
Article

Not peer-reviewed version

New Nodes for Node‐RED Library within

OpenBCI Category for EEG‐Based

Brain‐Machine Interface Design and

Integration in IoT

Adelina Kremenska

*

 and Anna Lekova

*

Posted Date: 23 January 2024

doi: 10.20944/preprints202401.1608.v1

Keywords: BCI Software Platforms; Node-RED; BrainFlow; IoT; OpenBCI technology

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2587385

Article

New Nodes for Node‐RED Library within OpenBCI
Category for EEG‐Based Brain‐Machine Interface
Design and Integration in IoT
Adelina Kremenska * and Anna Lekova *

Institute of Robotics, Bulgarian Academy of Sciences
* Correspondence: a.kostova012@gmail.com (A.K.); a.lekova@ir.bas.bg (A.L.)

Abstract: The growing of Brain‐Computer Interface (BCI) applications is closely related to the
increasing accessibility of Electroencephalography (EEG) hardware (EEG headsets), which are
noninvasive, portable, wireless and often with open software. However, there is a limited number
of BCI software platforms tailored to help inexperienced programmers in the development of BCI
applications. Only few of them integrate BCI applications with IoT devices and services. To address
these challenges, a model for visual node‐based programming has been designed utilizing
BrainFlow library within the Node‐RED platform, which can be applied to more than 20 biosensors.
New Nodes for Node‐RED Library within OpenBCI Category (openBCI toolkit for Node‐RED) have
been developed for design of EEG‐Based Brain‐Machine Interface and Integration in IoT. The
proposed toolkit have been implemented and validated through a case study for controlling a
robotic arm by OpenBCI headset. The results from the pilot experiment demonstrated that through
concentration levels classified by BrainFlow performance metrics, the control of a TinkerKit Braccio
robot arm is possible.

Keywords: BCI Software Platforms; Node‐RED; BrainFlow; IoT; OpenBCI technology

1. Introduction

The rising popularity of Brain‐Computer Interface (BCI) applications is closely related to the
increasing accessibility of Electroencephalography (EEG) hardware (EEG headsets), which are
noninvasive, portable, wireless and often with open software. While BCI software platforms do exist,
there is a limited number of systems specifically tailored to help inexperienced programmers in the
development of BCI applications: NeuroBlock [1], Blockly block framework for dynamic brain‐based
virtual environment [2], BrainFlow [3], Neuromore Studio [4], NeuroScale [5], NeuroPype [6],
EmotivBCI Node‐RED toolkit [7]. From them, software technologies for BCI programming in the
Internet of Things (IoT) are only two: NeuroScale [5], designed to integrate with various popular EEG
devices commonly used in research and clinical settings, while EmotivBCI Node‐RED toolkit [7,8] is
device specific. However, the BCI toolkit for programing EEG‐based BCI applications is only for
Emotiv EPOC+ and Insight devices. The benefit of using the EmotivBCI Node‐RED toolkit in
comparison to the NeuroScale approach lies in its simplification of the integration process. For
example, while both methods aim to interface EEG headsets with robotic arms, the EmotivBCI Node‐
RED toolkit offers prebuilt blocks specifically designed for use with Node‐RED [9], a visual
programming tool, and streamline the integration. In contrast, NeuroScaleʹs approach determines the
userʹs intent from processed signals and communicates with a robot arm using an interface or
middleware. The integration method can vary, involving APIs, communication protocols or custom
development, depending on the specific hardware and software components in use. Therefore, node‐
based visual programming can be the more appropriate solution in this context.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202401.1608.v1
http://creativecommons.org/licenses/by/4.0/

