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Abstract

Biobanks linked to electronic health records provide a rich data resource for health-related research.
With the establishment of large-scale infrastructure, the availability and utility of data from biobanks has
dramatically increased over time. As more researchers become interested in using biobank data to explore
a diverse spectrum of scientific questions, resources guiding the data access, design, and analysis of
biobank-based studies will be crucial.

The first aim of this review is to characterize the types of biobanks that are discussed in the recent
literature and provide detailed descriptions of specific biobanks including their location, size, data access,
data linkages and more. The development and accessibility of large-scale biorepositories provide the
opportunity to accelerate agnostic searches, new discoveries, and hypothesis-generating studies of disease-
treatment, disease-exposure and disease-gene associations. Rather than spending time and money designing
and implementing a single study with pre-defined objectives, researchers can use biobanks’ existing data-
rich resources to answer scientific questions as quickly as they can analyze them. While the data are
becoming increasingly available, additional thought is needed to address issues related to the design of such
studies and analysis of these data. In the second aim of this review, we discuss statistical issues related to
biobank research in general including study design, sampling strategy, phenotype identification, and
missing data. These issues are illustrated using data from the Michigan Genomics Initiative, UK Biobank,
and Genes for Good. We summarize the current body of statistical literature aimed at addressing some of
these challenges and discuss some of the standing open problems in this area. This work serves to
complement and extend recent reviews about biobank-based research and aims to provide a resource catalog
with statistical and practical guidance to researchers pursuing biobank-based research.

Abbreviations:
BMI = body mass index
EHR = electronic health record
eMERGE = Electronic Medical Records and Genomics Network
GFG = Genes for Good
GREML = genomic relatedness-matrix restricted maximum likelihood
GWAS = genome-wide association study
ICD = International Classification of Diseases
KPRB = Kaiser Permanente Research Bank
MGI = Michigan Genomics Initiative
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NIH = National Institutes of Health

MLMA = mixed linear model association analysis
NHGRI = National Human Genome Research Institute
PheRS = Phenotype Risk Score

PheWAS = phenome-wide association study

SNP = single nucleotide polymorphism

UKB = UK Biobank

Section 1: Introduction

Biobanks linked to electronic health records (EHR) provide a rich data resource for health-related
research. Biobanks, loosely defined, are biorepositories that accept, process, store and distribute
biospecimen and/or associated data for use in research and clinical care.! The rise in the number and size
of biobanks across the world in recent years can be explained by improvements in biospecimen analysis
and the need for large datasets to address complex diseases and conditions.!?> Many types of biobanks exist,
including commercial, single medical center, health system-based, and population-based biobanks. Some
biobanks are disease- or organ-specific, while others encompass a large breadth of diseases.

The development and accessibility of large-scale biorepositories provide the opportunity to
accelerate agnostic (“hypothesis-free”) searches, new discoveries, and hypothesis-generating studies of
disease-treatment, disease-exposure and disease-gene associations. Rather than spending time and money
designing and implementing a single study, researchers can use biobanks’ existing data-rich resources to
answer scientific questions as quickly as they can analyze them. With the establishment of biobank
infrastructure, the availability and utility of data from biobanks has dramatically increased over time, and
scientific interest in biobank-based research has grown. Moreover, governments and institutions are
investing in the establishment of large-scale biobanks such as the US National Institutes of Health’s
upcoming A/l of Us biobank® and the well-established, multi-institutional UK Biobank (UKB).** As more
researchers become interested in using biobank data to explore a diverse spectrum of scientific questions,
resources guiding the data access, design, and analysis of biobank-based studies will be crucial.
Comprehensive resources describing the types of data available in major biobanks and comparing their
patient populations and research emphases are still limited.

Recent reviews briefly discuss statistical and computational considerations for studies involving
genetic data,® limitations of traditional study designs and identifying real world phenotypes,’® and EHR-
based approaches and database linkages in making pharmacogenetic discoveries.’ These reviews are limited
in their discussion of statistical methods related to biobank and EHR-based research and in their exploration
of critical concepts such as study design, sampling, missing data, and other analytic issues related to biobank
research. In this paper, we complement and extend recent publications about biobank-based research with
the ultimate goal of providing an extensive catalog of resources and some practical guidance to researchers
pursuing biobank-based research. In Section 2, we characterize different types of biobanks and provide
detailed descriptions of specific biobanks including their geographic location, size, data access and
availability, data linkages and more. We also discuss the dominant health-related outcomes studied in
biobank research to date. In Section 3, we describe different statistical approaches for genome- and
phenome-wide association studies (GWAS/PheWAS), an area of particular interest in biobank research. In
Section 4, we discuss general statistical issues related to biobank research including study design, sampling
strategy, phenotype identification, and missing data. We illustrate some of these issues using data from
three biobanks, the Michigan Genomics Initiative (MGI)!%!! the UK Biobank (UKB)**, and Genes for Good
(GFQ). In Section 5, we mention potential opportunities and promising future directions for expanded and
improved biobank-based research through a discussion of novel and emerging uses of EHR data and the
integration of EHR with external data sources.
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Section 2: A Characterization of Major Biobanks

In this section, we describe the types of biobanks that are frequently discussed in the literature and
provide detailed descriptions for many specific biobanks. We then discuss recent biobank-based literature
and highlight specific topics receiving particular attention. The goal of this section is to provide a high-
level overview of the kinds of research being conducted using biobank data and to provide practical
resources describing specific biobanks.

Existing Biobanks

Table 1 describes some notable biobanks in terms of their size, location, type, and accessible data.
This table extends the biobank descriptions in Wolford et al. (2018) to include additional information about
data linkages and cohort characteristics, and it includes information for a broader set of biobanks.® Many
of the biobanks listed in Table 1 provide access to data for outside researchers. These biobanks are often
connected to EHR and contain genotype information for some of the patients. Some of these biobanks also
have linkage to death registries and detailed prescription information. The biobanks in Table 1 often fall
into two general categories: population-based biobanks and medical cancer/health care system-based
biobanks.

Population-based biobanks

Population-based biobanks are large-scale biorepositories that aim to recruit subjects reasonably
representative of the source population. Population-based biobanks recruit directly from the general
population (e.g. China Kadoorie Biobank), and subjects are eligible for enrollment irrespective of their
disease status or healthcare utilization. Estonia,'>'* Denmark,'* Sweden,"® Saudi Arabia,'® China,'” the
Republic of Korea,'®! Qatar,?>?! and Taiwan?>? are just some of the countries that have invested in
establishing population-based (or reasonably representative) biobanks.

Perhaps the most well-known population-based biobank that has been used for research is the UKB*
With over 500,000 subjects, it is one of the largest biobanks in the world. All residents aged 40-69 who
lived within 25 miles of one of their 22 assessment centers (~9.2 million) were invited to participate.’ UKB
takes advantage of the UK National Health Service to obtain follow-up data (e.g. mortality, cancer
registrations, hospital admissions, primary care data, etc.) and actively collect and verify conditions that are
typically under-reported (e.g. cognitive function, depression).’

Medical Center and Health system-based biobanks

Another common type of biobank is based on a medical center or a particular health care system.
In general, health system-based biobanks, such as Partners HealthCare Biobank, contain EHR and genotype
data along with survey data. Some, like the large Kaiser Permanente Research Bank (KPRB), have
additional linkages with detailed prescription information and feature-specific sub-cohorts (e.g. pregnancy
and cancer cohorts in the case of KPRB). A notable health-system based biobank is the Million Veterans
Program. With already more than 600,000 enrolled, it is one of the world’s largest genomic biobanks, and
it recruits participants from the US veteran population, allowing for the investigation of military-related
diseases and conditions. Other such biobanks recruit patients from a distributed network of health centers
throughout the country. Their sampling strategy many include active recruitment for particular
subpopulations; for example, BioBank Japan? recruits patients with particular current or past disease status
and the upcoming NIH All of Us* program will feature the active recruitment of underrepresented
minorities.

MGI (used in illustrative examples below) is an academic medical center-based biobank that started
at the University of Michigan in 2012. It recruits surgical patients over the age of 18 based on opt-in consent
(allowing for re-contact for future research purposes), collects and stores blood samples, genotypes DNA
samples, collects brief survey data related to pain, and is linked to EHR. This biobank also links patient
data to other data sources including their cancer registry, prescription data, insurance claims and national
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death index and is also undergoing an effort to implement a broad epidemiologic questionnaire designed to
be comparable to other biobank survey data, namely the UKB. For some biobanks, select biobank
descriptives are publicly available online without application; for example, MGI publishes summary counts
for International Classification of Diseases (ICD) codes and some PheWAS results,!! and DiscovEHR
shares frequencies of various genetic variants.?

