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Abstract: This article details the development and evaluation of an Electrochemistry Assistant, a
question-answering system engineered to furnish precise and comprehensive responses to inquiries
about electrochemistry. The system implements a Retrieval Augmented Generation (RAG)
methodology, capitalizing on the capabilities of Google's Gemini model and the ChromaDB vector
database. It extracts pertinent information from a curated corpus of PDF documents, generates
embedding vectors for both the documents and user queries, and retrieves relevant documents
based on semantic similarity. Subsequently, the Gemini model utilizes the retrieved documents as
contextual information to generate informative and user-centric answers. The performance of the
system was evaluated using a dual approach: employing accuracy, precision, recall, and F1 score
metrics on a defined set of test questions, and through a manual review by domain experts to assess
the accuracy and relevance of the generated responses. The findings highlight the potential of RAG
in constructing specialized question-answering systems for scientific domains such as
electrochemistry, particularly in the retrieval and synthesis of information from technical
documentation. The complete source code is freely available and accessible via the following
repository: https://github.com/anatarajank/Electrochemistry-Assistant.

Keywords: Retrieval Augmented Generation (RAG); Large Language Models (LLM); Gemini;
ChromaDB; Electrochemistry

1. Introduction

Electrochemistry, the study of chemical transformations involving electron transfer, plays a
pivotal role across diverse scientific, industrial, and technological disciplines [1,2]. Researchers,
students, and professionals frequently require access to and processing of extensive and complex
information on electrochemical methodologies. Nevertheless, conventional information retrieval
systems, often predicated on keyword-based searches, may not adequately capture the semantic
subtleties inherent in user queries and may fail to yield extensive responses.

In recent years, Retrieval Augmented Generation (RAG) has garnered considerable attention as
a robust methodology for constructing advanced question-answering systems [3,4]. This paradigm
synergistically integrates the proficiencies of large language models (LLMs) in natural language
comprehension and generation with the capacity to retrieve pertinent information from external
knowledge repositories. RAG systems characteristically involve generating embedding vectors for
both documents and queries, storing them within a vector database, and retrieving relevant
documents based on semantic similarity. The retrieved documents then serve as contextual
information for the LLM to generate responses. The effectiveness of RAG has been substantiated
across various domains, including open-domain question answering [5], scientific literature analysis
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[6-8], and customer support [9], demonstrating notable enhancements in accuracy and
comprehensiveness compared with traditional keyword-based methodologies.

Chemistry-focused question-answering systems have explored knowledge graphs, as seen in the
development of Marie [10-15]. Early versions, including initial iterations of Marie, were largely
template-based [15,16]; newer implementations utilize pre-trained language models for question
answering. More recently, Large Language Model (LLM) agents that use Retrieval-Augmented
Generation (RAG) show promise for enhancing chemical information retrieval. For example, Chen et
al. [17] developed Chemist-X, a RAG-based agent for reaction condition recommendations. Within
the specialized field of electrochemistry, a self-hosted RAG application attributed to Robert Chukwu
[18], which utilizes Go, templ, OpenAl, and Pinecone, provides an example of responding to user
queries concerning electrochemical impedance spectroscopy. However, thorough documentation
specifying the application's precise capabilities and limitations is currently unavailable.

This paper describes the development of an Electrochemistry Assistant, a RAG-based question-
answering system specifically conceived for electrochemical information retrieval, focusing on
prevalent electroanalytical techniques. The system harnesses the Gemini model to generate both
document and query embeddings and employs ChromaDB for the efficient storage and retrieval of
these embeddings. The system's performance is evaluated on a defined set of test questions
employing accuracy, precision, recall, and F1 score metrics, and its efficacy in providing accurate and
contextually applicable responses was demonstrated. Furthermore, the accuracy and contextual
applicability of the generated responses were corroborated through a manual review by domain
experts and automated semantic similarity analysis.

2. Methodology

The operational flow of the system, from electrochemical inquiry to response generation, is
depicted in the flowchart in Fig. 1.
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Figure 1. Information flow within the Electrochemistry Assistant, from query input to response generation.

This visual representation complements the textual description of our methodology.

