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Abstract: To achieve different compression rates for images while preserving important regions, a 

semantic network-based deep residual variational auto-encoder is introduced in this paper. The 

network is divided into two components, a semantic analysis network and an image compression 

network. The former evaluates the importance of image pixels and accurately locates important se-

mantic regions and key information in the image. According to the semantic importance of different 

regions, the encoding strategy is dynamically adjusted. The latter utilizes a deep residual variational 

autoencoder to efficiently encode and decode images, while combining Lagrange multipliers to ad-

just the model flexibly and the weights of the bitrate. With this model, multiple compression rates 

have been implemented. Quality of reconstruction achieves better performance with compression 

at different rates. Finally, a semantic loss function is proposed to replace traditional compression 

loss functions. Extensive experiments conducts on several datasets, including the Kodak, CLIC and 

Tecnick TESTIMAGES, which were public datasets. Results demonstrate that our method can effec-

tively improve the quality of image reconstruction at various compression rates. Compared with 

traditional methods, the peak signal-to-noise ratio is increased by an average of 2dB at the same 

bitrate, and the structural similarity index is the most close to 0.998. The subjective visual quality is 

better, especially when processing complex scene images, which can better preserve the details and 

textures of key objects. This approach can effectively avoid common distortions such as block effects 

and blurring in traditional methods. 

Keywords: lossy image compression; variational auto-encoder; semantic networks; variable rate 

compression 

 

1. Introduction 

With the explosive growth of digital images and videos, the storage and transmission of image 

data have become major challenges in information processing. Image compression techniques effec-

tively address this issue by reducing the redundancy of image data. These techniques can be broadly 

categorized into lossless and lossy compression. Lossless compression removes statistical redun-

dancy from the image in a reversible process, typically used in scenarios where image clarity is par-

amount. In contrast, lossy compression algorithms process image information based on the principle 

that the human eye is insensitive to certain visual features, often resulting in irreversible data reduc-

tion. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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Many innovative compression methods, such as JPEG [1], JPEG 2000 [2], and BPG [3], have been 

used widely. Traditional image compression methods focus on pixel-level information, reducing data 

volume through transform domain coding and quantization. However, these methods often overlook 

the semantic information of the image content, such as the importance and visually perceived char-

acteristics of different regions. For instance, in a landscape photograph, the sky and grass may not be 

as significant as buildings or people, yet they are often treated equally in conventional compression 

methods. 

Recently, with the continuous development of computer vision, semantic segmentation has 

emerged as a research hotspot, with its core role being to assign each pixel in an image to a specific 

category, thereby clearly distinguishing different objects and regions in the image. This technology 

has been widely used in many fields such as automatic driving, medical image analysis, and scene 

understanding. For example, in the medical field, various semantic segmentation techniques [4–6] 

can assist doctors in identifying lesion regions in computed tomography or nuclear magnetic reso-

nance imaging scan images to improve the accuracy of diagnosis. As deep learning technology ad-

vances, the role of semantic information in image compression has become increasingly significant. 

Image compression technology leverages semantic information to distinguish between different re-

gions in an image. Given the varying importance of various regions to the human visual system, by 

identifying the semantic information in the image, the compression algorithm can adjust the com-

pression rate in a more targeted way. High pixel quality can be maintained for important image ele-

ments such as faces or texts, while the compression level can be increased for less critical elements 

like backgrounds or minor details, reducing the overall data volume. This content-based adaptive 

compression strategy not only optimizes storage and transmission efficiency but also ensures the 

quality of key information in terms of visualization. 

Conventional compression methods generally take the input image � ∈ �� and a conventional 

transform lossy coding method performs the transform � = �(�). The transform � so obtained is 

represented as a discrete-valued vector 
 = �(�) after quantisation 
 ∈ �
  to achieve. For storage 

or transmission, the 
 vectors are binaryised and serialised into an entropy coded bit stream � to 

reduce the statistical redundancy therein. In the decoding process, the opposite step is performed, 

i.e., dequantisation �̂ = ���(
), followed by an inverse transformation �� = �(�̂) to reconstruct the 

output image �� ∈ ��. The key components of an image codec include an encoder, which transforms 

the original image into a more compressible representation, and a decoder, which reconstructs the 

image from a possibly quantized version of that new representation. Some commonly used image 

codecs include JPEG, JPEG2000, PNG [7] and FLIF [8]. 

Deep learning has made significant strides in the field of image compression, often outperform-

ing traditional codecs in terms of both compression efficiency and image quality. In 2020, Yang et al. 

[9] proposed a variable R-D optimization method using a modulated auto encoder, which signifi-

cantly enhances R-D performance. However, this approach necessitates a more complex training 

strategy to coordinate the joint training of the auto encoder and the modulation network. In 2021, Hu 

et al. [10] enhanced entropy estimation and signal reconstruction by introducing a super-prior model, 

thereby improving the compression efficiency of high-resolution images. However, their method did 

not fully consider decoding speed and computational efficiency. In 2022, He et al. [11] proposed an 

inhomogeneous channel-conditional adaptive coding method, which improves coding efficiency 

without sacrificing speed by incorporating a spatial-channel context model. However, this method 

lacks adaptability to different compression rates. In 2023, Tong et al. [12] defined a vector of quanti-

zation regulators coupled to predefined Lagrange multipliers to control quantization errors across all 

potential representations of discrete variable rates. The reparameterization approach made the model 

compatible with circular quantizers but was not sufficiently flexible in adapting to diverse compres-

sion requirements. In 2024, Sebai et al. [13] proposed a new depth map compression model that uses 

an optimized convolutional neural network to extract features from depth maps, combined with the 

VGG19 model and a wedge filter to differentiate between depth maps and texture images using deep 

feature classification techniques. However, this model does not apply to a wide range of image types. 

