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Abstract: We propose new nonadditive entropy of the apparent horizon Sx = Spr/(1 + 7S3y),
where Spp is the Bekenstein-Hawking (BH) entropy and consider the description of new cosmology.
When parameter 7 vanishes (v — 0) our entropy Sk is converted into BH entropy Spy. By using
the holographic principle a new model of holographic dark energy is studied. We obtain the gen-
eralised Friedmann’s equations for Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime for
the barotropic matter fluid with equation of state p = wp. From the second modified Friedmann’s
equation we find a dynamical cosmological constant. The dark energy pressure pp, density energy pp
and the deceleration parameter g corresponding to our model are computed. It is shown that at some
EoS w and parameter <y there are phases of universe acceleration, deceleration and eternal inflation.
Our model, with the help of the holographic principle, can describe the universe inflation and late
time of the universe acceleration. We show the current deceleration parameter g9 ~ —0.6 is realized at
some model parameters. We showed that entropic cosmology with our entropy proposed is equivalent
to cosmology based on the teleparallel gravity with the function F(T). The generalised entropy of the
apparent horizon with the holographic dark energy model may be of interest for new cosmology.

Keywords: entropy; cosmology; holographic principle; dark energy; Friedmann’s equations; universe
acceleration

1. Introduction

It is know that black holes can be described by thermodynamics with entropy being proportional
to the horizon area [1,2] and temperature is linked with the surface gravity. Thus, gravity is related to
ordinary thermodynamics [3—6]. From the first law of apparent horizon thermodynamics Friedmann's
equations also can be derived [7-17]. Different entropies were studied in [18-24] which can lead to
modified Friedmann’s equations. Other holographic dark energy models were considered in Refs.
[25,26,28-32]. Holographic energy densities, depending on the form of entropy, may describe the
dark energy which drives the universe to accelerate [33,34]. The nature of dark energy is unknown
and can be described by the LCDM model. We propose here new apparent horizon entropy Sx =
Spr/(1+ ')/S% ) with Sppr being the Bekenstein-Hawking (BH) entropy, that lead to the presence
of dark energy so that our model is alternative to the LCDM model. The Sk entropy becomes zero
when the BH entropy vanishes and is the monotonically increasing function of the BH entropy Sgy
and is positive. When parameter -y vanishes we arrive at the BH entropy. It should be noted that the
apparent horizon thermodynamics leads to the Friedmann equations, in the framework of Einstein’s
gravity, only when the matter is a perfect fluid with equation of state (EoS) p = —p with p being the
matter pressure and p is the density energy of matter [16]. Modifying the BH entropy Sy by apparent
horizon entropy Sk we study the general case of EoS for barotropic perfect fluid w = p/p. It is worth
noting that the long-range gravitational interactions are described by generalized entropies. It will be
shown that Sk entropy leads to modified Friedmann’s equations that describe the universe inflation.
In our approach the cosmological constant is dynamical and it explains the presents of dark energy.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2. New Entropy

Let us consider new entropy

piln p; 1)
=14 9(In(p;))?’

™=

Sk =~

with W being a number of states and each state has a probability p; with the probability, -y is a free
parameter. The summation in Equation (1) is performed over all possible system microstates. In the
case when y = 0 entropy (1) becomes the Gibbs entropy

W
Sc=—)_ piln(pi). 2)
i=1

If each microstate is populated with equal probability, 1/p; = W (i = 1,2, ..., W), then Equation (2) is
converted into the Boltzmann entropy S = In(W). By virtue of 1/p; = W, we find from Equation (1)

In(W)
Sk =—FFF+—. 3
K= T In(W)P? ©
The BH entropy is Spyy = In(W) and from Equation (3) one obtains
S
Sk o ©)

14983,

From Equation (4) we find at v = 0 the BH entropy Spy. When A and B are two probabilistically
A+B

independent systems, one has p;;

Sk(A+ B) # Sk(A) + Sk(B).

