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Abstract: This research aims to determine and improve accuracy of a water leakage detection model 

proposed in preliminary research. The poor results for water leakage sound (recall) and background 

noise (specificity) were clarified using countermeasures in accordance with each condition. 

Additionally, frequency amplification in the range of 500–600 Hz, attenuation of weak components, 

and a band-stop filter were used to remove the 50 Hz component and harmonics. Pre-processing 

was carried out in the form of amplification with weak noise removed using a band-stop filter. The 

results showed that application of the proposed model improved detection accuracy by 80% at 

observation points that initially had poor accuracy. Thus, the proposed method was effective in 

improving performance of the RP-CNN model in detecting leakage. 

Keywords: convolutional neural network; noise reduction; poor accuracy cases; principal 

component analysis; recurrence plot; water leakage detection 

 

1. Introduction 

1.1. Background 

The deteriorating state of urban infrastructure in Japan, including maintenance and upgrades, 

is estimated to cost huge amounts of money to rectify. Therefore, to address these challenges, 

Infrastructure Maintenance, Renewal, and Management Technology designated a national project by 

the Council for Science, Technology, and Innovation called the Strategic Innovation Promotion 

Program (SIP) FY 2014–2018. During the SIP, the authors participated in Research and Development 

of Sensing Data Collection, Transmission, and Processing Technology for Social Infrastructure 

(Underground Structures). It was reported that the water supply pipeline network facility had a total 

length of 18 times the circumference of the equator, covering approximately 70% of water supply 

assets worth 40 trillion yen. As the proportion of old pipe that exceeds its service life of 40 years 

increases, it becomes necessary to switch from conventional methods to the use of advanced 

technologies. In order to address the issue of water supply pipeline infrastructure, SIP conducted 

research on the development and placement of high-sensitivity sensor terminals to construct a 

leakage detection model based on field test data acquired in the cities of Kawasaki and Kitakyushu. 

In accordance with the first stage of SIP results, a discrimination method integrating 

visualization and image recognition of sound data was designed. Further research was conducted on 

leakage discrimination based on the test data obtained in the field. Geometric visualization was 

performed to analyze the characteristics of leakage sounds depending on the strength of deterministic 

properties. This included the use of water leakage sounds, background noise (data measured when 

there is no leakage), and tests to determine whether the data were probabilistic [1]. Second, there was 
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a focus on the differences in the deterministic properties of leakage sound time series data. 

Additionally, the acquired data were visualized on a two-dimensional plane using a recurrence plot 

(RP). The visualized images served as input data for machine learning used to fabricate a leakage 

discrimination model with a convolutional neural network (CNN) [2]. Third, the RP-CNN model was 

applied to the actual data to verify accuracy of leakage discrimination. An average accuracy of more 

than 80% was obtained, confirming effectiveness of the proposed combined RP-CNN method [3]. 

Meanwhile, accuracy of model assessment was improved by applying filter processing focusing on 

the frequency components of the acoustic data [4]. 

The results of leakage detection did not show improvement in some points even after pre-

processing. This also led to the inability of BA (balanced accuracy), an indicator of accuracy in 

machine learning, to exceed 80% [4]. In addition, points 3-B and 4-B had less accurate results, leading 

to the need for discrete research conducted by water leakage investigators (five engineers with more 

than 10 years of experience in a water leakage detection company) using human hearing. Identifying 

the causes of inaccuracy at these points is a challenge that should be overcome by developing new 

technologies exceeding the level of conventional methods used by leakage investigators. 

In this research, Section 1 focuses on the background to improving accuracy of the water leakage 

detection model previously proposed [4]. It also aims to identify and improve the causes of low 

accuracy. Additionally, this section reviews the latest trends in water leakage detection, clarifying the 

originality of the present research. Section 2 describes the acoustic data used during the analysis, 

including items and observation equipment. This also provides an overview of a RP-CNN model 

applied to water leakage detection. In Section 3, dimension reduction of acoustic data (features based 

on frequency components) is performed using principal component analysis (PCA). This visualizes 

the uniqueness of the points showing inaccuracy by positioning samples based on principal 

component scores. This section examines two types of inaccuracies – inaccuracy of results to leakage 