Yang et al. [14] proposed an end-to-end optimized lossy image compression framework for diffusion 

generative models, which relies on a transformational coding paradigm. This paradigm maps the 

image into potential space for entropy coding and then back into data space for reconstruction. How-

ever, this approach could potentially compromise the deterministic and predictable nature of the 

compression. Therefore, developing compression ratios that can be dynamically adjusted to balance 
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image quality and transmission bandwidth is crucial for achieving efficient data storage and trans-

mission. 

Semantic analysis is crucial in image compression. Traditional image compression methods typ-

ically focus solely on pixel-level information, often ignoring the semantic content of the image. This 

oversight can lead to unsatisfactory compression results. In contrast, image compression methods 

that leverage semantic networks can apply different compression strategies to various semantic re-

gions, thereby achieving superior compression outcomes. For instance, a stricter compression strat-

egy might be applied to background areas, while a more lenient approach could be reserved for crit-

ical regions such as characters and text. This nuanced approach can enhance both the quality and 

usability of the image. 

Most existing codecs do not explicitly utilize high-level semantics during encoding or decoding. 

Prakash et al. [15] proposed methods for content-weighted bit rate control, but these did not explicitly 

harness high-level semantics. Agustsson et al. [16] explored the use of semantics in image compres-

sion, albeit in a limited context. Their approach employed semantic considerations in bit rate alloca-

tion, but only within a somewhat constrained setup, necessitating user intervention to prioritize cer-

tain semantic regions over others. Wang et al. [17] employed a convolutional neural network (CNN) 

to analyze the semantic regions of an image. This analysis can be used to determine compression 

iterations for each image block once a semantic importance map is generated. While this method 

eliminates the need for retraining the model to adapt to different rates, it necessitates the creation of 

a separate, standalone model, which can consume significant memory resources. Akbari et al. [18] 

introduced a deep semantic segmentation-based layered image compression framework. This frame-

work uses a segmentation map and a compressed image to create an initial reconstruction of the 

image, encoding the difference between the input image and the initial reconstruction into an en-

hancement layer. Although the architecture is designed to compress the image and extract its seman-

tic information concurrently, it does not prioritize preserving semantic information during compres-

sion. Instead, it focuses on embedding semantic information during the compression process to pre-

vent the duplication of semantic information generation in client applications. 

Generally, the human eye pays varying degrees of attention to different regions of an image. For 

example, in a portrait, the sharpness and texture details of the foreground subject are more noticeable 

than the background. However, current image compression techniques often apply uniform pro-

cessing to every pixel, leading to a suboptimal allocation of compression bits, particularly in images 

where the background is of lesser importance. Therefore, developing techniques that enable more 

efficient compression bit allocation, based on a clear distinction between foreground and back-

ground, is essential for optimizing image compression. 

To archive target above, a variable rate image compression network based on semantic infor-

mation has been proposed. It first generates relevant semantic regions through a semantic analysis 

network and then computes compression levels for each region which are subsequently used by the 

image compression network. Main contributions of this approach are as follows. 

(1) A semantic network-based deep residual variational auto-encoder is proposed for image 

compression. This approach includes a carefully designed compression bit allocation algorithm that 

computes the appropriate compression level for each image block. By integrating the outcomes of 

semantic analysis, the image is compressed in a way that prioritizes the retention of significant visual 

details while minimizing the file size. 

(2) A single-model multi-compression-rate adaptive image compression framework is proposed, 

which achieves an effective trade-off between compression rate and image quality within multiple 

ranges of γ-values through the introduction of a variable compression rate module and optimization 

of the Lagrange multiplier γ-value, thus significantly improving the flexibility and applicability of 

the model and meeting the diverse needs of different users for image compression. 

(3) A semantic-based multinomial loss function is proposed to guide the training of image com-

pression networks, realizing that one network model produces data outputs with different compres-

sion ratios. 

To verify the methods performance of above, some experiment on multiple datasets has been 

run. The rest of the paper is organized as follows. We have introduced three modules proposed in 

detail in section 2, which includes in the semantic analysis module, adaptive variable compression 

rate module, and semantic enhancement image compression module. To verify these methods, some 
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numerical experiments have been discussed in section 3, where shows results and a comparison of 

other methods. Finally, summarizes this approach and future research shows in last section. 

2. Principal of Proposed Method 

We propose a method to optimize image compression by the importance of image content, and 

the overall framework is shown in Fig. 1. The method includes the following aspects. 

(1) Semantic analysis module 

This module analyzes the image content and identifies the key semantic information to provide 

the necessary contextual information for image compression to maintain the clarity of the important 

content in the process. 

(2) Adaptive variable compression rate module 

Through the Lagrange multiplier adjustment strategy, the module can optimize a variety of com-

pression ratios in a single model, which ensures that the best compression effect can be achieved in 

different application scenarios. 