 2

The paper focuses on the introduction of new nodes in the Node‐RED library, configured within
the OpenBCI category, for the design and integration of an EEG‐based Brain‐Machine Interface in the
context of the Internet of Things (IoT). We created a new BCI toolkit in Node‐RED for more than 20
open‐source EEG boards based on BrainFlow software library [10] that supports and provide uniform
data acquisition API for them. Additionally, BrainFlow provides a robust API for signal processing
and EEG featuring, which are open‐source, can be modified and utilized independently of the type
of the BCI headsets. Although, the BrainFlow library assists inexperienced programmers in
developing BCI applications, several obstacles we have encountered. They include various challenges
related to programming skills, signal acquisition and processing, managing multiple python scripts
for board interaction, real‐time EEG data streaming, data sampling and sliding window techniques,
decomposition of power spectral density into different frequencies, real‐time data streaming, data
sampling, power spectral density analysis, and integration with different devices and services.

To overcome these difficulties and enhance the development of BCI applications for integrating
with IoT devices, processes or services, several contributions have been made:
 A model for visual node‐based programming has been designed utilizing BrainFlow library

within the Node‐RED platform, tailored to help inexperienced programmers in the development
of BCI applications;

 An openBCI Node‐RED toolkit based on the proposed model has been developed, which can be
applied to more than 20 EEG‐based devices.
The proposed openBCI toolkit was implemented and validated through a case study, wherein a

BCI application utilizing BrainFlow performance metrics was employed to control a TinkerKit
Braccio robot arm via OpenBCI Cyton + Daisy boards

The rest of the paper is organized as follows: Section 2 describes the system architecture of an
EEG‐based BCI for communication with devices and services in the IoT using openBCI toolkit in
Node‐RED; Section 3 describes the new nodes in openBCI toolkit in Node‐RED library. Section 4
presents the flowchart illustrating the algorithm behind the ʹopenBCI‐dataʹ node. At the end we
present our conclusions and future work.

2. System Architecture

Designed and developed is a system architecture of an EEG‐based BCI for communication with
devices and services in the IoT using openBCI toolkit in Node‐RED with practical application
capabilities (Figure 1).

Figure 1. A system architecture for an EEG‐based BCI in the IoT, utilizing the openBCI
toolkit within Node‐RED.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 3

To register EEG signals, a non‐invasive and portable EEG device OpenBCI [11] was utilized.
However, within the established architecture, other devices supported by the BrainFlow library can
also be employed. The measured EEG data is transmitted via Bluetooth to the Node‐RED platform
[12], nevertheless the architecture is also allowing data transmission over Wi‐Fi. Node‐RED is utilized
as a browser‐based tool for streamlining programming flows and acts as a gateway to the IoT. It
facilitates sending JSON‐type requests to the FlowFuse platform [13], employed for cloud computing.
The architecture provides users the flexibility to use various EEG devices, and for this purpose, three
new nodes have been designed and added to the Node‐RED library (Figure 2) ‐ ʹopenBCI‐streamingʹ
ʹopenBCI‐Dataʹ and ʹopenBCI‐EEGmetricsʹ. These are customized nodes with access to the BrainFlow
API according to the selected device and processing needs. BrainFlow is a software framework for
building BCI applications using conventional programming languages, supporting over twenty EEG‐
based BCI devices.

Figure 2. Visualization of the new nodes in the Node‐RED palette within the newly created
openBCI category.

The new nodes contribute to transforming these BCI devices into ʹthingsʹ only through visual
programming in Node‐RED, eliminating the need for any programming code. This way, the
capabilities of Node‐RED are expanded, offering an easy way for OpenBCI users to specify the board
ID, data type, and electrodes of interest. Based on the input values entered in the nodeʹs user settings,
a JavaScript file within the node processes and transmits the parameters to the BrainFlow API. The
parameter transmission is done through a child process linking the Node.js server in Node‐RED to
the BrainFlow API, generating the output in JSON type. The connection to the BrainFlow API has
been established through a newly developed Python file with Python software code, utilizing the
BrainFlow libraries. Each of the newly created nodes contains such a file in its directory, differed by
the functionalities of the specific node. Node‐RED also provides various output nodes such as mqtt
out, serial out, http response, play audio, generic‐BLE out, etc., for subsequent data transmission to
IoT.

