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Article 

New Nodes  for Node‐RED Library within OpenBCI 
Category  for  EEG‐Based  Brain‐Machine  Interface 
Design and Integration in IoT 
Adelina Kremenska * and Anna Lekova * 

Institute of Robotics, Bulgarian Academy of Sciences 
*  Correspondence: a.kostova012@gmail.com (A.K.); a.lekova@ir.bas.bg (A.L.) 

Abstract:  The  growing  of  Brain‐Computer  Interface  (BCI)  applications  is  closely  related  to  the 
increasing  accessibility  of  Electroencephalography  (EEG)  hardware  (EEG  headsets), which  are 
noninvasive, portable, wireless and often with open software. However, there is a limited number 
of BCI software platforms tailored to help inexperienced programmers in the development of BCI 
applications. Only few of them integrate BCI applications with IoT devices and services. To address 
these  challenges,  a  model  for  visual  node‐based  programming  has  been  designed  utilizing 
BrainFlow library within the Node‐RED platform, which can be applied to more than 20 biosensors. 
New Nodes for Node‐RED Library within OpenBCI Category (openBCI toolkit for Node‐RED) have 
been  developed  for  design  of  EEG‐Based  Brain‐Machine  Interface  and  Integration  in  IoT.  The 
proposed  toolkit  have  been  implemented  and  validated  through  a  case  study  for  controlling  a 
robotic arm by OpenBCI headset. The results from the pilot experiment demonstrated that through 
concentration levels classified by BrainFlow performance metrics, the control of a TinkerKit Braccio 
robot arm is possible. 

Keywords: BCI Software Platforms; Node‐RED; BrainFlow; IoT; OpenBCI technology 
 

1. Introduction 

The rising popularity of Brain‐Computer  Interface  (BCI) applications  is closely related  to  the 
increasing  accessibility  of  Electroencephalography  (EEG)  hardware  (EEG  headsets),  which  are 
noninvasive, portable, wireless and often with open software. While BCI software platforms do exist, 
there is a limited number of systems specifically tailored to help inexperienced programmers in the 
development of BCI applications: NeuroBlock [1], Blockly block framework for dynamic brain‐based 
virtual  environment  [2],  BrainFlow  [3],  Neuromore  Studio  [4],  NeuroScale  [5],  NeuroPype  [6], 
EmotivBCI Node‐RED  toolkit  [7]. From  them,  software  technologies  for BCI programming  in  the 
Internet of Things (IoT) are only two: NeuroScale [5], designed to integrate with various popular EEG 
devices commonly used in research and clinical settings, while EmotivBCI Node‐RED toolkit [7,8] is 
device  specific. However,  the BCI  toolkit  for programing EEG‐based BCI applications  is only  for 
Emotiv  EPOC+  and  Insight  devices.    The  benefit  of  using  the  EmotivBCI Node‐RED  toolkit  in 
comparison  to  the NeuroScale  approach  lies  in  its  simplification  of  the  integration  process.  For 
example, while both methods aim to interface EEG headsets with robotic arms, the EmotivBCI Node‐
RED  toolkit  offers  prebuilt  blocks  specifically  designed  for  use  with  Node‐RED  [9],  a  visual 
programming tool, and streamline the integration. In contrast, NeuroScaleʹs approach determines the 
userʹs  intent  from  processed  signals  and  communicates with  a  robot  arm  using  an  interface  or 
middleware. The integration method can vary, involving APIs, communication protocols or custom 
development, depending on the specific hardware and software components in use. Therefore, node‐
based visual programming can be the more appropriate solution in this context. 
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The paper focuses on the introduction of new nodes in the Node‐RED library, configured within 
the OpenBCI category, for the design and integration of an EEG‐based Brain‐Machine Interface in the 
context of the Internet of Things (IoT). We created a new BCI toolkit in Node‐RED for more than 20 
open‐source EEG boards based on BrainFlow software library [10] that supports and provide uniform 
data acquisition API for them. Additionally, BrainFlow provides a robust API for signal processing 
and EEG featuring, which are open‐source, can be modified and utilized independently of the type 
of  the  BCI  headsets.  Although,  the  BrainFlow  library  assists  inexperienced  programmers  in 
developing BCI applications, several obstacles we have encountered. They include various challenges 
related to programming skills, signal acquisition and processing, managing multiple python scripts 
for board interaction, real‐time EEG data streaming, data sampling and sliding window techniques, 
decomposition of power spectral density  into different frequencies, real‐time data streaming, data 
sampling, power spectral density analysis, and integration with different devices and services. 