(recall) and background noise (specificity) – including considering improvement measures for each 

result. However, to improve recall, an amplification is specifically proposed within the frequency 

range of 500–600 Hz estimated as the characteristic range of water leakage sound, combined with 

weak frequency reduction. In order to improve specificity, the use of a band-stop filter is proposed 

to remove the frequency component of 50 Hz and respective harmonics considered as AC noise (noise 

from the electric current source), to improve specificity. Additionally, in this section, the pre-

processing proposed in the previous section is applied (centered on the characteristics of leakage 

sound and removal of electric current noise in acoustic data). Leakage detection testing using the RP-

CNN model is carried out, verifying the usefulness of this research. Finally, in Section 4, the 

conclusions are reported, along with future work to explore more effective ways to apply the 

proposed pre-processing method. 

1.2. Literature Review 

This section reviews certain previous research on water leakage detection conducted in recent 

years to show the latest trends. Asada et al. [5] proposed a water leakage detection method using 

transient test-based techniques (TTBTs). The method uses transient phenomena in pipes depending 

on optimization processes and characteristics of pressure wave propagation associated with 

reflection to detect leakage. Furthermore, it was successfully used to detect leakage in spiral pipe, as 

well as network connections with different diameters (pipe reducers). Pressure gauges were installed 

at pipe connection points, with operated valves at the bottom to detect leakage throughout the pipe 

network. 

Meniconi et al. [6] used the TTBT approach to detect faults on long main transmission lines, 

which are difficult to inspect due to limited access. The analysis results indicated that this approach 

can reduce the adverse effects of changes in initial conditions and flow boundaries, allowing 

identification of issues in the system. However, only specific areas could be thoroughly eliminated, 

with two leaks detected with good precision. The system’s complexity, as a result of branching off 

the main pipeline and interactions with pressure waves during transients, complicated the 

implementation of TTBTs, as additional pressure waves produced by the branching must be 
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identified [7,8]. The development of methods focusing on transient phenomena at pipe branches aims 

to expand leak detection to more complex systems [9–11]. 

Duan [12] investigated the effect of pipe joints on transient frequency response using numerical 

simulations in the frequency and time domains and the linear transfer matrix method. The results 

indicated that this method is more effective for detecting pipe leaks than measuring leaks. Kim et al. 

[13] and Kim [14] also conducted experiments on transient-based leak detection for multi-branch 

pipes. 

Shirahata & Numazu [15] conducted research using several ensemble learning methods, 

including applying CNN on infrared images of rigid PVC pipe used for sewers and then compared 

the results. The verified results showed that the AdaBoost method had the highest F-value (0.75) and 

accuracy among the ensemble learning methods. Furthermore, the artificial neural network was the 

second highest-performing method, with accuracy of 0.72 and F-value of 0.73. 

In recent years, research on water leakage detection focusing on the application of machine 

learning methods and IoT technology using sensor or camera data was introduced [16–19]. 

Quantitative data often used included hydraulic physics variables such as water pressure and flow 

in pipe. This also comprised acoustic data from sensors installed on pipe. In general, the purpose of 

using IoT communication technology was to monitor pipe networks. The machine learning methods 

adopted comprised feature extraction using PCA [20,21], ensemble learning [22,23], and CNN [24–

26]. Specific research used deep learning such as CNN, and this method needs to be considered for 

developing leakage detection technology. 

Hu et al. [27] classified various methods for detecting and determining leakage locations in water 

distribution systems into two categories: model and data-based methods. They also reviewed leakage 

detection methods. They stated that the weakness of model-based method was due to the lack of a 

calibrated hydraulic model used to distinguish water leakage. The discrimination results were also 

greatly influenced by model and measurement errors. The weakness of the data-based method was 

because it required a large amount of data to identify water leakage, and the detection results were 

greatly influenced by data shortages, abnormal values, and noise. Therefore, the preference for model 

or data-based methods depends on the amount of data obtained from the actual network and 

difficulty in developing a hydraulic model of the network in question. Tina et al. [28] proposed a 

leakage detection method combining pipe flow rate measurements using sensors and an Arduino 

system merged with IoT technology. The sensors were placed at the start and end points of the pipe, 

while the flow data obtained from the two were compared to detect leakage. This research verified 

leakage detection using the proposed method prototype. The results showed that assuming no 

difference in flow between the start and end points, then no leakage was detected. 