Other types of biobanks

Initially planning to become the first nationwide biobank, deCODE Genetics is now a privately-
owned commercial biobank. Launched in 2007 and funded by the National Human Genome Research
Institute (NHGRI), the Electronic Medical Records and Genomics (eMERGE) Network combines a
network of DNA biorepositories linked with EHR as a resource for genetic analyses. Disease-specific
biobanks are also common, and these biobanks may focus on rarer conditions. Two examples are PcBaSe
Sweden,?” a prostate cancer cohort, and the Mayo Clinic Biobank for bipolar disorder.”® While disease-
specific biobanks may be better powered than other biobank types to study certain diseases, they are
typically smaller, may not be linked with EHR, and may not have genotype data readily available.

GFG (used in illustrative examples later on) is a subject-initiated biobank that started at the
University of Michigan in 2015. It recruits participants over the age of 18 from all 50 US states through an
online Facebook application, collecting survey data on health and behavior. As an incentive for continued
participation and contribution of a saliva sample for genotyping, participants also receive ancestry analysis
and the option to download their raw genetic data. At the time of publication, over 70,000 participants are
enrolled and over 27,000 have been genotyped. Unlike many other biobanks in this paper, GFG is not linked
to EHR data.

Recent Major Biobank-Based Literature

In order to characterize the current biobank literature, we conducted a brief literature search using
PubMed to find papers about biobanks and biobanking and papers using biobank data. Details regarding
the methodology used to identify publications can be found in Supplementary Section S1. We emphasize
that this is not intended to be an exhaustive list of biobank-based literature. The papers published about
biobanks or using biobank data can be roughly grouped based on their scientific goals as follows: (1)
biobank study design and cohort characteristics, (2) ethics and public perception of biobanks, (3) feasibility
and implementation, (4) exploration of treatments and therapies, (5) epidemiologic exploration focused on
non-genetic data, and (6) epidemiologic exploration using genetic data. Below, we review papers in these
six broad categories in more detail.

Study Design and Cohort Characteristics

Biobanks typically publish papers on study design, cohort characteristics,'***3* how the
cohort differs for the rest of the country’s population,® and characteristics of specific patient populations
(e.g. clinical characteristics of colorectal®® and prostate®’ cancer patients in the BioBank Japan cohort). This
information is critical for determining generalizability of results obtained using biobank data.

24,29,30

Ethics and Public Perception

There has been a good deal of attention given to ethics of biobanks, particularly ethical and legal
concerns? with the use of broad consent (seeking consent for future unspecified research). Particular
attention has been given to the use of opt-out consents in biobanks with plans for broad, long-term use.3%3°
Additionally, research has looked at the public perceptions of biobanks and biobanking,*’ identified areas
of reluctance for potential subjects to consent, and gathered general thoughts on medical and
epidemiological research. While hurdles exist (including concerns about privacy and confidentiality,
benefit-sharing and commercialization, and internationalization), there is evidence from Germany*! and
China* that there is general public support for biobanks and large-scale cohort studies.
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Feasibility and Implementation

Literature about biobanks explores feasibility and implementation for establishing biobanks,
including business plans and models for facilitating biobank creation,* how to recruit and obtain consent
(particularly among particular groups of patients such as cancer patients),* ¢ and the use of electronic
consent in biobanking.*’ Increasingly, biobanks are augmenting their survey data with EHR database
connections. The promise and utility of EHR data for secondary research use has been well-established. *34°
Research into EHR data quality suggests a need for standardized methods of EHR data quality assessment>°
and awareness of underlying data collection processes.’! Concerns around EHR data manipulation and
analysis are discussed later.

Scientific Studies of Health-Related Outcomes

The vast majority of emerging biobank-based literature focuses on studying health-related
outcomes. One area of exploration involves comparisons or characterizations of different treatments or
therapies. For example, Ramirez et al. (2012) examined the impact of genetic variants in European-
Americans and African-Americans on the response to different warfarin dosages.”> EHR-linked biobank
data is well positioned to explore treatment or therapy outcomes, treatment repurposing, and gene-by-
treatment interactions.

Other studies use biobank data to perform epidemiologic analyses using available EHR and/or
supplemental survey data,3>33:62771:54.72-75.35-61 We oroup these papers published using biobank data into two
coarse categories: genetic and non-genetic analyses. Two examples of non-genetic analyses include Song
et al. (2018), which describes the protective nature of alcohol consumption on coronary artery disease risk
in the Million Veterans Program, and Peters et al. (2018), which describes sex differences in the association
between measures of general and central adiposity and risk of myocardial infarction in the UKB.>* Pilling
et al. (2017) is an example of a genetic study, where the authors conducted a genome-wide association
study of UKB data to identify 25 loci associated with human longevity.”® Another example of a genetic
analysis paper, Nielsen et al. (2018) used biobank data to explore the relationship between genetics and
atrial fibrillation.”’

Figure 1 provides a distribution of included biobank-based publications falling into each of the
above categories over time. The recent, rapid increase of biobank-based analyses, particularly the non-
genetic and genetic-based analyses of health-related outcomes, is evident. The rise of genetic-based studies
can be partly explained by the increase in the number of genome-wide association studies (GWAS) and
phenome-wide association studies (PheWAS). GWAS use genotype data, typically from a large number of
individuals, to relate millions of genetic variants with a given disease/health condition, and biobanks often
contain upwards of several hundred thousand individuals. Additionally, many biobanks have linked the
genotype data to EHR, which allows for in-depth phenotyping and, thus, the feasibility of relating millions
of genetic variants with hundreds of diagnoses and lab tests, leading to exploration of the genome x
phenome landscape through PheWAS.

While the overall number of biobank-related papers has been increasing rapidly, it is worth
exploring the number and types of publications produced by individual biobanks. The types of papers
published for a particular biobank may depend on the kinds of data available and the willingness to share
data externally. Table S1 provides additional details about the types of identified papers associated with
several prominent biobanks. UKB is associated with a large number of publications and particularly papers
involving genetic data. The large volume of publications can be explained by external data accessibility
and the presence of high-quality genetic information on a large number of patients. In studies conducted
using data from other biobanks, UKB data is often chosen as a validation dataset.

Common Qutcomes in Biobank Research

While data in large biobanks allow researchers to examine a broad array of outcomes (and often
many at once), psychiatric/neurologic outcomes, cardiovascular disease, obesity/diabetes, cancer, and
pulmonary conditions dominate recent biobank-based research. Common psychiatric and neurologic
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outcomes include risk-taking behavior,”®” depression/major depressive disorder,’®808981-88 Alzheimer’s
disease, 81878890 anxiety,’782 schizophrenia,’®#>#*878 and bipolar disorder.”®828387:889193  Thege
outcomes are ascertained by either diagnosis codes or survey responses, and different definitions and
thresholds are used in sensitivity analyses. Similarly, cardiovascular disease outcomes include coronary
artery disease/coronary heart disease, 323498-10055.6487.88.94-97 \yhich are defined as a combination of more
specific conditions including myocardial infarction. Related conditions like stroke, atrial fibrillation””1°!-
1083 and calcific aortic valve stenosis!® have also been explored in the literature. Obesity (and related
measurements like BMI and waist-to-hip ratio) and diabetes have also been explored.3438110-118.95.99,100,105-
109 Colorectal,>!"® breast,’”-12%12! lung,’* pancreatic,'?* and skin'® cancers as well as pulmonary conditions
including smoking*>3-¢%-73:123 and airflow obstruction®*$%1?* have been investigated, but to a lesser extent.

While psychiatric/neurologic conditions, cardiovascular disease, obesity, cancer, and pulmonary
conditions are responsible for a significant portion of morbidity and mortality, the breadth and depth of
EHR-linked biobank data offer a valuable resource to research many other rare and chronic diseases and
conditions as well as risk factors and health behaviors. As such, there is great opportunity for future
explorations into health outcomes using EHR-linked biobank data.