2.1. Implementation Details

The Electrochemistry Assistant was implemented using Python. This paper presents an
expanded version of a system initially developed by the first author within a Kaggle environment
[19]. The Kaggle notebook environment facilitated efficient coding, access to computational
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resources, and collaboration during the development process. Successful execution of the system
requires users to create a Gemini API key, following the procedure outlined elsewhere [20]. The
source code is available at both as a Kaggle notebook and in the project’s Github repository [21].

2.2. Data Collection and Preprocessing

The Electrochemistry Assistant employs a curated corpus of PDF documents about
electrochemistry techniques as its knowledge repository. These documents were acquired from a
reputable online resource, Analytical Electrochemistry: The Basic Concepts [22]. The documents are
stored in the ChromaDB database as shown in the Table.1 below:

Table 1. Corpus of the reference PDF documents and their storage information in the ChromaDB.

Document | Document Document Name Technical Notes On
ID Index
Document1 0 PDE-16-WorkingElec.pdf Different types of working electrodes and
their preparation
Document?2 1 PDF-10-CV-ImpParam.pdf | Important Parameters in Cyclic
Voltammetry
Document3 2 PDEF-6-Chronoamp.pdf Chronoamperometry
Document4 3 PDF-9-CVintro.pdf Introduction to Cyclic Voltammetry
Document5 4 PDF-12-CV-Additional.pdf | Non-Faradaic  processes and  their
measurements
Document6 5 PDE-11-CV-Coupled.pdf Chemical reactions coupled to electron
transfer.
Document? 6 PDE-8-LSV.pdf Linear Sweep Voltammetry
Document8 7 PDEF-7-Chronocoul.pdf Chronocoulometry
Document9 8 PDE-27-CareandFeeding.pdf | Care and Feeding of Electrodes
Documentl 9 PDE-13-ASV.pdf Anodic Stripping Voltammetry
0

The pdfminer.six library was utilized to extract textual data from the PDF files, which were
subsequently preprocessed to eliminate extraneous content and formatting.

2.3. Embedding Generation

Embedding vectors are generated for both the extracted textual data from the documents and
user queries through the Gemini APL The Gemini model, specifically trained for embedding
generation, captures the semantic content of text and represents it as a vector within a multi-
dimensional vector space. The embedding vectors for the documents are stored in a ChromaDB
vector database, thereby enabling efficient search and retrieval based on semantic similarity.

2.4. Retrieval Process
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Upon the formulation of a user query, the system initially generates an embedding vector for
the query via the Gemini API This query embedding vector is then employed to query the
ChromaDB database for documents exhibiting similar embedding vectors. The most pertinent
documents, as determined by cosine similarity metrics, are retrieved and furnished as contextual
information for the response generation process.

2.5. Answer Generation

The Gemini model generates the final response to the user's query. The retrieved documents are
integrated into a meticulously structured prompt, which is then input into the model. The prompt
serves to guide the model, instructing it to synthesize an inclusive and user-centric answer grounded
in the retrieved information. The model's sophisticated language comprehension and generation
capabilities enable it to synthesize information from the retrieved documents and produce a coherent
and informative response.

3. Evaluation

This section evaluates the Electrochemistry Assistant's performance in addressing user inquiries
about electrochemistry techniques. The assessment focuses on the system's capacity to retrieve
pertinent documents and generate accurate and informative responses.

3.1. Evaluation Dataset

A curated list of test inquiries shown in the table ST1 of the Supplementary Information and
stored as list variables called queries (labelled Q0-Q9) and complex_queries (labelled CQO0-CQ9) in
the Kaggle Notebook was compiled to evaluate the performance of the electrochemistry assistant.
They target diverse electrochemical concepts and methodologies discussed within the source
documentation. The inquiries were selected to assess the system's capacity to process heterogeneous
query types and retrieve relevant information from the document corpus. For each inquiry, a specific
set of documents was designated as "relevant" based on their content. This dataset served as the
established ground truth for evaluating retrieval efficacy.

Furthermore, the simple queries are designed to evaluate the system's ability to generate
accurate definitions based on the provided documents. Conversely, the complex queries are
constructed to assess the system's ability to identify context across multiple documents and
synthesize the requisite information. It is worth noting that the queries CQ7, CQ8, and CQ9 were
specifically included to test the system's limitations, as the corpus does not contain documents
directly relevant to these queries.