3. Overview of the openBCI toolkit within Node‐RED

The developed original methods and algorithms for visual programming and integration of a
BCI in a web‐based streaming environment, successfully validated using OpenBCI device, BrainFlow
library, Node‐RED and Arduino‐based robotic arm are combined into a newly created toolkit
openBCI within the Node‐RED platform, (https://flows.nodered.org/collection/W7dKrufq2WWR),
and applicable to more than 20 EEG‐based devices.

At the beginning of the development, it was observed that when EEG devices transmit data
through the COM port via a USB dongle, it is not possible to initiate more than one process to a
specific port. In other words, only one session can be started on one COM port. This limitation
restricts the parallel collection and processing of data of different nature and/or from different
electrodes, requiring all conditions to be structured in a single process and session. This restriction
contradicts the concept of visual programming to design logically separated processes into multiple
micro‐processes, enabling various combinations/scenarios tailored to the specific needs of the user.
To overcome this limitation, an original method was developed in the Node‐RED platform, based on

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 4

the BrainFlow streaming board. This board can stream data to various destinations such as files,
sockets, etc., directly from BrainFlow, practically acting like a consumer for data received from the
main process. In the developed method, when initiating a session with the OpenBCI board, a
streaming function to a socket with a valid multicast address and port is added. For each subsequent
data collection and/or processing process, a session is not started with the main board but with the
BrainFlow streaming board. This way, the main process to the COM port remains only one, while the
user can configure multiple micro‐processes through visual programming.

3.1. Node ʹopenBCI‐streamingʹ

The node ʹopenBCI‐streamingʹ initiates the main process to the OpenBCI board in Node‐RED.
The node is configured with a button for instant start, as well as an input for initiation via another
Node‐RED node. The node is defined to be located after installation in the newly created openBCI
category for the purpose of the dissertation in the Node‐RED palette. Upon opening the node by
double‐clicking, the user settings of the node are visualized (Figure 3).

Figure 3. User settings of the ʹopenBCI‐streamingʹ node.

The algorithm of the node includes mandatory user input fields such as ʹBoard Nameʹ or ʹBoard
ID,ʹ ́Serial port,ʹ and ́Streaming time (in seconds).ʹ The ́Nameʹ field is optional, used if the user wishes
to rename the node. When configuring user settings, the user needs to know the exact COM port used
by their EEG device for the session to be registered. Upon opening, the node is configured to display
an example value ʹCOM3ʹ in the ʹSerial portʹ field and a value of ʹ60ʹ in the ʹStreaming time (seconds)ʹ
field for user convenience. The ʹBoard Nameʹ field is defined as a drop‐down menu of OpenBCI
boards in the BrainFlow API. When selecting an option from the menu, the ʹBoard IDʹ text field is
deactivated via JavaScript. Similarly, JS deactivates the ʹBoard Nameʹ field when the ʹBoard IDʹ field
is filled. Only one of the two fields can be used to start a session, and this automation has been added
to avoid user errors when initiating the node. This automation is implemented in all three new nodes
and a tip has been added to the node visualization: ʹSelect board from the ʹBoard Nameʹ drop‐down
menu or type board supported from Brainflow in the ʹBoard IDʹ fieldʹ. After initiating the node, the
algorithm starts a session to the ʹstreamingʹ Brainflow board and returns a ʹStart streamʹ debug
message. After the user‐defined time in the ʹStreaming time (seconds)ʹ field elapses, the node sends
a ʹStop streamʹ JSON type message to signal the end of the session.