Section 3: Brief Summary of Statistical Approaches for GWAS/PheWAS

The combination of large-scale genotype and phenotype data provides new avenues for exploring
scientific questions regarding the relationships between genotypes and phenotypes. First demonstrated in
Denny et al. (2010), PheWAS explore the associations between a single variable of interest and many EHR-
derived phenotypes.!?> PheWAS usually relate phenotypes to a single genetic variant or a polygenic risk
score (e.g. Fritsche et al. 2018)'°, but it is worth noting that PheWAS can be conducted based on additional
biomarker values/lab tests (e.g. Liao et al. 2017, Neuraz et al. 2013).'2%!2” This provides a broad range of
scientific questions that can be explored through GWAS and PheWAS-type analyses using biobank data.
For both GWAS and PheWAS, phenotypes are often defined using ICD codes derived from the EHR (see
the section on “Defining the Phenome” for more details).

The current GWAS/PheWAS literature features studies that fall into multiple different categories
in terms of their analytic goals. A natural and common goal of GWAS and PheWAS is to study the
associations between specific phenotypes and variants at a particular gene region. This analysis is often
performed using linear or logistic regression (recently, Firth-corrected logistic regression) or using mixed
linear model association (MLMA) analysis.!%8:9510L117 A discussion of MLMA and related issues can be
found in Yang et al. (2014).!*® Recently, Dey et al. (2017) proposed a fast alternative to Firth-penalized
regression to stabilize estimation for PheWAS studies using saddle-point approximation that is particularly
useful for handling extremely unbalanced case-control data.'?® Recently, a saddle-point approximation
approach for estimating mixed models (called SAIGE) was proposed for handling highly unbalanced case-
control data with additional sample relatedness, which is typical for biobanks.'*°

In the PheWAS setting, researchers may be further interested in studying the association between
multiple phenotypes in terms of underlying genetic risk. In Fritsche et al. (2018), researchers approach this
task by developing a polygenic risk score for a primary phenotype of interest and relating the polygenic
risk score to other phenotypes.'? Another common strategy for identifying phenotype relationships through
shared genetic risk is bivariate linkage disequilibrium regression,86-8%:131-133

Another common target for these studies is to identify the proportion of variation in a particular
phenotype that can be attributed to genetic variation, called heritability. Some popular statistical methods
include polygenic profile scoring, univariate linkage disequilibrium regression, and genomic relatedness-
matrix restricted maximum likelihood (GREML) 8688131134136 Recently, Bastarache et al. (2018) developed
a phenotype risk score-based method (called PheRS) to study rare genetic variants associated with
Mendelian diseases.'’

Recently, researchers have used particular genetic variants as instrumental variables in Phe WAS
analyses, where loci related to a primary phenotype are selected and their associations with secondary
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phenotypes are evaluated.!”! Mendelian randomization analysis is then used to explore potential causal
relationships between the genetic trait and the primary and secondary phenotypes.'*®

Section 4: Statistical Issues Related to Biobank Research
Study Design

A key issue to consider when performing a biobank-based study is study design. Design choices
can have implications for the analysis and interpretation of the study results. In this section, we describe
several common approaches for study design used in biobank research and describe some analytical and
design-based strategies for dealing with common sources of bias. A critical part of study design is the
mechanism by which patients are sampled from the population of interest. Two sampling mechanisms are
at play: (1) the mechanism by which subjects are sampled from the population into the biobank and (2) the
mechanism by which biobank subjects are sampled for inclusion in the study.

Sampling from the Population

Population-based biobanks like UKB and China Kadoorie Biobank sample patients from a network
of health centers or administrative sites across each country. Compared to other types of biobanks,
population-based biobanks are often thought to be more representative of the target population and often
recruit a larger number of subjects. However, individual characteristics may still impact inclusion in a
population-based biobank--for example, living near an assessment center (UKB) or living in a region with
certain desirable characteristics (Kadoorie). Medical center-based biobanks (e.g. MGI, BioVU) and health
system biobanks (e.g. KPRB, Partners) attempt to recruit all patients that meet certain criteria within the
center/health system, often through selected clinics. Generally, participation in these biobanks requires
subjects to use healthcare, which is indicative both of ability to access healthcare (e.g. barriers to access
including transportation and insurance) and health (i.e. people with diseases and chronic conditions are
more frequent users of healthcare). In the case of BioBank Japan, patients at participating health centers are
identified if they have had or become diagnosed with one of 47 diseases. Compared to population-based
biobanks, academic medical cancer-based biobanks tend to see more patients with rare or complicated
diseases due to availability of specialized care and, thus, are often useful for investigating rare conditions.
For example, MGI'®!! is enriched for analyses of some cancer types, most notably melanoma of the skin,
since Michigan Medicine is known for its skin cancer treatment and care. Disease-specific biobanks are
used to examine specific conditions, and in some cases, disease-specific biobanks will also recruit controls
(e.g. PcBaSe Sweden). Of note are biobank recruitment methods that recruit self-selected volunteers
directly from the general population such as GFG (subject-initiated via Facebook). Many biobanks will
further screen interested volunteers in addition to the sampling mechanisms described above (as is planned
in the upcoming NIH A/l of Us biobank). In all cases, the study designs have the potential to induce sampling
and participation biases into the analysis. This can have implications on the generalizability of the results
and impact measures of association.

To demonstrate an impact of different sampling mechanisms, we consider prevalence rates for
different phenotypes in three biobanks, MGI, UKB, and GFG. As mentioned previously, MGI is a biobank
of over 60,000 patients treated at an academic medical cancer. Patients in MGI were recruited through the
anaesthesiology department as patients were preparing to have a surgical procedure. The UKB is a
population-based collection of over 500,000 patients. GFG is a self-initiated biobank recruiting subjects via
Facebook. MGI and UKB are linked to EHR, while GFG obtains phenotype information via survey self-
reporting. All three biobanks are described in Table 1, and Table S2 in Supplementary Section S4
provides comparisons of the patients in MGI, UKB, and GFG in terms of demographics. The three biobanks
have very different sampling mechanisms into the biobank, and we expect the phenotype prevalences in
MGI and GFG patients to be quite different both from the general US population and the subjects in the
UKB. Phenotypes were defined for MGI and UKB using aggregated versions of ICD codes, called PheWAS
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codes or phecodes.!* Phenotypes in GFG were defined based on survey responses. A description of the
phenotype generation process can be found in Supplementary Section S2.

Table 2 presents prevalences of many commonly-studied diseases in MGI, UKB, and GFG along
with published prevalences for their corresponding target populations. MGI often captures subjects with
many conditions at a higher rate than is observed in the nationwide population. The UKB has higher case
counts for several conditions due to its size, and it is often more representative of the rates observed in the
population (at least for conditions common among ages 40-69, the age range included in UKB). We note
that there are several diseases for which the ICD-derived phenotype classifications in UKB do not appear
representative, particularly obesity. We discuss this issue in more detail in Supplementary Section S5.
The high prevalence of depression in GFG is a result of the broad definition of the depression phenotype,
which is obtained by asking subjects whether they have every felt depressed. We note the small proportion
of subjects diagnosed with breast cancer and prostate cancer in GFG compared to the US population. This
may be a result of the differing age distributions, where GFG consists of generally younger people.
Differences between GFG and the other biobanks may be a result of different sampling mechanisms or
differing phenotyping procedures.

The difference in sampling mechanisms between the MGI and UKB has an impact on observed
disease prevalences for many types of diseases. Figure 2 shows the relative prevalence of various
phenotype codes within different disease categories between MGI and UKB. We see that the majority of
the prevalences are higher in MGIL In particular, prevalences for neoplasms, symptoms,
endocrine/metabolic disorders, infectious diseases, and congenital anomalies are uniformly higher for MGI
compared to UKB.

The biobank sampling mechanism may also have implications for the use of EHR data. Population-
based biobanks may be more likely to have access to a patient’s primary care center EHR but might have
to deal with heterogeneity both in terms of the EHR-interface used to collect and store the data and
differences in case/procedure/diagnosis reporting.’!* Some population-based biobanks may
overcome/mitigate many of these issues if they operate in countries with universal healthcare (BioBank
Japan) or publicly funded healthcare (UKB). Medical center-based biobanks may face complications related
to patients coming to their centers for specialized treatment; for example, cancer surgery. While EHR data
related to the observed surgery and treatment would often be robust, we might expect the length of each
patient’s medical history may be shorter and less complete compared to population-based biobanks, since
many patients may return to their local health care provider for post-surgery treatment. Unlike biobanks in
an academic medical center, we believe broad health system-based biobanks and population-based biobanks
may likely have more detailed and consistent data on biobank subjects and may have more complete EHR
data for subjects with more common and easily-managed diseases.