Recent research on monitoring water distribution networks and leakage detection using IoT 

technology and hydraulic and deep learning model are important themes. Based on the literature 

review, our research focuses on two attributes that have not been adequately considered. First, this 

is centered on leakage detection methods when acoustic data are used for analysis. In previous 

research, data such as changes in water pressure, pipe vibrations, or infrared images were used for 

analysis or training. However, research on the use of acoustic data to detect leakage is lacking. This 

method was considered suitable for continuous monitoring of leakage in pipelines, due to the easy 

acquisition of acoustic data, and the conventional process adopted by water management companies, 

namely the survey procedure relying solely on human hearing. 

Second, there is a focus on the usefulness of deep learning method in this context. This method 

is associated with the black box problem – the process of information generated that cannot be clearly 

understood. Therefore, research may be conducted without discerning the fundamental reasons 

behind the ability of deep learning to detect leakage. Ito et al. [4] explored the CNN model using a 

RP-CNN model, and reported that at certain points, detection accuracy was below 80%. However, 

the causes of this low accuracy were not properly investigated. 

The present research analyzes past failure cases, by using PCA to reduce the dimensions of 

features based on frequency components and to investigate the causes of inaccuracy. The 

distinctiveness of points with low accuracy was visualized through a sample plot diagram obtained 
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from the principal component scores. This method was used to address the earlier-mentioned 

problems, serving as a differentiating element from previous research. Additionally, our research 

refers to the results of the blind test conducted by leakage investigators using human hearing, 

particularly when evaluating statistical analysis and model accuracy. This increased the reliability of 

the results, providing original values not recorded in previous research. 

2. Materials and Methods 

2.1. Overview of Dataset 

Acoustic data collection, focusing on water leakage sound and background noise in fields 

located in the Kanto region, was carried out using sensors. Additionally, the water leakage sound 

was recorded before carrying out repairs, and recording the background noise depended on 

reinstalling the sensors after repairs had been completed. Regarding background noise, other 

conditions remained the same except for the presence or absence of water leakage. When leakage 

occurred, a location was selected enabling the installation of sensors, such as gate valves, water 

control valves, or a fire hydrant, at the shortest distance. This ensured the sound label did not only 

contain noise. Sensors A and B installed at two locations closest to leakage point were used to collect 

both sounds. The measurement distance from each sensor to the leakage point differed, and there 

may also have been branches or bends in pipe from the location. Despite there being only one leakage 

point at each location, the sounds obtained from the two sensors differed. Leakage was detected using 

a correlation formula to compare the sound when it occurred and the background noise after repairs 

had been completed. The dataset focused on ductile iron pipe, because this research aimed to conduct 

a basic analysis of acoustic data recorded from such a pipe network. 

Water leakage sound and background noise were recorded before and after repairs at the same 

location. The data about the existing conditions of leakage location were the same. This resulted in a 

quality dataset for machine learning, perceived as a significant advantage. Furthermore, acoustic data 

obtained at five leakage locations using 10 observation points, were used. When leakage occurred at 

a particular location, the sound data were collected at two points: sensors A and B. Therefore, the 

acoustic data were symbolized in pairs as {1-A | 1-B},..., {5-A | 5-B}, with a sampling frequency of 

10,000 Hz. Frequency components greater than 5,000 Hz (Nyquist frequency) could not be 

reproduced accurately due to aliasing effects, leading to exclusion from the data analysis. The 

information about 10 acoustic data used as the research object are shown in Table 1, including leakage 

volume (L/min), measurement distance (m), sensor installation location (m), causes of leakage, water 

pressure (MPa), pipe diameter (mm), and soil cover (mm). The results of the blind test conducted by 

leakage investigators using the acoustic data are shown in Table 2. 

Table 1. Detailed information on acoustic data. 

