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Abstract 

Interstitial lung diseases (ILD) significantly impact health and mortality, affecting millions of 

individuals worldwide. During the COVID-19 pandemic, lung ultrasonography (LUS) became an 

indispensable diagnostic and management tool for lung disorders. However, utilising LUS to 

diagnose ILD requires significant expertise. This research aims to develop an automated and efficient 

approach for diagnosing ILD from LUS videos using AI to support clinicians in their diagnostic 

procedures. We developed a binary classifier based on a state-of-the-art CSwin Transformer to 

discriminate between LUS videos from healthy and non-healthy patients. We used a multi-centric 

dataset from the Royal Melbourne Hospital (Australia) and the ULTRa Lab at the University of Trento 

(Italy) comprising 60 LUS videos. Each video corresponds to a single patient, comprising 30 healthy 

individuals and 30 patients with ILD, with frame counts ranging from 96 to 300 per video. Each video 

is annotated using the corresponding medical report as ground truth. The datasets used for training 

the model underwent selective frame filtering, including reduction of frame numbers to eliminate 

potentially misleading frames in non-healthy videos. This step was crucial because some ILD videos 

included segments of normal frames, which could be mixed with the pathological features and 

mislead the model. To address this, we eliminated frames with a healthy appearance, such as frames 

without B-lines, thereby ensuring that training focused on diagnostically relevant features. The 

trained model was assessed on an unseen, separate dataset of 12 videos (3 healthy and 9 ILD) with 

frame counts ranging from 96 to 300 per video. The model achieved an average classification accuracy 

of 91%, calculated as the mean of three testing methods: Random Sampling (92%), Key Featuring 

(92%), and Chunk Averaging (89%). In RS, 32 frames were randomly selected from each of the 12 

videos, resulting in a classification with 92% accuracy, with specificity, precision, recall, and F1-score 

of 100%, 100%, 90%, and 95%, respectively. Similarly, KF, which involved manually selecting 32 key 

frames based on representative frames from each of the 12 videos, achieved 92% accuracy with 

specificity, precision, recall, and F1-score of 100%, 100%, 90%, and 95%, respectively. In contrast, the 

CA method, where the 12 videos were divided into video segments (chunks) of 32 consecutive 

frames, with 82 video segments, achieved an 89% classification accuracy (73 out of 82 video 

segments). Among the 9 misclassified segments in the CA method, 6 were false positives and 3 were 

false negatives, corresponding to an 11% misclassification rate. The accuracy differences observed 

between the three training scenarios were confirmed to be statistically significant via inferential 
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analysis. A one-way ANOVA conducted on the 10-fold cross-validation accuracies yielded a large F-

statistic of 2,135.67 and a small p-value of 6.7 × 10⁻²⁶, indicating highly significant differences in model 

performance. The proposed approach is a valid solution to fully automate LUS disease detection, 

aligning with clinical diagnostic practices integrating dynamic LUS videos. In conclusion, 

introducing the selective frame filtering technique to refine the dataset training reduced the effort 

required for labelling. 

Keywords: interstitial lung diseases; interstitial syndrome; B-lines; lung ultrasound; deep learning; 

AI; transformer 

 

1. Introduction 

Interstitial lung disease (ILD) is a severe pulmonary complication of connective tissue disease 

that can lead to significant morbidity and mortality [1]. ILD has a significant impact on health and 

mortality. According to the Global Burden of Disease data, approximately 4.7 million people 

worldwide were living with ILD in 2019 [2]. The prevalence of ILD has been on the rise over the past 

decades, with global estimates varying from 6 to 71 cases per 100,000 people. The impact of ILD 

extends beyond the disease itself, as patients often require ongoing treatments such as medications, 

oxygen supplementation, and frequent clinical follow-ups, which can place a burden on healthcare 

systems through increased resource consumption [2]. 

Sonographic Interstitial Syndrome (SIS) is a term used to describe the main manifestation of ILD, 

characterised by vertical lines extending from the lung interface. SIS is a major diagnostic sign of ILD 

and represents one of the most significant visual artefacts seen on lung ultrasound (LUS) images (3–

5). SIS, also known as B-lines [5], comet tails [6], lung rockets  [7], or light beams [8], is, in essence, a 

set of hyperechoic vertical lines that arise from the pleural line and extend to the bottom of the LUS 

image [9,10]. However, B-Lines are not exclusively a pathological finding because they can sometimes 

be observed in healthy individuals under certain conditions, particularly in elderly patients [11]. In 

such cases, isolated B-lines may appear in small numbers, symmetrically distributed, and confined 

to specific lung zones. This pattern contrasts with pathological B-lines, which are typically numerous, 

asymmetrical, and diffusely spread across multiple lung regions. Recognising these qualitative 

distinctions is essential for avoiding misdiagnosis when interpreting lung ultrasound scans. One of 

the biggest challenges in expanding the use of LUS is the steep learning curve; it takes considerable 

training and experience to accurately perform and interpret LUS videos [12]. This presents a major 

barrier to access, particularly in healthcare settings where trained professionals are scarce. 

Several studies have utilised AI to enhance the robustness of the classifications and to learn more 

distinctive features from input LUS frames [13,14]. Some have shown the potential to classify COVID-

19 patients from healthy patients, while others have explored AI tools’ capabilities in the automated 

detection of B-lines associated with conditions like pulmonary oedema and pneumonia (15–24). All 

these studies focused on frame-level analysis. Using frame-based data to train AI algorithms requires 

extensive clinician annotation efforts. Indeed, manual annotation of the data, particularly frame-by-

frame labelling, is laborious and time-consuming, particularly due to the extensive number of frames 

that require labelling by clinicians. Beyond the logistical burden, relying solely on individual frames 

also poses a conceptual limitation: it may fail to capture temporal dynamics critical for accurate 

diagnosis. Unlike frame-based Deep Learning (DL) models that only examine static images, clinicians 

typically rely on the entire LUS video to examine lung conditions. They consider the dynamic 

changes, such as the movement and appearance of B-lines, and temporal changes, such as the texture, 

intensity, or spread of B-lines over the videos. These aspects provide contextual information for an 

accurate diagnosis. 