(3) Semantic enhancement image compression module 

It uses information from the semantic analysis module to guide image compression, ensuring 

that important semantic content remains clear after decompression while allowing more degrees of 

freedom in compressing unimportant parts to improve compression efficiency. 

 

Figure 1. Overall architecture of the proposed method concluding in three parts, semantic network, adaptive 

variable compression rate module, and semantic enhancement image compression module. 

2.1. Semantic Analysis Module 

The semantic analysis module utilizes a classification-based architecture to identify regions that 

attract the human eye's visual attention. It strategically allocates more compression bits to these areas, 

facilitating differential image compression. As depicted in Figure 2, the semantic analysis module 

structure comprises several key components, including a convolutional layer, a fully connected layer, 

a softmax layer, a global average pooling(GAP)layer, and a rectified linear unit(ReLU) activation 

layer. 

 

Figure 2. Semantic analysis module. 
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In Figure 2, the convolutional layer comprises a total of five sets of convolutions designed for 

extracting image features. Let F represent the final convolution, which outputs several feature maps. 

Each feature map is capable of capturing a distinct type of feature present in the original image. The 

fully connected layer then transforms these feature maps into a one-dimensional feature vector. The 

output of the fully connected layer is denoted as Z, commonly referred to as logits. This relationship 

is formalized by 

� =  � ∙  � +  � (1) 

where Z is the output of the fully-connected layer and each element corresponds to the original pre-

dicted score for a category, W is the weight matrix, F is the output of the convolutional layer, and b 

is the bias term. 

Assuming that a category is defined as C, the linear prediction score of category C is denoted by 

yC. The output Z of the fully connected layers is the input to the softmax function, which converts 

logits into a probability distribution. This process is described as follows. 

�(�� ) = ���
∑ ��!"!#$

   (2) 

where P(yC) is the predicted probability of category , ZC is the logit of category C, and M is the total 

number of categories. 

The softmax layer transforms the output of the fully connected layer into a probability distribu-

tion. It selects a particular category based on these output probabilities and calculates the gradient of 

the predictions for the selected category concerning the feature map from the final convolutional 

layer. This calculation determines the contribution of the feature map to the classification. In this 

paper, the gradient of each pixel is utilized to assess its contribution to the final prediction outcome. 

The specific formula for calculating this gradient, denoted as Grad presented by 

%&'( = )*�
)+,  (3) 

where Fk is the feature map of the k-th channel of the convolutional layer. the global Average Pooling 

(GAP) is utilized to process each feature map Fk, thereby obtaining the importance weight for each 

feature map about category C. The specific formula for this calculation is presented as following, we 

have 

-./ = %0�(%&'() = �
1×3 ∑ ∑ )*�

)+4!,
356�176�   (4) 

where -./ is the importance weight of each feature map for category C, H and W are the height and 

width of the feature map, respectively, �75. is the feature map element. 

The weights derived from the GAP layer are reassigned to the feature map to emphasize the 

parts that significantly influence the classification decision. The application of the ReLU activation 

function enhances the regions with positive correlations. To visualize the network's impact on the 

original image, particularly for a specific class C, we employ a linear weighted sum of these weights 

and the feature map. This sum represents the probability that each pixel in the image belongs to class 

C. 

8� = �9:;(< -./ ∙ �.
=

)  (5) 

By up-sampling HC the semantic map, this paper obtains the semantic importance map of the 

Kodak dataset through the semantic analysis network, as shown in Figure 3. 
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Figure 3. Semantic importance map in Kodak. 

The intensity of highlighting reflects the level of semantic importance from figure. The darker 

the red in the heat map, the greater the contribution of that area to the model's final prediction result, 

indicating a higher level of attention paid to that part of the image. The yellow portions of the image 

command the second highest level of attention. Conversely, the blue areas have minimal impact on 

target detection and recognition, and the model deems this information to be redundant. 

2.2. Adaptive Variable Compression Rate Module 

In recent years, deep neural networks have made remarkable achievements in image feature 

learning and representation learning, providing a new paradigm for image compression tasks. In this 

paper, we adopt a deep residual network-based image compression method that combines the ad-

vantages of a Residual Network (ResNet) [19] and Variable Auto-Encoder (VAE) [20], which is based 

on the unfolding under the benchmark model of Ballé et al. [21]. In the following paper, we will start 

the discussion from the Variational Auto-Encoder VAE. 

VAE is a generative model that integrates the architecture of an auto-encoder with the principles 

of variational inference. This combination enables the modeling of complex data distributions by 

learning the data's latent representation. The VAE is composed of two main components: an encoder 

and a decoder. Its overarching objective is to learn a probabilistic distribution that facilitates the gen-

eration of data. Let x be a random variable representing the data (in this paper, the original image) 

with an unknown data distribution pθ(x). In VAE, it is difficult to model pθ(x) directly from x, so the 

data distribution is modeled by introducing a simpler prior distribution pθ(z). The latent variable z is 

first sampled from the simple distribution, and the reconstructed image �� is generated using the 

latent variable z. This is obtained according to Bayes' formula. 

>?(�) = @A(B|D)@A(D)
@A(D|B)   (6) 

where θ is a model parameter. Since pθ(z|x) is difficult to solve, so in this paper qΦ(z|x) design distri-

bution to approximate the pθ(z|x) distribution, using KL dispersion to fit the similarity of the two 

distributions with the following. 