3.2. Node ʹopenBCI‐dataʹ

The ʹopenBCI‐dataʹ node has the most functionalities among the three newly created nodes and
executes an algorithm to access raw data from the EEG device, process it through predefined filters
and calculate the powers of six frequency bands of the EEG signal in real‐time. This node operates

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 5

only when there is an already started and correctly functioning ʹopenBCI‐streamingʹ node since the
algorithm reads the data directly from it. In the user settings of the node (Figure 4a) is mandatory to
enter either the ʹBoard Nameʹ or ʹBoard IDʹ field.

a. data type ‘RAW’ b. data type ‘Band power’

Figure 4. User settings of the ʹopenBCI‐dataʹ node.

Upon initially opening the node settings, the dropdown menu ʹData typeʹ is set to ʹRAW.ʹ This
option allows the user access to the raw data obtained from the EEG device. The time window for
visualizing the data is set through the ʹWindow sizeʹ field, with the value provided in seconds. When
selecting the second option ʹBand powerʹ (Figure 4b), an additional ʹBandʹ field is displayed in the
user settings menu. It includes the options ʹAlphaʹ, ʹThetaʹ, ʹGammaʹ, ʹHighBetaʹ, ʹLowBetaʹ, ʹDeltaʹ,
ʹGammaʹ and ʹAllʹ. When selecting one of the options, the algorithm calculates the power of the
chosen frequency band for the selected channel of the used board and returns the result in type JSON.
The last option in the ʹData typeʹ dropdown menu is ʹSignal filtering’. An additional menu for
choosing the filter type includes the options ʹBandpassʹ, ʹBandstopʹ, ʹLowpassʹ, etc. Upon starting the
node with a selected filter type from the menu, the nodeʹs algorithm filters the raw data from the
chosen channel based on the specified filter and returns the result in type JSON.

3.3. Node „openBCI‐EEGmetrics“

The node ʺopenBCI‐EEGmetricsʺ allows users to monitor the levels of focus on the object
connected to the EEG device. In the nodeʹs settings (Figure 5), a dropdown menu labeled ʺMetric
typeʺ is configured with options ʺRelaxationʺ and ʺConcentration.ʺ

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 6

Figure 5. User settings of the „openBCI‐EEGmetrics“ node.

The algorithm for calculating the metrics is integrated from the Brainflow API. For ʺRelaxation,ʺ
it considers FFT values associated with delta, theta, and alpha brain waves, while for ̋ Concentration,ʺ
it examines beta and gamma brain waves. Relaxation is typically achieved through ʺmeditationʺ with
closed eyes, while concentration can be attained through focused attention with open eyes. The
algorithm returns values in the range between 0 and 1. The Brainflow API provides the option to
specify a classifier of choice (Regression, KNN, SVM or LDA) for this algorithm. However, according
to OpenBCIʹs recommendation, the newly created node is configured to always use Regression as the
classifier. All channels of the used EEG device are employed for the calculations, and the user can set
the time window (in seconds) for computing the average power of the frequency band in the
ʺWindow sizeʺ field in the user settings.

4. The algorithmsʹ flowchart

A detailed flowchart has been developed for the new ʺopenBCI‐dataʺ node. It illustrates the
working principle of the developed original methods and algorithms in the overall operational
process of the new node. The node itself combines various software technologies and languages such
as HTML, JavaScript, Python, Express and others, and the flowchart illustrates the logical connections
between them. The developed diagram is specific to the ʺopenBCI‐dataʺ node, but its fundamental
principles are applicable to the other two newly created nodes ‐ ʺopenBCI‐streamingʺ and ʺopenBCI‐
EEGmetricsʺ. The front‐end of the ʺopenBCI‐dataʺ node (Figure 6), responsible for visualizing the
node, is built using HTML and JavaScript. Figure 6 illustrates the logical principles in a file with the
extension .html in the nodeʹs directory.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 7

Figure 6. Front‐end of the ʺopenBCI‐dataʺ node.

The back‐end of the ̋ openBCI‐dataʺ node (Figure 7) is entirely constructed from JavaScript code.
Figure 6 illustrates the logical principles in the two .js files in the nodeʹs directory.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 8

Figure 7. Back‐end of the ʺopenBCI‐dataʺ node.