Recent advances in AI have enabled real-time interpretation in ultrasound imaging, particularly 

where lightweight models are essential for deployment in remote or point-of-care (POC) settings. 

This advancement in AI models enables ultrasound video interpretation within noticeably short 
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timeframes. Several studies reported high inference speeds for video interpretation—typically 

reported between 16 and 90 frames per second (FPS), depending on the chosen architecture and 

available computational resources (25–30). These studies have successfully demonstrated the 

feasibility of real-time AI implementation in multiple US applications, such as tumour segmentation, 

plaque detection, and cardiac assessments, where timely and accurate interpretation is critical for 

clinical decision-making. Therefore, exploring similar real-time AI tools for LUS is a promising yet 

insufficiently explored area of research, considering that clinical diagnostic decisions in LUS are 

based not on static frames like chest x-rays but on the temporal relationships between consecutive 

frames, such as the presence or absence of B-lines and evolving artefact patterns within LUS frames. 

These dynamic features require an AI tool that can process real-time videos holistically rather than 

relying solely on frame-by-frame analysis. 

To date, only a single study has focused on using AI to classify entire LUS videos: Khan et al. 

[31] introduced an efficient method for LUS video scoring, focused in particular on COVID-19 

patients. Using intensity projection techniques, their approach compresses entire LUS videos into a 

single image. The compressed images enable automatic classification to assess the patient’s condition, 

eliminating the need for frame-by-frame analysis and allowing for effective scoring without the need 

for frame-by-frame analysis. A convolutional neural network (CNN) based on the ResNet-18 

architecture, the ImageNet-pretrained model, is then used to classify this compressed image, with 

the predicted score assigned to the entire video. This method reduces computational overhead and 

minimises error propagation from individual frame analysis while maintaining a high classification 

accuracy. 

In contrast, our study employs a video-based training method, where a CSwin transformer is 

trained on a dataset of LUS videos [32]. This method involves utilising a transformer model to capture 

dynamic changes and feature progression across LUS frames, enabling it to learn how patterns, such 

as the movement or spread of B-lines, evolve throughout an LUS video rather than examining 

individual frames in isolation. Initially developed for natural language processing, CSwin 

transformer algorithms are DL neural networks that can also analyse temporal connections among 

images, such as in video classifications (33–36). Video-based training, instead, involves assigning a 

label to an entire video based on its content, allowing the model to classify whether a given video 

represents a healthy or unhealthy score. This work’s novelty lies in using the CSwin Transformer, for 

the first time in the context of LUS with advanced data filtering techniques before training. By 

carefully selecting the most relevant frames in an LUS video dataset, the model can better focus on 

distinguishing features between classes, healthy and non-healthy videos, and avoid being influenced 

by irrelevant frames containing features unrelated to the target classifications. This approach 

improves the model’s performance by focusing on the most relevant frames and lowers 

computational demands. 

2. Materials and Methods 

2.1. Datasets 

The LUS datasets used in this study were fully anonymised. They were contributed by the Royal 

Melbourne Hospital (Melbourne, Australia) and the Ultrasound Laboratory Trento (ULTRa) at the 

University of Trento (Trento, Italy). The Melbourne Health Human Research Ethics Committee 

(HREC/18/MH/269) granted ethical approval for the Melbourne dataset. For the ULTRa dataset, 

ethical approvals were granted by the Ethical Committee of the Fondazione Policlinico Universitario 

Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (protocol 0015884/20 ID 3117) 

and the Fondazione Policlinico Universitario San Matteo (protocol 20200063198) and registered with 

the National Library of Medicine (NCT04322487). 

The datasets, collected from multiple centres, included 225 patients, amounting to a total of 2,859 

LUS videos. After reviewing the datasets, 60 unidentified videos/patients were included, and 12 

videos/patients were reserved from the entire dataset for testing as an ‘unseen’ set. The dataset used 
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for training and validation consisted of 60 LUS videos, of which 30 were from healthy patients and 

30 from non-healthy patients, each video containing between 96 and 300 frames. A detailed 

distribution and splitting of the dataset are shown in Figure 1. 

 

Figure 1. The above pie charts show the distribution and splitting of the LUS dataset used in this work. Dataset, 

58.3% of videos [35] are from Trento datasets, and 41.7% [25] are from Melbourne datasets. All videos are equally 

divided into 50% [30] healthy and 50% [30] non-healthy classes. For training and validation, the dataset is split 

into 93.3% [56] and 6.7% [4] respectively. 

Each LUS video was labelled as either healthy or non-healthy (thus labelled IS), using 

corresponding medical reports based on clinical criteria adapted from internationally recognised, 

evidence-based guidelines for point-of-care ultrasound [5], summarised in Figure 2. Each video was 

independently validated by a LUS expert (MS), a senior staff member at the Queensland University 

of Technology with approximately 15 years of clinical experience as a sonographer. While pre-

existing annotations from corresponding medical reports were available, MS systematically reviewed 

the videos to identify features characteristic of healthy lung tissue or IS, ensuring accuracy and 

consistency beyond the initial annotations. 

 

Figure 2. An overview of the guidelines for identifying IS and normal LUS videos used in the labelling process. 

