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Article

Cosmology, New Entropy and Thermodynamics of
Apparent Horizon
S. I. Kruglov 1,2

1 Department of Physics, University of Toronto, 60 St. Georges St., Toronto, ON M5S 1A7, Canada; kruglov@rogers.com
2 Canadian Quantum Research Center, 204-3002 32 Ave., Vernon, BC V1T 2L7, Canada

Abstract: We propose new nonadditive entropy of the apparent horizon SK = SBH/(1 + γS2
BH),

where SBH is the Bekenstein–Hawking (BH) entropy and consider the description of new cosmology.
When parameter γ vanishes (γ → 0) our entropy SK is converted into BH entropy SBH . By using
the holographic principle a new model of holographic dark energy is studied. We obtain the gen-
eralised Friedmann’s equations for Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime for
the barotropic matter fluid with equation of state p = wρ. From the second modified Friedmann’s
equation we find a dynamical cosmological constant. The dark energy pressure pD, density energy ρD

and the deceleration parameter q corresponding to our model are computed. It is shown that at some
EoS w and parameter γ there are phases of universe acceleration, deceleration and eternal inflation.
Our model, with the help of the holographic principle, can describe the universe inflation and late
time of the universe acceleration. We show the current deceleration parameter q0 ≈ −0.6 is realized at
some model parameters. We showed that entropic cosmology with our entropy proposed is equivalent
to cosmology based on the teleparallel gravity with the function F(T). The generalised entropy of the
apparent horizon with the holographic dark energy model may be of interest for new cosmology.

Keywords: entropy; cosmology; holographic principle; dark energy; Friedmann’s equations; universe
acceleration

1. Introduction
It is know that black holes can be described by thermodynamics with entropy being proportional

to the horizon area [1,2] and temperature is linked with the surface gravity. Thus, gravity is related to
ordinary thermodynamics [3–6]. From the first law of apparent horizon thermodynamics Friedmann’s
equations also can be derived [7–17]. Different entropies were studied in [18–24] which can lead to
modified Friedmann’s equations. Other holographic dark energy models were considered in Refs.
[25,26,28–32]. Holographic energy densities, depending on the form of entropy, may describe the
dark energy which drives the universe to accelerate [33,34]. The nature of dark energy is unknown
and can be described by the LCDM model. We propose here new apparent horizon entropy SK =

SBH/(1 + γS2
BH) with SBH being the Bekenstein–Hawking (BH) entropy, that lead to the presence

of dark energy so that our model is alternative to the LCDM model. The SK entropy becomes zero
when the BH entropy vanishes and is the monotonically increasing function of the BH entropy SBH

and is positive. When parameter γ vanishes we arrive at the BH entropy. It should be noted that the
apparent horizon thermodynamics leads to the Friedmann equations, in the framework of Einstein’s
gravity, only when the matter is a perfect fluid with equation of state (EoS) p = −ρ with p being the
matter pressure and ρ is the density energy of matter [16]. Modifying the BH entropy SBH by apparent
horizon entropy SK we study the general case of EoS for barotropic perfect fluid w = p/ρ. It is worth
noting that the long-range gravitational interactions are described by generalized entropies. It will be
shown that SK entropy leads to modified Friedmann’s equations that describe the universe inflation.
In our approach the cosmological constant is dynamical and it explains the presents of dark energy.
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2. New Entropy
Let us consider new entropy

SK = −
W

∑
i=1

pi ln pi
1 + γ(ln(pi))2 , (1)

with W being a number of states and each state has a probability pi with the probability, γ is a free
parameter. The summation in Equation (1) is performed over all possible system microstates. In the
case when γ = 0 entropy (1) becomes the Gibbs entropy

SG = −
W

∑
i=1

pi ln(pi). (2)

If each microstate is populated with equal probability, 1/pi = W (i = 1, 2, ..., W), then Equation (2) is
converted into the Boltzmann entropy SB = ln(W). By virtue of 1/pi = W, we find from Equation (1)

SK =
ln(W)

1 + γ(ln(W))2 . (3)

The BH entropy is SBH = ln(W) and from Equation (3) one obtains

SK =
SBH

1 + γS2
BH

. (4)

From Equation (4) we find at γ = 0 the BH entropy SBH . When A and B are two probabilistically
independent systems, one has pA+B

ij = pA
i pB

j and entropy SK being the nonadditive entropy because
SK(A + B) ̸= SK(A) + SK(B).