Sampling from the Biobank

Within pre-existing biobanks, researchers then seek to sample patients for inclusion in a particular
study. Such samples may be limited by data availability, where some subjects may not have, for example,
genotype information or survey response information. A common study design involves phenotype-specific
case-control sampling, where all observed cases for a particular phenotype are selected and some subset of
(possibly matched) controls for that phenotype are sampled from the biobank (e.g. Fritsche et al. 2018,
Abana et al. 2017).'%12° An advantage of case-control sampling is that it does not require longitudinal
information and instead relies on dichotomized phenotypes, but it is heavily dependent on the “case” and
“control” definitions.

Another common study design is cohort sampling, where all biobank subjects with available data
are included in all analyses (e.g. Au Yeung et al. 2014, Hall et al. 2018).5!4! Self-controlled designs in
which each subject serves as his/her own control are emerging as an appealing design paradigm for some
scientific problems (e.g. Kuhnert et al. 2011, et al. Zhou 2018).'4*!* Two variations of self-controlled
designs are the self-controlled case series design and the cross-over design. Recently, Schuemie et al. (2016)
developed an adapted self-controlled case series design that uses the notion of accumulated exposure to
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study long-term drug effects.!** A detailed comparison of the two primary designs can be found in MacClure
et al. (2012),'* and additional exploration of self-controlled case series can be found in Petersen et al.
(2016) and Simpson et al. (2013).'4147 An advantage of this design is that it controls for confounding due
to time-invariant variables. Unlike cohort and case-control designs, however, this method requires
longitudinal data to be available for all subjects. Large-scale longitudinal observational databases, such as
EHR-linked biobank databases with time-stamped diagnosis, procedure and therapy data, are readily
accessible resources for many longitudinal outcomes. !¢ However, self-controlled designs require adequate
longitudinal data (in terms of number of visits and length of follow-up), which can either be missing or
incomplete in some EHR-linked databases.

Impact of Sampling Mechanism on Inference

Madigan et al. (2013) compares effect estimates resulting from self-controlled case series, cohort,
and case-control designs in a particular setting and demonstrates that the choice of study design can have
substantial impacts on effect estimates.!*® These choices also impact the statistical power and
generalizability of the results. Therefore, study design should be considered carefully. In addition to
impacting power, the method by which the subjects are chosen may result in biased inference (with respect
to the target population), called sampling bias. Haneuse et al. (2016) provides a general framework for
exploring and dealing with selection/sampling bias for EHR-based analyses.'* Haneuse et al. (2016)
focuses on characterizing the mechanism by which subjects were included in the dataset by breaking it into
smaller observation mechanisms. For example, a subject may be included in a study if 1) the subject is
selected for inclusion in the biobank, 2) the subject consents, and 3) the subject is selected from the biobank
by study researchers. Different factors may impact different selection mechanisms, and possible sources of
selection bias arising from each individual step can be explored in detail in a sensitivity analysis framework.

The impact of the selection procedure on inference may depend on the analysis being performed.
For example, case-control sampling from the biobank will result in biased estimates of the marginal
probability of having a disease; however, this sampling design may be able to produce valid estimates of
the association between disease status and a covariate. Statistical methods exist for addressing some
sampling biases using, for example, inverse probability weighting.!”® Some recent works exploring
selection/observation biases in the EHR setting include Zheng et al. (2017), Phelan et al. (2017), Goldstein
et al. (2016), and Rusanov et al. (2014).151-154

There is a belief in the literature that GWAS/Phe WAS study results may be less susceptible to bias
resulting from the patient sampling mechanism, but bias due to genotype relationships with the sampling
mechanism can still arise in certain settings.!>>!3¢ Additional work may help clarify settings in which bias
is and is not expected in GWAS and PheWAS studies. In general, issues of sampling bias are not unique to
EHR data, and many authors have explored the impact of sampling on inference. However, additional
characterizations of the mechanisms by which we can have sampling bias in biobank and EHR research
may help guide study design in the future.

Dealing with Confounding

In addition to sampling, measured and unmeasured confounding are common sources of bias in
observational data. Careful use of existing analytical tools can help reduce or eliminate biases resulting
from confounding. Here, we define a confounder as a variable that impacts both our outcome and our
predictor(s). We exclude the situation where the variable is a mediator. Failure to adjust for the confounder
may result in biased inference regarding the association between the predictor and the outcome. In a given
dataset, sampling and confounding biases can both be present, and careful adjustment of one source of bias
does not preclude the possibility of bias from the other source. Haneuse (2016b) details differences between
sampling and confounding biases, where sampling bias resulting from the patient selection mechanism
impacts external validity of the results, and confounding biases impact internal validity.'>’ There are many
analytical strategies in the statistical literature for dealing with confounding. A typical method is to adjust
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for confounders in a statistical model or stratify analyses by the potential confounders (e.g. Hall et al.
2018).% Techniques for reducing and eliminating confounding often assume that the potential confounders
are measured. In the EHR setting, however, some confounders of interest (e.g. comorbidities) may often be
unmeasured, crudely measured, or incomplete. In such settings, sensitivity analyses and related statistical
methods can be used to explore the impact of and to correct for potential unmeasured confounding, !3-160

Biobank data provides several design-based strategies for dealing with confounding as well. In a
case-control sampling framework, controls can be matched to cases based on potential confounders such as
age and gender, which can make the case and control populations more similar in terms of their age and
gender distributions (e.g. Fritsche et al. 2018).!° Rather than stratifying statistical analysis by a potential
confounder, one could directly define the analytical sample within narrow windows of a particular
confounder (e.g. subjects ages 60-65). With large biobank datasets, we can often still obtain an analytical
sample of a substantial size with narrow inclusion constraints. As mentioned previously, self-controlled
studies adjust for time-invariant confounders through the design, and additional statistical methods have
been developed to further account for systematic differences between time periods.'®! In terms of methods
designed for large-scale agnostic EHR-based studies such as GWAS or Phe WAS, Schuemie et al. (2014)
and Schuemie et al. (2018) propose a p-value calibration method that may be able to account for both
random and systematic (e.g. confounding, sampling biases) sources of error using distributions of effect
estimates believed to be truly null effects.!%163

Additional Thoughts on Identifying the Study Sample

An additional concept to consider when defining the study sample is the independence between
subjects. Longitudinal outcomes are expected to be correlated within patients, and outcomes may be
correlated between patients due to relatedness, nesting within doctor or clinic, belonging to a common
social network, or other reasons. The software KING (Kinship-based Inference for GWAS) uses genotype
data to determine pairwise kinship between subjects.'® We might then define the study sample restricted
to unrelated subjects and apply methods that rely on independence between subjects (e.g. Firth-corrected
logistic regression in Fritsche et al. 2018).!° Statistical modeling approaches such as mixed modeling can
also be used to account for residual correlations between individuals.'*

Although not discussed in detail here, finite resources for collecting patient information presents
another sampling-related challenge. In particular, suppose we want to collect genotype information on some
subset of our subjects. Who do we test? This and related issues are explored in detail in Sun et al. (2017)6
and Schildcrout et al. (2015) and (2018).166:167

Defining the Phenome

A central challenge for research involving EHRs is in defining phenotypes. The data available falls
into two broad categories: structured and unstructured. Some examples of structured data are billing and
procedure codes, numeric lab and test results, and prescription information (both what has been prescribed
and what has been filled). Some examples of unstructured data are the narrative notes made by
physicians/nurses and radiological/pathological notes and images. For a detailed review of phenotyping
procedures, see Bush et al. (2016).8

Phenotypes from Structured Data

Previous Phe WAS studies primarily rely on structured data to define the phenotypes. In particular,
ICD9 and ICD10 diagnosis codes (International Classification of Diseases, revisions 9 and 10) are the most
common source used for defining phenomes.'®® These codes are appealing due to their standard definitions
(although perhaps with differential usage in practice) across institutions. These codes are often aggregated
to conform to a standardized set of phenotype definitions, called “phecodes.” However, there is a large
amount of additional information in the EHR that can be used to define phenotypes. Figure 3 provides
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some examples of the types of structured and unstructured EHR information that can be used to construct
phenotypes.

There are many challenges to incorporating additional structured EHR information to define the
phenotypes. One challenge involves automation and computation. Suppose we define phenotypes based on
structured EHR-based measures of many different types, e.g. binary, count, and continuous. For example,
suppose we have many continuous lab values. We may be tempted to model all values using linear
regressions, but pre-processing may be required to determine whether the linear regression assumptions are
reasonably met. Such evaluation may be difficult to perform manually for a large number of phenotypes,
and the development and use of automated algorithms is essential.'® Another issue involves comparability
of the phenotypes between institutions, where lab tests may be performed using different assays or with
different rates of variability, and there may be differences in coding and billing norms.