A, (marked in yellow), IS is distinguished by the presence of three B-lines. These B-lines are associated with four 

key characteristics: they move in tandem with lung sliding and lung pulse, extend to the bottom of the screen 

without fading, and appear laser-like. In contrast, B, representing a healthy lung (marked in green), which is 

defined by A-lines, which defined as horizontal spaced, echogenic lines that appear below the pleural line. 

Only LUS scans from the lower lung zones were included in this study, as these regions are 

widely recognised as the most sensitive for detecting early IS involvement. This selection is supported 

by Watanabe et al. [37], who highlighted the diagnostic value of assessing the basal lung regions in 
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patients with connective tissue disease-associated ILD. Additionally, it was observed that different 

anatomical lung regions exhibited distinct sonographic features, even among patients with the same 

class label. For example, posterior-lower zones (e.g., RPL, LPL) commonly reveal confluent B-lines in 

patients with IS. In contrast, anterior regions (e.g., RANT, LANT) often display healthy features with 

sparser B-lines (1-2 B-lines) or A-line patterns, particularly in early disease presentations. Notably, 

LUS features of interstitial syndrome (IS) most commonly appeared in the lower regions. This 

highlights the value of focusing on specific, diagnostically relevant areas during training. Including 

multiple lung regions with varying or inconsistent features can introduce noise and confuse the 

model. As a result, 153 LUS videos, out of 225, were excluded because they did not meet the 

anatomical or diagnostic criteria. 

2.2. Filtering Techniques 

In this study, we considered 3 training scenarios, each using a different number of frames per 

video, as demonstrated in Figure 3. In Scenario 1 (S1), the first 96 consecutive LUS frames of each 

video were included, while in Scenario 2 (S2), only the first 32 consecutive LUS frames were included 

for both healthy and non-healthy datasets. In contrast, in Scenario 3 (S3), 32 frames that exhibited the 

key features indicative of IS (presence of B-lines in the non-healthy dataset) were selected. These 

frames were not necessarily consecutive and were selected from different parts of the video. In the 

healthy dataset, 32 frames were randomly selected using a simple Python code, ensuring a 

representative sample from across the video without focusing on visual features. Reducing frame 

counts aimed to eliminate potentially misleading frames in non-healthy videos. For example, in the 

video illustrated in Figure 3, out of a 120-frame video, 70 frames (highlighted in orange) show the 

liver organ, 14 frames show B-lines mixed with the liver appearance, and the last portion consists of 

14 frames showing only B-lines. In this example, we selected the frames that showed the B-lines 

features, specifically from the last portion of the video where the disease features are most clear. We 

avoided using frames where the liver dominated or B-lines were mixed with liver tissue, as they may 

carry misleading frames that could influence model performance. 
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Figure 3. A three-step process diagram illustrates the selection, filtering, and dataset splitting of Lung LUS 

videos used in the training of our models. The process begins with an example of 120 frames segmented into 

multiple portions, followed by applying 3 different scenarios where each one has different types and numbers 

of frames. This clip, consisting of 120 frames, is selected for illustration purposes and is not representative of all 

samples in the dataset, as actual video lengths varied. In this example, approximately 70 frames show the liver 

region, 14 frames include mixed features of liver with partial B-lines images, and 36 frames show clear B-lines. 

In S1, the first 96 frames cover the liver and the B-line regions. S2 included the first 32 consecutive frames, 

regardless of anatomical content. S3 targeted 32 diagnostically relevant frames from expert-annotated segments 

corresponding to liver, partial B-lines, and clear B-lines. These filtered datasets were constructed independently 

and used separately during model training and evaluation to assess how different temporal sampling strategies 

influence classification performance. 

2.3. Dataset Splitting 

In Scenarios 1, 2, and 3, a dataset of 72 videos—each representing one patient—was split into 

training, validation, and testing (unseen) sets, as shown in Figure 3 and Table 1. Approximately 77% 

of the videos (i.e., 56 videos) were randomly assigned to the training set, ≈6% (i.e., 4 videos) to the 

validation set, and the remaining ≈17% (i.e., 12 videos) to the testing set. Figure 3 shows an example 

of a dataset clip where different frame selection techniques were applied across the three 

experimental scenarios. 
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Table 1. This table shows how patients and videos were divided into training, validation, and testing sets. 

To improve the model’s robustness, we used 10-fold cross-validation. In each fold, 56 out of the 

72 videos/patients were used for training, with a different set of 4 videos/patients (2 healthy and 2 

non-healthy) set aside for validation. Over the 10 folds, 40 videos/patients were used for validation 

at least once, but not all 60 videos were included in validation since only 4 videos were utilised in 

each fold. Across the 10 folds, a total of 40 videos were included in validation at least once. Figure 4 

provides details on how the data was divided for video-based training and validation in each fold. 

 

Figure 4. The dataset split into training and validation sets using 10-fold cross-validation. The Dataset had 56 

videos (one per patient) assigned to the training set, and 4 videos to the validation set in each fold. 

2.4. DL Implementation 

A binary classifier based on the CSwin Transformer was fine-tuned to classify LUS videos, with 

[1,0] representing healthy patients and [0,1] representing non-healthy patients (IS) (see Figure 5). The 

architecture used in this study is derived from the research conducted by Chen et al. in 2022 [38]. The 

training and validation datasets were pre-processed and rescaled, ensuring that proper image and 

volume scaling were applied before training. The original LUS dataset was provided in DICOM series 

and MP4 format. The MP4 files were first converted to DICOM (Digital Imaging and 

Healthy 

Patients 

(H) 

Non-

healthy 

Patients 

(NH) 

Training Set Validation Set 
Testing Set 

(Unseen) 
Total 

% no % no % no 
Videos/ 

Patients 

33 39 
≈ 

78% 

56 

(26H + 

26NH) 

≈ 6 % 

4 

(2H + 

2NH) 

≈ 17 % 

12 

(3H +9 

NH) 

72 
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Communications in Medicine) format. All DICOM files then went through pre-processing steps and 

finally converted to Pickle format for the model training. A simple Python script was used to 

categorise the DICOM videos into two binary classes based on the ground truth labels corresponding 

to the medical reports: [1, 0] and [0, 1], healthy and non-healthy, respectively. Using binary formats 

[1, 0] and [0, 1] as one-hot encodings provide simplicity when computing evaluation metrics such as 

accuracy, precision, and confusion matrices. Each prediction from the model can be directly 

compared to the target one-hot label, where [1, 0] represents class 0 (healthy) and [0, 1] represents 

class 1 (non-healthy). Labelling the classes helps eliminate ambiguity when interpreting SoftMax 

outputs, which produce continuous probability values (e.g., 0.91) rather than discrete labels (e.g., 1). 