3. Thermodynamics of Apparent Horizon
We consider here the FLRW flat universe with the metric

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2
2). (5)

In Equation (5) a(t) is a scale factor and dΩ2
2 represents the line element of 2-dimensional unit sphere.

In the FLRW universe the radius of the apparent horizon Rh = a(t)r is given by

Rh =
1
H

, (6)

where H = ȧ(t)/a(t) is the Hubble parameter of the universe, and dot over the scale factor being the
derivative with respect to the cosmological time t. Inside the space, the total energy is defined as

E = ρVh =
4π

3
ρR3

h, (7)

where, ρ is the energy density of matter fields and the first law of apparent horizon thermodynamics
reads

dE = −ThdSh + WdVh. (8)

In cosmology the work density W is given by

W = −1
2

Tr(Tµν) =
1
2
(ρ − p),
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and p is the matter pressure. The apparent horizon temperature is represented as

Th =
H
2π

∣∣∣∣1 + Ḣ
2H2

∣∣∣∣. (9)

Making us of Equations (6), (7), and (9), we obtain from first law of apparent horizon thermodynamics
(8) the equation as follows:

H
2π

∣∣∣∣1 + Ḣ
2H2

∣∣∣∣dSh = − 4π

3H3 dρ +
2π(ρ + p)

H4 dH. (10)

With the aid of the energy momentum conservation (the continuity equation)

ρ̇ = −3H(ρ + p). (11)

we find equation (10) in the form

H
2π

∣∣∣∣1 + Ḣ
2H2

∣∣∣∣Ṡh = − 4πρ̇

3H3

(
1 +

Ḣ
2H2

)
. (12)

4. Modified FLRW Equations
Assuming that Ḣ ≥ 2H2 and making use of Equations (11) and (12), we find

H
2π

Ṡh =
4π(ρ + p)

H2 . (13)

By virtue of our entropy (4) (Sh = SK) and BH entropy

SBH =
π

GH2 (14)

and utilizing Equations (13) and (14), one obtains the modified Friedmann equation

Ḣ(1 − γπ2/(GH2)2)

(1 + γπ2/(GH2)2)2 = −4πG(ρ + p). (15)

Equation (15), as γ → 0, is converted into the usual Friedmann equation within general relativity for
flat universe. Integrating Equation (15) and making use of Equation (11) we find the second modified
Friedmann equation

H2 +
bH2

b + H4 − 2
√

b arctan
(

H2
√

b

)
=

8πG
3

ρ, (16)

where we have defined parameter b = π2γ/G2. When b = 0 (γ = 0) Equation (16) becomes the FLRW
equation for flat universe in the framework Einstein’s gravity. Introducing the effective (a dynamical)
cosmological constant

Λe f f = 6
√

b arctan
(

H2
√

b

)
− 3bH2

b + H4 , (17)

equation (16) can be put into the usual form of Friedmann’s equation

H2 =
8πG

3
ρ +

Λe f f

3
. (18)

The dynamical cosmological constant Λe f f versus H at some parameters b = π2γ/G2 is depicted in
Figure 1.
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Figure 1. The function Λe f f versus H at b = π2γ/G2 = 1, 2, 3. Figure 1 shows that Λe f f increases as b increases.
When H → ∞ the dynamical cosmological constant becomes Λe f f → 3π

√
b.

In accordance with Figure 1, Λe f f increases as the Habble parameter H increases. As H → ∞ the
dynamical cosmological constant becomes Λe f f → 3π

√
b. At fixed H, when b increases the dynamical

cosmological constant Λe f f also increases. Making use of Equations (17) and (18) we obtain the dark
energy density

ρD =
3

8πG

[
2
√

b arctan
(

H2
√

b

)
− bH2

b + H4

]
. (19)

Let us define the normalized density parameters Ωm = ρ/(3M2
PH2) and ΩD = ρD/(3M2

PH2),
where MP = 1/

√
8πG is the reduced Plank mass. Then from Equations (17), (18) and (19), one finds

the equation Ωm + ΩD = 1. By virtue of Equations (17),(18) and (19) we obtain the normalized density
of the matter (w = 0)

Ωm = 1 − 2
√

b
H2 arctan

(
H2
√

b

)
+

b
b + H4 . (20)

The Ωm versus H is plotted in Figure 2.
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Figure 2. The function Ωm versus H at b == 0.1, 0.2, 0.3. According to Figure 2 Ωm increases as b decreases at
fixed H. When H → ∞ (Rh → 0) one has Ωm → 1 and ΩD → 0.