To overcome these difficulties and enhance the development of BCI applications for integrating 
with IoT devices, processes or services, several contributions have been made: 
 A model  for visual node‐based programming has been designed utilizing BrainFlow  library 

within the Node‐RED platform, tailored to help inexperienced programmers in the development 
of BCI applications;   

 An openBCI Node‐RED toolkit based on the proposed model has been developed, which can be 
applied to more than 20 EEG‐based devices. 
The proposed openBCI toolkit was implemented and validated through a case study, wherein a 

BCI  application  utilizing  BrainFlow  performance metrics was  employed  to  control  a  TinkerKit 
Braccio robot arm via OpenBCI Cyton + Daisy boards 

The rest of the paper is organized as follows: Section 2 describes the system architecture of an 
EEG‐based BCI  for communication with devices and services  in  the  IoT using openBCI  toolkit  in 
Node‐RED; Section 3 describes  the new nodes  in openBCI  toolkit  in Node‐RED  library. Section 4 
presents  the  flowchart  illustrating  the  algorithm behind  the  ʹopenBCI‐dataʹ node. At  the  end we 
present our conclusions and future work. 

2. System Architecture 

Designed and developed is a system architecture of an EEG‐based BCI for communication with 
devices  and  services  in  the  IoT  using  openBCI  toolkit  in Node‐RED with  practical  application 
capabilities (Figure 1). 

 

Figure 1. A system architecture  for an EEG‐based BCI  in  the  IoT, utilizing  the openBCI 
toolkit within Node‐RED. 
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To register EEG signals, a non‐invasive and portable EEG device OpenBCI  [11] was utilized. 
However, within the established architecture, other devices supported by the BrainFlow library can 
also be employed. The measured EEG data is transmitted via Bluetooth to the Node‐RED platform 
[12], nevertheless the architecture is also allowing data transmission over Wi‐Fi. Node‐RED is utilized 
as a browser‐based  tool  for streamlining programming  flows and acts as a gateway  to  the  IoT.  It 
facilitates sending JSON‐type requests to the FlowFuse platform [13], employed for cloud computing. 
The architecture provides users the flexibility to use various EEG devices, and for this purpose, three 
new nodes have been designed and added to the Node‐RED library (Figure 2) ‐ ʹopenBCI‐streamingʹ 
ʹopenBCI‐Dataʹ and ʹopenBCI‐EEGmetricsʹ. These are customized nodes with access to the BrainFlow 
API according to the selected device and processing needs. BrainFlow is a software framework for 
building BCI applications using conventional programming languages, supporting over twenty EEG‐
based BCI devices. 

 

Figure 2. Visualization of the new nodes in the Node‐RED palette within the newly created 
openBCI category. 

The new nodes contribute to transforming these BCI devices into  ʹthingsʹ only through visual 
programming  in  Node‐RED,  eliminating  the  need  for  any  programming  code.  This  way,  the 
capabilities of Node‐RED are expanded, offering an easy way for OpenBCI users to specify the board 
ID, data type, and electrodes of interest. Based on the input values entered in the nodeʹs user settings, 
a JavaScript file within the node processes and transmits the parameters to the BrainFlow API. The 
parameter transmission is done through a child process linking the Node.js server in Node‐RED to 
the BrainFlow API, generating the output  in JSON type. The connection to the BrainFlow API has 
been established  through a newly developed Python  file with Python software code, utilizing  the 
BrainFlow libraries. Each of the newly created nodes contains such a file in its directory, differed by 
the functionalities of the specific node. Node‐RED also provides various output nodes such as mqtt 
out, serial out, http response, play audio, generic‐BLE out, etc., for subsequent data transmission to 
IoT. 

3. Overview of the openBCI toolkit within Node‐RED 

The developed original methods and algorithms for visual programming and integration of a 
BCI in a web‐based streaming environment, successfully validated using OpenBCI device, BrainFlow 
library, Node‐RED  and  Arduino‐based  robotic  arm  are  combined  into  a  newly  created  toolkit   
openBCI within the Node‐RED platform,    (https://flows.nodered.org/collection/W7dKrufq2WWR), 
and applicable to more than 20 EEG‐based devices. 