For instance, a model output of [0.91, 0.09] reflects a 91% confidence in the “healthy” class and 9% in 

the “non-healthy” class. All the DICOM videos were processed using the Pydicom library, 

resampling frames at a resolution of 288 × 288 × 32 or 288 × 288 × 96, depending on the frame number 

used in each scenario. A normalisation method achieved a single intensity value within the dataset. 

First, the 3D volume was reduced to a 2D array for scaling. Then, pixel data from all volumes were 

combined to set a uniform scaling factor and normalise each volume/video. Each video represented 

labels in binary form [1, 0] and [0, 1] for healthy and non-healthy cases, respectively. A visualisation 

pipeline was used to verify LUS videos and their crop labels, including frame-by-frame inspection, 

in order to ensure accurate labelling. 

The model was trained using the Adam optimiser, with a learning rate of 0.0001. The training 

was performed on a Linux system using two NVIDIA TITAN RTX GPUs, each with 24GB VRAM, 

driver version 535.129.03, and CUDA 12.2. The model was trained with a batch size of 1 across 500 

epochs. Each fold required approximately 2 hours, and with 10 folds, the total training time 

amounted to approximately 20 hours. The performance metrics were reordered and analysed using 

the TensorBoardX library, resulting in real-time visualisation of loss and accuracy across both 

training and validation stages. 

 

Figure 5. This diagram shows the architecture of a CSwin Transformer model applied to Lung Ultrasound (LUS) 

video training. The input LUS videos are segmented into patches and processed through a series of transformer 

blocks and patch merging operations. The model output is a binary classification, identifying the lung condition 

as either ‘Healthy’ or ‘Unhealthy’ based on SoftMax activation. 

For each scenario (S1, S2, and S3), the mean validation accuracy from 10 folds was aggregated 

for comparison at an inferential statistical level. One-way analysis of variance (ANOVA) was then 

applied to examine whether any significant differences between the three situations at a statistical 

level were present. In addition, post-hoc pairwise comparisons were used, utilising Tukey’s Honest 

Significant Difference (HSD) to explore differences in model performance. In addition, Cohen’s d-

effect size was computed for each comparison to evaluate the improvements within each scenario. 

All statistical calculations were performed using the SciPy [39] and statsmodels libraries [40] in 

Python. 
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2.5. Training Loss Across Scenarios 

This study used the cross-entropy loss as the primary loss function to assess our model’s 

performance in a multi-class classification setting. The cross-entropy loss function evaluates the 

difference between the predicted probability distribution for each class and the ground class labels. 

The cross-entropy loss is calculated as follows: 

𝐿𝐶𝐸 =  − ∑  

𝑁

𝑖=1

𝑦𝑖 𝑙𝑜𝑔 (𝑦̂𝑖) 

A binary classifier was used to represent the healthy and non-healthy patients (1, 0) and (0, 1), 

respectively. For instance, consider a healthy patient represented by the label (1, 0). If the model 

predicts probabilities close to (0.9, 0.1), indicating 90% confidence that the patient is healthy, the cross-

entropy loss will be low because the prediction closely aligns with the ground-truth label. The loss 

for this prediction is calculated as: 

𝐿𝐶𝐸 =  −𝑙𝑜𝑔(0.9) ≈ 0.105 
In contrast, if the model predicts (0.3, 0.7) probabilities for the same healthy patient, the loss will 

be higher. In this case, the model is only 30% confident that the patient is healthy, which diverges 

from the actual label. The cross-entropy loss for this prediction is: 

𝐿𝐶𝐸 =  −𝑙𝑜𝑔(0.3) ≈ 1.204 

2.6. Testing Methods 

We assessed the performance of the trained model using 12 unseen cases (3 healthy and 9 IS), 

with varying numbers of frames ranging from 96 to 300 in each video. The imbalanced dataset was 

due to the limited availability of healthy cases. Non-healthy cases are typically much higher in a 

clinical setting since data collection protocols often focus on non-healthy cases. We applied three 

different testing approaches to thoroughly evaluate the model’s generalisation to unseen data (as 

shown in Figure 6). 

The first approach was based on Random Sampling (RS), as shown in Figure 6 (orange), which 

involved randomly selecting a subset of frames from each video for testing. It evaluated how well 

the model generalised when encountering random frames from unseen datasets, providing insight 

into the model’s ability to handle data variability, especially when key feature frames (such as B-

lines) were not present in all frames in a video or were mixed with other frames that were not 

representatives of the class. 

The second approach was Key Featuring (KF), as shown in Figure 6 (blue). This approach 

focused on the most relevant representative frames for classification that contain B-lines featured, a 

key feature of IS, to evaluate the model’s performance when dealing with the most informative 

frames in a video. 

