high-pitched and resonant The sound of leakage (a continuous high-
sound. Determined to be a water leak. pitched, resonant sound) cannot be heard.
5B Sound is faint but high-pitched and A general noise (rumble). No sound of leaking

resonant. Determined to be a water leak. water can be heard.

2.2. Overview of Water Leakage Determination Based on RP-CNN Model

A RP-CNN model was adopted to determine leakage, using the CNN, a type of deep learning
method. This was also applied using the representation of recorded water leakage sound and
background noise (RP) data for learning and assessment (Figure 1). Leakage was distinguished using
the deterministic nature of the difference between the leak sound and background noise [1]. The
discrimination accuracy of the RP-CNN model was previously verified [3,4], which showed it could
distinguish between leakage sound and background noise with an accuracy rate of approximately

80% in some locations.
-MVVW. Acoustic data

-
-
o
&

N o

L To determine whether a ]

water leak sound

Figure 1. Flowchart of water leakage-determination using RP-CNN model. for 9- and 10-point
models.
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The learning and assessment datasets are crucial when using a machine learning method.
However, previous research [4] focused on evaluating the generalization performance using learning
data from several locations (besides assessment data) in a 9-point model (Figure 2). The present
research concentrated on investigating the causes of less accurate cases (points 3-B and 4-B) and the
improvement process. In order to verify the effectiveness of feature amplification and the use of band-
stop filters to eliminate AC frequency interference (pre-processing), a 10-point model was adopted
with the assessment data applied to the learning process. Therefore, the difficulty in determining
leakage sound and background noise observed at various locations, including the possibility of
assessment errors, were evaluated using a general model.

9-point model

Training data

_______

.

J
Testing data
1-B ¢

A

10-point model

Training data
(::::':‘:, Testing data
. » J_A
5-A ¥Includ
*¥Including
5'B Pre-processing

Figure 2. Learning and assessment data.

3. Results and Discussion
3.1. PCA Application Method

Principal component analysis is a statistical method that reduces multidimensional data to a
low-dimensional space without losing important information. It is often used for dimension
reduction and visualization in data evaluation. According to the Scikit-Learn Data Analysis
Implementation Handbook (Shuwa System), the main purposes of dimensionality reduction are data
compression and data visualization. This is provided by algorithms such as PCA, feature selection,
and non-negative matrix factorization. Additionally, PCA has been previously used to investigate
the causes of low accuracy at several locations [4,29]. The implementation of dimension reduction
and visualization comprised two stages:

Stage 1 Application of Fast Fourier Transform (FFT) (data dimension reduction)

Based on previous research, the effective frequency range for detecting leakage in ductile iron
pipe is less than 1,500 Hz [30]. Our research focused on 153 frequency components of approximately
1,500 Hz obtained from FFT. For data grouping, the frequency components were divided into 15
categories (<100 Hz, <200 Hz, ..., <1400 Hz, <1500 Hz), with each represented by a mean value. In this
process, the data were converted into 15 dimensions. The implementation of this method ensured the
number of variables (n = 15) used in the PCA did not exceed the number of samples (n = 20).

Stage 2 Application of PCA (dimension reduction and visualization)

Considering the 15-dimensional data (FFT), PCA was used to obtain the first (PC1) and second
(PC2) principal components. We then positioned the samples according to the PC1 and PC2 scores to
classify locations with (10 locations) and without leakage (10 locations). In the PCA stage, the data
were also re-standardized by centralizing (making the mean value 0) and scaling (making the
standard deviation 1). This analysis was performed using version 4.3.2 of Windows software.

3.2. Sample Position Results Based on PCA Scores
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A box plot diagram was generated using 15-dimensional data to distinguish between water
leakage sound and background noise. The median value for water leakage reached a peak within the
frequency range of variables X4-X6. Meanwhile, background noise reached a peak at variable X1,
gradually decreasing in the higher frequency range (Figure 3). This implied that the average
characteristic pattern between the two differed.