E=F(
∅(�|�)||>?(�|�)) = ∑ 
?(�|�)HI� J∅(D|B)
@A(D|B)D   (7) 

The training objective of the VAE is to minimize the variational upper bound on the negative 

log-likelihood. 

:KLKMN = E=F(
∅(�|�)||>?(�)) + 9O~J∅(D|B)QHI� �
@A(B|D)R  

= 9J�|SQHI� 
∅(�|�)
>?(�) + HI� 1

>?(�|�)R U VHI�>?(�) 
(8) 

where x is an image. By minimizing the overall loss function Ltotal, the VAE model can learn the latent 

representations while maintaining an efficient reconstruction of the original data and making the 

distribution of the learned latent representations closer to the standard normal distribution. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 January 2025 doi:10.20944/preprints202501.1786.v1

https://doi.org/10.20944/preprints202501.1786.v1


7 of 6 

To model high-dimensional data such as images, hierarchical Variational Auto-Encoders (VAEs) 

have been proposed. These models enhance the flexibility and expressiveness inherent in VAEs. In 

this paper, we employ the ResNet VAE network model, an auto-encoder structure that leverages the 

architecture of a Residual Network. By incorporating residual connections, ResNet facilitates the 

learning of identity mappings, thereby mitigating the issue of gradient vanishing. In the context of 

image compression, ResNet-based auto-encoders construct deep architectures by stacking residual 

blocks. This approach enables them to more effectively capture and encode high-level features within 

the image. 

The ResNet VAE is a hierarchical VAE that uses a set of latent variables denoted ��：1 ≜ X��, �Z, … , �1\, 
where H is the total number of variables in an autoregressive fashion. 

>O$:^ = >D^|D_^ . . . >Da|Db,$ . >Db|D$ . >D$ (9) 

where z<H denotes {z1,z2,...,zH-1}. Typically, z1 has fewer dimensions and zH has larger dimensions. The 

architecture from low to high dimensions not only improves the flexibility of the VAE but also cap-

tures the coarse to-fine nature of the image. 

In the ResNet VAE network, the posterior and prior have the following form, we have 


O|B(�|�) ≜ 
O|B(��, . . . , �1|�) = 
1(�1|�c1 , �) ⋯ 
1(��|�) (10) 

and 

>O(�) ≜ >O(��, . . . , �1) = >1(�1|�c1 , �) ⋯ >�(�Z|��)>�(��) (11) 

Inserting this into the VAE objective function equation (8) gives the ResNet VAE objective func-

tion, we have 

:KLKMN = 9J�|SQ< HI� 
7(�7|(�c7 , �))
>7(�7|(�c7))

1

76�
+ HI� 1

>e|O(�|�)R (12) 

For lossy compression, the form of the likelihood distribution, pX|Z(‧), depends on which distortion measure is 

used, d(‧). Typically, this is defined by 

>e|O(�|�) ∝ g�h∙i(B�,B) (13) 

where λ is the standard hyperparameter and �� is the reconstructed image, which depends on all the 

latent variables ��：1 ≜ X��, �Z, … , �1\. In image compression, d(‧) is usually chosen to be the mean square 

error (MSE), in which case the data likelihood forms a (conditional) Gaussian distribution. 

The objective function of the ResNet VAE network model is finally obtained by 

:KLKMN = 9B,O$:^Q< HI� 
7(�7|(�c7 , �))
>7(�7|(�c7))

1

76�
+ j ∙ ((��, �)R (14) 

The image compression network adopts the network architecture from the literature [22]. In the 

encoder part, five levels of features are extracted from the image and sent to the latent variable blocks 

in the decoder to produce a compressed bit stream, and the overall architecture is shown in Figure 4. 

Each latent variable block indexed by i contains the latent variable zi as well as the posterior qi and 

prior pi, and each latent variable produces a separate sequence of bits during encoding, and the set of 

all such sequences forms the final bitstream of the input image. In the middle of Figure 4 is the resid-

ual network block section, which consists of a deep convolutional network, layer normalization, and 

an activation function GELU. Individual models are trained to operate on a range of ratios by accept-

ing γ as an input to the model, and all a posteriori and priori are conditioned on γ. 
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Figure 4. Image compression network. 

The conditioning module comprises two fully connected (FC) layers and ReLU and GELU acti-

vation functions. The goal is to learn the complex relationship between γ and model weights to gen-

erate appropriate weights for different compression rates. The objective of training the variable rate 

module is to optimize the conditional a posteriori qi(zi|x,z<i,γ) and the conditional priori 

pi(zi|x,z<i,γ) by randomly sampling γ from a continuous range of values [γlow,γhigh] throughout 

the training process. By adding a Lagrangian parameter γ to the image compression, the variable rate 

loss function is defined by 

:KLKMN = 9B,k,O$:^Q< HI� 
7(�7|(�c7 , �))
>7(�7|(�c7 , l))

1

76�
+ l ∙ ((��, �)R (15) 

where γ is a variable rate sampling strategy throughout the training process. Once a model has been 

trained, it is possible to adjust the distortion rate using a single model by simply changing the γ input 

to the model. 