For the current era Ωm ≈ 0.26, and in accordance with Figure 2, one can obtain the corresponding
parameters b and H. Assuming that dark substance obeys ordinary conservation law, and there is no
mutual interaction between the cosmos components, we find from the continuity equation the dark
energy pressure

pD = − ρ̇D
3H

− ρD. (21)

With the help of Equations (19) and (21) one obtains the pressure

pD = − b(b + 3H4)Ḣ
4πG(H4 + b)2 − 3

8πG

[
2
√

b arctan
(

H2
√

b

)
− bH2

b + H4

]
. (22)
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Making use of Equations (15), (19) and (22) one finds EoS for the dark energy wD = pD/ρD,

wD =
b(b + 3H4)(1 + w)

H4(H4 − b)

(
H2

2
√

b arctan(H2/
√

b)− bH2/(H4 + b)
− 1

)
− 1. (23)

The wD versus H is plotted in Figure 3.
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Figure 3. Left panel: The function wD versus H at b = 1, w = 0,−1/3,−2/3, G = ρ0 = a0 = 1. According to
Figure 3 when EoS parameter for the matter w increases at fixed H the wD also increases (at H > 1.5). At large H
EoS parameter for dark energy wD approaches to −1. Right panel: In accordance with figure when parameter b
increases at fixed H (at H > 1.5), EoS parameter for dark energy wD also increases and limH→∞ wD = −1.

In accordance with left panel of Figure 3 at b = 1 and w = 0,−1/3,−2/3 when w increases, EoS
parameter for dark energy wD also increases (at H > 1.5). According to right panel of Figure 3 at w = 1
and b = 2, 3, 4 when b increases, wD also increases (at H > 1.5). From Equation (23), it follows that
limH→∞ wD = −1 so that the dynamical cosmological constant leads to EoS of dark energy wD = −1
at large Habble parameter H (small apparent horizon radius Rh). As a result, universe inflation is due
to dynamical cosmological constant. When H → 0 (Rh → ∞) the dynamical cosmological constant
vanishes (Λe f f → 0). Thus, after Big Bang (Rh ≈ 0) we have the de Sitter space, pD + ρD = 0.

According to the second law of apparent horizon thermodynamics we have the requirement
ṠK ≥ 0 and from Equation (4) one obtains (1 − γS2

BH)ṠBH/(1 + γS2
BH)

2 ≥ 0 or (1 − γS2
BH) ≥ 0 and

ṠBH = −2πḢ/(GH3) ≥ 0. As a result, these requirements, for positive Hubble parameter, lead to
Ḣ ≤ 0 and (1 − γS2

BH) ≥ 0. Then from Equation (15) we find that at 1 − γπ2/(GH2)2) ≥ 0 one has
ρ + p ≥ 0 and for the positive energy density we obtain for EoS parameter the requirement w ≥ −1.

Now we explore the redshift z = a0/a(t)− 1, where a0 corresponds to a scale factor at the current
time. From the continuity equation (11) and EoS p = wρ we obtain the density energy of matter

ρ = ρ0

(
1 + z

a0

)3(1+w)

, (24)

where ρ0 is the density energy of matter at the present time. With the aid of Equations (16) and (24)
one finds equation as follows:

H2 +
bH2

b + H4 − 2
√

b arctan
(

H2
√

b

)
=

8πG
3

ρ0

(
1 + z

a0

)3(1+w)

. (25)

making use of Equations (24) and (25) we obtain the redshift

z = a0

(
3

8πρ0G

(
H2 +

bH2

H4 + b
− 2

√
b arctan

(
H2
√

b

)))1/(3(1+w))

− 1. (26)

We plotted the function of Habble parameter versus redshift z in Figure 4 for G = ρ0 = a0 = 1.
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Figure 4. Left panel: The function H versus z at b = 1, w = 1/3, 0,−0.1, G = ρ0 = a0 = 1. In accordance with
Figure 4 when z increases H also increases. When EoS parameter w increases, at fixed z, the H also increases.
Right panel: b = 0.2, 0.3, 0.4, w = 0.3, G = ρ0 = a0 = 1. When parameter b increases at fixed z the Habble
parameter also increases.

