Pre prints.org

Article Not peer-reviewed version

New Nodes for Node-RED Library within
OpenBClI Category for EEG-Based
Brain-Machine Interface Design and
Integration in loT

Adelina Kremenska ~ and Anna Lekova -
Posted Date: 23 January 2024
doi: 10.20944/preprints202401.1608.v1

Keywords: BCI Software Platforms; Node-RED; BrainFlow; IoT; OpenBCl technology

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2587385

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

New Nodes for Node-RED Library within OpenBCI
Category for EEG-Based Brain-Machine Interface
Design and Integration in IoT

Adelina Kremenska * and Anna Lekova *

Institute of Robotics, Bulgarian Academy of Sciences
* Correspondence: a.kostova012@gmail.com (A .K.); a.lekova@ir.bas.bg (A.L.)

Abstract: The growing of Brain-Computer Interface (BCI) applications is closely related to the
increasing accessibility of Electroencephalography (EEG) hardware (EEG headsets), which are
noninvasive, portable, wireless and often with open software. However, there is a limited number
of BCI software platforms tailored to help inexperienced programmers in the development of BCI
applications. Only few of them integrate BCI applications with IoT devices and services. To address
these challenges, a model for visual node-based programming has been designed utilizing
BrainFlow library within the Node-RED platform, which can be applied to more than 20 biosensors.
New Nodes for Node-RED Library within OpenBCI Category (openBCI toolkit for Node-RED) have
been developed for design of EEG-Based Brain-Machine Interface and Integration in IoT. The
proposed toolkit have been implemented and validated through a case study for controlling a
robotic arm by OpenBClI headset. The results from the pilot experiment demonstrated that through
concentration levels classified by BrainFlow performance metrics, the control of a TinkerKit Braccio
robot arm is possible.

Keywords: BCI Software Platforms; Node-RED; BrainFlow; IoT; OpenBClI technology

1. Introduction

The rising popularity of Brain-Computer Interface (BCI) applications is closely related to the
increasing accessibility of Electroencephalography (EEG) hardware (EEG headsets), which are
noninvasive, portable, wireless and often with open software. While BCI software platforms do exist,
there is a limited number of systems specifically tailored to help inexperienced programmers in the
development of BCI applications: NeuroBlock [1], Blockly block framework for dynamic brain-based
virtual environment [2], BrainFlow [3], Neuromore Studio [4], NeuroScale [5], NeuroPype [6],
EmotivBCI Node-RED toolkit [7]. From them, software technologies for BCI programming in the
Internet of Things (IoT) are only two: NeuroScale [5], designed to integrate with various popular EEG
devices commonly used in research and clinical settings, while EmotivBCI Node-RED toolkit [7,8] is
device specific. However, the BCI toolkit for programing EEG-based BCI applications is only for
Emotiv EPOC+ and Insight devices. The benefit of using the EmotivBCI Node-RED toolkit in
comparison to the NeuroScale approach lies in its simplification of the integration process. For
example, while both methods aim to interface EEG headsets with robotic arms, the EmotivBCI Node-
RED toolkit offers prebuilt blocks specifically designed for use with Node-RED [9], a visual
programming tool, and streamline the integration. In contrast, NeuroScale's approach determines the
user's intent from processed signals and communicates with a robot arm using an interface or
middleware. The integration method can vary, involving APIs, communication protocols or custom
development, depending on the specific hardware and software components in use. Therefore, node-
based visual programming can be the more appropriate solution in this context.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202401.1608.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024

The paper focuses on the introduction of new nodes in the Node-RED library, configured within
the OpenBClI category, for the design and integration of an EEG-based Brain-Machine Interface in the
context of the Internet of Things (IoT). We created a new BCI toolkit in Node-RED for more than 20
open-source EEG boards based on BrainFlow software library [10] that supports and provide uniform
data acquisition API for them. Additionally, BrainFlow provides a robust API for signal processing
and EEG featuring, which are open-source, can be modified and utilized independently of the type
of the BCI headsets. Although, the BrainFlow library assists inexperienced programmers in
developing BCI applications, several obstacles we have encountered. They include various challenges
related to programming skills, signal acquisition and processing, managing multiple python scripts
for board interaction, real-time EEG data streaming, data sampling and sliding window techniques,
decomposition of power spectral density into different frequencies, real-time data streaming, data
sampling, power spectral density analysis, and integration with different devices and services.