3.2. Evaluation Metrics

The performance of the Electrochemistry Assistant has been evaluated employing the following
metrics:

L. Retrieval Accuracy: This metric quantifies the system's proficiency in accurately retrieving
relevant documents for each inquiry. It is computed as the ratio of relevant documents retrieved
to the total number of relevant documents for that inquiry. Higher accuracy values indicate
superior retrieval performance.

I.  Precision: Precision quantifies the proportion of correctly retrieved documents among the
entirety of retrieved documents. It reflects the system's capacity to avoid the retrieval of
extraneous documents.

III.  Recall: Recall quantifies the proportion of correctly retrieved documents among the entirety of

relevant documents. It indicates the system's capacity to identify all relevant documents.
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IV.  Fl-score: This metric integrates precision and recall, providing a more holistic evaluation of the
system's performance. It represents the harmonic mean of precision and recall. A higher F1-score
signifies enhanced overall retrieval performance.

V.  Mean Reciprocal Rank (MRR): This metric evaluates the rank of the first relevant document
retrieved for each query. The reciprocal rank of the first relevant document is calculated for each
query, and the MRR is the average of these reciprocal ranks across all queries. A higher MRR
indicates that relevant documents are ranked higher in the retrieval results.

VI.  Precision at K (P@K): This metric evaluates the early retrieval performance by measuring the
proportion of relevant documents present within the top K retrieved results. In this study, we
report Precision at K=2 (P@2), K=3 (P@3), and K=5 (P@5) to provide a granular view of the system's
ability to prioritize relevant information at different ranks. Specifically, P@2 assesses whether at
least one of the top two retrieved documents is relevant, P@3 examines the relevance within the
top three, and P@5 within the top five. Higher P@K values signify a greater concentration of
relevant documents at the beginning of the retrieval list, indicating the system's effectiveness in
quickly surfacing pertinent information to the user.

VII.  Normalized Discounted Cumulative Gain at K (NDCG@K): This metric evaluates the quality
of the document ranking by considering both the relevance of each retrieved document and its
position within the ranked list, with greater weight assigned to relevant documents appearing
earlier. In this study, we report the Normalized Discounted Cumulative Gain at K=2, 3, and 5
(NDCG@2, NDCG@3, and NDCG@5) to provide insight into the system's ability to rank
meaningful information within the initial results effectively. Specifically, NDCG@2 assesses the
ranking effectiveness within the top two retrieved documents, prioritizing instances where
relevant documents are positioned at the highest ranks. Similarly, NDCG@3 examines the
ranking quality within the top three results, again favoring the early appearance of relevant
documents. Finally, NDCG@5 evaluates the ranking performance within the top five retrieved
documents, emphasizing the significance of relevant documents in the initial positions. Higher
NDCGe@K values signify superior ranking performance, indicating a greater tendency for the

most relevant documents to be positioned at the beginning of the retrieval list.

3.3. Baseline Retrieval Methods: BM25 and TF-IDF

In order to establish a comparative baseline for assessing the retrieval performance of the
Electrochemistry Assistant, which employs semantic similarity within the ChromaDB vector
database, two well-established traditional information retrieval methods, BM25 and TF-IDF, were
also evaluated. These methods rely on term-based relevance scoring rather than semantic
embeddings, offering a contrast to the approach employed by our primary system.

3.3.1. BM25 (Best Match 25)

BM25 is a ranking function used by search engines to estimate the relevance of a set of
documents to a given search query. It is a bag-of-words retrieval function that ranks a set of
documents based on the query terms appearing in each document, regardless of the terms proximity
within the document. BM25 considers the term frequency (TF) in the document, the inverse document
frequency (IDF) of the term across the corpus, and the document length to calculate a relevance score.
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We implemented BM25 using a standard library rank_bm25, applying common parameter settings
to optimize its performance on our electrochemical document corpus.

3.3.2. TF-IDF (Term Frequency-Inverse Document Frequency)

TF-IDF is another fundamental technique in information retrieval that assigns a weight to each
term in a document based on its term frequency in that document and its inverse document frequency
across the entire collection of documents. Terms that appear frequently in a specific document but
infrequently in the rest of the corpus are assigned higher weights, indicating their importance to that
document's content. We implemented TF-IDF by calculating the TE-IDF scores for all terms in our
document corpus and then using these scores to rank documents based on the presence and weight
of the query terms within them.