Figure 4 shows that sas redshift z increases the Habble parameter H also increases. According to
left panel of Figure 4, when EoS parameter w increases, at fixed z, the H also increases. Right panel of
Figure 4 shows that when parameter b increases at fixed z the Habble parameter also increases.

Let us investigate the phases of acceleration and deceleration of the universe. The deceleration
parameter is given by

q = − äa
ȧ2 = −1 − Ḣ

H2 . (27)

If q < 0 we have the acceleration phase but when q > 0 the phase of the universe deceleration takes
place. By virtue of Equations (15), (24) and (27) we obtain the deceleration parameter as a function of
redshift z

q =
4πGρ0(1 + w)(H4 + b)2

H6(H4 − b)

(
1 + z

a0

)3(1+w)

− 1. (28)

With the help of Equations (25) and (28) one finds the deceleration parameter q in the form

q =
3(1 + w)(H4 + b)2

2H6(H4 − b)

(
H2 +

bH2

b + H4 − 2
√

b arctan
(

H2
√

b

))
− 1. (29)

In Figure 5 we depicted the deceleration parameter q versus the Hubble parameter H.
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Figure 5. Figure 5 shows that q increases as H increases. Left panel: The function q versus H at b = 1,
w = −0.1,−0.3, -0.5. When EoS parameter w increases at fixed b and H, the deceleration parameter q also
increases. At w = −0.1 and −0.3 there are two phases, acceleration q < 0 and deceleration q > 0 and at w = −0.5
we have only the acceleration phase (the eternal inflation). Right panel: According to figure, when parameter b
(and γ) increases at fixed w and H the deceleration parameter q decreases. Here, at b = 4 and b = 6 we have two
phases: acceleration and deceleration.
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For some values of w and γ there are two phases: inflation (q < 0) and deceleration (q > 0) but
at some w and γ we have only eternal university acceleration (inflation), q < 0. In accordance with
figure, when redshift z increases the deceleration parameter q also increases. According to left panel of
Figure 5, when EoS parameter w increases the deceleration parameter q also increases at fixed γ. At
w = −0.1 and −0.3 there are two phases, acceleration q < 0 and deceleration q > 0 but at w = −0.5
we have the acceleration phase (the eternal inflation). Accordance to right panel of Figure 5, when
parameter b (and γ) increases, at fixed w, the deceleration parameter q decreases. At b = 4 and b = 6
we have two phases: acceleration and deceleration.

Making use of Equation (29) one obtains the asymptotic

lim
H→∞

q =
3w + 1

2
. (30)

Equation (30) shows that the asymptotic of the deceleration parameter depends only on the entropy
parameter γ (b = π2γ/G2). We obtain from Equation (29 at b = 0 (γ = 0) that q = (3w + 1)/2. The
approximate real and positive solutions to Equation (29) for H at q = 0, G = 1, w = −0.1 are given in
Table 1 for some parameters γ. When q = 0 the transition redshifts zt, we obtained from Equation (26)
at G = a0 = ρ0 = 1.

Table 1. The approximate solutions to Equation (29) for H at q = 0, G = a0 = ρ0 = 1, w = −0.1.

γ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
H 3.777 4.180 4.492 4.749 4.971 5.166 5.341 5.501 5.648
zt -3.513 -3.625 -3.714 -3.790 -3.856 -3.915 -1.606 -1.621 -1.634

According to Table 1 shows that when the entropy parameter γ increases the Hubble parameter
H also increases. For a divided point q = 0 between two pases, universe acceleration and deceleration,
the transition reshift zt is negative and decreases. From Equation (26) we obtain, for the current era
when z = 0, w = −2/3, approximate solutions for the Habble parameter H and the deceleration
parameter q from Equation (29) for different γ, presented in Table 2.

Table 2. The approximate solutions to Equations (3.13) and (3.15) for the current era z = 0 at G = 1, a0 = ρ0 = 1,
w = −2/3.

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
H 3.352 3.509 3.621 3.711 3.786 3.853 3.912 3.965 4.015 4.060
q -0.618 -0.646 -0.664 -0.676 -0.686 -0.694 -0.701 -0.707 -0.712 -0.717

In Table 2, negative values of the deceleration parameter q show the acceleration phase of the
universe at the current time. The deceleration parameter at the current time is q0 ≈ −0.6 [36]. In
accordance with Table 2 there is entropy parameter γ ≈ 0.1 which can give that result.