2.3. Semantic Enhancement Image Compression Module 

The semantic importance mapping of each pixel can be obtained through Section 3.2, and the 

self-information weighted SSIM (SI－SSIM index [23]) is computed from the semantic map, a process 

that helps in evaluating the compressed image for optimization of the compression ratio while pre-

serving the quality of semantically important regions. Given an input image size of H×W, the image 

is divided into N blocks of size 8×8 each, then m = 1×3
n×n . 

Let op  be the average compression level of the image, and the compression level of block i is Mi. 

To ensure the consistency of the compression ratio, the sum of the compression levels of all image 

blocks should be defined as 

< o7

q

76�
= op × m (16) 

Converting the semantic importance mapping to a greyscale map, the higher the semantic im-

portance of a pixel (x,y), the higher its greyscale g(x,y), and the higher the probability that i belongs 

to a semantic category of interest to the human eye. Let the semantic importance value Vi of block i 

be the sum of the corresponding grey values g(x,y) of each pixel (x,y) belonging to the block, with the 

following form. 

r7 = < �(�, �)
(B,*)∈7

 (17) 

The semantic level Li of a block is then defined as 
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:7 = r7
∑ r7q76�

= ∑ �(�, �)(B,*)∈7
∑ ∑ �(�, �)(B,*)∈7q76�

 (18) 

Considering that the sum of the compression levels of the blocks is op × m, the computed com-

pression level of block i can be expressed as Ti. 

s7 = ⌊:7 × op × m⌋ (19) 

SI－SSIM is structural similarity based on semantic importance (SSIM). It is actually the average 

sum of SSIM corresponding to each block i, weighted by the semantic level Li. SI－SSIM is defined as 

vw V vvwo(�, ��) = < :7

q

76�
× vvwo(�7 , ��7) (20) 

where x and �� are the original and reconstructed images; xi and ��7 are block i in images x and ��, respec-

tively. 

The encoder and decoder contain θ and Φ parameters, and the final loss function of Equation 

(15) is a multinomial loss distribution, defined as 

'&�yz{
?,∅

< E(�, ��; }, ∅, l)
k

 (21) 

To perform discriminative compression, D, the distortion between x and �� in (12) is measured 

using the SI－SSIM already defined in (11), which is used to train the network model as part of the 

loss function, which allows it to adaptively allocate more bits to the semantically most important 

regions of the image. The multinomial loss can be defined as 

E(�, ��; }, ∅, l)  =  9B~@S,k~~vw V vvwo(�, ��) (22) 

where γ is one of the inputs to the model, allowing the model to adjust between different rate-distor-

tion points after semantic analysis. 

3. Experimental Results 

3.1. Dataset and Implementation details 

Datasets: In this paper, the Caltech 256 dataset [24], which contains 256 categories and a total of 

30,607 images, is chosen to train the semantic analysis network. The COCO 2017 [25] dataset contain-

ing 118,287 images is selected to train the image compression network. To validate the performance 

of the proposed compression model, the model is evaluated on three public test sets: (1) the Kodak 

[26] test set contains 24 images with 512×768 or 768×512 pixels respectively. (2) The CLIC 2022 test set 

contains 30 images, approximately 2048×1365 pixels. (3) The Tecnick TESTIMAGES [27] test set uses 

RGB OR 1200×1200 segmentation and contains 100 images with 1200×1200 pixels. 

Implementation details: In this experiment, the semantic network and image compression net-

work adopt the Adam optimizer [28], with a batch size of 8 and 100 iterations. The learning rate is 10-

4. Lagrange multiplier l = {32, 64, 128, 256, 512, 1024, 2048}. The server is configured with an RTX 

3090 GPU, the operating system is Ubuntu 22.04, the deep learning framework is pytorch 1.10.0, and 

the programming language is Python 3.9. 

Metrics: We use standard metrics to quantify rate and distortion. The reconstruction distortion 

is measured by the peak signal-to-noise ratio (PSNR, higher is better). 

�vm� ≜ V10 ∙ HI���ov9 (23) 

where pixel values are between 0 and 1, and the MSE is measured in the RGB space. 

We use the MS－SSIM measure of image quality, which calculates SSIM values on multiple 

scales and averages these values to obtain a final image quality score. The metric ranges from 0 to 1, 

with the closer to 1, the better the quality of the reconstructed image. 

3.2. Comparison with traditional image compression methods 

Table 1 shows the comparison results of PSNR and MS－SSIM indicators of five existing models 

and the model proposed in this paper on the Kodak dataset at a bit rate of 1.12, where the black bold 

font indicates the optimal indicator. Experiments show that the proposed method is superior to other 

traditional fixed-rate image compression methods. 
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Table 1. Comparison of indicators on the Kodak dataset when the bit rate is 1.12. 

Literature date Bibliography Module PSNR MS－SSIM 

1991 [1] JPEG   33.2 0.950 

2002 [2] JPEG2000  37.5 0.960 

2017 [3]  BPG 38.5 0.973 

2023 [29]  TCM 39.5 0.994 

2021 [30] INN 38.2 0.992 

  Song method 40.1 0.998 

We use methods such as JPEG, JPEG2000, BPG, TCM [29] , and INN [30] , and conducted com-

parative experiments based on three public datasets. The comparison on the Kodak dataset is shown 

in Figure 5, the comparison on the CLIC 2022 dataset is shown in Figure 6, and the comparison on 

the Tecnick TESTIMAGES dataset is shown in Figure 7. The method proposed in this paper is named 

Song method. 