=pf p]B and entropy Sk being the nonadditive entropy because

3. Thermodynamics of Apparent Horizon

We consider here the FLRW flat universe with the metric
ds* = —dt? +a(t)*(dr® + r?d03). (5)

In Equation (5) a(t) is a scale factor and d()3 represents the line element of 2-dimensional unit sphere.
In the FLRW universe the radius of the apparent horizon R, = a(t)r is given by

Rh = ﬁ/ (6)

where H = a(t)/a(t) is the Hubble parameter of the universe, and dot over the scale factor being the
derivative with respect to the cosmological time t. Inside the space, the total energy is defined as

47
E=pV, = ?pRz, 7)

where, p is the energy density of matter fields and the first law of apparent horizon thermodynamics
reads
dE = —T,dS, + WdVj,. (8)

In cosmology the work density W is given by

W=~ (1) = 2 (p—p),

N —
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and p is the matter pressure. The apparent horizon temperature is represented as
H H
Ty = —1+ —|. 9
" on| T o ®

Making us of Equations (6), (7), and (9), we obtain from first law of apparent horizon thermodynamics
(8) the equation as follows:

H
14—

s S = AT 1o 4 2P gy (10)

- 3H3 HA

27T

2

With the aid of the energy momentum conservation (the continuity equation)

p=—3H(p+p). (11)
we find equation (10) in the form
H H |,  4np H

4. Modified FLRW Equations
Assuming that H > 2H? and making use of Equations (11) and (12), we find

dn(p+p) (13)

H .
7T T

By virtue of our entropy (4) (S, = Sk) and BH entropy

T
_ 14
SBH CIZ (14)
and utilizing Equations (13) and (14), one obtains the modified Friedmann equation
H(1—~m?/(GH?)?
A=y /(GHY) _ _4rGio+p). (15)

(14 y7m2/(GH?)?)?

Equation (15), as vy — 0, is converted into the usual Friedmann equation within general relativity for
flat universe. Integrating Equation (15) and making use of Equation (11) we find the second modified

Friedmann equation
2

bH? H 87G
2 —
H* + b HA —2\/l;arctan<\/5> = Tp, (16)
where we have defined parameter b = 7>y /G?. When b = 0 (y = 0) Equation (16) becomes the FLRW
equation for flat universe in the framework Einstein’s gravity. Introducing the effective (a dynamical)
cosmological constant

H? 3bH?
Aeff = 6\/Barctan<\/l;> — m, (17)
equation (16) can be put into the usual form of Friedmann’s equation
A
H? = % o+ % (18)

The dynamical cosmological constant A,¢; versus H at some parameters b = n2y/G? is depicted in
Figure 1.


https://doi.org/10.20944/preprints202503.1377.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 April 2025 d0i:10.20944/preprints202503.1377.v2

40f10

T
b=1
16| — — — b=2 [
~ — b=3 T
14+ -
-
B [
12F e -7
/ P
10 s
5 4
< 7
8 Y
4
6| /
Vi

al

ol

o .

o 2 4 6 8 10

H

Figure 1. The function A.¢s versus Hatb = 2y /G? = 1,2,3. Figure 1 shows that A, f increases as b increases.
When H — oo the dynamical cosmological constant becomes A,¢r — 371v/b.

In accordance with Figure 1, A, ¢ increases as the Habble parameter H increases. As H — oo the
dynamical cosmological constant becomes A,fs — 371v/b. At fixed H, when b increases the dynamical
cosmological constant A s also increases. Making use of Equations (17) and (18) we obtain the dark

3 H? bH?

= ——|2Vbarctan| — | — ———|.

oD 87TG|: Vbarc an(\/g> b—I—H4] (19)

Let us define the normalized density parameters Q,, = p/(3M3%H?) and Qp = pp/(3M3H?),

where Mp = 1/+/87G is the reduced Plank mass. Then from Equations (17), (18) and (19), one finds

the equation (), + Q) p = 1. By virtue of Equations (17),(18) and (19) we obtain the normalized density
of the matter (w = 0)

energy density

2vb (H2 ) b
Oy, =1— — arctan| — | + 20

H? b+ H%

The ), versus H is plotted in Figure 2.