The last approach was Chunk Averaging (CA), as shown in Figure 6 (green). In this approach, 

each video was divided into video segments, with a classification made for each chunk as an 

individual video segment to produce a classification. This approach assessed the model’s consistency 

across consecutive frames and provided a more robust evaluation, particularly useful when the LUS 

video contained variability between non-healthy and healthy frames. 
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Figure 6. An example of three frame selection methods for testing: Random Sampling (orange), Key Featuring 

(blue), and Chunk Averaging (green), applied to an example video of 120-frame. 

3. Results 

3.1. Performance Across Scenarios: Training Phase 

Figure 7 shows the average performance of the model over 500 epochs for each scenario, with 

shaded regions representing the standard deviation across the 10 folds. Performance variations across 

the different scenarios are noticeable, particularly emphasising how the filtering method affects the 

model’s outcomes. 

Training loss decreased across all scenarios but at varying rates. The best median training loss 

in the epochs was observed in S3 (0.16), indicating the training stability and efficiency. S2 (0.33) 

demonstrated a reasonable reduction in loss, while S1 (0.63) exhibited the highest loss, suggesting the 

slowest learning, leading to lower training stability and efficiency (see Figure 7a). 

Training accuracy increased linearly in all scenarios. It was optimal in S3 (0.96) with excellent 

learning performance. Medium performance was found in S2 (0.87), whereas the worst performance 

was found in S1 (0.57), with poor learning performance (see Figure 7b). 

Validation accuracy varied significantly between the scenarios. S3 (0.81) achieved the highest 

and most consistent validation accuracy, showing the best generalisation on the validation data. S2 

(0.72) displayed a slight reduction in generalisation, while S1 (0.57) exhibited the lowest accuracy and 

increased variability, indicating poor generalisation stability (see Figure 7c). 

The results show that S3 is the most valuable, with high training and validation accuracy, 

suggesting that the data filtering in this scenario provided the best output from the CSwin 

Transformer model. Scenarios 1 and 2 performed significantly worse, with a higher training loss and 

lower accuracy in training and validation. This indicates that including the first consecutive frames 

for training in these scenarios is unsuitable for model training and generalisation. Details for the 

training performance for all cross-10 folds for all scenarios are provided in Figure 8. 
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Figure 7. This plot shows the compression of training loss (a), training accuracy (b), and validation accuracy (c) 

against three different scenarios used in this study. Each plot displays the average performance metric over 500 

epochs, with the shaded area representing the standard deviation. Furthermore, each plot displays all the values 

at the midpoint epoch for each scenario, along with legends, to facilitate easy reference to the values. 

Additionally, the accuracy differences between the three scenarios are consistent with the results 

of inferential statistical analysis. One-way ANOVA of mean accuracies for 10-fold cross-validation 

established the model performance across the three scenarios to be significantly different, as indicated 

by an F-statistic of 2,135.67 and a p-value of 6.7 × 10⁻²⁶ (p < 0.001). This result supports the fact that at 

least one of the scenarios is significantly different from the others, thus requiring further additional 

pairwise comparisons using Tukey’s HSD and effect size estimation (Cohen’s d). Figure 8 and Table 

2 summarise the mean validation accuracies, 95% confidence intervals, and the results of all pairwise 

comparisons between scenarios. 

 

Figure 8. Pairwise comparison of mean validation accuracy between scenarios, based on 10-fold cross-validation. 

Each pair (e.g., S1 vs S2) shows the mean and 95% confidence interval for both scenarios. Scenario 3 outperform 

Scenario 1 and Scenario 2 with clear non-overlapping intervals, indicating statistically significant differences in 

performance. 

Table 2. presents the mean validation accuracy, 95% confidence intervals, and pairwise statistical comparisons 

between the 3 scenarios in this work. The best-performing scenario is highlighted in bold. 
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Note: Significance in p-values is indicated as follows: n.s. = not significant (p > 0.05); * = p ≤ 0.05; ** = p ≤ 0.01; *** 

= p ≤ 0.001. 

3.2. Performance Across Scenarios: Testing Phase 

The model’s overall performance is assessed across the three training scenarios, where 32 LUS 

frames were randomly sampled (RS) from the LUS videos for testing. As shown in Figure 9, in S1, 

the DL model correctly classified only 1 healthy video, while 3 were misclassified as IS. For the IS 

class, 6 videos were correctly classified, with 2 videos incorrectly flagged as healthy. This scenario 

showed inferior performance, particularly with a high error rate in classifying healthy videos, 

correctly identifying only 33% (1 out of 3). In S2, the model correctly classified 2 healthy videos, with 

only 1 misclassified as IS. The model demonstrated outstanding performance for the IS videos, 

correctly classifying all videos without any misclassifications. This scenario showed better 

performance in classifying IS videos with high accuracy (9 out of 9 videos = 100%) and in classifying 

healthy videos with good accuracy (2 out of 3 videos = 67%). In S3, similarly to S2, the model classified 

2 healthy videos, with 1 misclassified video as IS. The IS class was again classified perfectly, with all 

videos correctly classified (100%). This scenario showed better performance in classifying IS with 

high accuracy (9 out of 9 videos = 100%) and in classifying healthy videos with good accuracy (2 out 

of 3 videos = 67%). In general, as shown by the radar chart in Table 3 and Figure 10, the performance 

of the model for all scenarios increased as the number of frames went down during training, and 

using a selective frame method (S3) produced the highest classification outcome in S2 and S3 (92%). 

More detailed results for other testing methods, KF and CA, are provided in Appendices A, B, and 

C, respectively. These results offer a comparison of the model’s accuracy in each scenario. 

 

Figure 9. This plot shows the confusion matrix of the best trained model on the unseen test set of 12 videos (3 

healthy and 9 non-healthy) within three training scenarios: From left, Scenario 1 with 5 misclassifications, 

medial, Scenario 2 and 3 with 1 misclassification. 