To overcome these difficulties and enhance the development of BCI applications for integrating
with IoT devices, processes or services, several contributions have been made:

e A model for visual node-based programming has been designed utilizing BrainFlow library
within the Node-RED platform, tailored to help inexperienced programmers in the development
of BCI applications;

¢ AnopenBCI Node-RED toolkit based on the proposed model has been developed, which can be
applied to more than 20 EEG-based devices.

The proposed openBClI toolkit was implemented and validated through a case study, wherein a
BCI application utilizing BrainFlow performance metrics was employed to control a TinkerKit
Braccio robot arm via OpenBCI Cyton + Daisy boards

The rest of the paper is organized as follows: Section 2 describes the system architecture of an
EEG-based BCI for communication with devices and services in the IoT using openBCI toolkit in
Node-RED; Section 3 describes the new nodes in openBCI toolkit in Node-RED library. Section 4
presents the flowchart illustrating the algorithm behind the 'openBCl-data’ node. At the end we
present our conclusions and future work.

2. System Architecture

Designed and developed is a system architecture of an EEG-based BCI for communication with
devices and services in the IoT using openBCI toolkit in Node-RED with practical application
capabilities (Figure 1).

& FlowFuse (Cloud
for Node-RED)

request.jsow;mnse.json

Custom Node-Red nodes| --| Node-RED nodes:
v maqtt out; serial
openBCl-streaming i
| opentCldala : websocket out;
W ENode-Red Client yrrp response;

play gudio...
T maaQr,
USB,
aranmo BrainFlow API WebSocket,
1 HTTP,
BLE...

; | [DiRow

oots |

it € ..
OpenBCl Subject Nao

Other supported BCI devices:

S APOLSIVYD 2

BrainBit G.TEC Neurosity Muse BrainAlive Ant Neuro

Figure 1. A system architecture for an EEG-based BCI in the IoT, utilizing the openBCI
toolkit within Node-RED.

doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

3

To register EEG signals, a non-invasive and portable EEG device OpenBClI [11] was utilized.
However, within the established architecture, other devices supported by the BrainFlow library can
also be employed. The measured EEG data is transmitted via Bluetooth to the Node-RED platform
[12], nevertheless the architecture is also allowing data transmission over Wi-Fi. Node-RED is utilized
as a browser-based tool for streamlining programming flows and acts as a gateway to the IoT. It
facilitates sending JSON-type requests to the FlowFuse platform [13], employed for cloud computing.
The architecture provides users the flexibility to use various EEG devices, and for this purpose, three
new nodes have been designed and added to the Node-RED library (Figure 2) - 'openBCl-streaming'
‘'openBCI-Data’ and 'openBCI-EEGmetrics'. These are customized nodes with access to the BrainFlow
API according to the selected device and processing needs. BrainFlow is a software framework for
building BCI applications using conventional programming languages, supporting over twenty EEG-
based BCI devices.

<
o
®
=)
o)
Q

<

2 LA B

]

Figure 2. Visualization of the new nodes in the Node-RED palette within the newly created
openBCI category.

The new nodes contribute to transforming these BCI devices into 'things' only through visual
programming in Node-RED, eliminating the need for any programming code. This way, the
capabilities of Node-RED are expanded, offering an easy way for OpenBClI users to specify the board
ID, data type, and electrodes of interest. Based on the input values entered in the node's user settings,
a JavaScript file within the node processes and transmits the parameters to the BrainFlow APIL The
parameter transmission is done through a child process linking the Node.js server in Node-RED to
the BrainFlow API, generating the output in JSON type. The connection to the BrainFlow API has
been established through a newly developed Python file with Python software code, utilizing the
BrainFlow libraries. Each of the newly created nodes contains such a file in its directory, differed by
the functionalities of the specific node. Node-RED also provides various output nodes such as mqtt
out, serial out, http response, play audio, generic-BLE out, etc., for subsequent data transmission to
IoT.