At  the beginning of  the development,  it was observed  that when EEG devices  transmit data 
through  the COM port via a USB dongle,  it  is not possible  to  initiate more  than one process  to a 
specific port.  In  other words,  only  one  session  can be  started  on  one COM port. This  limitation 
restricts  the  parallel  collection  and  processing  of  data  of  different  nature  and/or  from  different 
electrodes, requiring all conditions to be structured in a single process and session. This restriction 
contradicts the concept of visual programming to design logically separated processes into multiple 
micro‐processes, enabling various combinations/scenarios tailored to the specific needs of the user. 
To overcome this limitation, an original method was developed in the Node‐RED platform, based on 
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the BrainFlow  streaming board. This board can  stream data  to various destinations  such as  files, 
sockets, etc., directly from BrainFlow, practically acting like a consumer for data received from the 
main  process.  In  the  developed method, when  initiating  a  session with  the OpenBCI  board,  a 
streaming function to a socket with a valid multicast address and port is added. For each subsequent 
data collection and/or processing process, a session is not started with the main board but with the 
BrainFlow streaming board. This way, the main process to the COM port remains only one, while the 
user can configure multiple micro‐processes through visual programming. 

3.1. Node ʹopenBCI‐streamingʹ 

The node ʹopenBCI‐streamingʹ initiates the main process to the OpenBCI board in Node‐RED. 
The node is configured with a button for instant start, as well as an input for initiation via another 
Node‐RED node. The node is defined to be located after installation in the newly created openBCI 
category  for  the purpose of  the dissertation  in  the Node‐RED palette. Upon opening  the node by 
double‐clicking, the user settings of the node are visualized (Figure 3). 

 

Figure 3. User settings of the ʹopenBCI‐streamingʹ node. 

The algorithm of the node includes mandatory user input fields such as ʹBoard Nameʹ or ʹBoard 
ID,ʹ ́Serial port,ʹ and ́Streaming time (in seconds).ʹ The ́Nameʹ field is optional, used if the user wishes 
to rename the node. When configuring user settings, the user needs to know the exact COM port used 
by their EEG device for the session to be registered. Upon opening, the node is configured to display 
an example value ʹCOM3ʹ in the ʹSerial portʹ field and a value of ʹ60ʹ in the ʹStreaming time (seconds)ʹ 
field  for user  convenience. The  ʹBoard Nameʹ  field  is defined as a drop‐down menu of OpenBCI 
boards in the BrainFlow API. When selecting an option from the menu, the  ʹBoard IDʹ text field is 
deactivated via JavaScript. Similarly, JS deactivates the ʹBoard Nameʹ field when the ʹBoard IDʹ field 
is filled. Only one of the two fields can be used to start a session, and this automation has been added 
to avoid user errors when initiating the node. This automation is implemented in all three new nodes 
and a tip has been added to the node visualization: ʹSelect board from the ʹBoard Nameʹ drop‐down 
menu or type board supported from Brainflow in the ʹBoard IDʹ fieldʹ. After initiating the node, the 
algorithm  starts  a  session  to  the  ʹstreamingʹ Brainflow  board  and  returns  a  ʹStart  streamʹ  debug 
message. After the user‐defined time in the ʹStreaming time (seconds)ʹ field elapses, the node sends 
a ʹStop streamʹ JSON type message to signal the end of the session. 

3.2. Node ʹopenBCI‐dataʹ   

The ʹopenBCI‐dataʹ node has the most functionalities among the three newly created nodes and 
executes an algorithm to access raw data from the EEG device, process it through predefined filters 
and calculate the powers of six frequency bands of the EEG signal in real‐time. This node operates 
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only when there is an already started and correctly functioning ʹopenBCI‐streamingʹ node since the 
algorithm reads the data directly from it. In the user settings of the node (Figure 4a) is mandatory to 
enter either the ʹBoard Nameʹ or ʹBoard IDʹ field. 

 
a. data type ‘RAW’           b.    data type ‘Band power’ 

Figure 4. User settings of the ʹopenBCI‐dataʹ node. 

Upon initially opening the node settings, the dropdown menu ʹData typeʹ is set to ʹRAW.ʹ This 
option allows the user access to the raw data obtained from the EEG device. The time window for 
visualizing the data is set through the ʹWindow sizeʹ field, with the value provided in seconds. When 
selecting the second option  ʹBand powerʹ (Figure 4b), an additional  ʹBandʹ field is displayed in the 
user settings menu. It includes the options ʹAlphaʹ, ʹThetaʹ, ʹGammaʹ,  ʹHighBetaʹ,  ʹLowBetaʹ,  ʹDeltaʹ, 
ʹGammaʹ  and  ʹAllʹ. When  selecting one of  the options,  the algorithm  calculates  the power of  the 
chosen frequency band for the selected channel of the used board and returns the result in type JSON. 
The  last  option  in  the  ʹData  typeʹ  dropdown menu  is  ʹSignal  filtering’. An  additional menu  for 
choosing the filter type includes the options ʹBandpassʹ, ʹBandstopʹ, ʹLowpassʹ, etc. Upon starting the 
node with a selected filter type from the menu, the nodeʹs algorithm filters the raw data from the 
chosen channel based on the specified filter and returns the result in type JSON. 