Table 3. Performance metrics across scenarios (S1–S3). 

Scenari

o 

Mean 
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95% 
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e  
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Effect Size 

Interpretatio

n 

Scenari

o 1 
0.577 

[0.569, 

0.584] 
S2 0.127 *** 9.69 

Extremely 

large 

Scenari

o 2 
0.704 

[0.693, 

0.715] 
S3 0.104 *** 8.54 

Extremely 

large 

Scenario 

3 
0.808 

[0.802, 

0.814] 
S1 0.231 *** 24.10 

Extremely 

large 
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Scenario 1 (S1) 50% 20% 56% 71% 63% 

Scenario 2 (S2) 92% 100% 100% 90% 95% 

Scenario 3 (S3) 92% 100% 100% 90% 95% 

In S1, the first 96 frames from each video were included in the training without filtering applied, while in S2, 

only the first 32 frames were used. In S3, a selective set of 32 frames was included in each video, using a filtering 

technique that excluded frames from IS videos that show no B-line features. 

 

Figure 10. The radar chart shows the performance metrics for all scenarios: Scenario 1 (S1), Scenario 2 and 3 

combined (S2+S3), across performance metrics: Accuracy, Specificity, Precision, Recall, and F1-score. 

3.3. Detailed Performance of Scenario 3 (S3) 

S3 shows superior performance across the evaluated metrics. This section provides in-depth 

testing using RS, KF, and CA (detailed in the 2.6 Testing Methods section). Figure 11 shows the 

confusion matrices for S3 using RS, KF, and CA. RS and KF methods showed high classification 

accuracy, each achieving 92%. The DL model used in both methods correctly classified 2 out of 3 

healthy videos and all 9 IS videos. On the other hand, the CA method, which splits LUS videos into 

smaller video segments of 32 frames each, with a total of 82 video segments, achieved an overall 

accuracy of ~89%. The model correctly classified 15 healthy segments (~71%), while 6 healthy 

segments (~29%) were misclassified as IS. Of 61 total video segments, 58 (~95%) were correctly 

classified for IS segments, while only 3 (~5%) were misclassified as healthy. This resulted in a slightly 

lower accuracy compared to the other methods. Detailed performance results for Scenarios 1 and 2 

are provided in Appendix B and Appendix C, respectively. 
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Figure 11. Confusion matrices for Scenario 3 using the three methods of testing; RS, KF, and CA methods. Both 

RS and KF achieved 92% accuracy classification, while CA, showed minor misclassifications with an accuracy 

89%. 

Following the performance of the DL model using different testing methods, it is critical to 

explore the confidence scores by the model’s classifications across various testing methods. The 

confidence score provides insights into this model’s performance and decision-making process. The 

heatmap in Figure 12 shows that KF maintains high confidence values, usually close to 1, indicating 

high confidence in the model classification. On the contrary, the RS method is more scattered, with a 

remarkable drop into low confidence, especially in healthy videos 1 and 3, 0.54 and 0.52, respectively, 

and in non-healthy video 8 with a confidence value of 0.54, which shows a high degree of uncertainty 

against those classifications. 

 

Figure 12. The heatmap provides a comparison of confidence scores across three different testing methods—RS, 

KF, and CA—applied to both healthy and non-healthy videos. Each square in the heatmap shows how confident 

the model was in its misclassifications for each video using the corresponding method. Darker shades of blue 

represent higher confidence levels (~0.7 to 1.0), while lighter shades indicate lower confidence (~0.5 to 0.7). The 

colour legend at the bottom indicates false (red), partial false (orange), and completely false chunks (black). 

For the CA method, the confidence level overall remained high, but there were some 

misclassifications. Particularly, among Non-healthy videos 4, 6, and 8, partial misclassifications can 

be seen by yellow markers in the heatmaps, where the model falsely flagged some video segments 

for those videos. Additionally, Healthy video 1 was partially misclassified (marked in orange), while 
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Healthy video 2 was entirely misclassified, with all its segments incorrectly categorised (marked in 

black). 

At the chunk level, Figure 13 visualises the model’s classifications for each chunk across 12 

videos. The overall classification accuracy was approximately 89% (73 out of 82 segments correctly 

classified). The model demonstrated limited performance for the healthy videos (videos 1–3) and 

correctly classified only two of the three videos. Healthy videos 1 and 3, consisting of 7 and 9 chunks, 

respectively, were predominantly or fully classified correctly. In contrast, Healthy Video 2, 

comprising 5 chunks, was misclassified (in black, Figure 13). 

 

Figure 13. The bar graph shows the classification performance on 12 testing videos. Each of those bars is 

segmented to present each chunk, showing the correct classifications in blue and partial misclassifications in 

orange, and all chunks false in black. The horizontal axis defines the number of chunks, while the vertical axis 

enumerates the videos that belong either to a healthy or non-healthy video. The orange segments are to indicate 

where certain chunks in a video are misclassified, while the blue segments reflect the correctly classified 

segments. 

Meanwhile, the model performance was more variable in non-healthy videos. Non-healthy 

videos 4, 6, and 8 had partial misclassifications, where one chunk each was erroneously classified, as 

shown in orange (Figure 13). The remaining non-healthy videos were classified entirely correctly, 

and the chunks were all correctly classified. Notably, no entirely wrong chunks (black) were 

displayed across any videos. This would suggest that the model performed well even in more 

challenging cases, where videos were segmented into chunks. 