3. Overview of the openBClI toolkit within Node-RED

The developed original methods and algorithms for visual programming and integration of a
BCl in a web-based streaming environment, successfully validated using OpenBCI device, BrainFlow
library, Node-RED and Arduino-based robotic arm are combined into a newly created toolkit
openBCI within the Node-RED platform, (https://flows.nodered.org/collection/W7dKrufq2WWR),
and applicable to more than 20 EEG-based devices.

At the beginning of the development, it was observed that when EEG devices transmit data
through the COM port via a USB dongle, it is not possible to initiate more than one process to a
specific port. In other words, only one session can be started on one COM port. This limitation
restricts the parallel collection and processing of data of different nature and/or from different
electrodes, requiring all conditions to be structured in a single process and session. This restriction
contradicts the concept of visual programming to design logically separated processes into multiple
micro-processes, enabling various combinations/scenarios tailored to the specific needs of the user.
To overcome this limitation, an original method was developed in the Node-RED platform, based on

https://doi.org/10.20944/preprints202401.1608.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024

the BrainFlow streaming board. This board can stream data to various destinations such as files,
sockets, etc., directly from BrainFlow, practically acting like a consumer for data received from the
main process. In the developed method, when initiating a session with the OpenBCI board, a
streaming function to a socket with a valid multicast address and port is added. For each subsequent
data collection and/or processing process, a session is not started with the main board but with the
BrainFlow streaming board. This way, the main process to the COM port remains only one, while the
user can configure multiple micro-processes through visual programming.

3.1. Node 'openBClI-streaming’

The node 'openBCl-streaming' initiates the main process to the OpenBClI board in Node-RED.
The node is configured with a button for instant start, as well as an input for initiation via another
Node-RED node. The node is defined to be located after installation in the newly created openBCI
category for the purpose of the dissertation in the Node-RED palette. Upon opening the node by
double-clicking, the user settings of the node are visualized (Figure 3).

Edit openBCl-streaming node

Delete Cance!l m

& Properties &

W Name
® Serial port COM3
@= Board Name v

@= Board ID

© Streaming
time (seconds) 60

Tip: Select board from the "Board Name" drop down menu or type board
supported from Brainflow in "Board ID" field, make sure to use Brainflow
board naming convension

Figure 3. User settings of the 'openBCl-streaming' node.

The algorithm of the node includes mandatory user input fields such as 'Board Name' or 'Board
ID,' 'Serial port,' and 'Streaming time (in seconds).' The 'Name' field is optional, used if the user wishes
to rename the node. When configuring user settings, the user needs to know the exact COM port used
by their EEG device for the session to be registered. Upon opening, the node is configured to display
an example value 'COMS3' in the 'Serial port' field and a value of '60" in the 'Streaming time (seconds)'
field for user convenience. The 'Board Name' field is defined as a drop-down menu of OpenBCI
boards in the BrainFlow API. When selecting an option from the menu, the 'Board ID' text field is
deactivated via JavaScript. Similarly, JS deactivates the 'Board Name' field when the 'Board ID' field
is filled. Only one of the two fields can be used to start a session, and this automation has been added
to avoid user errors when initiating the node. This automation is implemented in all three new nodes
and a tip has been added to the node visualization: 'Select board from the '‘Board Name' drop-down
menu or type board supported from Brainflow in the 'Board ID' field'. After initiating the node, the
algorithm starts a session to the 'streaming' Brainflow board and returns a 'Start stream' debug
message. After the user-defined time in the 'Streaming time (seconds)' field elapses, the node sends
a 'Stop stream' JSON type message to signal the end of the session.