-

pessssad

=3 i 0L 4 4
OOOOO

T T T T T T T T

T T T
X1 X2 X3 X4 X5 X6 X7 X8 X9 X11

T T T T T T T T T T T T T

T T T T
X13 X15 X1 X2 X3 X4 X5 X6 X7 X8 X9 X11 X13 X15

(a) Water leakage sound (b) Background noise

Figure 3. Box plot of acoustic data converted into 15 dimensions.

The results of the sample position in accordance with the principal component scores are shown
in Figure 4. The contributions of PC1 and PC2 were 0.696 and 0.150, respectively. The focus on leakage
sound denoted by e in Figure 4 implied that it was mostly distributed in the positive direction on
PC1 (horizontal axis). However, the background noise denoted by A was mostly distributed in the
negative direction on PC1 (horizontal axis). Leakage sound in samples 3-B and 4-B was not located
in the zone where the other points were distributed but was projected into the area occupied by the
background noise. Compared to the results of the blind test (Table 2), the sound in samples 3-B and
4-B were consistently disregarded. The low accuracy in samples 3-B and 4-B in the RP-CNN model
was caused by low recall and specificity outcomes for leakage sound and background noise,
respectively. This suggested that there may be a problem with the acoustic data of leakage sound
(recall). The acquired sound characteristics were distorted by certain influences resembling
background noise. This made assessment difficult for both the RP-CNN model and the investigators.
Additionally, both leakage sound and background noise from the same location were detected on the
right and left sides of the PC1 axis, respectively. In sample 4-B with low accuracy, the left-right
relationship on the PC1 axis was maintained, but in 3-B, leakage sound and background noise were
on the left and right sides, respectively. Aside from the left-right inversion pattern, a characteristic
of sample 3-B was a short distance between leakage sound and background noise compared to other

samples.
5.0
® Water leakage sound
4.0 ® 8
30 2B A Background noise
2.0 il A
. A 9
1-A
4-A -
1.0 N ®_4n 1
4-B A 4B &
0.0 - -
A
3B - A © o 29
-1.0 o o % 13-A
-2.0 A 5B 1-A A ~ 5.A A
3B - - 3A A 5-B
-3.0

-6.0 -4.0 -2.0 0.0 20 4.0 6.0
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Figure 4. Positioning results based on principal component scores (horizontal axis, 1st principal
component [PC1]; vertical axis, 2nd principal component [PC2]).

3.3. Pre-Processing for Emphasizing Leakage Sound and Eliminating Background Noise

Section 3.2 showed that the possible causes of low accuracy at points 3-B and 4-B was the
interference in acoustic data. Recording and transmission were carried out using acoustics by altering
the frequency characteristics, while considering distortion and noise. An acoustic device (an
equalizer) was used to improve sound quality and reduce certain frequencies, thereby overcoming
the problem of noise, howling, or excessive echo.

Water leakage sound is similar to background noise because its unique characteristics do not
fully reach the recording point (sensor). This causes the characteristics that should be present in
leakage sound data to be weakened. In such cases, it becomes necessary to focus on emphasizing
leakage sound characteristics. Therefore, to improve accuracy of sound detection on data with such
problems, a pre-processing method that concentrates or reduces certain frequency bands was
considered an effective countermeasure.

A typical example of the FFT spectrum compares leakage sound and the background noise at
point 1-B (Figure 5). This showed that the sound spectrum had a peak in the relatively high-frequency
region, greater than 500 Hz. For the background noise, the frequency region greater than 500 Hz
showed a flat pattern without peaks. This pattern was observed at other locations, including 1-B. The
box plot of data transformed into 15 dimensions showed that leakage sound had a peak of
approximately 500 Hz (Figure 3).

-40 40
45 -45
50 -50
-55
5 55 0
S -60 3 65
3 65 § -70
3 = -75
g 70 S
< € -
-75 < .85
-80 -90
10 100 1000 10 100 1000
Frequency (Hz) Frequency (Hz)
(a) Water leakage sound (b) Background noise

Figure 5. FFT spectrum of point 1-B.