The misclassifications (in orange and black, Figure 13) were confined to individual chunks 

within healthy videos 1 and 2 and non-healthy videos 4 and 8. Figure 14 shows the model’s 

misclassifications for these videos, with representative frames: examples (a) and (b) correspond to 

Non-healthy videos 8 and 4, respectively. In contrast, example (c) represents an example frame of 

Healthy video 2. These examples in Figure 14 show how the model partially misclassified certain 

chunks despite correctly identifying most others within the same video. For instance, video 8 (Figure 

14a) contained B-lines—a diagnostic feature of interstitial syndrome (IS)—yet one chunk was 

incorrectly classified. In video 4 (Figure 14b), the model misclassified a chunk showing an empty or 

non-diagnostic video segment. For the healthy cases, video 2 (Figure 13c) was the only video in which 
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the model showed a complete misclassification, with all five chunks incorrectly classified as (IS). This 

represents the single case of full misclassification across the entire test set. More detailed results for 

other scenarios (S1 and S2) can be found in Appendices B and D, respectively. These results compare 

the model’s accuracy, misclassifications, and confidence levels in each scenario. 

 

Figure 14. The figure shows examples of misclassifications for testing LUS videos. The blue bars represent 

correctly classified chunks in each video, while the orange boxes show the chunks that were misclassified by the 

model. LUS frames from chuck, non-healthy video 8 and video 4, (labelled “a” and “b” respectively), the model 

correctly classified most chunks in video 8 but flagged one chunk incorrectly and displays frames with visible 

B-lines (indicative of IS). In non-healthy video 4 (labelled “b”), which LUS frames show a nearly empty and no 

diagnostic features found, the model misclassified one chunk. In Healthy video 2 (labelled c), the model 

misclassified all chunks, as shown by the black bar. The LUS frames from this video display A-Lines artefacts. 

3.4. Inference Time per Video (Real-Time Detection) 

The developed model achieved an average inference time of 0.87 seconds for the ultrasound 

segment (32 frames per segment) using dual NVIDIA TITAN RTX GPUs (24 GB each). The model 

was further evaluated by testing it on 9 video segments, each consisting of 32 frames, extracted from 

a single ultrasound case, resulting in 288 frames. The total inference time for processing all 9 segments 

was approximately 7.83 seconds. CPU inference was also assessed to evaluate deployment feasibility 

in a resource-constrained setting. The inferencing was conducted on a system with an Intel Core i7 

processor (4.0 GHz, 4 cores) and 16 GB of RAM. On this setup, the model demonstrated an average 

inference time of approximately 7.8 seconds per 32-frame segment, equating to a throughput of 

approximately 4 FPS, with a total inference time for all 9 segments (288 frames) of approximately 70.2 

seconds. More details can be found in Figure 15. 
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Figure 15. This figure compares the inference time performance between a dual-GPU setup and an Intel Core i7 

CPU when processing 32-frame ultrasound segments. Blue bars indicate the average inference time per segment, 

while green bars represent the total time required to process 9 segments (equivalent to a 288-frame LUS video). 

Dashed lines and Δ annotations highlight the differences between per-segment and total processing times. The 

GPU system achieves real-time performance with an average of 0.87 seconds per segment, whereas the CPU 

setup requires approximately 7.8 seconds per segment. 

4. Discussion 

The findings in this study highlight the effectiveness of selective frame filtering in improving 

model performance via video-based training with the CSwin Transformer, as demonstrated in 

Scenario 3 (S3). The experimental training performed in S3 features the significance of our approach 

in selecting frames within videos prior to the training process, as it can significantly influence the 

model’s performance and result in apparent differences across all performance metrics when 

compared to Scenario 1 (S1) and Scenario 2 (S2). The statistical result verifies that the frame filtering 

implemented in S3 drastically improves the model’s ILD classification accuracy. The ANOVA 

analysis (p < 0.001) proves the presence of differences, and Tukey’s HSD shows that all pairwise 

comparisons between the three scenarios are statistically significant. Furthermore, Cohen’s d values 

exceeding 8 highlight substantial effect sizes. When considering the confidence intervals, Scenario 3 

had the highest mean accuracy (0.808), suggesting it delivered the strongest performance overall. 

Overall, this work highlights the effectiveness of filtering frames from each LUS video applied 

prior to training, leading to high classification performance in Scenario 3. The improved performance 

of the model in this scenario can be attributed to the removal of misleading frames, driving the model 

to focus on those that prominently feature key diagnostic frames, such as B-lines. This technique 

allowed the model to distinguish between healthy and non-healthy videos accurately. The 

misclassifications observed within all testing methods show the model’s nuanced performance. 

Within non-healthy videos, for instance, video 8 (Figure 14a) shows key diagnostic features—

specifically B-lines—where the model correctly classified most of the chunks, although some errors 

still occurred. This implies that while the model can identify important markers of IS, it could 

encounter challenges when processing chunks containing only a few frames with diagnostic features 

visible (B-lines). The misclassification in video 3 (Figure 14b) presents an interesting case. Although 

the chunk was classified as healthy, the frames were empty or contained non-diagnostic content. This 

outcome can be interpreted positively, demonstrating the model’s sensitivity to non-diagnostic 

content within the LUS video. Though the model erroneously flagged this case as a negative, its 
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ability to correctly classify non-diagnostic chunks shows its strong spatial reasoning in each small 

chunk. This indicates that the model does not overlook any LUS video segments but instead scans 

each segment in a small portion of frames to make context-aware classification. The model’s ability 

to correctly label empty or featureless frames as healthy demonstrates that the model has learned to 

associate the absence of diagnostic features with a healthy class label. This highlights the model’s 

capability to rely on the presence of diagnostic markers for accurate decision-making. 