Figure 2. The function (), versus H at b == 0.1,0.2,0.3. According to Figure 2 (), increases as b decreases at
fixed H. When H — oo (R, — 0) one has ), — 1 and Qp — 0.

For the current era (), ~ 0.26, and in accordance with Figure 2, one can obtain the corresponding
parameters b and H. Assuming that dark substance obeys ordinary conservation law, and there is no
mutual interaction between the cosmos components, we find from the continuity equation the dark

energy pressure
[%5)

PD = —75 ~PD- (21)
With the help of Equations (19) and (21) one obtains the pressure
_ b(b+3H*)H 3 H? bH?
PD = " 4nG(HE 1 )2 8nG [2\/5”‘“”“(\/5) - b+H4} (22)
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Making use of Equations (15), (19) and (22) one finds EoS for the dark energy wp = pp/pp,
4 2
o — b(b +43H4)(1 +w) H —1|-1. (23)
H*(H* —b) 2v/barctan(H2/v/b) — bH2/ (H* + b)

The wp versus H is plotted in Figure 3.

Subplot 1: b=1 Subplot 2: w=0

5
H H

Figure 3. Left panel: The function wp versus Hatb =1, w =0,-1/3,-2/3, G = pg = a9 = 1. According to
Figure 3 when EoS parameter for the matter w increases at fixed H the wp also increases (at H > 1.5). Atlarge H
EoS parameter for dark energy wp approaches to —1. Right panel: In accordance with figure when parameter b
increases at fixed H (at H > 1.5), EoS parameter for dark energy wp also increases and limpy_,o, wp = —1.

In accordance with left panel of Figure 3atb =1 and w = 0, —1/3, —2/3 when w increases, EoS
parameter for dark energy wp also increases (at H > 1.5). According to right panel of Figure 3 at w = 1
and b = 2,3,4 when b increases, wp also increases (at H > 1.5). From Equation (23), it follows that
limy_,oo wp = —1 so that the dynamical cosmological constant leads to EoS of dark energy wp = —1
at large Habble parameter H (small apparent horizon radius Rj,). As a result, universe inflation is due
to dynamical cosmological constant. When H — 0 (R;;, — o0) the dynamical cosmological constant
vanishes (A.¢f — 0). Thus, after Big Bang (R, ~ 0) we have the de Sitter space, pp + pp = 0.

According to the second law of apparent horizon thermodynamics we have the requirement
Sk > 0 and from Equation (4) one obtains (1 — yS3,)Spr/ (1 +1S35)* > 0 or (1 — 4S3y) > 0and
Spr = —2mH/(GH?®) > 0. As a result, these requirements, for positive Hubble parameter, lead to
H < 0and (1—vS%,) > 0. Then from Equation (15) we find that at 1 — y7?/(GH?)?) > 0 one has
o + p > 0 and for the positive energy density we obtain for EoS parameter the requirement w > —1.

Now we explore the redshift z = ag/a(t) — 1, where ag corresponds to a scale factor at the current
time. From the continuity equation (11) and EoS p = wp we obtain the density energy of matter

142 3(1+w)
p= Po( ) , (24)

ag

where pg is the density energy of matter at the present time. With the aid of Equations (16) and (24)
one finds equation as follows:

bH> H2\ 871G (1+z\*!*%
2y L o L) =T (2 . 2
+ b HE \/Earctan<\/g> 3 Po( 2 ) (25)

making use of Equations (24) and (25) we obtain the redshift

B 3 5 bH2 H2 1/(3(1+w))
Z_ao(SﬂpoG (H + H b —2\/l;arctan<\/5>>> —1. (26)

We plotted the function of Habble parameter versus redshift z in Figure 4 for G = py = ap = 1.
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Figure 4. Left panel: The function H versuszatb =1, w =1/3,0,—0.1, G = pg = a9 = 1. In accordance with
Figure 4 when z increases H also increases. When EoS parameter w increases, at fixed z, the H also increases.
Right panel: b = 0.2,0.3,0.4, w = 0.3, G = pg = a9 = 1. When parameter b increases at fixed z the Habble
parameter also increases.