Point 

Leakage 

volume 

(L/min) 

Measurement 

distance (m) 

Sensor 

location (m) 

Cause of 

leakage 

Water 

pressure 

(MPa) 

Pipe 

diameter 

(mm) 

Soil 

cover 

(mm) 

1-A 
61.10 

23.30 gate valve water faucet- 

bolt corrosion 
0.40 75 1250 

1-B 21.90 fire hydrant 

2-A 
34.35 

113.00 gate valve water faucet- 

bolt corrosion 
0.35 150 1350 

2-B 24.30 gate valve 

3-A 
106.49 

51.60 gate valve water faucet- 

corrosion 
0.35 100 1230 

3-B 47.90 fire hydrant 

4-A 
3.58 

0.13 gate valve 
flange loose- bolt 0.44 100 1200 

4-B 38.07 gate valve 

5-A 
93.25 

13.70 gate valve water faucet- 

corrosion 
0.50 100 1220 

5-B 44.80 gate valve 
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Table 2. Blind test results conducted by water leakage investigators. 

Point Water leak sound Background noise 

1-A 
A high-pitched, resonant sound. Easy to 

determine water leak. 

A general noise (buzzing). No sound of water 

leak is heard. 

1-B 
A distinctive high-pitched sound (koo). 

Easy to determine water leak. 

Some noise, but no sound of water leak is 

heard. 

2-A 

Difficult to distinguish, but a low resonant 

sound (rumble). Determined to be a water 

leak. 

A general noise (rumble). No sound of water 

leak is heard. 

2-B 
A low-pitched sound of water leak. Easy 

to determine. 
No sound of leaking can be heard. 

3-A 
A distinctive high-pitched and resonant 

sound. Easy to determine. 

A general noise (rumble). No water leak sound 

is heard. 

3-B 

Noise and a constant low resonance. 

Cannot be determined as the sound of a 

water leak. 

A general noise (rumble). No sound of leaking 

water can be heard. 

4-A 
A high-pitched, distinctive sound (goo). 

Easy to determine. 

It sounds like running water. There are no 

other characteristic sounds of leakage. 

4-B 
Noise and low-pitched sound. Cannot be 

determined as a water leak sound. 

A high, constant sound (transformer sound). 

No sound of leakage can be heard. 

5-A 
A distinctive high-pitched and resonant 

sound. Determined to be a water leak. 

The sound of leakage (a continuous high-

pitched, resonant sound) cannot be heard. 

5-B 
Sound is faint but high-pitched and 

resonant. Determined to be a water leak. 

A general noise (rumble). No sound of leaking 

water can be heard. 

2.2. Overview of Water Leakage Determination Based on RP-CNN Model 

A RP-CNN model was adopted to determine leakage, using the CNN, a type of deep learning 

method. This was also applied using the representation of recorded water leakage sound and 

background noise (RP) data for learning and assessment (Figure 1). Leakage was distinguished using 

the deterministic nature of the difference between the leak sound and background noise [1]. The 

discrimination accuracy of the RP-CNN model was previously verified [3,4], which showed it could 

distinguish between leakage sound and background noise with an accuracy rate of approximately 

80% in some locations. 

  

Figure 1. Flowchart of water leakage-determination using RP-CNN model. for 9- and 10-point 

models. 

RP

Acoustic data

CNN

To determine whether a 
water leak sound
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The learning and assessment datasets are crucial when using a machine learning method. 

However, previous research [4] focused on evaluating the generalization performance using learning 

data from several locations (besides assessment data) in a 9-point model (Figure 2). The present 

research concentrated on investigating the causes of less accurate cases (points 3-B and 4-B) and the 

improvement process. In order to verify the effectiveness of feature amplification and the use of band-

stop filters to eliminate AC frequency interference (pre-processing), a 10-point model was adopted 

with the assessment data applied to the learning process. Therefore, the difficulty in determining 

leakage sound and background noise observed at various locations, including the possibility of 

assessment errors, were evaluated using a general model. 

 

Figure 2. Learning and assessment data. 