3.2. Node "openBCl-data’

The 'openBCI-data' node has the most functionalities among the three newly created nodes and
executes an algorithm to access raw data from the EEG device, process it through predefined filters
and calculate the powers of six frequency bands of the EEG signal in real-time. This node operates

doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

only when there is an already started and correctly functioning 'openBClI-streaming' node since the
algorithm reads the data directly from it. In the user settings of the node (Figure 4a) is mandatory to
enter either the 'Board Name' or '‘Board ID' field.

Edit openBCl.data node Edit openBCl-data node
Delete Cancel
Delete Cancel m el . m
- — # Properties CAERE:
& Properties L B
9 Name
9 Name
@3 Board Name v
3= Board Name v
@= Board ID
@= Board ID
i Data Type Band power V.
i Data Type RAW W~
| Band All 8.
i=Pin/Channel | All .4
i=Pin/Channel | All v

O Window size 2
O Window size | 2

Tip: Select board from the "Board Name" drop down menu or type board

supported from Brainflow in "Board ID" field, make sure to use Brainflow Tip: Select board from the "Board Name" drop down menu or type board

board naming convension supported from Brainflow in "Board ID" field, make sure to use Brainflow
board naming convension

a. data type ‘RAW’ b. data type ‘Band power’

Figure 4. User settings of the 'openBCl-data' node.

Upon initially opening the node settings, the dropdown menu 'Data type' is set to RAW.' This
option allows the user access to the raw data obtained from the EEG device. The time window for
visualizing the data is set through the "'Window size' field, with the value provided in seconds. When
selecting the second option 'Band power' (Figure 4b), an additional 'Band’ field is displayed in the
user settings menu. It includes the options 'Alpha’, 'Theta', 'Gamma', 'HighBeta', LowBeta', 'Delta’,
'‘Gamma' and 'All'. When selecting one of the options, the algorithm calculates the power of the
chosen frequency band for the selected channel of the used board and returns the result in type JSON.
The last option in the 'Data type' dropdown menu is 'Signal filtering’. An additional menu for
choosing the filter type includes the options '‘Bandpass', 'Bandstop’, 'Lowpass', etc. Upon starting the
node with a selected filter type from the menu, the node's algorithm filters the raw data from the
chosen channel based on the specified filter and returns the result in type JSON.

3.3. Node ,openBCI-EEGmetrics”

The node "openBCI-EEGmetrics" allows users to monitor the levels of focus on the object
connected to the EEG device. In the node's settings (Figure 5), a dropdown menu labeled "Metric
type" is configured with options "Relaxation" and "Concentration."

https://doi.org/10.20944/preprints202401.1608.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

Edit openBCI-EEGmetrics node

& Properties o
¥ Name

&= Board Name v

@3 Board ID

i Metric Type v

© Window size | 5

Tip: Select board from the "Board Name" drop down menu or type board
supported from Brainflow in "Board ID" field, make sure to use Brainflow
board naming convension

Figure 5. User settings of the ,,openBCI-EEGmetrics” node.

The algorithm for calculating the metrics is integrated from the Brainflow API. For "Relaxation,"
it considers FFT values associated with delta, theta, and alpha brain waves, while for "Concentration,"
it examines beta and gamma brain waves. Relaxation is typically achieved through "meditation” with
closed eyes, while concentration can be attained through focused attention with open eyes. The
algorithm returns values in the range between 0 and 1. The Brainflow API provides the option to
specify a classifier of choice (Regression, KNN, SVM or LDA) for this algorithm. However, according
to OpenBClI's recommendation, the newly created node is configured to always use Regression as the
classifier. All channels of the used EEG device are employed for the calculations, and the user can set
the time window (in seconds) for computing the average power of the frequency band in the
"Window size" field in the user settings.