In these three sets of comparison figures, the black curve represents the compression method we 

proposed. Experimental results show that our model outperforms the traditional JPEG, JPEG 2000, 

and BPG methods in the key indicator of PSNR. In addition, although the methods of TCM and INN 

show certain competitiveness and are between JPEG and BPG, they still do not reach the performance 

level of our method. In the comparison of MS－SSIM indicators, our method performs best at all bit 

rates, which highlights its advantage in preserving image structural information. JPEG2000 and BPG 

also perform relatively well, but JPEG has a lower MS－SSIM value, which indicates that more struc-

tural information may be lost during image compression. 

  

(a) (b) 

Figure 5. Comparative experiments are conducted on the Kodak public dataset against JPEG, JPEG2000, BPG, 

TCM, and INN methods. (a) Displays the comparison results of PSNR; (b) Displays the comparison results of 

the MS－SSIM. 

  

(a) (b) 
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Figure 6. Comparative experiments are conducted on the CLIC 2022 public dataset against JPEG, JPEG2000, 

BPG, TCM, and INN methods. (a) Displays the comparison results of PSNR; (b) Displays the comparison results 

of the MS－SSIM. 

  

(a) (b) 

Figure 7. Comparative experiments are conducted on the Tecnick TESTIMAGES public dataset against JPEG, 

JPEG2000, BPG, TCM, and INN methods. (a) Displays the comparison results of PSNR; (b) Displays the com-

parison results of the MS－SSIM. 

The superior performance of our method is due to its smarter allocation strategy of coding bits. 

Specifically, more compression bits are allocated to semantically important regions in the image, 

while sacrificing the reconstruction quality of those insignificant regions. Since the number of seman-

tically important regions is usually less than that of unimportant regions in an image, this strategy 

enables our method to achieve higher compression efficiency while maintaining key information in 

the image. 

3.3. Comparison with semantic deep learning based image compression methods 

We select the methods of DSSLIC, EDMS [31], DeepSIC [32], and ADAPTIVE DIC [33] and con-

duct comparative experiments on three public datasets. These comparative methods have a high de-

gree of similarity in structure with the semantic method proposed in this paper. 

Table 2 shows the PSNR and MS－SSIM comparison results of four existing semantic image 

compression models and the proposed method in this paper on the Kodak dataset at a bit rate of 0.75, 

where the black bold font indicates the optimal index. From the perspective of PSNR and MS－SSIM 

indicators, the method of DSSLIC has a maximum PSNR of 39.8, but its MS－SSIM is slightly lower 

than other methods; the method of EDMS has a maximum MS－SSIM of 0.993 and a relatively low 

PSNR; the method of DeepSIC has an intermediate PSNR and MS－SSIM; the method of ADAPTIVE 

DIC has a PSNR close to the highest value and a high MS－SSIM, while the method proposed in this 

paper outperforms other methods in both PSNR and MS－SSIM, reaching 40.1 and 0.996 respectively, 

showing better performance. 

Table 2. Comparison of indicators on the Kodak dataset when the bit rate is 0.75. 

Literature date Bibliography Module PSNR MS－SSIM 

2019 [18] DSSLIC 39.8 0.991 

2021 [31] EDMS 34.2 0.993 

2018 [32] DeepSIC 37.3 0.985 

2023 [33] ADAPTIVE DIC 39.7 0.992 

  Song method 40.1 0.996 

Figure 8 shows the comparison of the indicators of the four semantic compression models and 

the method proposed in this paper on the Kodak dataset, Figure 9 shows the comparison of the indi-

cators of the four methods and the method proposed in this paper on the CLIC 2022 dataset, and 

Figure 10 shows the comparison of the indicators of the four methods and the method proposed in 
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this paper on the Tecnick TESTIMAGES dataset, where the black curve represents the method pro-

posed in this paper. 

It can be seen from the PSNR charts of the three sets of public data sets that the method proposed 

in this paper shows the highest PSNR value at different bit rates, showing its obvious advantage in 

image compression quality, especially in the low bit rate range. The performance of this method is 

similar to that of DSSLIC, but with the increase in bit rate, the advantage of this method is more 

obvious. The methods of EDMS and DeepSIC perform worse than other methods at all bit rates, and 

their PSNR values are relatively low. This shows that the method proposed in this paper has better 

performance and application potential in the field of image compression. 

  

(a) (b) 

Figure 8. Comparative experiments are conducted on the Kodak public dataset against DSSLIC , EDMS, DeepSIC 

and ADAPTIVE DIC methods. (a) Displays the comparison results of PSNR; (b) Displays the comparison results 

of the MS－SSIM. 

  

(a) (b) 

Figure 9. Comparative experiments are conducted on the CLIC 2022 public dataset against DSSLIC, EDMS, 

DeepSIC and ADAPPTIVE DIC methods. (a) Displays the comparison results of PSNR; (b) Displays the com-

parison results of the MS－SSIM. 
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(a) (b) 

Figure 10. Comparative experiments are conducted on the Tecnick TESTIMAGES public dataset against DSSLIC, 

EDMS , DeepSIC and ADAPTIVE DIC methods. (a) Displays the comparison results of PSNR; (b) Displays the 

comparison results of the MS－SSIM. 