The performance of the Electrochemistry Assistant, leveraging ChromaDB, will be directly
compared against the retrieval performance of these BM25 and TF-IDF baseline methods using the
same evaluation dataset and metrics outlined in Section 3.1. This comparison will highlight the
relative strengths and weaknesses of semantic versus term-based retrieval approaches in the context
of electrochemical information retrieval.

3.4. Semi-Quantitative Assessment of the Generated Answers

We undertook automated and manual assessments to comprehensively evaluate the generated
responses. The automated evaluation employed a custom calculate_f1_score() function to assess the
semantic similarity between the generated answer and the retrieved passages. The
calculate_f1_score() function employs a pre-trained sentence transformer model (‘'all-mpnet-base-v2')
to generate sentence embeddings for both the generated answer and the retrieved passages, thus
facilitating semantic similarity assessment. Subsequently, it computes the cosine similarity between
the answer embedding and each passage embedding to identify suitable passages based on a
predefined relevance threshold (0.70). Utilizing the sets of significant and retrieved passages, the
function calculates precision and recall, ultimately resulting in the computation of the F1-score—a
balanced metric that reflects the system's ability to generate answers semantically aligned with the
retrieved context. This evaluation methodology leverages the inherent semantic understanding of the
pre-trained model to provide an objective measure of answer quality.

Complementing this quantitative analysis, the generated responses underwent a manual review
by the authors, both of whom possess over a decade of expertise in electrochemistry. This semi-
quantitative assessment focused on the following criteria, using a 5-point ordinal scale (1: Poor, 2:
Fair, 3: Good, 4: Very Good, 5: Excellent) for each judgment:

I. Accuracy:

e Correctness: Is the generated answer factually correct and aligned with the information
provided in the relevant source documents?

e Completeness: Does the answer provide all the necessary information to fully address the
user's question?

e Precision: Is the answer concise and focused on the specific question asked, or does it contain

irrelevant or redundant information?
I1. Relevance:

e Question Alignment: Does the answer directly address the user's question, or does it deviate

from the intended topic?
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e Information Need: Does the answer satisfy the user's information need, providing the type of
information they were seeking?
e Contextual Appropriateness: Is the answer appropriate for the context of the question and the

user's likely intent?
III. Fluency and Coherence:

e Grammaticality: Is the answer grammatically correct and free of errors in sentence structure
and word usage?

e Clarity: Is the answer easy to understand and follow, or is it confusing or ambiguous?

e Logical Flow: Does the answer present information logically and coherently, or is it disjointed

or difficult to follow?
IV. Overall Quality:

e Helpfulness: How helpful is the answer in providing the user with the information they need?
e Satisfaction: How satisfied would a user be with the answer provided?

e Trustworthiness: Does the answer appear to be trustworthy and reliable?

The insights derived from this expert evaluation, based on these detailed criteria and the ordinal
scale, provide a more nuanced and comprehensive understanding of the system's efficacy in
generating high-quality and contextually appropriate answers.

4. Results

This section details the results of our evaluation of the Electrochemistry Assistant, specifically
its ability to find applicable information and provide correct answers to user questions about
electrochemistry techniques.

4.1. Retrieval Performance Evaluation

The system's capacity for relevant document retrieval was evaluated through the application of
a predefined set of test queries, as detailed in Section 3.1. The evaluation incorporated a range of
metrics, including accuracy, precision, recall, and F1-score, which are shown in the table ST2 in the
Supplementary Information. On the other hand, ranking-sensitive measures such as Mean Reciprocal
Rank (MRR), Precision at K (P@K), and Normalized Discounted Cumulative Gain at K (NDCG@K)
are presented in Table 2.

4.1.1. Retrieval Performance

The evaluation of three distinct retrieval methods —ChromaDB, TF-IDF, and BM25—across a
diverse set of queries reveals nuanced performance characteristics for each approach. In several
instances (Q1, Q2, Q5, Q6, Q8, Q9, and CQ3), all three methods demonstrated perfect retrieval
efficacy, achieving optimal scores across all evaluated metrics: Accuracy, Precision, Recall, and F1-
Score.