4. The algorithms' flowchart

A detailed flowchart has been developed for the new "openBCl-data" node. It illustrates the
working principle of the developed original methods and algorithms in the overall operational
process of the new node. The node itself combines various software technologies and languages such
as HTML, JavaScript, Python, Express and others, and the flowchart illustrates the logical connections
between them. The developed diagram is specific to the "openBCl-data" node, but its fundamental
principles are applicable to the other two newly created nodes - "openBCl-streaming" and "openBCI-
EEGmetrics". The front-end of the "openBCI-data" node (Figure 6), responsible for visualizing the
node, is built using HTML and JavaScript. Figure 6 illustrates the logical principles in a file with the
extension .html in the node's directory.

https://doi.org/10.20944/preprints202401.1608.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024

Board
Name

”

no
v

Board
ID

“«
”

no

START

v

| opemCian
User input values:

Board Name or
Board ID

yes v

Deactivate input
field Board ID

yes v
Deactivate drop
down menu
Board Name

Figure 6. Front-end of the "openBCI-data" node.

wy

= L
User input

value:
Data Type

) 4

IF
Data
Type

L RAW

yes

Data
Type
== yes
»Signal
filtering

“«

no

yes

\ 4
Hide input fields
Band u Filter
Type

v

Show input field
Band

v

Hide input field
Filter Type

\
|
h £
Show input field
Filter Type

A 4

Hide input field
Band

doi:10.20944/preprints202401.1608.v1

A 4

| opensCidaa
User input

value:
Band

v
& il peniCidata
User input

value:
Filter Type

User input
values:
Pin/Channel
Window size

The back-end of the "openBCI-data" node (Figure 7) is entirely constructed from JavaScript code.
Figure 6 illustrates the logical principles in the two s files in the node's directory.

https://doi.org/10.20944/preprints202401.1608.v1

\ 4
Output message
in Node-RED GUI:
»The workspace yes
contains some
nodes that are
not properly
configured.”

) 4

Do you
wish to

continue
?

yes

no

Figure 7. Back-end of the "openBCI-data" node.

IF
Window
size
is NULL

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024

b4

IF
Board
no Name
} AND
Board ID
are NULL

‘ yes
vy
Output message
in Node-RED
debug window:
»Input data not
provided in
openBCl-data
node.”

doi:10.20944/preprints202401.1608.v1

no

\ 4

Write user
input values
in JSON

\ 4

Start python file, from
child process with user
input values as
argument array

\ 4

2

Figures 8 and 9 show the section of the "openBCI-data" node for collecting and processing EEG
data, executed by the .py file from the node's directory. This is the part where the Brainflow API is
integrated through the Python programming language. The end of the processes of the "openBCI-
data" node is illustrated in Figure 10.

https://doi.org/10.20944/preprints202401.1608.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024

v
Declare variable and
assign it value equal to
the argument passed to
the python file.
jsonNodeRed =
sys.argv([1]

\ 4
Variable transformation

in JSON object
json.loads(jsonNodeRed)

. 4

Declare variables

board_id, board_descr,

sampling_rate,
eeg_channels

\ 4

Board initialization :
board =

BoardShim(board_id,para

\ 4
Extract and declare
variables from JSON
object:
pdatatype,p3,pchannel,pf
requency,pfiltertype,p4

\ 4

ms)

Session preparation:

board.prepare_session()

Declare variable
p1=10
(time in seconds for
starting a board session)

Passing variable p1, to
object
BrainFlowInputParams()

Start data stream:
board.start_stream()

While
true

>

v

IF first

execution of

loop

no

yes

Set time for data stream :
time.sleep(5)

yes

Y

Set time for data stream:
time.sleep(p4)

v b 4

Declare variable nfft:
nfft =
DataFilter.get_nearest_power_of t
wo(sampling_rate)

\ 4

Declare variable with data from
current board session:
data =
get_current_board_data(2000)

Figure 8. Part 1 of the "openBClI-data" node for collecting and processing EEG data.