3.3. Node „openBCI‐EEGmetrics“ 

The  node  ʺopenBCI‐EEGmetricsʺ  allows  users  to monitor  the  levels  of  focus  on  the  object 
connected  to the EEG device.  In the nodeʹs settings (Figure 5), a dropdown menu  labeled  ʺMetric 
typeʺ is configured with options ʺRelaxationʺ and ʺConcentration.ʺ 
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Figure 5. User settings of the „openBCI‐EEGmetrics“ node. 

The algorithm for calculating the metrics is integrated from the Brainflow API. For ʺRelaxation,ʺ 
it considers FFT values associated with delta, theta, and alpha brain waves, while for ̋ Concentration,ʺ 
it examines beta and gamma brain waves. Relaxation is typically achieved through ʺmeditationʺ with 
closed  eyes, while  concentration  can  be  attained  through  focused  attention with  open  eyes. The 
algorithm returns values  in  the range between 0 and 1. The Brainflow API provides  the option to 
specify a classifier of choice (Regression, KNN, SVM or LDA) for this algorithm. However, according 
to OpenBCIʹs recommendation, the newly created node is configured to always use Regression as the 
classifier. All channels of the used EEG device are employed for the calculations, and the user can set 
the  time window  (in  seconds)  for  computing  the  average  power  of  the  frequency  band  in  the 
ʺWindow sizeʺ field in the user settings. 

4. The algorithmsʹ flowchart 

A detailed  flowchart has been developed  for  the new  ʺopenBCI‐dataʺ node.  It  illustrates  the 
working  principle  of  the  developed  original methods  and  algorithms  in  the  overall  operational 
process of the new node. The node itself combines various software technologies and languages such 
as HTML, JavaScript, Python, Express and others, and the flowchart illustrates the logical connections 
between them. The developed diagram is specific to the ʺopenBCI‐dataʺ node, but its fundamental 
principles are applicable to the other two newly created nodes ‐ ʺopenBCI‐streamingʺ and ʺopenBCI‐
EEGmetricsʺ. The  front‐end of  the  ʺopenBCI‐dataʺ node  (Figure 6), responsible  for visualizing  the 
node, is built using HTML and JavaScript. Figure 6 illustrates the logical principles in a file with the 
extension .html in the nodeʹs directory. 
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Figure 6. Front‐end of the ʺopenBCI‐dataʺ node. 

The back‐end of the ̋ openBCI‐dataʺ node (Figure 7) is entirely constructed from JavaScript code. 
Figure 6 illustrates the logical principles in the two .js files in the nodeʹs directory. 
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Figure 7. Back‐end of the ʺopenBCI‐dataʺ node. 

Figures 8 and 9 show the section of the ʺopenBCI‐dataʺ node for collecting and processing EEG 
data, executed by the .py file from the nodeʹs directory. This is the part where the Brainflow API is 
integrated through the Python programming  language. The end of the processes of the ʺopenBCI‐
dataʺ node is illustrated in Figure 10. 
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Figure 8. Part 1 of the ʺopenBCI‐dataʺ node for collecting and processing EEG data. 

 
Figure 9. Part 2 of the ʺopenBCI‐dataʺ node for collecting and processing EEG data. 
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Figure 10. End of the ʺopenBCI‐dataʺ node. 

 

5. Specific in creating OpenBCI nodes in the Node‐RED library 

To create a customized node, a directory containing three types of files—package.json, js, and 
html have  to be  initially created  in  the  file system. The package.json  file, a standard  file used by 
Node.js modules  to describe  their content,  is used  to package all  files  in  the directory as an npm 
module. 