3. Results and Discussion 

3.1. PCA Application Method 

Principal component analysis is a statistical method that reduces multidimensional data to a 

low-dimensional space without losing important information. It is often used for dimension 

reduction and visualization in data evaluation. According to the Scikit-Learn Data Analysis 

Implementation Handbook (Shuwa System), the main purposes of dimensionality reduction are data 

compression and data visualization. This is provided by algorithms such as PCA, feature selection, 

and non-negative matrix factorization. Additionally, PCA has been previously used to investigate 

the causes of low accuracy at several locations [4,29]. The implementation of dimension reduction 

and visualization comprised two stages: 

Stage 1 Application of Fast Fourier Transform (FFT) (data dimension reduction) 

Based on previous research, the effective frequency range for detecting leakage in ductile iron 

pipe is less than 1,500 Hz [30]. Our research focused on 153 frequency components of approximately 

1,500 Hz obtained from FFT. For data grouping, the frequency components were divided into 15 

categories (<100 Hz, <200 Hz, ..., <1400 Hz, <1500 Hz), with each represented by a mean value. In this 

process, the data were converted into 15 dimensions. The implementation of this method ensured the 

number of variables (n = 15) used in the PCA did not exceed the number of samples (n = 20). 

Stage 2 Application of PCA (dimension reduction and visualization) 

Considering the 15-dimensional data (FFT), PCA was used to obtain the first (PC1) and second 

(PC2) principal components. We then positioned the samples according to the PC1 and PC2 scores to 

classify locations with (10 locations) and without leakage (10 locations). In the PCA stage, the data 

were also re-standardized by centralizing (making the mean value 0) and scaling (making the 

standard deviation 1). This analysis was performed using version 4.3.2 of Windows software. 

3.2. Sample Position Results Based on PCA Scores 
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A box plot diagram was generated using 15-dimensional data to distinguish between water 

leakage sound and background noise. The median value for water leakage reached a peak within the 

frequency range of variables X4–X6. Meanwhile, background noise reached a peak at variable X1, 

gradually decreasing in the higher frequency range (Figure 3). This implied that the average 

characteristic pattern between the two differed. 

 

(a) Water leakage sound  (b) Background noise 

Figure 3. Box plot of acoustic data converted into 15 dimensions. 

The results of the sample position in accordance with the principal component scores are shown 

in Figure 4. The contributions of PC1 and PC2 were 0.696 and 0.150, respectively. The focus on leakage 

sound denoted by ● in Figure 4 implied that it was mostly distributed in the positive direction on 

PC1 (horizontal axis). However, the background noise denoted by ▲ was mostly distributed in the 

negative direction on PC1 (horizontal axis). Leakage sound in samples 3-B and 4-B was not located 

in the zone where the other points were distributed but was projected into the area occupied by the 

background noise. Compared to the results of the blind test (Table 2), the sound in samples 3-B and 

4-B were consistently disregarded. The low accuracy in samples 3-B and 4-B in the RP-CNN model 

was caused by low recall and specificity outcomes for leakage sound and background noise, 

respectively. This suggested that there may be a problem with the acoustic data of leakage sound 

(recall). The acquired sound characteristics were distorted by certain influences resembling 

background noise. This made assessment difficult for both the RP-CNN model and the investigators. 

Additionally, both leakage sound and background noise from the same location were detected on the 

right and left sides of the PC1 axis, respectively. In sample 4-B with low accuracy, the left–right 

relationship on the PC1 axis was maintained, but in 3-B, leakage sound and background noise were 

on the left and right sides, respectively. Aside from the left–right inversion pattern, a characteristic 

of sample 3-B was a short distance between leakage sound and background noise compared to other 

samples. 
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Figure 4. Positioning results based on principal component scores (horizontal axis, 1st principal 

component [PC1]; vertical axis, 2nd principal component [PC2]). 

3.3. Pre-Processing for Emphasizing Leakage Sound and Eliminating Background Noise 

Section 3.2 showed that the possible causes of low accuracy at points 3-B and 4-B was the 

interference in acoustic data. Recording and transmission were carried out using acoustics by altering 

the frequency characteristics, while considering distortion and noise. An acoustic device (an 

equalizer) was used to improve sound quality and reduce certain frequencies, thereby overcoming 

the problem of noise, howling, or excessive echo. 

Water leakage sound is similar to background noise because its unique characteristics do not 

fully reach the recording point (sensor). This causes the characteristics that should be present in 

leakage sound data to be weakened. In such cases, it becomes necessary to focus on emphasizing 

leakage sound characteristics. Therefore, to improve accuracy of sound detection on data with such 

problems, a pre-processing method that concentrates or reduces certain frequency bands was 

considered an effective countermeasure. 