From the MS－SSIM charts of the three data sets, it can be seen that the proposed method out-

performs the other four methods in the MS－SSIM index at different bit rates, showing its obvious 

advantage in image compression quality. With the increase in bit rate, the MS－SSIM values of all 

methods show an upward trend, but the growth rate and the final MS－SSIM value of the proposed 

method are higher than those of other methods, especially in the medium and high bit rate range, the 

gap between the proposed method and other methods is more obvious. In the low bit rate range, 

although the MS－SSIM values of each method are relatively close, the proposed method is still 

slightly better. The method of DSSLIC also performs well in medium and high bit rates, following 

closely behind the proposed method, while the method of EDMS , DeepSIC , and ADAPTIVE DIC 

performs relatively weakly in each bit rate range, and the MS－SSIM values are generally lower than 

those of the proposed method and the method of DSSLIC These results show that the image com-

pression method proposed in this paper has better performance in maintaining image quality. 

3.4. Comparison with variable rate image compression methods 

The methods of MAE, Coarse-to-Fine, ELIC, and QVRF are selected for comparative experi-

ments on three public datasets, among which the four methods are all variable rate methods. This 

paper selects methods with similar functions for comparison. 

Figure 11 shows the indicator comparison of four variable rate image compression methods and 

the method proposed in this paper on the CLIC 2022 dataset, and Figure 12 shows the indicator com-

parison of the four methods and the method proposed in this paper on the Tecnick TESTIMAGES 

dataset, where the black curve represents the method proposed in this paper. 

From the PSNR charts of the two datasets, it can be observed that the proposed method shows 

the highest PSNR value at all bit rates, which indicates that the proposed method can maintain high 

image quality in image compression. With the increase of bit rate, the PSNR values of all methods are 

improved, but the increase of the proposed method is more significant, especially in the medium and 

high bit rate range, and the advantage of the proposed method is more obvious compared with other 

methods. In the low bit rate range, although the PSNR values of the methods are not much different, 

the proposed method is still slightly better. The methods of QVRF and ELIC also perform well in 

medium and high bit rates, following the proposed method, while the methods of Coarse-to-Fine and 

MAE perform relatively poorly in various bit rate ranges, and the PSNR values are generally lower 

than other methods. From the MS－SSIM charts of the two datasets, it can also be seen that the pro-

posed method achieves the best MS－SSIM value at all bit rates, showing its obvious advantage in 

image compression quality. 
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(a) (b) 

Figure 11. Comparative experiments are conducted on the CLIC 2022 public dataset against MAE, Coarse-to-

Fine, ELIC and QVRF methods. (a) Displays the comparison results of PSNR; (b) Displays the comparison results 

of the MS－SSIM. 

  

(a) (b) 

Figure 12. Comparative experiments are conducted on the Tecnick TESTIMAGES public dataset against MAE , 

Coarse-to-Fine , ELIC and QVRF methods. (a) Displays the comparison results of PSNR; (b) Displays the com-

parison results of the MS－SSIM. 

Table 3 shows the PSNR and MS－SSIM metrics for four models compared with the model pro-

posed in this paper at a bit rate of 1.25. From the perspective of PSNR and MS－SSIM, the method 

proposed in this paper has achieved the best results in both indicators, with PSNR reaching 41.5 and 

MS－SSIM reaching 0.997, which shows that the method proposed in this paper has obvious ad-

vantages in image compression quality. In contrast, although the method of Coarse-to-Fine has a 

higher PSNR value of 41.2, it is slightly lower than the method of QVRF in MS－SSIM, while the 

method of QVRF performs best in MS－SSIM, reaching 0.995, but the PSNR value is slightly lower 

than that of Coarse-to-Fine The methods of MAE and ELIC perform relatively poorly in these two 

indicators, with PSNR and MS－SSIM values lower than other methods. Overall, the method pro-

posed in this paper achieves the best balance in image compression quality, ensuring both a high 

PSNR value and an extremely high MS－SSIM value, showing its superior performance in the field 

of image compression. 

Table 3. Comparison of indicators on the Kodak dataset when the bit rate is 1.25. 

Literature date Bibliography Module PSNR MS－SSIM 

2020 [9] MAE 38 0.985 

2021 [10] Coarse-to-Fine 41.2 0.987 
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2022 [11] ELIC 38.8 0.993 

2023 [12] QVRF 39.8 0.995 

  Song method 41.5 0.997 

3.5. Visual comparison 

Figure 13 shows the visual evaluation comparison of JPEG, JPEG2000, BPG, and the proposed 

method. JPEG and JPEG2000 are prone to block effects after image decompression. This is because 

these two methods use block-based discrete cosine transform and embedded quantization strategies 

during the compression process, resulting in unnatural segmentation lines at the boundaries of image 

blocks after decompression. In contrast, although the BPG method has improved the block effect to a 

certain extent, it is still difficult to completely avoid the problem of blurred details. The proposed 

method allocates coding bits irregularly, distributing more compressed bits to areas of high semantic 

importance, which can effectively avoid block effects. 

 

Figure 13. Comparison of decompressed images at the same bit rate. From left to right are the original image, 

JPEG, JPEG2000, BPG, and the overall visual image comparison after decompression using the method in this 

paper. 

Figure 14 is a comparison of the details of the three methods in the range of 0.72bpp-0.76bpp. 