5. F(T)-Gravity from Generalized Entropy
Scalar torsion T, in teleparallel gravity, plays a role of a fundamental field similar to the curvature

R in Einstein’s general relativity theory [39]. We can describe the inflationary era and the current
Universe accelerating expansion by introducing a Lagrangian F(T) in analogy with F(R)-gravuty. The
torsion scalar field T is defined as [40,41]

T = S µν
ρ Tρ

µν, (31)
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where tensors S µν
ρ and Tρ

µν are given by

S µν
ρ =

1
2

(
Kµν

ρ + δ
µ
ρ Tαν

α − δν
ρ Tαµ

α

)
,

Kµν
ρ = −1

2

(
Tµν

ρ − Tνµ
ρ − T µν

ρ

)
,

Tρ
µν = eρ

i

(
∂µei

ν − ∂νei
µ

)
, (32)

where ei
ν (i = 0, 1, 2, 3) is a vierbein field, and the metric tensor is gµν = ηijei

µej
ν, where ηij being the

flat metric of the tangent spacetime. For FLRW metric (5), one has ei
µ = diag(1, a, a, a) anf the torsion

scalar field is given by T = −6H2. By variation the action with respect to ei
µ, where the Lagrangian is

F(T), we obtain [42]
1
6
[
F(T)− 2TF′(T)

]
|T=−6H2 =

(
8πG

3

)
ρ. (33)

Making use of equations (16) and (33) one finds

[
F(T)− 2TF′(T)

]
= −T − 36bT

36b + T2 + 12
√

b arctan
(

T
6
√

b

)
. (34)

Integrating Equation (34) we obtain the function F(T):

F(T) = T − 3
√

3
√

bT
4

[
ln

(
6
√

b + T + 2
√

3
√

bT

6
√

b + T − 2
√

3
√

bT

)

−2 arctan

(
1 −

√
T

3
√

b

)
+ 2 arctan

(
1 +

√
T

3
√

b

)]

+12
√

b arctan
(

T
6
√

b

)
+ C

√
T, (35)

where C is the constant of integration. As a result, we showed that the teleparallel gravity with the
function (35) corresponds to entropic cosmology with entropy (4) proposed.

6. Summary
In conclusion, we have proposed new entropy SK = SBH/(1 + γS2

BH) which possesses similar
property as the Bekenstein–Hawking entropy SBH ; it becomes zero when the apparent horizon radius
Rh vanishes. The SK monotonically increases when the apparent horizon radius Rh increases and
SK is positive. We have studied the barotropic perfect fluid with flat FLRW universe. By exploring
the first law of apparent horizon thermodynamics we obtained the modified Friedmann’s equations.
We have the addition term in the second Friedmann’s equation which is a dynamical cosmological
constant. We have showed that holographic dark energy is the source of the universe inflation. It
is worth mentioning that Barrow’s and Tsallis’s entropies also lead to Einsten’s equations with the
dynamical cosmological constant [35]. We have found that for some parameters our model have
phases of universe inflation and deceleration and eternal inflation. The transition redshifts when
q = 0, presented in Table 1 were calculated for some EoS parameter w and for entropy parameter
γ. According to Table 2, at γ ≈ 0.1 and w = −2/3 the current deceleration parameter q0 ≈ −0.6 is
realised. It was shown that dynamical cosmological constant gives EoS of dark energy wD = −1 at
large Habble parameter H (small apparent horizon radius Rh). So, after Big Bang the de Sitter space
takes place (pD + ρD = 0) and universe inflation is due to dynamical cosmological constant. We have
showed that when Rh → ∞ (H → 0) dynamical cosmological constant vanishes (Λe f f → 0). It is
shown that entropic cosmology with our entropy proposed is equivalent to cosmology based on the
teleparallel gravity with the function F(T). It is worth noting that similar results were discussed in
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other models [37,38]. Thus, cosmology based on the modified Friedmann equations obtained may be
of interest for a description of inflation and late time universe acceleration.