An alternative strategy to phenome generation uses additional expert input (for example, through a
consortium) to inform the phenotype definitions. However, establishing a well-accepted definition for a
given phenotype requires time, careful thought, and discussion. The eMERGE Phenotype
Knowledgebase!”’ (PheKB) details existing phenotyping algorithms for individual phenotypes that
incorporate additional patient information. Due to the complexity of these phenotyping algorithms, the
simpler ICD-based phenotyping method is common for PheWAS studies, but incorporation of these
external phenotyping resources may help improve phenotype definitions in the future.

Phenotypes from Unstructured Data

Unstructured data has also been used to define phenotypes, particularly for diseases with unreliable
ICD9 classifications such as some psychiatric diseases, using natural language processing methods.'”'~!7
Such methods can also be used to obtain patient measures such as smoking status.!”! Natural language
processing methods mine free text such as narrative doctor’s notes for words or phrases corresponding to a
particular characteristic. The general goal is to develop a model combining structured and unstructured data
to classify each patient as having or not having the phenotype of interest in such a way as to maximize
prediction abilities for the sample as a whole, perhaps measured using negative or positive predictive
value.!”"172 Some challenges include dealing with misspellings, tenses, alternative phrasing, and defining a
trained dictionary of words and phrases that may correspond to a particular phenotype. Algorithms are
usually trained using expert annotations, but recent methods have attempted to automate this step as
well.!7178 Additional machine learning methods have also been used to define phenotypes (e.g. imaging
analytics from medical imaging datasets) using a broad spectrum of patient information. '3¢-182

Generally, there is a great potential for incorporating data of different types in order to define
phenotypes used in EHR-based research. However, future work is needed to provide automated methods
for incorporating data of different types for phenome generation.

Phenotype Misclassification
Misclassification of ICD Codes

A common strategy when defining disease phenotypes is to list a subject as being a case if he/she
has received a certain number of ICD9/ICD10 diagnosis codes (or composites, called phecodes) for a
particular disease. This general strategy, however, only captures part of the story. This disease status
determination is usually performed across subjects who have different amounts of follow-up time, who
have different numbers of visits, and who are being seen in different types of medical clinics. These factors
may all be related to the underlying disease status, and a person who would eventually develop the disease
or had developed the disease prior to the follow-up window may not be captured.'®* Some statistical tools
have been developed to try to deal with this and related issues, but computational restrictions may make
these methods difficult to apply to large-scale biobank data (e.g. Bergeron et al. 2018 and Sinnott et al.
2014).17618% Additionally, symptoms occurring between visits may not always be reported, and the use of
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diagnostic guidelines and assessment of the phenotype may vary from doctor to doctor.!35!% These
underlying patient-specific properties are often ignored when classifying subjects as cases and controls for
a particular disease, and this can lead to phenotype misclassification. Such misclassification can be viewed
in the context of missing data as explored in the next section.

ICD-based phenotype misclassification is particularly common for psychiatric disorders, where
diagnosis can be particularly challenging.!”*!*> For diseases with burdensome treatments such as cancer,
we may expect that all subjects receiving a cancer diagnosis truly do have cancer, and there may be only a
few cancer cases without a corresponding ICD9 code. In contrast, ICD9 codes for psychiatric disorders
such as anxiety may be sometimes attributed to some subjects that do not meet the ICD9 definitions for the
disorder. There may also be a tendency for patients to receive ICD classifications that result in re-
imbursement from the insurance provider. Some ICD codes, for example obesity, may not result in
reimbursement and may be expected to have different patterns of misclassification. Additionally, disease
ICD codes are sometimes assigned when a disease is suspected prior to further diagnostic testing, so it may
be unclear whether a given ICD code refers to the final diagnosis.®!%

Phenotype misclassification can result in bias (“information bias™) and negatively impact the
statistical power to detect associations with the disease of interest. The extent of misclassification can be
described using quantities such as sensitivity, specificity, and negative and positive predictive values
(provided a gold standard exists for comparison), but these quantities can vary from population to
population and from phenotype to phenotype.'®” Therefore, it is difficult to detect the extent of phenotype
misclassification in a particular population without performing further phenotype validation.'®® For
example, Liao et al. (2017) estimated misclassification rates for particular phenotypes by sampling subsets
of patients for manual chart review to verify the phenotype classification.'?® Recently, Huang et al. (2018)
explored a method for accounting for phenotype misclassification in association studies using a likelihood-
based method that integrates over unknown sensitivity and specificity parameters, placing less emphasis on
previously-reported values for sensitivity and specificity from other populations.'®® Duffy et al. (2004)
proposes an alternative method for correcting logistic regression effect estimates under misclassification of
the outcome. 819

Misclassification in Self-Reported Measures

Another source of phenotype misclassification results from reliance on self-reported measures. For
example, self-reported race/ethnicity has been shown to be generally consistent with genetic ancestry but
not very specific, particularly for African Americans and Latinos.!”"!*?> Spangler et al. (2015) reported a
discrepancy between self-reported oral contraceptive use with filled prescription data in a population-based
study, with prescriptions being filled 11-45% higher than self-reported oral contraceptive use for the same
time period.!”® Sensitive health issues may be particularly susceptible to being under- or over-reported, and
studies (e.g. those recruiting via social media like GFG) involving such measures should carefully consider
the potential impacts of under- or over-reporting on their results.

Missing Data

Missing data is a common issue for biobank analyses, and data may be missing for a variety of
reasons. A common source of missingness in GWAS/PheWAS studies is missingness in the genotypes.
This is often handled by first excluding subjects with missingness rates above a particular threshold (say,
2%) and then imputing missing values for subjects with smaller missingness rates.®®%® While many of these
biobank analyses reported their treatment of missing genotype data, missing information in the phenotype
information or demographics is rarely discussed. For example, when a phenotype is constructed using
survey data, how is survey non-response handled? Additionally, many studies define their analytical sample
based on some subset of biobank participants. However, it is sometimes unclear how these participants
were chosen. A more transparent description of how the study sample was derived and the treatment of
missing data may shed some light on the generalizability of study results.
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Statistical methods for dealing with missing data in the EHR often rely on multiple imputation, a
statistical approach in which the missing data is “filled in” using information from subjects with observed
values."”* 17 These methods may also rely on natural language processing to obtain information from
unstructured clinical notes. Such approaches can prove extremely valuable to EHR-based research, but
implicit assumptions about the missingness mechanisms should be carefully considered.

A common type of “missing” data is the true phenotype state of each subject. We can view the
sampling mechanism that gave rise to our study population and the mechanism behind phenotype
misclassifications (which we might call the observation mechanism) in a missing data framework. The
observed phenome in our sample is a function of the true phenome state (the “missing” data), the mechanism
by which subjects are sampled, and the mechanism by which phenotypes are observed in the sample as
shown in Figure 4, where arrows represent dependence.

The probability that a particular subject has an observed phenotype will be related to whether the
subject truly has the phenotype, but it may also be related to other factors such as the number of visits to
the health care provider, the length of follow-up, the types of health services they receive, and other
predictors. These other factors may also be correlated with the true disease status of the subject. For
example, a healthier subject may “drop out” of the biobank and may instead seek health care from a tertiary
care center. Figures S3-S5 present descriptions of the length of follow-up, number of unique observed
phecodes, and number of visits by gender and observed cancer status in MGI. These figures demonstrate a
relationship between these variables and whether the subject ever received an ICD code for cancer during
follow-up. The sampling and observation mechanisms and their relationships to underlying disease status
and patient characteristics may impact study inference. Further work should be done to explore the impact
of different sampling and phenotyping mechanisms on statistical inference.

Multiple Testing

GWAS/PheWAS studies and many other types of EHR-based research often involve the
simultaneous testing of many hypotheses. Failure to account for multiple testing can result in inflated Type
I error, and many statistical methods have been developed to control the Type I error in the multiple testing
setting. Some commonly-used examples include Bonferroni adjustment, false discovery rate-controlling
thresholds (e.g. Li et al. 2018),'°! and Benjamini-Hochberg thresholds (e.g. Liao et al. 2017).'2® However,
many of these methods (in particular, the simple Bonferroni adjustment method) have been shown to be
overly conservative when the many statistical tests are not independent. This is often the case in large-scale
GWAS/PheWAS studies, where associations are explored between many different combinations of related
characteristics. In this setting, the goal may be to control for the effective number of independent tests rather
than the number of correlated tests being performed. Such an approach may improve statistical power to
detect significant associations while still controlling the Type I error rate.