Figure 4 shows that sas redshift z increases the Habble parameter H also increases. According to
left panel of Figure 4, when EoS parameter w increases, at fixed z, the H also increases. Right panel of
Figure 4 shows that when parameter b increases at fixed z the Habble parameter also increases.

Let us investigate the phases of acceleration and deceleration of the universe. The deceleration
parameter is given by

da H
q:—ﬁ:—l—m. (27)
If g < 0 we have the acceleration phase but when g > 0 the phase of the universe deceleration takes
place. By virtue of Equations (15), (24) and (27) we obtain the deceleration parameter as a function of

redshift z
_ 4nGpo(1+w)(H* +b)% (1+2)\*T) . 28)
B HO(H* —b) ag ‘
With the help of Equations (25) and (28) one finds the deceleration parameter g in the form
_ 3(14w)(H*+0b)*(,,  bH? H?
q= 2H6 (A —b) H” + b HA 2v/barctan % 1. (29)

In Figure 5 we depicted the deceleration parameter g versus the Hubble parameter H.

Subplot 1: b=1 Subplot 2: w=-0.1

—0.05

—0.1}/

-0.8 —0.15

Figure 5. Figure 5 shows that g increases as H increases. Left panel: The function g versus H atb = 1,
w = —0.1,—-0.3, -0.5. When EoS parameter w increases at fixed b and H, the deceleration parameter g also
increases. At w = —0.1 and —0.3 there are two phases, acceleration g4 < 0 and deceleration 4 > 0 and at w = —0.5
we have only the acceleration phase (the eternal inflation). Right panel: According to figure, when parameter b
(and ) increases at fixed w and H the deceleration parameter g decreases. Here, at b = 4 and b = 6 we have two
phases: acceleration and deceleration.
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For some values of w and -y there are two phases: inflation (g7 < 0) and deceleration (g > 0) but
at some w and 7y we have only eternal university acceleration (inflation), g < 0. In accordance with
figure, when redshift z increases the deceleration parameter g also increases. According to left panel of
Figure 5, when EoS parameter w increases the deceleration parameter g also increases at fixed . At
w = —0.1 and —0.3 there are two phases, acceleration g < 0 and deceleration ¢ > 0 but at w = —0.5
we have the acceleration phase (the eternal inflation). Accordance to right panel of Figure 5, when
parameter b (and 7) increases, at fixed w, the deceleration parameter g decreases. Atb =4and b =6
we have two phases: acceleration and deceleration.

Making use of Equation (29) one obtains the asymptotic

_3w+1

Amg =5 e

Equation (30) shows that the asymptotic of the deceleration parameter depends only on the entropy
parameter 7 (b = 7wy /G?). We obtain from Equation (29 at b = 0 (y = 0) that ¢ = (3w + 1) /2. The
approximate real and positive solutions to Equation (29) for Hatg =0, G = 1, w = —0.1 are given in
Table 1 for some parameters y. When g = 0 the transition redshifts z;, we obtained from Equation (26)
atG:aO:pozl.

Table 1. The approximate solutions to Equation (29) for Hatq =0,G =ag =pp =1, w = —0.1.

% 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
H 3777 4180 4492 4749 4971 5166 5341 5501 5.648
z¢ -3.513 -3.625 -3.714 -3.790 -3.856 -3915 -1.606 -1.621 -1.634

According to Table 1 shows that when the entropy parameter v increases the Hubble parameter
H also increases. For a divided point g = 0 between two pases, universe acceleration and deceleration,
the transition reshift z; is negative and decreases. From Equation (26) we obtain, for the current era
when z = 0, w = —2/3, approximate solutions for the Habble parameter H and the deceleration
parameter g from Equation (29) for different -y, presented in Table 2.

Table 2. The approximate solutions to Equations (3.13) and (3.15) for the currenteraz =0at G =1,a9 = pp = 1,
w=-2/3.

0% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
H 3352 3509 3621 3711 378 3853 3912 3965 4.015 4.060
g -0.618 -0.646 -0.664 -0.676 -0.686 -0.694 -0.701 -0.707 -0.712 -0.717

In Table 2, negative values of the deceleration parameter 4 show the acceleration phase of the
universe at the current time. The deceleration parameter at the current time is o ~ —0.6 [36]. In
accordance with Table 2 there is entropy parameter v ~ 0.1 which can give that result.

5. F(T)-Gravity from Generalized Entropy

Scalar torsion T, in teleparallel gravity, plays a role of a fundamental field similar to the curvature
R in Einstein’s general relativity theory [39]. We can describe the inflationary era and the current
Universe accelerating expansion by introducing a Lagrangian F(T) in analogy with F(R)-gravuty. The
torsion scalar field T is defined as [40,41]

T=S"T,, (31)
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where tensors Sp” " and T’;W are given by
1
wo_ W M ap
s =S (K +ap T — 1Y),
K]/H/ _ 1 T]/l‘l/ TV” T nv
) T A X
T, = ¢ (aye; - ave;;), (32)

where ef, (i =0,1,2,3) is a vierbein field, and the metric tensor is g,y = 171']'6;16{/, where 1ij being the
flat metric of the tangent spacetime. For FLRW metric (5), one has eL = diag(1,a,a,a) anf the torsion

scalar field is given by T = —6H?2. By variation the action with respect to e;,, where the Lagrangian is
F(T), we obtain [42]

1 , 8nG

g [F(T) = 2TF(T)]lr——¢r2 = | —5— |- (33)

Making use of equations (16) and (33) one finds

[F(T) —2TF(T)] = -T — % + 12\/Earctan(635). (34)

Integrating Equation (34) we obtain the function F(T):

3v/3V0T [m (6\/5 +T+ 2\/3\/ET>
4 6vVb+ T —2v/3VbT

[ T [ T
—2arctan<1— M)—f—Zarctan(l—l— m)}

+12Vbarctan (6\T/E> +CVT, (35)

where C is the constant of integration. As a result, we showed that the teleparallel gravity with the

FT)=T-

function (35) corresponds to entropic cosmology with entropy (4) proposed.

6. Summary

In conclusion, we have proposed new entropy Sx = Spp/ (1 + S%;;) which possesses similar
property as the Bekenstein-Hawking entropy Spp; it becomes zero when the apparent horizon radius
Ry, vanishes. The Sk monotonically increases when the apparent horizon radius Rj, increases and
Sk is positive. We have studied the barotropic perfect fluid with flat FLRW universe. By exploring
the first law of apparent horizon thermodynamics we obtained the modified Friedmann's equations.
We have the addition term in the second Friedmann’s equation which is a dynamical cosmological
constant. We have showed that holographic dark energy is the source of the universe inflation. It
is worth mentioning that Barrow’s and Tsallis’s entropies also lead to Einsten’s equations with the
dynamical cosmological constant [35]. We have found that for some parameters our model have
phases of universe inflation and deceleration and eternal inflation. The transition redshifts when
g = 0, presented in Table 1 were calculated for some EoS parameter w and for entropy parameter
7. According to Table 2, at ¥ =~ 0.1 and w = —2/3 the current deceleration parameter qyo ~ —0.6 is
realised. It was shown that dynamical cosmological constant gives EoS of dark energy wp = —1 at
large Habble parameter H (small apparent horizon radius Rj,). So, after Big Bang the de Sitter space
takes place (pp + pp = 0) and universe inflation is due to dynamical cosmological constant. We have
showed that when R, — oo (H — 0) dynamical cosmological constant vanishes (A.rf — 0). It is
shown that entropic cosmology with our entropy proposed is equivalent to cosmology based on the
teleparallel gravity with the function F(T). It is worth noting that similar results were discussed in
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other models [37,38]. Thus, cosmology based on the modified Friedmann equations obtained may be
of interest for a description of inflation and late time universe acceleration.
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