Figures 8 and 9 show the section of the ʺopenBCI‐dataʺ node for collecting and processing EEG
data, executed by the .py file from the nodeʹs directory. This is the part where the Brainflow API is
integrated through the Python programming language. The end of the processes of the ʺopenBCI‐
dataʺ node is illustrated in Figure 10.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 9

Figure 8. Part 1 of the ʺopenBCI‐dataʺ node for collecting and processing EEG data.

Figure 9. Part 2 of the ʺopenBCI‐dataʺ node for collecting and processing EEG data.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 10

Figure 10. End of the ʺopenBCI‐dataʺ node.

5. Specific in creating OpenBCI nodes in the Node‐RED library

To create a customized node, a directory containing three types of files—package.json, js, and
html have to be initially created in the file system. The package.json file, a standard file used by
Node.js modules to describe their content, is used to package all files in the directory as an npm
module.

5.1. HTML File (.html)

The front‐end of the node is defined in the HTML file, executed in the Node‐RED editor within
a web browser. It contains three separate parts, each wrapped in its own HTML <script> tag. The first
tag defines the main node, registered in the platform editor, where properties such as palette
category, editable defaults, and the icon to be used are specified. It is within a regular JavaScript script
tag with type=ʺtext/javascriptʺ. This tag ensures the node is registered in the editor using the
RED.nodes.registerType function. The second tag represents an editing template, defining the
content of the nodeʹs editing dialog window. Automatic show/hide functionalities for parts of the
nodeʹs content are created within this tag. The tag is defined as a text/html script with a specified
data‐template‐name based on the node type. The node type is used throughout the editor to identify
the node and must correspond to the value used in the RED.nodes.registerType function call in the
respective .js file. The third tag is a help text tag displayed in the Node‐RED platformʹs information
sidebar.

5.2. JavaScript File (.js)

The back‐end of the node is defined in the JavaScript file, executed during Node‐REDʹs runtime.
The file, with a .js extension, determines the behavior of the node. Nodes are defined by a constructor
function used to create new instances of the node. This function is registered upon the platformʹs
startup, allowing it to be invoked when nodes of the corresponding type are placed in the flow. The
function is passed an object containing properties set in the flow editor. The constructor function

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 11

should first invoke RED.nodes.createNode to initialize features shared by all nodes. Subsequently,
the node‐specific code is executed. Communication between the front‐end and back‐end of each node
is achieved by creating an HTTP endpoint within the nodeʹs runtime, and HTTP calls to this endpoint
are made from the individual nodesʹ editors. The HTTP endpoint is created using the Express routing
application API in Node‐REDʹs runtime. All Express routing methods are available through the
RED.httpAdmin API, however only the post method is being used in the developed software.
Additionally, the newly created nodes utilize Expressʹ authentication middleware through the
RED.auth.needsPermission API, setting specific write permissions for the node typeʹs endpoint.

5.3. Child_Process Module

A connection from the Node‐RED Node.js server to the Brainflow API was established. This
connection was facilitated by a second .js file using the child_process module to execute a newly
developed Python file. The Node.js child_process module allows access to operating system
functionalities by executing any system command within a child process. It provides control over the
arguments passed to the OS command and allows the use of the commandʹs output. There are four
different ways to create a child process in Node.js: spawn(), fork(), exec(), and execFile(). The spawn
function was used in the newly created nodes, as it starts a command in a new process and enables
passing all arguments to that command. The command executed in the nodes for this dissertation is
the Python file from the nodeʹs directory. Arguments to the command executed by the spawn
function are passed as the second argument to the function. The result of the spawn functionʹs
execution is a ChildProcess instance that implements the EventEmitter API. This means that event
handlers can be directly registered on this child object. Events that can be registered with the
ChildProcess instance are exit, close, disconnect, error, and message. In the newly created nodes,
event handlers for exit and error are registered. Each child process also receives the three standard
stdio streams, which can be accessed using child.stdin, child.stdout, and child.stderr. When these
streams are closed, the child process using them emits the close event. In the newly created nodes,
the most crucial readable streams stdout and stderr are used by listening for the data event, which
will contain the commandʹs output or any error during its execution. The commandʹs output is passed
to the nodeʹs output in JSON type, while any execution errors are visualized in the Node‐RED
platformʹs debug console.