Several methods have been proposed to estimate the effective number of tests (e.g. Li 2012) or
control for correlated tests. Good (2005) describes resampling-based testing via permutation or bootstrap
to correct the p-values for multiple testing.'”® Gao et al. (2008) proposes the simple M method to estimate
the effective number of tests, which uses a combination of principal components analysis and Bonferroni
correction.!”” For a Phe WAS study presented in Ge et al. (2017), the effective number of tests is estimated
using principal components analysis of a matrix of pairwise correlations between pairs of phenotypes. '
Alternative methods adjust for multiple testing using multivariate normal assumptions for the correlated
test statistics (e.g. Han et al. 2009, Lin 2005, Seaman et al. 2005).2%2%2 In the context of correlated SNPs,
some methods correct for multiple testing via analysis of the underlying linkage disequilibrium structure of
the genetic data (e.g. Duggal et al. 2008).2* Johnson et al. (2010), Zhang et al. (2012) and Li et al. (2012)
provide some simulations comparing the performance of different methods.?%+2%
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Heterogeneity between Biobanks

Researchers often attempt to validate statistical findings from their data analysis using an
independent dataset, often from a different population. Differences between the population characteristics,
however, could impact the generalizability of results between populations and impact our ability to replicate
findings. Additional issues can arise when comparing inference across datasets with different sampling
mechanisms. In the meta-analysis literature, heterogeneity between studies is broadly grouped into three
categories: clinical heterogeneity (differences in patients, interventions, and effects), methodological
heterogeneity (differences in study design and sampling), and statistical heterogeneity (when the observed
effects are more variable across studies than we would expect from random chance). Statistical
heterogeneity may be a result of clinical and/or methodological heterogeneity.

Methodological Heterogeneity

To demonstrate the impact of different sampling mechanisms across biobanks on statistical
inference (an example of methodological heterogeneity), we consider phenotype co-occurrence rates and
genotype-phenotype associations in MGI and UKB. Suppose we are interested in comparing the odds ratio
for having a particular phenotype based on the status of another phenotype, called phenotype co-
occurrences, in MGI and UKB. While prevalences will clearly be impacted by the different sampling
designs between MGI and UKB (see Figure 2), it is not clear how the resulting phenotype associations will
compare between datasets.

In Figure 5, we show the estimated log-odds ratios of having a phecode diagnosis of breast cancer
based on other diagnoses in the phenome. See Supplementary Section S2 for more details on the
phenotype generation procedure. We note that the estimated odds ratios from the UKB data tended to be
larger in magnitude compared to the odds ratios in MGI. One possible explanation for this phenomenon is
that in order for subjects to get a phecode in UKB, they must visit a health care provider, during which time
they may get multiple codes. When we compare these subjects with UKB subjects who did not visit a health
care provider or did not visit as often, we may obtain inflated odds ratios. The subjects in MGI are enriched
with phecodes across the board, but subjects with and without a particular phenotype may have many
opportunities to collect other diagnoses through their interactions with the health care provider. In this
breast cancer example, the odds ratios for other neoplasms and genitourinary diseases did not exhibit the
same differences in MGI and UKB as with other classes of diseases. This may be due to enhanced screening
of these diseases after diagnosis of breast cancer in both MGI and UKB. Similar exploration for melanoma
showed odds ratio inflation in UKB compared to MGI for all disease categories except neoplasms and
dermatological conditions. The odds ratio inflation phenomenon seen for breast cancer and melanoma was
present for chronic conditions such as hypothyroidism as well as emergent conditions such as concussions.
While the size of the odds ratio estimates differed between the two biobanks, we note that, when both
associations were significant at a p-value threshold of 0.05, the associations were largely in the same
direction.

There are some associations that may not be appreciably impacted by the sampling mechanism.
For example, suppose we are interested in studying associations between various SNPs and a phenotype in
a GWAS study. It may be reasonable to believe that any given SNP alone is not appreciably related to
selection into the sample or variables related to selection into the sample. In this case, we may believe that
GWAS results will be reasonably representative of the population. In Figure 6, we compare GWAS results
in MGI and UKB for several cancers. In this figure, points represent SNPs identified as being related to the
corresponding phenotype in the NHGRI-EBI GWAS catalog. See Supplementary Section S3 for details.
While MGI and UKB have very different sampling mechanisms, the GWAS results generally appear similar
between MGI and UKB.

However, this may not always be the case. In Figure 7, we compare GWAS results in MGI with
results in GFG. We also compare results in both biobanks to genotype-phenotype associations reported in
the NHGRI-EBI GWAS catalog. We note that MGI has nearly double the sample size of GFG, and we do
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not account for this when comparing effect estimates (N = 30,702 vs. 15,156). We do see some differences
when comparing GWAS results between MGI and GFG. There are many possible explanations for this.
One explanation is that the phenotypes are defined differently in MGI and GFG. In MGI, phenotypes are
derived based on ICD codes reported in the EHR during patient follow-up. In GFG, the breast cancer
phenotype is derived from survey responses, which ask subjects whether they have ever had breast cancer.
The difference in the sampling mechanism both in terms of obtaining subjects and in terms of self-reporting
of phenotypes in GFG along with the low number of events in GFG could also explain differences in the
GWAS results. A comparison of the MGI GWAS results with the log-odds ratios reported in the NHGRI-
EBI GWAS catalog shows a positive relationship, and this relationship is weaker when comparing GFG
results with the GWAS catalog estimates.

Clinical Heterogeneity

In addition to differences in the sampling mechanism, differences in patient populations in terms
of potential effect modifiers (e.g. age and race) could impact replicability of results across biobanks. For
example, suppose we are interested in a particular genotype-phenotype association but that the association
varies across genetic ancestries. This is an example of clinical heterogeneity. Such a difference in
association could be driven by true biological heterogeneity or by different linkage disequilibrium
properties between the populations. When comparing this association overall between two different
populations, a failure to adjust for the genetic ancestry composition of the two populations could result in
biased inference. Au Yeung et al. (2014) explores the association between ALDH2 and lung function in a
southern Chinese population.!*! The authors discuss lack of consistency between their results and results
from Western populations, which could be the result of different health attributes of the populations (e.g.
different alcohol and smoking behaviors) and could be attributed to different rates of polymorphism
between the two populations. An example of this for MGI and UKB is age, where MGI consists of patients
aged 18 and up, while UKB consists of subjects aged 40-69. If the association of interest depends on age,
we would have different marginal associations in MGI and UKB.

Statistical Methods for Dealing with Heterogeneity

In the presence of this heterogeneity between study populations, we may explore statistical methods
to improve our ability to compare between different populations. There is a body of statistical literature for
quantifying and handling between-study heterogeneity for meta-analyses (see Thompson et al. 1994,
Fletcher et al. 2007, Higgins et al. 2003, and Kriston et al. 2013 for more information).?*’2!° Heterogeneity
is often handled in meta-analyses through mixed effects modeling. Weighting-based and resampling-based
methods for dealing with heterogeneity have also been explored.?''?"® Future work may explore
resampling-based methods to make studies more comparable in the presence of heterogeneity with respect
to the sampling mechanism.