Considering this result, further analysis assumed the frequency region that characterized
leakage sound was within 500-600 Hz, leading to the application of an amplification process.
However, not all frequency components within 500-600 Hz were amplified. Amplification was
performed only when the absolute value of the Fourier transform result, | X(k)!, exceeded 5.5 (with
k as the frequency value), to reduce the influence on background noise. Additionally, for sound to
reach ideal conditions, it is important to increase and reduce necessary and unnecessary sound,
respectively. A reduction can also be performed to eliminate weak noise, aside from amplifying
certain frequencies. Therefore, frequencies with | X(k)| > 0.9 were also reduced in this process.

The present research also concentrated on the eradication of sounds similar to water leaks
(pseudo-leak sounds), such as transformer sound, by adopting a method of eliminating 50 and 60 Hz
frequency components including respective harmonics using a band-stop filter. This also aimed to
reduce errors in identifying acoustic data affected by transformer sound, thereby increasing
specificity.

Figure 6 shows an example of changes in RP of leakage sound at point 4-B (from 2000 to 2002)
after the amplification process, where a honeycomb pattern was observed. These results implied that
by amplifying the frequency components of 500-600 Hz, the typical leakage sound at point 4-B was
successfully acquired.
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(a) Before amplification process (b) After amplification process

Figure 6. Changes in RP due to amplification process of point 4-B (RP number 2000 to 2002).

The dimension reduction and data visualization methods with PCA used in Section 3.2 were
applied to verify the effect of pre-processing. The outcome before and after the application of the
process was compared (Figure 7). Adjustments are made by amplifying and reducing frequency
components with |X(k)l > 5.5 and |X(k)l < 0.9, respectively. Meanwhile, this amplification and
reduction improved leakage sound and background noise. Similar peak changes were obtained when
assuming that the background noise within the frequency range of 500-600 Hz had the same
characteristics as leakage sound. The slope pattern of the 15-dimensional data implied that these
frequencies did not show changes as observed in leakage sound. Therefore, the assumption that the
typical region of leakage sound was within 500-600 Hz, including the decision to target this
frequency range for the amplification process, can be considered appropriate.

Amplitude (dB)
3

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
—o=— Qriginal Leakage —= Qriginal Background

=O==Pretreatment lLeakage  ==r™=Pretreatment Background

Figure 7. Results of applying the proposed method (15-dimensional data).

3.4. Water Leakage Determination Test Using RP-CNN Model

This research examined the effect of the proposed pre-processing: (1) strengthening the
frequency components within 500-600 Hz only for |X(k)| > 5.5 (prominence in the characteristics of
typical leakage sound); (2) removing frequency components with | X(k)| <0.9 (weak noise reduction);
and (3) using a band-stop filter to eliminate the 50 Hz frequency and respective harmonics (AC noise
removal). These three pre-processing methods were verified in the present research. Specifically, two
types of datasets (with and without pre-processing) were acquired and accuracy of RP-CNN model
compared after usage. The testing data differed from the training data used to build the model. The
setting values of RP-CNN model follow: interval 0.016 seconds, size 64, LPF 4000 Hz, and batch size
16. In terms of determining the number of epochs, the model with the highest accuracy on the testing
data was adopted as the best (epoch = 10). It is generally recommended to treat validation data and
training data separately. Validation data are used to adjust hyperparameters, such as batch size, when
building the model.