ChromaDB exhibited a generally robust performance profile, consistently achieving high scores
and demonstrating superior or comparable results to the other methods across a significant portion
of the query set. TF-IDF also demonstrated commendable performance on numerous queries,
frequently aligning with or closely approximating the results obtained by ChromaDB. However,
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notable deficiencies were observed for TF-IDF on specific queries (Q4, CQ8, and CQ9), where
performance declined substantially.

BM25 presented a more variable performance landscape. While achieving perfect retrieval on
several queries (Q1, Q2, Q5, Q6, Q7, Q8, Q9, and CQ3), it also exhibited marked underperformance
on others (Q3, Q4, CQ8, and CQ9), suggesting a sensitivity to specific query characteristics or
document distributions.

Overall, ChromaDB appears to offer a more consistently high level of retrieval performance
across the evaluated query set. While TE-IDF proves competitive in many scenarios, its susceptibility
to performance degradation on certain queries warrants consideration. BM25, despite achieving
optimal results on a subset of queries, demonstrates a less stable performance profile compared to
ChromaDB and TF-IDF. Further investigation into the specific characteristics of the queries where
performance disparities are most pronounced may yield valuable insights for optimizing retrieval
strategies for each method.

4.1.2. Retrieval Ranking Performance

The efficacy of ranking of the three distinct document retrieval namely, ChromaDB, TF-IDF, and
BM25 was evaluated using a suite of established metrics: Mean Reciprocal Rank (MRR), Precision at
K=2 (P@2), Precision at K=3 (P@3), Precision at K=5 (P@5), Normalized Discounted Cumulative Gain
at K=2 (NDCG@2), NDCG at K=3 (NDCG@3), and NDCG at K=5 (NDCG@5). These metrics are shown
in Table 2 and collectively assess the ability of each method to retrieve relevant documents and,
critically, to rank them effectively within the initial segments of the result lists.

Table 2. Retrieval Ranking Performance Metrics.

Evaluation Metrics Chromadb TF-IDF BM25

MRR 0.94 0.93 0.81

P@2 0.67 0.61 0.5

P@3 0.48 0.48 0.41

P@5 0.31 0.29 0.29
NDCG@2 0.92 0.89 0.74
NDCG@3 0.94 0.94 0.77
NDCG@5 0.96 0.93 0.88

Mean Reciprocal Rank (MRR) evaluates the average rank of the first relevant document retrieved
across all queries. A higher MRR signifies superior performance in surfacing relevant information
quickly. Among the methods, ChromaDB achieved the highest MRR (0.94), indicating its greater
effectiveness in positioning relevant documents at higher ranks. TF-IDF follows with an MRR of 0.93,
while BM25 exhibits the lowest MRR (0.81).

Precision at K (P@K) measures the proportion of relevant documents within the top K retrieved
results. At K=3, ChromaDB demonstrates the highest precision (0.67), followed by TF-IDF (0.61) and
BM25 (0.50). At K=5, both ChromaDB and TF-IDF achieve a precision of 0.48, outperforming BM25
(0.41).

Normalized Discounted Cumulative Gain at K (NDCG@K) assesses the ranking quality by
considering the relevance of each document and its position, with higher relevance and earlier
positions contributing more to the score. ChromaDB exhibits the highest NDCG at K=2 (0.92) and
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K=5 (0.96), and a high NDCG at K=3 (0.94), matching TF-IDF's performance at this level. TF-IDF
shows a competitive NDCG at K=2 (0.89) and K=5 (0.93). BM25 consistently yields the lowest NDCG
scores across all cutoff points (0.74 at K=2, 0.77 at K=3, and 0.88 at K=5).

The evaluation of document retrieval ranking performance reveals that ChromaDB
demonstrates the most consistently effective results across the majority of the employed metrics,
indicating its superior ability to retrieve and rank relevant documents highly. TF-IDF provides a
strong and often comparable performance, while BM25 generally exhibits a less effective ranking
capability based on these evaluation scores. The consistently high NDCG values for ChromaDB and
TE-IDF underscore their proficiency in prioritizing relevant information within the initial search
results, a crucial aspect of effective document retrieval.

4.2. Response Generation Quality Assessment

A detailed evaluation of the generated responses was conducted through a dual assessment
methodology, comprising both automated metrics and expert review. Illustrative response samples
generated by the model are presented below: Fig. 2 displays the response to the simple query, “What
is Cyclic Voltammetry?”, and Fig. 3 displays the response to the complex query, “Compare and
contrast linear sweep voltammetry and cyclic voltammetry, emphasizing the information that can be
obtained from each technique and their respective advantages and limitations.”