A typical example of the FFT spectrum compares leakage sound and the background noise at 

point 1-B (Figure 5). This showed that the sound spectrum had a peak in the relatively high-frequency 

region, greater than 500 Hz. For the background noise, the frequency region greater than 500 Hz 

showed a flat pattern without peaks. This pattern was observed at other locations, including 1-B. The 

box plot of data transformed into 15 dimensions showed that leakage sound had a peak of 

approximately 500 Hz (Figure 3). 

(a) Water leakage sound  (b) Background noise 

Figure 5. FFT spectrum of point 1-B. 

Considering this result, further analysis assumed the frequency region that characterized 

leakage sound was within 500–600 Hz, leading to the application of an amplification process. 

However, not all frequency components within 500–600 Hz were amplified. Amplification was 

performed only when the absolute value of the Fourier transform result, |X(k)|, exceeded 5.5 (with 

k as the frequency value), to reduce the influence on background noise. Additionally, for sound to 

reach ideal conditions, it is important to increase and reduce necessary and unnecessary sound, 

respectively. A reduction can also be performed to eliminate weak noise, aside from amplifying 

certain frequencies. Therefore, frequencies with |X(k)| > 0.9 were also reduced in this process. 

The present research also concentrated on the eradication of sounds similar to water leaks 

(pseudo-leak sounds), such as transformer sound, by adopting a method of eliminating 50 and 60 Hz 

frequency components including respective harmonics using a band-stop filter. This also aimed to 

reduce errors in identifying acoustic data affected by transformer sound, thereby increasing 

specificity. 

Figure 6 shows an example of changes in RP of leakage sound at point 4-B (from 2000 to 2002) 

after the amplification process, where a honeycomb pattern was observed. These results implied that 

by amplifying the frequency components of 500–600 Hz, the typical leakage sound at point 4-B was 

successfully acquired. 
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(a) Before amplification process  (b) After amplification process 

Figure 6. Changes in RP due to amplification process of point 4-B (RP number 2000 to 2002). 

The dimension reduction and data visualization methods with PCA used in Section 3.2 were 

applied to verify the effect of pre-processing. The outcome before and after the application of the 

process was compared (Figure 7). Adjustments are made by amplifying and reducing frequency 

components with |X(k)| > 5.5 and |X(k)| < 0.9, respectively. Meanwhile, this amplification and 

reduction improved leakage sound and background noise. Similar peak changes were obtained when 

assuming that the background noise within the frequency range of 500–600 Hz had the same 

characteristics as leakage sound. The slope pattern of the 15-dimensional data implied that these 

frequencies did not show changes as observed in leakage sound. Therefore, the assumption that the 

typical region of leakage sound was within 500–600 Hz, including the decision to target this 

frequency range for the amplification process, can be considered appropriate. 

 

Figure 7. Results of applying the proposed method (15-dimensional data). 

3.4. Water Leakage Determination Test Using RP-CNN Model 

This research examined the effect of the proposed pre-processing: (1) strengthening the 

frequency components within 500–600 Hz only for |X(k)| > 5.5 (prominence in the characteristics of 

typical leakage sound); (2) removing frequency components with |X(k)| < 0.9 (weak noise reduction); 

and (3) using a band-stop filter to eliminate the 50 Hz frequency and respective harmonics (AC noise 

removal). These three pre-processing methods were verified in the present research. Specifically, two 

types of datasets (with and without pre-processing) were acquired and accuracy of RP-CNN model 

compared after usage. The testing data differed from the training data used to build the model. The 

setting values of RP-CNN model follow: interval 0.016 seconds, size 64, LPF 4000 Hz, and batch size 

16. In terms of determining the number of epochs, the model with the highest accuracy on the testing 

data was adopted as the best (epoch = 10). It is generally recommended to treat validation data and 

training data separately. Validation data are used to adjust hyperparameters, such as batch size, when 

building the model. 

The results after applying the RP-CNN model on the three methods are shown in Table 3. 

Initially, the results for without pre-processing showed that recall for 3-B and 4-B was 0%. 