The results after applying the RP-CNN model on the three methods are shown in Table 3.
Initially, the results for without pre-processing showed that recall for 3-B and 4-B was 0%.
Furthermore, for 3-B and 4-B, the RP-CNN model considered leakage sound as background noise,
resulting in a recall of 0%. These results are in accordance with previous research [4] and the
positioning performed using principal component scores. However, the results with pre-processing


https://doi.org/10.20944/preprints202411.1042.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1042.v1

10

showed that recall for 3-B and 4-B increased to 64.4% and 81.4%, respectively. This suggested
improvement due to application of pre-processing. Although the increase in recall accuracy was
confirmed in all cases, a negative aspect (adverse impact of applying pre-processing, i.e., a decrease
in specificity) was observed in five out of every 10 cases. The issue was observed in 1-B, where
specificity decreased by more than 20%. Despite the improved recall for the expected results, the
problem of specificity remained.

Table 3. Results of applying the RP-CNN model to the assessment data.

(a) Data without pre-processing

. Accuracy (%)

Point Epoch BA Recall ” Specificity
1-A 99.3 99.9 98.7
1-B 99.8 100.0 99.6
2-A 94.9 95.4 94.3
2-B 94.6 97.7 91.5
3-A 10 98.4 99.3 97.5
3-B 49.4 0.0 98.8
4-A 98.1 99.6 96.6
4-B 46.8 0.0 93.6
5-A 99.6 99.3 99.9
5-B 98.6 97.4 99.8

(b) Data with pre-processing
Point Epoch Accuracy (%)
BA Recall Specificity
1-A 97.8 99.9 95.6
1-B 89.4 100.0 78.8
2-A 97.9 100.0 95.8
2-B 95.8 100.0 91.6
3-A 10 99.5 100.0 98.9
3-B 81.8 64.4 99.2
4-A 95.9 100.0 91.8
4-B 88.7 81.4 95.9
5-A 99.6 100.0 99.1
5-B 99.7 100.0 99.4

Recall for 3-B was lower than for other points and the limitations proven by the pre-processing
effect. The PCA showed that 3-B tended to have unique acoustic data and a pattern differing from
the other points, with the leakage sound and background noise on the left and right sides of the PC1
axis, respectively. Further data collection and accumulation are required, irrespective of whether the
data are unique or there are similar cases. This research needs further in-depth observation,
considering implementation in the real world.

4. Conclusions

This research investigated the causes of inaccurate cases associated with leakage determination
using RP-CNN to gain insights that improved the generalization performance of the model. A basic
analysis of leakage sound and background noise was conducted in water pipe, while performing
visualized acoustic data using FFT and RP, as well as the evaluating the results. Additionally, a pre-
processing method was proposed for acoustic data, including RP pattern changes. Accuracy of
leakage detection using the RP-CNN model was studied. The results from this research follow:

(1) The frequency components obtained from the FFT to 1,500 Hz showed that the data obtained
were converted into 15 dimensions, leading to PCA. The results from the sample classification
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using the PC1 and PC2 scores showed that leakage sound at points 3-B and 4-B was in an area

occupied by a lot of background noise. This was consistent with the blind test conducted by

leakage investigators, in which the sound at points 3-B and 4-B could not be identified.

(2) Based on the differences in the FFT spectrum, an amplification process was applied within the
frequency range of 500-600 Hz for water leakage sound. After its application, a new
honeycomb pattern was found in RP at the problematic location. This showed that the
amplification process within this range effectively focused on the characteristics of leakage
sound.

(3) To test the effectiveness of the proposed pre-processing method, two datasets were obtained
(with and without pre-processing), followed by comparing accuracy of the RP-CNN model.
The results without pre-processing showed recall for points 3-B and 4-B of 0%, while after pre-
processing application, these increased to 64.4% and 81.4%, respectively. This implied
improvement in recall with application of pre-processing.

The present research focused on the frequency components of 500-600 Hz. The amplification
process confirmed a honeycomb pattern in leakage sound RP at the problematic location. However,
the location of frequency components that best reflected the characteristics of leakage sound was not
completely clear. Sensitivity analysis in the future should change the amplified frequency
components while drawing RP and identifying those containing the most characteristics of leakage
sound. This was crucial in exploring more effective ways of applying the proposed pre-processing
method.
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