5.1. HTML File (.html) 

The front‐end of the node is defined in the HTML file, executed in the Node‐RED editor within 
a web browser. It contains three separate parts, each wrapped in its own HTML <script> tag. The first 
tag  defines  the main  node,  registered  in  the  platform  editor, where  properties  such  as  palette 
category, editable defaults, and the icon to be used are specified. It is within a regular JavaScript script 
tag with  type=ʺtext/javascriptʺ.  This  tag  ensures  the  node  is  registered  in  the  editor  using  the 
RED.nodes.registerType  function.  The  second  tag  represents  an  editing  template,  defining  the 
content of the nodeʹs editing dialog window. Automatic show/hide functionalities for parts of the 
nodeʹs content are created within this tag. The tag is defined as a text/html script with a specified 
data‐template‐name based on the node type. The node type is used throughout the editor to identify 
the node and must correspond to the value used in the RED.nodes.registerType function call in the 
respective .js file. The third tag is a help text tag displayed in the Node‐RED platformʹs information 
sidebar.   

5.2. JavaScript File (.js) 

The back‐end of the node is defined in the JavaScript file, executed during Node‐REDʹs runtime. 
The file, with a .js extension, determines the behavior of the node. Nodes are defined by a constructor 
function used  to create new  instances of  the node. This function  is registered upon the platformʹs 
startup, allowing it to be invoked when nodes of the corresponding type are placed in the flow. The 
function  is passed an object containing properties set  in  the  flow editor. The constructor  function 
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should first invoke RED.nodes.createNode to initialize features shared by all nodes. Subsequently, 
the node‐specific code is executed. Communication between the front‐end and back‐end of each node 
is achieved by creating an HTTP endpoint within the nodeʹs runtime, and HTTP calls to this endpoint 
are made from the individual nodesʹ editors. The HTTP endpoint is created using the Express routing 
application API  in Node‐REDʹs  runtime. All Express  routing methods  are  available  through  the 
RED.httpAdmin API,  however  only  the  post method  is  being  used  in  the  developed  software. 
Additionally,  the  newly  created  nodes  utilize  Expressʹ  authentication  middleware  through  the 
RED.auth.needsPermission API, setting specific write permissions for the node typeʹs endpoint. 

5.3. Child_Process Module 

A connection  from  the Node‐RED Node.js server  to  the Brainflow API was established. This 
connection was  facilitated by a second  .js  file using  the child_process module  to execute a newly 
developed  Python  file.  The  Node.js  child_process  module  allows  access  to  operating  system 
functionalities by executing any system command within a child process. It provides control over the 
arguments passed to the OS command and allows the use of the commandʹs output. There are four 
different ways to create a child process in Node.js: spawn(), fork(), exec(), and execFile(). The spawn 
function was used in the newly created nodes, as it starts a command in a new process and enables 
passing all arguments to that command. The command executed in the nodes for this dissertation is 
the  Python  file  from  the  nodeʹs  directory. Arguments  to  the  command  executed  by  the  spawn 
function  are passed  as  the  second  argument  to  the  function. The  result  of  the  spawn  functionʹs 
execution is a ChildProcess instance that implements the EventEmitter API. This means that event 
handlers  can  be  directly  registered  on  this  child  object.  Events  that  can  be  registered with  the 
ChildProcess  instance are exit, close, disconnect, error, and message.  In  the newly created nodes, 
event handlers for exit and error are registered. Each child process also receives the three standard 
stdio streams, which can be accessed using child.stdin, child.stdout, and child.stderr. When  these 
streams are closed, the child process using them emits the close event. In the newly created nodes, 
the most crucial readable streams stdout and stderr are used by listening for the data event, which 
will contain the commandʹs output or any error during its execution. The commandʹs output is passed 
to  the  nodeʹs  output  in  JSON  type, while  any  execution  errors  are  visualized  in  the Node‐RED 
platformʹs debug console. 

5.4. Publishing to npm 

The developed nodes have been published to npm using the npm publish command and are 
available for use by the community. User installation commands are individual for each specific node 
and are as follows:   

npm install node‐red‐contrib‐openbci 
npm install node‐red‐contrib‐openbci‐EEGmetrics 
npm install node‐red‐contrib‐openbci‐streaming 

6. Conclusions 

The proposed user‐friendly approach for BCI application development will enable a larger circle 
of users  to develop BCI applications without  requiring  technical expertise. The new nodes  in  the 
openBCI  toolkit  contribute  to  transforming  BrainFlow  supported  BCI  devices  into  ʹthingsʹ  only 
through visual programming in Node‐RED, eliminating the need for any programming code. The 
proposed toolkit has been validated through pilot tests, demonstrating its effectiveness in controlling 
a  robotic  arm  using  the OpenBCI  headset.  Future  validation will  involve  testing  the  toolkit  in 
different  Node‐RED  applications  through  additional  research  experiments,  supplemented  by 
detailed results assessment, including graphical representations. 
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