5.4. Publishing to npm

The developed nodes have been published to npm using the npm publish command and are
available for use by the community. User installation commands are individual for each specific node
and are as follows:

npm install node‐red‐contrib‐openbci
npm install node‐red‐contrib‐openbci‐EEGmetrics
npm install node‐red‐contrib‐openbci‐streaming

6. Conclusions

The proposed user‐friendly approach for BCI application development will enable a larger circle
of users to develop BCI applications without requiring technical expertise. The new nodes in the
openBCI toolkit contribute to transforming BrainFlow supported BCI devices into ʹthingsʹ only
through visual programming in Node‐RED, eliminating the need for any programming code. The
proposed toolkit has been validated through pilot tests, demonstrating its effectiveness in controlling
a robotic arm using the OpenBCI headset. Future validation will involve testing the toolkit in
different Node‐RED applications through additional research experiments, supplemented by
detailed results assessment, including graphical representations.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

 12

References

1. C. S. Crawford and J. E. Gilbert, ʺNeuroBlock: A block‐based programming approach to neurofeedback
application development,ʺ 2017 IEEE Symposium on Visual Languages and Human‐Centric Computing
(VL/HCC), Raleigh, NC, USA, 2017, pp. 303‐307, doi: 10.1109/VLHCC.2017.8103483.

2. Crawford, C. S., Andujar, M., Jackson, F., Applyrs, I., & Gilbert, J. E. (2016). Using a visual programing
language to interact with visualizations of electroencephalogram signals. In ASEE‐SE Annual Meeting.

3. BrainFlow. Retrieved [January 2024], from https://brainflow.org/
4. Neuromore. Retrieved [January 2024], from https://www.neuromore.com/
5. Neuroscale. Retrieved [January 2024], from https://neuroscale.intheon.io/
6. Neuropype. Retrieved [January 2024], from https://www.neuropype.io/
7. EmotivBCI Node‐RED toolkit. Retrieved [January 2024], from https://emotiv.gitbook.io/emotivbci‐node‐

red‐toolbox/
8. Rușanu, O.A. (2023). The Development of Brain‐Computer Interface Applications Controlled by the Emotiv

Insight Portable Headset Based on Analyzing the EEG Signals Using NODE‐Red and Python Programming
Software Tools. In: Auer, M.E., Langmann, R., Tsiatsos, T. (eds) Open Science in Engineering. REV 2023.
Lecture Notes in Networks and Systems, vol 763. Springer, Cham. https://doi.org/10.1007/978‐3‐031‐42467‐
0_82

9. Torres D., J. P. Dias, A. Restivo and H. S. Ferreira, ʺReal‐time Feedback in Node‐RED for IoT Development:
An Empirical Study,ʺ 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real
Time Applications (DS‐RT), Prague, Czech Republic, 2020, pp. 1‐8, doi: 10.1109/DS‐RT50469.2020.9213544.

10. BrainFlow software library. Retrieved [January 2024], from https://github.com/brainflow‐
dev/brainflow

11. OpenBCI. Retrieved [January 2024], from https://openbci.com/
12. Node‐RED. Retrieved [January 2024], from https://nodered.org/
13. FlowFuse. Retrieved [January 2024], from https://flowfuse.com/
14. openBCI toolkit within the Node‐RED platform. Retrieved [January 2024], from

https://flows.nodered.org/collection/W7dKrufq2WWR

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