Cyclic voitammetry (CV) is an electrochemical technique where the potential applied to a working electrode is scanned linearly versus time, similar to linear sweep voltammetry (LSV). However, in CV, the potential scan is reversed at 3
specific point, called the switching potential, and scanned back to the initial potential, typically using a triangular waveform. This cycle allows for the observation of both the reduction and oxidation processes of an electroactive species.

In a CV experiment, the reduction of an oxidized species (Ox) at the electrode can be represented as:
Oz +ne = Red

where n is the number of electrons transferred and Red is the reduced form. The double arrow indicates that the reaction can proceed in both directions if the product is chemically reversible, meaning it's stable on the timescale of the
experiment.

Important parameters in CV include:
« Peak Locations: The forward (Ej,) and reverse (E,,) peak potentials, which can be used to calculate the formal potential (E%):
EO = Bt ';”"

The peak separation, AE, = | Ey, — E, |, indicates eiectrochemical reversibility, with AE, == %8V for a reversible process.

.

Current Ratios: The ratio of reverse to forward peak currents (i, /ip,f) is approximately 1 for a reversile process,

Scan Rate Dependence: For reversible electron transfer, peak currents (i) increase linearly with the square root of the scan rate (¥1/2), as described by the Randles-Sevcik equation,
ip = (2.60 x 10%)n¥2ADV2C /2
where Ais the electrode area, D is the diffusion coefficient, and Ci; is the concentration of the electroactive species.

it's also important to consider capacitive current, which arises from the rearrangement of ions in the double layer, and solution resistance, which causes a potential drop (Ohmic drop) described by E;p = iRy, where i is the cell
current and R is the solution resistance. High scan rates or low dielectric solvents can exacerbate the effects of solution resistance.

CV is lso useful for studying chemical reactions coupled to electron transfer, such as E,C;, E,Cy, and E,C] mechanisms, where E represents an electron transfer step and C represents a chemical step. The changes in peak currents and
potentials as a function of scan rate can provide insights into the kinetics and mechanisms of these reactions.

Figure 2. A sample response generated for the query “What is cyclic voltammetry?”.

As evidenced in Fig. 2, the model generated a well-structured response to the aforementioned
query, drawing upon information within the document corpus. Notably, the response to the complex
query, illustrated in Fig. 3, exhibited greater comprehensiveness, likely due to a larger number of
pertinent documents available to the model. However, minor inline LaTeX formatting inconsistencies
were observed for some equations within this response and others. For the reader's detailed
examination, the sample responses generated for all test queries are available in the project’s GitHub
repository [21].
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Linear Sweap Vol etry (LSV) and Cyclic Volt: try {CV) are both potentiodynamic electrochemical technigues where the potential applied to a3 working slectrode is varied linsarfy with time, and the resulting currentis
measured. However, they differ in the potential waveform applied and the information that can be extracted

Linear Sweep Voltammetry (LSV):

In LSV, the potential is scanned in one dirsction only, from an initial potential to a final potential The resulting current-potential profile is peak-shaped for a redox-active species undergoing electron transfer.

Information Obtained: LSV can be usad to determine the formal potential (E°0'). number of electrons transferred (n), diffusion coefficient (D), and concentration (C;) of the elactroactive species for a reversible systeam.
A plot of peak currant (i) versus the square root of the scan rate (v"/?) is linear for 2 diffusion-controlled redox procass and serves as a diagnostic tool The paak potantial (I} for raversible alactron transfer doas not
d itt an rate. The separation between E,, (potential at half peak height) and B, can also indicate reversible electron transfer, with |B, — B | — % mV.

imple to perform and interpret fi tems with straightforward redox behavior.

Limitations: LSV provides limited information about the stability of the products formed during the electron transfer reaction. it is less useful for studying complex reaction mechanisms

»
2
H]
2
b
a
&

Cyclic Voltammetry (CV):

In CV, the potential is scanned from an initial value to a switching potential. and then the scan is reversed back te the initial potential, typically using a triangular waveform.