Section 5: Emerging Uses of Electronic Health Record Data and Combination with External Data

Many of the existing large biobanks in the US are from academic institutions, which may only
provide specialty care. Therefore, the EHR from single institutions or health systems may lack the data for
some longitudinal analyses. There is a large opportunity to incorporate additional data sources or types to
enrich the typical EHR data and enhance the scope of biobank research. For example, by linking cancer and
death registry information to the EHR, we may be able to study survival and disease-related outcomes after
clinical diagnoses. Local and national surgical registries offer opportunities for more granular health-related
outcomes. When registry data is not available, claims data may also provide some insight for survival and
disease-related outcomes-based research.?'* Recent work has developed methods for defining the exposome
based on clinical narrative information in EHRs or based on additional subject-level measurements.?'>16
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Geo-coded data can be used of explore a wealth of exposure information including social determinants of
health, neighborhood characteristics, socioeconomic status, and pollution information.!7-2%2

In addition to geo-coded and registry data, longitudinal data within the EHR and beyond offers
many opportunities for research. The rise of mobile fitness tracking devices also provides an opportunity
to incorporate longitudinal health metrics or even use text messages or game performance to define
phenotypes.??*??* Noren et al. (2010) and Noren et al. (2013) use longitudinal health record data to discover
temporal patterns, and Boland et al. (2015) considers seasonal/calendar effects related to disease. 61225226
Longitudinal EHR data has proven to be extremely useful in the fields of pharmacovigilance,
pharmacoepidemiology, and pharmacogenomics.>>!61227-230 Additional work leverages large-scale medical
data to study potential new indications for existing drugs, called drug repurposing or repositioning.?*!
Longitudinal EHR data can also be used to develop dynamic predictions for patient prognosis, adverse
events, etc. over time.?*??*> Machine learning methods have great potential for prediction based on EHR
data.?®

When combining data from multiple disparate sources, several problems arise. Most notably are
issues regarding patient privacy. Additionally, we must consider issues of data processing, rules for linking
records for a single subject, etc. Many statistical methods have been developed for linking records
corresponding to individual subjects across data sources, and many of these methods explicitly address
issues of privacy.?3’-2#! Statistical methods have also been developed for combining data across distributed
data sources where data from individual subjects is not accessible, called distributed regression analysis.
These methods involve sharing sufficient statistics of the data (functions of the individual-level data) from
which the individual-level data are not recoverable.?*>?** Yang et al. (2013) developed methods for
performing meta-analysis based on sufficient statistics from existing GWAS, and similar methods should
be developed for PheWAS studies in the future.**

Large biobank datasets also provide an opportunity to study different treatment pathways observed
for different patients and their corresponding outcomes.?*® Additional components such as treatment
nonresponse and treatment adherence can also be explored.!’*?* While studies of treatment response and
adherence are certainly not new, the wealth of information provided through EHRs provides opportunities
to study treatment-related outcomes at scale. Additionally, these data sources provide a clearer look at
treatment-related outcomes in practice, which may not always align with treatment-related outcomes under
more ideal settings of a clinical trial. Similarly, these data can be used to analyze and/or predict various
outcomes to treatments, medications, and/or dosages for different diseases (sometimes stratified by patient
characteristics — e.g. race). For example, Delaney et al. (2012) demonstrated clopidogrel resistance for
genetic variants in ABCBI and CYP2CI19 using EHR-linked data from cardiac patients.’>?*” Similar
analyses can be used for drug repurposing as well.

Randomized controlled trials are often considered a gold standard for statistical inference.
Researchers have explored approaches for obtaining results more similar to a randomized trial using
observational data and, in particular, EHR data. These methods include carefully-defined
inclusion/exclusion criteria, use of weighted analyses and propensity score-based approaches, and
definition of exposures and outcomes to mimic a trial.>**>*! An exploration of the use of observational data
instead of clinical trials for inference can be found in Franklin et al. (2017).%52

Section 6: Conclusion

Biobanks linked to electronic health records (EHR) provide a rich data resource for health-related
research, and scientific interest in biobank-based research has grown dramatically in recent years. As more
researchers become interested in using biobank data to explore a diverse spectrum of scientific questions,
resources guiding the data access, design, and analysis of biobank-based studies will be crucial. This work
serves to complement and extend recent publications about biobank-based research (e.g. Wolford et al.
2018, Glicksberg et al. 2018, Bush et al. 2016, Ohno-Machado et al. 2018) and aims to provide some
statistical and practical guidance to researchers pursuing biobank-based research.®”
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In this paper, we provide a detailed characterization of many of the major EHR-linked biobanks in
an effort to facilitate researchers’ ability to obtain and investigate research-quality biobank data with some
understanding of the associated population, sampling mechanism, and data linkages. We also survey
biobank-based papers that have been published. Papers using biobank data have focused on illnesses and
conditions that cause a large portion of morbidity and mortality including cancer, cardiovascular disease,
and obesity/diabetes. Future research can utilize increasingly large EHR-linked biobank cohorts to study a
broader range of diseases. Biobank data also present an exciting opportunity to explore treatment and
therapy schedules, drug repurposing, or gene-by-treatment interactions in the future. Such explorations can
also be used to inform dynamic, patient-centric predictions for monitoring and treating future patients.

When using biobank data for health-related research, it is important that researchers understand the
statistical and practical issues that accompany such analyses and have resources to address them. We
describe many of the statistical challenges involved in biobank research and some current statistical
methods. However, there is a great need for further statistical developments to address the many varied
issues that go hand in hand with EHR-based research. One large challenge involves defining the phenome.
Many methods have been developed to incorporate unstructured EHR data through natural language
processing methods or image analytics, and some researchers have considered other issues of
misclassification related to ICD9/10-based phenotype classification. Future work can expand on these
methods and explore ways to incorporate a broader spectrum of EHR information into phenotype
classification.

Missing data is another broad issue with EHR data. Data can be missing for a variety of reasons,
and the mechanism generating the missingness can have large implications on inference. Statistical methods
tailored to handling issues of missing data in EHR could prove extremely useful. Additional work regarding
sampling mechanisms (e.g. into the biobank, into the study, consenting) is needed to clarify in which
settings these sampling mechanisms will impact inference.

With an increase in the volume and variety of data becoming available, additional emphasis should
be placed on methods for incorporating data from external sources and emerging data streams (for example,
geo-coded data, longitudinal biomonitoring data, mobile data, registry data, genomics/metabolomics data,
imaging data, ecologic data, etc.). Such analyses can widen the scope of scientific questions we can address,
and they necessitate a new wave of related statistical methods.
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Figures
Figure 1: Overall Distribution of Selected Biobank-Based Publications by Year and Type
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Figure 2: Boxplots of Ratio of PheWAS Code Prevalence in MGI vs. UK Biobank Across Phenome
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Figure 3: Potential Data Sources for Generating the Phenome
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Figure 4: Relationship between True and Observed Phenome
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Figure 5: Log-Odds Ratios of having Breast Cancer Diagnosis by Other Phenotype Diagnoses*
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* Each point represents a phenotype in MGI and UK Biobank in a particular disease category (say
respiratory) and the corresponding cross-classified log-odds ratios capturing the association between breast
cancer diagnosis and diagnosis of the other phenotype in MGI and UK Biobank. 2,025 subjects had
observed breast cancer in MGI and 12,680 subjects had breast cancer in UK Biobank. The two lines
correspond to equality of the estimates and a fitted line to the points. “Spearman” indicates the Spearman
correlation and “CCC” indicates Lin’s concordance correlation coefficient, which is a measure of
agreement (with 1 being perfect agreement).

Figure 6: A Comparison of GWAS Results in MGI and UK Biobank (UKB) for Selected Cancer

Phenotypes*
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* Each point represents a SNP identified as being related to the corresponding phenotype in the NHGRI-
EBI GWAS catalog. The point location corresponds to the log-odds ratio association between the SNP and
the phenotype of interest in MGI and UK Biobank. The two lines correspond to equality of the estimates
and a fitted line to the points (excluding any outlying points with absolute log-OR greater than 0.6).
“Spearman” indicates the Spearman correlation and “CCC” indicates Lin’s concordance correlation
coefficient, which is a measure of agreement (with 1 being perfect agreement).
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Figure 7: A Comparison of Breast Cancer GWAS Results in MGI with GFG*
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Potential Explanation for Differences:

There were 2,025 female breast cancers in MGI out of 16,297 women (12.4%). However, there were only 115 female breast
cancers in GFG out of 10,802 women (1.1%). This is explained by the different age distributions, since GFG subjects were
younger on average, with a mean age of 36.9 years in GFG and 54.2 years in MGI. Therefore, many GFG subjects are not in
the age window of susceptibility for breast cancer, which is a disease more common after 50. Differences in the log-OR
estimates can also be partly explained by differences in sample sizes, leading to GFG estimates that are much more variable
than estimates in MGI or those reported in the GWAS Catalog. Additionally, differences in log-OR estimates may result
from different phenotype definitions.