4

v

v IF
no channel is
IF yes from
pchann eeg_channels
el==0 Next
yes channel
no A
yes \ 4
performSelectedFilter
(channel, pfiltertype)
Y v
calcSelectedFreqBand
Power(pchannel, print(data)
pfrequency)
no v
performSelectedFilter
(pchannel,
pfiltertype)
v
print(data[
pchannel])
v
>

v
IF
yes pchannel== yes IF no
AND <« pdatatyp
pfrequency==0 el=2
v
|F no
no channel is X
from “ F
eeg_channels
- pchannell=0
AND
yes pfrequency!=0
v
no
no IF Next v
pdatatype== channel
4 IF
pchannel==0
yes AND
ps fi 1=0
calcBandPowerAll Rirequency
(channel)
yes
\ v
print(data) IF
channel is
no
v from < Next
eeg_channel channel
break s A
yes = performSelectedFilter
\ 4 (channel, pfiltertype)
» 5 «

Figure 9. Part 2 of the "openBClI-data" node for collecting and processing EEG data.

doi:10.20944/preprints202401.1608.v1

https://doi.org/10.20944/preprints202401.1608.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

10

Stop data stream:
board.stop_stream()

Release data session
board.release_session()

END

Figure 10. End of the "openBCI-data" node.

5. Specific in creating OpenBCI nodes in the Node-RED library

To create a customized node, a directory containing three types of files—package.json, js, and
html have to be initially created in the file system. The package.json file, a standard file used by
Node.js modules to describe their content, is used to package all files in the directory as an npm
module.

5.1. HTML File (.html)

The front-end of the node is defined in the HTML file, executed in the Node-RED editor within
a web browser. It contains three separate parts, each wrapped in its own HTML <script> tag. The first
tag defines the main node, registered in the platform editor, where properties such as palette
category, editable defaults, and the icon to be used are specified. It is within a regular JavaScript script
tag with type="text/javascript". This tag ensures the node is registered in the editor using the
RED.nodes.registerType function. The second tag represents an editing template, defining the
content of the node's editing dialog window. Automatic show/hide functionalities for parts of the
node's content are created within this tag. The tag is defined as a text/html script with a specified
data-template-name based on the node type. The node type is used throughout the editor to identify
the node and must correspond to the value used in the RED.nodes.registerType function call in the
respective js file. The third tag is a help text tag displayed in the Node-RED platform's information
sidebar.

5.2. JavaScript File (js)

The back-end of the node is defined in the JavaScript file, executed during Node-RED's runtime.
The file, with a .js extension, determines the behavior of the node. Nodes are defined by a constructor
function used to create new instances of the node. This function is registered upon the platform's
startup, allowing it to be invoked when nodes of the corresponding type are placed in the flow. The
function is passed an object containing properties set in the flow editor. The constructor function

https://doi.org/10.20944/preprints202401.1608.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

11

should first invoke RED.nodes.createNode to initialize features shared by all nodes. Subsequently,
the node-specific code is executed. Communication between the front-end and back-end of each node
is achieved by creating an HTTP endpoint within the node's runtime, and HTTP calls to this endpoint
are made from the individual nodes' editors. The HTTP endpoint is created using the Express routing
application API in Node-RED's runtime. All Express routing methods are available through the
RED.httpAdmin API, however only the post method is being used in the developed software.
Additionally, the newly created nodes utilize Express' authentication middleware through the
RED.auth.needsPermission AP], setting specific write permissions for the node type's endpoint.