The image in the upper right corner of each figure is the magnified effect of the important area of the 

image in the red frame. 
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Figure 14. Comparison of MS－SSIM under different bpp. The image in the upper right corner of each figure is 

the magnified effect of the important area of the image in the red frame. It is recommended to zoom in for 

observation. 

The images are compared by observing each row, and each row selects image details for com-

parison at the same bit rate. It can be observed from the images that the proposed method not only 

performs well in terms of clarity and texture details but also avoids artifacts common in JPEG meth-

ods. By understanding the image content, the semantic analysis module evaluates the importance of 

different regions. The image compression network uses higher compression quality settings for im-

portant areas to preserve details and clarity, as indicated by semantic analysis. For less important 

areas, it uses lower settings to minimize storage and reduce transmission bandwidth. According to 

the MS－SSIM indicator, the proposed method retains more details and clarity in these areas and 

improves compression efficiency. 

3.6. Ablation study 

In this section, we design a series of ablation experiments to evaluate the performance of a se-

mantic network-based deep residual variational auto-encoder for image compression. The experi-

ment is divided into two stages. One stage compares the performance after adding the semantic anal-

ysis network to the baseline model, and the other compares the performance of semantic analysis 

image compression at multiple fixed rates and after adding the variable rate module. 
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Table 4 shows the ablation experiments of our semantic analysis method. We first train a fixed-

rate variant of our method (i.e., without the semantic analysis network, γ embedding module, and 

conditioning module) as a baseline, and the baseline model achieves different PSNR and MS－SSIM 

values on the Kodak, Tecnick TESTIMAGES, and CLIC 2022 datasets. 

Table 4. Data on ablation experiments. Bold font indicates optimal performance. 

Dataset bpp Metrics Baseline Baseline+semantic 

Kodak 1.124 
PSNR 40.34 40.57 

MS－SSIM 0.995 0.998 

Tecnick TESTI-

MAGES 
0.846 

PSNR 40.40 40.42 

MS－SSIM 0.993 0.996 

CLIC 2022 0.836 
PSNR 39.42 39.41 

MS－SSIM 0.992 0.994 

According to the table, on the Kodak dataset, the PSNR value of the baseline model at 1.124 bpp 

is 40.34 dB, and the MS－SSIM value is 0.995. When the semantic analysis module is added to the 

baseline model, the PSNR value is increased to 40.57 dB, and the MS－SSIM value is increased to 

0.998, which shows that the semantic analysis module can effectively improve the performance of 

image compression on this dataset, not only improving the peak signal-to-noise ratio but also further 

optimizing the structural similarity of the image, making the compressed image closer to the original 

image in visual quality. 

On the Tecnick TESTIMAGES dataset, the PSNR value of the baseline model at 0.846 bpp is 40.40 

dB, and the MS－SSIM value is 0.993. After adding the semantic analysis module, the PSNR value is 

slightly improved to 40.42 dB, and the MS－SSIM value is significantly improved to 0.996. This shows 

that on the Tecnick TESTIMAGES dataset, the semantic analysis module has a relatively small effect 

on improving PSNR, but a more obvious effect on improving MS－SSIM, indicating that it plays an 

important role in optimizing the structure and texture details of the image, making the compressed 

image closer to the original image in terms of multi-scale structural similarity, thereby improving the 

visual quality. 

On the CLIC 222 dataset, the baseline model has a PSNR value of 39.42 dB and an MS－SSIM 

value of 0.992 at 0.836 bpp. After adding the semantic analysis module, the PSNR value dropped 

slightly to 39.41 dB, but the SSIM value increased to 0.994. This result shows that on the CLIC dataset, 

the semantic analysis module has little effect on PSNR, or even a slightly negative effect, but has a 

significant improvement effect on MS－SSIM. This is because the images in the CLIC 2022 dataset 

have a larger background area. Although there is no obvious improvement in pixel-level error, the 

similarity of structure and texture has been significantly improved, thereby better preserving the vis-

ual details and overall quality of the image. 

Figure 15 shows the PSNR comparison between our variable rate module and baseline+semantic 

on the Kodak dataset. We train a fixed rate variant of the baseline + semantic(i.e., without the γ em-

bedding module and the conditioning) as the baseline, where the fixed rate γ value is set to {32, 128, 

512, 2048}, as shown by the dashed line in the figure. Finally, we show the results of adding the var-

iable rate module, i.e., adding the γ embedding module and the conditioning module, which requires 

a finite set of γ, which we choose to be {32, 64, 128, 256, 512, 1024, 2048}, as shown by the red line in 

the figure. Our method achieves a continuous variable rate compression while outperforming the 

baseline + semantic at all rates. 
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Figure 15. Comparison of variable rate module ablation experiments on the Kodak dataset. 

As can be seen from the figure, our PSNR-bpp curve is close to the fixed rate performance using 

only a single model, which proves the effectiveness of our introduced method. 

4. Conclusions 

A semantic network-based deep residual variational auto-encoder for image compression. The 

network is composed of semantic network and image compression network. The semantic network 

is used to analyze the importance of pixels in the image, so as to allocate different compressed bits to 

pixels in the image compression network. Lagrange multipliers are introduced into the image com-

pression network to configure different compression rates of the model to realize the output of im-

ages with different compression rates from a model. A large number of experiments on multiple da-

tasets show that the proposed method achieves the best compression performance. 
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