* Each point represents a SNP identified as being related to the corresponding phenotype in the NHGRI-
EBI GWAS catalog and the corresponding estimated log-OR SNP-phenotype associations in MGI, GFG,
or reported in the GWAS catalog. The two lines correspond to equality of the estimates and a fitted line to
the points (excluding any outlying points with absolute log-OR greater than 0.6). “Spearman” indicates the
Spearman correlation and “CCC” indicates Lin’s concordance correlation coefficient, which is a measure
of agreement (with 1 being perfect agreement).
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Tables
Table 1: Description of Selected Major Biobanks

Linked to
Start Connected Linked with death Biospecimen
Biobank year Location Age Size Type* Institution Access to EHR prescriptions? registry? Coll d Survey Website
All of Us 2018 USA 18+ 1 million Health system National Institutes of Health Not yet Yes Yes** - Blood, saliva, urine Yes https://www.joinallofus.org/en
(goal) available
BioBank Japan 2003 Japan - 200,000+ Health system Ministry of Education, Inquire with Yes - Yes Blood (buccal swabs Yes http://www.pgrn.org/biobank-
Culture, Sports, Science and biobank or nail/hair trimmings) japan.html
Technology
BioME - Mount Sinai Health - 42,000+ Health system Mount Sinai Health System Inquire with Yes - - Blood Yes https://icahn.mssm.edu/research/i
System biobank pm/programs/biome-biobank
BioVU 2007 Tennessee 18+ 250,000+ Health system Vanderbilt University Inquire with Yes No No Blood No https://victr.vanderbilt.edu/pub/bi
biobank ovu/?sid=194
China Kadoorie Biobank 2004 China 30-79 510,000+ Population University of Oxford + Application for Yes - Yes Blood Yes http://www.ckbiobank.org/site/
Chinese Academy of researchers
Medical Sciences
deCODE Genetics 1996 Iceland - ~500,000 Commercial deCODE (Amgen) Inquire with Yes - - - - https://www.decode.cony
biobank
DiscovEHR 2014 Geisinger Health 18+ 50000 Health system Regeneron Genetics Center Inquire with Yes No No Blood No http://www.discovehrshare.com/
System; Regeneron + Geisinger Health System biobank
Genetics Center
eMERGE Network 2007 NHGRI All 126,000+ Network of National Human Genome Application for Yes No No Genetic results No https://emerge.mc.vanderbilt.edu/
biobanks Research Institute researchers obtained from external
sources
Generation Scotland 2006 Scotland 18-65 30,000+ Population University of Edinburgh Application for Yes Yes Yes Blood, urine (saliva Yes https://www.ed.ac.uk/generation-
researchers for some subjects) scotland
Guangzhou Biobank 2003 Guangzhou 50+ ~30,000 Population Universities of Birmingham Inquire with Yes No Yes Blood Yes https://www.birmingham.ac.uk/re
Cohort Study and Hong Kong + The biobank search/activity/mds/projects/HaP
Guangzhou Occupational S/PHEB/Guangzhou/index.aspx
Diseases Prevention and
Treatment Center
HUNT - Nord-Trendelag 2002 Nord-Trendelag 20+ 125,000 Population Norwegian University of Application for Yes Yes Yes Blood (urine for some Yes https://www.ntnu.edu/hunt/hunt-
Health Study County, Norway Science and Technology researchers subjects) biobank
Kaiser Permanente 2008 Kaiser Permanente 18+ 308,425 Health system Kaiser Permanente Application for Yes Yes - Blood, saliva Yes https://researchbank kaiserperman
Research Bank researchers ente.org/
Michigan Genomics 2012 Michigan 18+ 60,000+ Health system University of Michigan Inquire with Yes No Yes** Blood Yes* https://www.michigangenomics.o
Initiative biobank g
Million Veterans 2011 USA - 600,000+ Health system US Dept. of Veterans Affairs Inquire with Yes - - Blood Yes https://www.research.va.gov/mvp
Program biobank /
MyCode Community 2007 Geisinger Health THF 190,000+ Health System Geisinger Health Inquire with Yes No No Blood or saliva No https://www.geisinger.org/mycod
Health Initiaitve System biobank ettcgg
(Geisinger)
Partners HealthCare 2010 Brigham and 18+ 80,000+ Health System Partners Healthcare Inquire with Yes No No Blood Yes https://biobank.partners.org/
Biobank Women's Hospital; biobank
Massachusetts
General
UK Biobank 2006 United Kingdom 40-69 500,000 Population UK Biobank charity Application for Yes - - Blood, urine, saliva Yes http://www.ukbiobank.ac.uk/abou
researchers t-biobank-uk/
CARTaGENE 2009 Quebec 40-69 43,000 Population CHU Sainte-Justine Application for No No Yes Blood, urine Yes https://www.cartagene.qc.ca/en/a
Research Center researchers bout
Genes for Good 2015 USA 18+ 77,700+ Self-initiated University of Michigan Inquire with No No No Saliva Yes https://genesforgood.sph.umich.e
biobank du
Trans-Omics for 2014 USA (various sites) - ~145,000 Consortium of University of Washington NIH Database No No No Genetic results No https://www.nhlbiwgs.org/
Precision Medicine studies of Genotypes obtained from external
(TopMed) and Phenotypes sources
(dbGaP)
Lifelines 2006 Northern Netherlands All 167000+ Population Lifelines Biobank Application for - No No Blood, urine Yes https://www.lifelines.nl/researche
researchers r

- indicates information is unknown; * we chose categories we thought best fit each biobank; ** indicates we found a source saying the resource is being developed or will be available in the future

Note: The information in this table is ascertained to the best of our knowledge. Where it indicates 'yes', this means we were able to find a source that indicates this is a feature of the biobank. Where it
indicates 'no', this means that it was either absent or there was sufficient reason to believe the resource is unavailable at the biobank. It is best to contact the biobank to confirm the availability of

resources that are unknown or indicated as not available.
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Table 2: Prevalences of Selected Conditions in the Michigan Genomics Initiative, UK Biobank, and

doi:10.20944/preprints201809.0388.v1

Genes for Good along with Estimates from their Respective National Populations

MGI GFG UKB
(Academic Medical Center) (Subject-Initiated) US (Population-Based) UK
N =30,702 N=15,156 N = 408,961

Psychiatric/Neurologic

Depression 21.7 (6,651) 70.2 (10,642) 16.9%* 2.9 (11,918) 3.3%

Alzheimer’s 0.2 (60) - 1.6%** 0.1 (433) 1.3%

Anxiety* 22.1(6,782) 31.4 (4,766) RIS 1.6 (6,945) 5.9%

Schizophrenia 0.3 (78) - 7-1.5 0.1 (573) 0.2-0.598

Bipolar Disorder 2.9 (886) - 4 4xxk* 0.2 (1,064) 2.0F
Cardiovascular Disease

Atrial fibrillation 9.5(2,919) - 2-9 3.6 (14,839) 1.2-1.3

Coronary heart disease 14.3 (4,396) - 6.0 5.0 (20,539) 3-4

Mpyocardial infarction 5.5 (1,702) 1.1 (161) 4.7 ** 3.0 (12,099) .87-2.46
Obesity 33.7(10,351) 37.3 (5,662) 39.8 2.6 (10,820) 26.2
Diabetes 21.4 (6,571) 4.8 (724) 12.6 5.0 (20,260) 6.2
Cancer

Colorectal 2.6 (806) 0.1 (17) 4 oxx%% 1.1 (4,627) 5.3-7.1 *¥**

Breast (female) 12.4 (2,025) 1.1 (115) 12.4%%%%* 5.7 (12,680) 12.5 *x**

Lung 2.3 (707) 0.1 (9) 6.2%*** 0.5 (2,243) 5.9-7.7 ****

Pancreatic 1.0 (313) - 1.6%**** 0.2 (749) 1.4 *%**

Melanoma of skin 6.2 (1,896) - PACESS 0.7 (2,724) 1.9 kkx

Prostate (male) 12.4 (1,794) 0417 [1.2%%%* 3.6 (6,762) 12.5 *x**

Bladder 3.7 (1,147) - PACESS 0.6 (2,433) 0.9-2.6 ****

Non-Hodgkins 3.1 (937) ; 2| 0.4 (1,827) 1,721 #xks
lymphoma

V Phenotypes were defined using ICD-based Phe WAS codes'*® for MGI and UKB and based on survey responses for GFG. A description of the
phenotype definitions can be found in Supplementary Section S2.

* Any anxiety disorder; ** adults 40 and older; *** adults 65 and older; **** lifetime risk of developing disease/condition; T past week
prevalence, refers to the presence of symptoms in the past week;  point prevalence, refers to the prevalence measured at a particular point in
time (proportion of persons with a particular disease at a point in time); ¥ estimate is from England

Notes: ranges for schizophrenia represent the minimum and maximum point estimates from several estimates included in the source material;
ranges for myocardial infarction and cancer estimates provided indicate the range of sex-specific point estimates

Sources for US and UK estimates can be found in Supplementary Section S6, Table S3.
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