Furthermore, for 3-B and 4-B, the RP-CNN model considered leakage sound as background noise, 

resulting in a recall of 0%. These results are in accordance with previous research [4] and the 

positioning performed using principal component scores. However, the results with pre-processing 
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showed that recall for 3-B and 4-B increased to 64.4% and 81.4%, respectively. This suggested 

improvement due to application of pre-processing. Although the increase in recall accuracy was 

confirmed in all cases, a negative aspect (adverse impact of applying pre-processing, i.e., a decrease 

in specificity) was observed in five out of every 10 cases. The issue was observed in 1-B, where 

specificity decreased by more than 20%. Despite the improved recall for the expected results, the 

problem of specificity remained. 

Table 3. Results of applying the RP-CNN model to the assessment data. 

(a) Data without pre-processing 

Point Epoch 
Accuracy (%) 

BA Recall Specificity 

1-A 

10 

99.3 99.9 98.7 

1-B 99.8 100.0 99.6 

2-A 94.9 95.4 94.3 

2-B 94.6 97.7 91.5 

3-A 98.4 99.3 97.5 

3-B 49.4 0.0 98.8 

4-A 98.1 99.6 96.6 

4-B 46.8 0.0 93.6 

5-A 99.6 99.3 99.9 

5-B 98.6 97.4 99.8 

(b) Data with pre-processing 

Point Epoch 
Accuracy (%) 

BA Recall Specificity 

1-A 

10 

97.8 99.9 95.6 

1-B 89.4 100.0 78.8 

2-A 97.9 100.0 95.8 

2-B 95.8 100.0 91.6 

3-A 99.5 100.0 98.9 

3-B 81.8 64.4 99.2 

4-A 95.9 100.0 91.8 

4-B 88.7 81.4 95.9 

5-A 99.6 100.0 99.1 

5-B 99.7 100.0 99.4 

Recall for 3-B was lower than for other points and the limitations proven by the pre-processing 

effect. The PCA showed that 3-B tended to have unique acoustic data and a pattern differing from 

the other points, with the leakage sound and background noise on the left and right sides of the PC1 

axis, respectively. Further data collection and accumulation are required, irrespective of whether the 

data are unique or there are similar cases. This research needs further in-depth observation, 

considering implementation in the real world. 

4. Conclusions 

This research investigated the causes of inaccurate cases associated with leakage determination 

using RP-CNN to gain insights that improved the generalization performance of the model. A basic 

analysis of leakage sound and background noise was conducted in water pipe, while performing 

visualized acoustic data using FFT and RP, as well as the evaluating the results. Additionally, a pre-

processing method was proposed for acoustic data, including RP pattern changes. Accuracy of 

leakage detection using the RP-CNN model was studied. The results from this research follow: 

(1) The frequency components obtained from the FFT to 1,500 Hz showed that the data obtained 

were converted into 15 dimensions, leading to PCA. The results from the sample classification 
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using the PC1 and PC2 scores showed that leakage sound at points 3-B and 4-B was in an area 

occupied by a lot of background noise. This was consistent with the blind test conducted by 

leakage investigators, in which the sound at points 3-B and 4-B could not be identified. 

(2) Based on the differences in the FFT spectrum, an amplification process was applied within the 

frequency range of 500–600 Hz for water leakage sound. After its application, a new 

honeycomb pattern was found in RP at the problematic location. This showed that the 

amplification process within this range effectively focused on the characteristics of leakage 

sound. 

(3) To test the effectiveness of the proposed pre-processing method, two datasets were obtained 

(with and without pre-processing), followed by comparing accuracy of the RP-CNN model. 

The results without pre-processing showed recall for points 3-B and 4-B of 0%, while after pre-

processing application, these increased to 64.4% and 81.4%, respectively. This implied 

improvement in recall with application of pre-processing. 

The present research focused on the frequency components of 500–600 Hz. The amplification 

process confirmed a honeycomb pattern in leakage sound RP at the problematic location. However, 

the location of frequency components that best reflected the characteristics of leakage sound was not 

completely clear. Sensitivity analysis in the future should change the amplified frequency 

components while drawing RP and identifying those containing the most characteristics of leakage 

sound. This was crucial in exploring more effective ways of applying the proposed pre-processing 

method. 
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