Information Obtained: CV provides information about the redox potenti
formal potential (E") can be estimated by averaging the forward and re ak potenti
AE, — %“ V for a reversible process. The ratio of the reverse to forward peak curtents (ip e fis,;
the kinetics and me:
Advantages: CV iz excellent for qualitative analysis and mechanistic studies, allowing for the assessment of the reversibility and stability of redox processes.
Limitations: CV can be more complex to interpret than LSV, espedially for systems with multiple redox couples or irreversiole reactions.

f the electroactive species, the reversibility of the electron transfer reaction, and the stability of the electrochemically generated species. The
£ac(E_{£p} ~E_(rp] The slectrochemical ibility can be ined from the peak separation (AE,), vith
is approximately 1 for a reversible process where the product is stable. The dependence of peak currents on the

scan rate (4, vs v'/?) can provide insights into m of the electron transfer reaction

Comparison:
Feature Linear Sweep Voltammetry (LSV) Cydlic Voltammetry (CV)
Potential Waveform Linear scan in one direction Triangular scan (forward and reverse)
Reversibiity Limited information Aszeszes electrochemical reversibility
Product Stability Limited information Assesses product stability
Mechanistic Information  Less detailed More detailed
Complexity Simpler More complex

Both techniques are affected by factors such as capacitive current and solution resistance, which can distort the veltammegrams. Capacitive current can be minimized by background subtraction or by using techniques with
istance (R.) leads to an Ohmic drop (Eip = iaR,), which can be minimized by proper cell design (e.g.. using a Luggin
exacerbate the effects of solution rasistance, leading to drawn-out curves and increased peak separations in CV.

differant waveforms, such as differential pulse voltammetry (DPV). Uncompensated soluti

capillary) or compensation techniques. Large currents, high scan rates, or low dielectric sobvel

Figure 3. A sample response generated for the query “Compare and contrast linear sweep voltammetry and
cyclic voltammetry, emphasizing the information that can be obtained from each technique and their respective

advantages and limitations.”.

The automated evaluation leveraged the Fl-score, calculated based on the semantic similarity
between the generated response and the retrieved source passages, as elaborated upon in Section 3.4.
The results of this quantitative analysis are presented in Table 3. The elevated scores in most cases
suggest a high degree of semantic overlap, indicating that the generated response effectively
integrated and synthesized information from the significant source documents.

Table 3. Semantic Similarity F1-Scores.

Query ID F1-Score Query ID F1-Score

Qo 0.89 CQo 0.33

01 0.57 Cco1 0.57

Q2 0.57 CcQ2 0.57

Q3 0 CcQ3 0.33

04 0.57 Cco4 0.89

Q5 0.33 CQ5 0.89

Q6 0.57 CQ6 0.89

Q7 0 CcQ7 0

Q8 0 CQs8 0

Q9 0.33 CQ9 0.33

Complementing this quantitative analysis, a detailed manual expert assessment of all generated
responses was also carried out, and the results are summarized in Table ST3 in the Supplementary
Information and Table 4. This qualitative assessment focused on critical dimensions of response
quality, including linguistic fluency and coherence, factual accuracy and alignment with the retrieved
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documents, and the overall contextual appropriateness concerning the user's initial query. The
insights from this extensive expert evaluation offer valuable triangulation of the system's
effectiveness in producing high-quality and contextually relevant answers across the entire query set.
Moreover, an overall average score of 4 and above, as presented in Table 4, across all evaluation
criteria, indicated that the Electrochemistry Agent performed as expected.

Table 4. Overall average score for the Electrochemistry Agent across all the manual evaluation criteria.

Criteria Sub-Criteria Average Score
Correctness 4.15
Acuracy Completeness 4.38
Precision 4.38
Question
4.3
Alignment
Information 198
Rel .
elevance Need
Contextual
4.3
Appropriateness
Grammaticality 448
Fluency and Coherence Clarity 4.53
Logical Flow 4.53
Helpfulness 4.35
Overall Quality Satisfaction 4.25
Trustworthiness 443

Despite the system's generally high scores in the manual evaluation, the authors deem it
pertinent to draw the reader's attention to the following observations.

1. Given the stochastic nature of the Gemini family of models, the generated response may exhibit
variability across different iterations of the same query. While this was mitigated by setting the
temperature parameter to 0.5, which facilitated the generation of relatively consistent responses
for each query, readers should be aware that the response quality may vary upon re-execution.