References
1. J. D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7 (1973), 2333-2346.
2. S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975), 199-220; Erratum: ibid. 46

(1976), 206.
3. T. Jacobson, Thermodynamics of Spacetime: The Einstein Equation of State, Phys. Rev. Lett. 75 (1995), 1260.
4. T. Padmanabhan, Gravity and the Thermodynamics of Horizons, Phys. Rept. 406 (2005), 49.
5. T. Padmanabhan, Thermodynamical Aspects of Gravity: New insights, Rept. Prog. Phys. 73 (2010), 046901.
6. S. A. Hayward, Unified first law of black-hole dynamics and relativistic thermodynamics, Class. Quant.

Grav. 15 (1998), 3147-3162.
7. M. Akbar and R. G. Cai, Thermodynamic Behavior of Friedmann Equation at Apparent Horizon of FRW

Universe, Phys. Rev. D 75 (2007), 084003.
8. R. G. Cai and L. M. Cao, Unified First Law and Thermodynamics of Apparent Horizon in FRW Universe,

Phys. Rev. D 75 (2007), 064008.
9. A. Paranjape, S. Sarkar and T. Padmanabhan, Thermodynamic route to Field equations in Lanczos-Lovelock

Gravity, Phys. Rev. D 74 (2006), 104015.
10. A. Sheykhi, B. Wang and R. G. Cai, Thermodynamical Properties of Apparent Horizon in Warped DGP

Braneworld, Nucl. Phys. B 779, (2007) 1.
11. R. G. Cai and N. Ohta, Horizon Thermodynamics and Gravitational Field Equations in Horava-Lifshitz

Gravity, Phys. Rev. D 81 (2010), 084061.
12. M. Jamil, E. N. Saridakis and M. R. Setare, The generalized second law of thermodynamics in Horava-Lifshitz

cosmology, JCAP 1011 (2010), 032.
13. Y. Gim, W. Kim and S. H. Yi, The first law of thermodynamics in Lifshitz black holes revisited, JHEP 1407

(2014), 002.
14. Z. Y. Fan and H. Lu, Thermodynamical First Laws of Black Holes in Quadratically-Extended Gravities, Phys.

Rev. D 91 (2015), 064009.
15. R. D’Agostino, Holographic dark energy from nonadditive entropy: cosmological perturbations and obser-

vational constraints, Phys. Rev. D 99 (2019), 103524.
16. L. M. Sanchez and H. Quevedo, Thermodynamics of the FLRW apparent horizon, Phys. Lett B 839 (2023),

137778.
17. S. Wang, Y. Wang and M. Li, Holographic Dark Energy, Phys. Rept. 696 (2017) 1.
18. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52 (1-2) (1988), 479-487; C.

Tsallis, The Nonadditive Entropy Sq and Its Applications in Physics and Elsewhere: Some Remarks, Entropy
13, 1765 (2011).

19. A. R´enyi, Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability,
University of California Press (1960), 547-56.

20. A. Sayahian Jahromi et al, Generalized entropy formalism and a new holographic dark energy model, Phys.
Lett. B 780 (2018), 21-24.

21. J. D. Barrow, The Area of a Rough Black Hole, Phys. Lett. B 808 (2020), 135643.
22. G. Kaniadakis, Statistical mechanics in the context of special relativity II, Phys. Rev. E 72 (2005), 036108.
23. Marco Masi, A step beyond Tsallis and Rényi entropies, Phys. Lett. A 338 (2005), 217-224.
24. V. G. Czinner and H. Iguchi, Rényi entropy and the thermodynamic stability of black holes, Phys. Lett. B 752

(2016), 306-310.
25. J. Ren, Analytic critical points of charged Renyi entropies from hyperbolic black holes, JHEP 05 (2021), 080.
26. K. Mejrhit and S. E. Ennadifi, Thermodynamics, stability and Hawking–Page transition of black holes from

non-extensive statistical mechanics in quantum geometry, Phys. Lett. B 794 (2019), 45-49..
27. A. Majhi, Non-extensive Statistical Mechanics and Black Hole Entropy From Quantum Geometry, Phys. Lett.

B 775 (2017), 32-36.
28. S. Nojiri, S. D. Odintsov and T. Paul, Early and late universe holographic cosmology from a new generalized

entropy, Phys. Lett. B 831 (2022), 137189.
29. Yassine Sekhmani, et al., Exploring Tsallis thermodynamics for boundary conformal field theories in

gauge/gravity duality, Chin. J. Phys. 92 (2024), 894–914.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 April 2025 doi:10.20944/preprints202503.1377.v2

https://doi.org/10.20944/preprints202503.1377.v2


10 of 10
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