5.3. Child_Process Module

A connection from the Node-RED Node.js server to the Brainflow API was established. This
connection was facilitated by a second s file using the child_process module to execute a newly
developed Python file. The Node.js child_process module allows access to operating system
functionalities by executing any system command within a child process. It provides control over the
arguments passed to the OS command and allows the use of the command's output. There are four
different ways to create a child process in Node.js: spawn(), fork(), exec(), and execFile(). The spawn
function was used in the newly created nodes, as it starts a command in a new process and enables
passing all arguments to that command. The command executed in the nodes for this dissertation is
the Python file from the node's directory. Arguments to the command executed by the spawn
function are passed as the second argument to the function. The result of the spawn function's
execution is a ChildProcess instance that implements the EventEmitter API. This means that event
handlers can be directly registered on this child object. Events that can be registered with the
ChildProcess instance are exit, close, disconnect, error, and message. In the newly created nodes,
event handlers for exit and error are registered. Each child process also receives the three standard
stdio streams, which can be accessed using child.stdin, child.stdout, and child.stderr. When these
streams are closed, the child process using them emits the close event. In the newly created nodes,
the most crucial readable streams stdout and stderr are used by listening for the data event, which
will contain the command's output or any error during its execution. The command's output is passed
to the node's output in JSON type, while any execution errors are visualized in the Node-RED
platform's debug console.

5.4. Publishing to npm

The developed nodes have been published to npm using the npm publish command and are
available for use by the community. User installation commands are individual for each specific node
and are as follows:

npm install node-red-contrib-openbci

npm install node-red-contrib-openbci-EEGmetrics

npm install node-red-contrib-openbci-streaming

6. Conclusions

The proposed user-friendly approach for BCI application development will enable a larger circle
of users to develop BCI applications without requiring technical expertise. The new nodes in the
openB(l toolkit contribute to transforming BrainFlow supported BCI devices into 'things' only
through visual programming in Node-RED, eliminating the need for any programming code. The
proposed toolkit has been validated through pilot tests, demonstrating its effectiveness in controlling
a robotic arm using the OpenBCI headset. Future validation will involve testing the toolkit in
different Node-RED applications through additional research experiments, supplemented by
detailed results assessment, including graphical representations.

https://doi.org/10.20944/preprints202401.1608.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1608.v1

12

References

1. C.S. Crawford and J. E. Gilbert, "NeuroBlock: A block-based programming approach to neurofeedback
application development," 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Raleigh, NC, USA, 2017, pp. 303-307, doi: 10.1109/VLHCC.2017.8103483.

Crawford, C. S., Andujar, M., Jackson, F., Applyrs, 1., & Gilbert, J. E. (2016). Using a visual programing

language to interact with visualizations of electroencephalogram signals. In ASEE-SE Annual Meeting.

BrainFlow. Retrieved [January 2024], from https://brainflow.org/

Neuromore. Retrieved [January 2024], from https://www.neuromore.com/

Neuroscale. Retrieved [January 2024], from https://neuroscale.intheon.io/

Neuropype. Retrieved [January 2024], from https://www.neuropype.io/

EmotivBCI Node-RED toolkit. Retrieved [January 2024], from https://emotiv.gitbook.io/emotivbci-node-

red-toolbox/

8. Rusanu, O.A. (2023). The Development of Brain-Computer Interface Applications Controlled by the Emotiv
Insight Portable Headset Based on Analyzing the EEG Signals Using NODE-Red and Python Programming
Software Tools. In: Auer, M.E., Langmann, R., Tsiatsos, T. (eds) Open Science in Engineering. REV 2023.
Lecture Notes in Networks and Systems, vol 763. Springer, Cham. https://doi.org/10.1007/978-3-031-42467-
0_82

9. Torres D, J. P. Dias, A. Restivo and H. S. Ferreira, "Real-time Feedback in Node-RED for IoT Development:
An Empirical Study," 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real
Time Applications (DS-RT), Prague, Czech Republic, 2020, pp. 1-8, doi: 10.1109/DS-RT50469.2020.9213544.

10. BrainFlow software library. Retrieved [January 2024], from https://github.com/brainflow-
dev/brainflow

11. OpenBCl. Retrieved [January 2024], from https://openbci.com/

12. Node-RED. Retrieved [January 2024], from https://nodered.org/

13. FlowFuse. Retrieved [January 2024], from https://flowfuse.com/

14. openBCI toolkit within the Node-RED platform. Retrieved [January 2024], from
https://flows.nodered.org/collection/W7dKruf(2WWR

N

NG

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202401.1608.v1