2. For simple queries, abbreviations such as Ox and Red, once defined within a response, were not
consistently expanded or re-explained in subsequent responses to different queries executed
sequentially.

3. In certain complex questions about electrode cleaning, the generated responses bore similarities

to those produced for simpler queries.
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4. In some instances, the provided answers and explanations did not entirely align with expected
responses. For example, concerning the complex query CQ1, the system was unable to derive the
relevant equation, likely due to the absence of a directly pertinent document within the corpus.

5. The model tended to generate responses, potentially representing instances of hallucination, for
the complex queries CQ7, CQ8, and CQ9, for which no directly relevant passages or documents
were manually identified within the document corpus. Nevertheless, the quality of these

generated responses was deemed acceptable.

5. Discussion

The outcomes of our evaluation substantiate the Electrochemistry Assistant's capacity to furnish
relatively accurate and exhaustive responses to a broad spectrum of electrochemical inquiries. The
RAG methodology, capitalizing on the capabilities of the Gemini model and the ChromaDB database,
enables the system to effectively retrieve appropriate information from a curated corpus of PDF
documents and generate informative, contextually meaningful, and user-centric responses. The
responses are also presented in a lucid and comprehensible format, thereby enhancing their
accessibility for both technical and non-technical users. This capacity to provide contextually
important and user-centric responses is crucial for the system's practical application in diverse
settings.

While the system demonstrates efficacy on our curated dataset, its high accuracy and ranking
metrics are likely atypical for broader information retrieval applications and warrant careful
consideration. This observed performance may be attributed to several factors: the focused scope of
our document corpus (fundamental electrochemistry), the direct nature of our test inquiries (seeking
explicit definitions and explanations), and the constrained size of our initial knowledge base (ten PDF
documents). Furthermore, the limited breadth of electrochemical topics due to the small repository
and the dependence of response accuracy on the source document quality are inherent limitations
that may also contribute to these outcomes.

5.1. Potential Applications and Future Directions

The Electrochemistry Assistant holds substantial potential to transform how information is
accessed and utilized within the field of electrochemistry. In education, it can be integrated into
learning platforms to provide students with interactive experiences, addressing their inquiries,
elucidating electrochemical concepts, and offering guidance on experimental procedures. For
research, the assistant can expedite access to pertinent information from scholarly literature,
streamline literature reviews, and support data analysis, thereby potentially accelerating the research
process and fostering discoveries. Furthermore, organizations offering electrochemical products or
services can leverage the system to furnish immediate responses to customer inquiries, thus
enhancing customer satisfaction and potentially reducing support costs.

Future development efforts for the Electrochemistry Assistant will focus on several key areas.
Primarily, the expansion of the knowledge repository through the incorporation of additional
relevant documentation, such as textbooks, research articles, and industry reports, is planned to
augment the system's coverage of electrochemical concepts and methodologies. Secondly, future
endeavors will explore techniques to refine both the retrieval and response generation processes,
including the integration of user feedback and advanced query expansion methodologies, alongside
the investigation of alternative Large Language Models and embedding techniques to further
enhance the accuracy and comprehensiveness of the responses. Thirdly, to augment the system's
accessibility and user-friendliness, the development of an interactive user interface is planned,
enabling users to seamlessly input their queries and visualize the retrieved information.

By addressing these limitations and pursuing these future directions, the aim is to further
enhance the Electrochemistry Assistant's capabilities and establish it as a more valuable resource for
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the electrochemistry community. It is posited that RAG-based systems such as the Electrochemistry
Assistant possess considerable potential to transform the modalities through which information is
accessed and utilized within scientific domains.

6. Conclusion

In conclusion, this paper has detailed the development and evaluation of the Electrochemistry
Assistant, a Retrieval-Augmented Generation system that utilizes the Gemini model and ChromaDB
for electrochemical information retrieval. The evaluation results demonstrate the system's efficacy in
providing precise and contextually significant responses to a defined set of test questions. These
findings underscore the potential of the RAG methodology for constructing specialized question-
answering systems within scientific domains like electrochemistry, offering an effective approach for
accessing and synthesizing information from technical documentation. Future work will focus on
expanding the knowledge corpus, refining the system's capabilities, and developing an intuitive user
interface to improve accessibility, thereby further enhancing its utility within this specialized field.
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