For the healthy videos, classification accuracy demonstrated inconsistent performance, as 

detailed in Section 3.3. Although videos 1 and 3 were mostly classified correctly across all three 

testing methods (RS, KF, and CA), video 2 was completely misclassified. This may be attributed to 

the short lines resembling B-lines, as illustrated in Figure 14c. In the normal lung, horizontal 

reverberation artefacts are called A-lines. However, under suboptimal conditions—such as poor 

probe angling or inadequate proper skin contact—A-lines can interact with the pleural interface, 

producing vertical lines known as Z-lines. These vertical lines, presenting as low-intensity and poorly 

defined, originate from the pleural line and may resemble B-lines [41,42]. This misclassification shows 

the model’s susceptibility to vertical artefacts that mimic true B-lines and reveals a diagnostic 

limitation in distinguishing pathological features from normal ones. One plausible reason for this 

limitation could be that the training dataset does not include enough examples of healthy example 

frames, especially those with normal features like Z-lines. 

Compared to existing literature, which primarily used a frame-based DL model [13,14], this 

research emphasises the advantages of a video-based approach that accounts for the temporal 

relationships between LUS frames. As frame-based models often lose critical dynamic information 

across an entire LUS video, the video-based model in this study captures temporal variations from 

LUS frames for accurate diagnosis. Although prior research has applied AI to classify individual LUS 

frames, the classification of entire LUS videos has not been widely explored. In only a single study, 

the use of a method to compress a video into a single-image representation sacrifices the temporal 

depth that may be necessary for thorough diagnostic analysis [31]. In contrast, our AI model captures 

these temporal variations to improve accuracy and address a gap in video-based LUS classification, 

demonstrating how selective filtering techniques enhance model performance. This work addresses 

this gap and demonstrates how selective filtering of LUS frames improves the performance of the 

video-based model. 

Additionally, the developed model shows practical viability for real-time inferencing, achieving 

an average latency time of 0.87 seconds per segment, 32 frames each (approximately 37 FPS), which 

exceeds the threshold for real-time clinical deployment (25–30). In this context, real-time inferencing 

means that the model can process video at a rate equal to or faster than the ultrasound machine’s 

frame acquisition (30 FPS ), thereby enabling medical experts to receive immediate diagnostic 

feedback during scanning. This level of performance not only validates the model’s suitability for 

point-of-care (POC) use but also highlights its potential for integration into mobile computing 

platforms. It can be valuable in remote and emergency settings with limited computational resources 

and time. 

Despite the promising results noted in this study, the dataset used was relatively small, 

particularly for healthy videos in the testing phase. This reflects the nature of data collection in clinical 

settings where non-healthy cases are more commonly recorded. In addition to the challenges of 

dataset size, an important consideration is the inherent complexity of LUS acquisition. The captured 

LUS videos may contain portions representing healthy and non-healthy regions, as seen in the testing 

videos in Figure 14b. As the sonographer performs the acquisition, based on their hands-on 

experience and the patient’s status, they may be able to capture key diagnostic features within the 

LUS video. They may include a mix of diagnostic and non-diagnostic frames. Therefore, LUS 

acquisition, while convenient and portable, can introduce variability in the quality and consistency 

of the captured frames within LUS videos. The quality of the captured LUS videos can be influenced 

by both the patient’s status and the sonographer’s expertise. Depending on these factors, the captured 

video might include a mix of representative diagnostic and non-diagnostic or non-representative 
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frames within the LUS video. Including all the captured videos can impact the model’s performance 

and cause ambiguity during training, as evident in Scenario 1 (S1), where raw LUS videos contain a 

mix of representative and non-representative frames (96 frames). In Scenario 2 (S2), a small number 

of frames from 32 without applying any filtering were used. However, this approach did not address 

the presence of non-informative or irrelevant content, as within the 32 frames, a mix of representative 

diagnostic and non-diagnostic or non-representative frames may be present. Therefore, the filtering 

technique was implemented during training to address the variability in LUS videos in S3, where it 

minimised the number of frames from 96 to 32. Applying the filtering technique in S3, where the 

representative portions of the ultrasound videos are only included, allows the model to focus on 

relevant features, such as B-lines in pathological cases, contributing to improved performance during 

evaluation. 

Another limitation of this work is that the model developed in Scenario 3 (S3) was trained using 

a fixed-length sequence input of 32 frames per LUS video, and it is constrained to work only on videos 

as inputs of the same length during inference. This limit may impact the model’s ability to generalise 

to LUS videos with varying frame lengths, potentially limiting adaptability. Therefore, inputs of LUS 

video exceeding 32 frames require being segmented into multiple chunks (video segments). Future 

research could investigate the adaptation of LUS videos with variable sequence lengths to handle 

videos of different durations. Future work could also explore training AI lightweight classifiers for 

the frame selection process, which could speed up the workflow and improve the model’s accuracy. 

Furthermore, assessing the model with even larger datasets will be a more rigorous test of 

generalizability for the model. It will also be interesting to verify whether similar improvements in 

the performance of this approach can be replicated for other LUS disease classifications beyond IS. 

5. Conclusions 

This study explored the use of a video-based DL approach with the CSwin Transformer model 

to classify LUS videos, focusing on improving accuracy through selective frame filtering. The results 

show that filtering techniques, especially in Scenario 3, significantly enhanced the model’s 

performance by removing irrelevant frames and concentrating on key diagnostic features like B-lines. 

The proposed approach is a valid solution to improve fully automated IS detection in LUS videos, 

which aligns with clinical methods that leverage dynamic and static data for diagnostic purposes. 

This work shows the potential of selective frame filtering in combination with DL video models for 

improving the diagnostic performance of LUS. This approach increases the performance of diagnostic 

tools based on AI. It allows them to be more integrated into practice in real clinical settings where 

data quality and patient status often vary. Future studies need to address this approach’s refinement 

or even extend the diagnosis to other pulmonary conditions apart from IS. 
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Appendix A 

 

Figure A1. S1: Training Loss and Accuracy (1st and 2nd plots from the left): The training loss plot showed 

variability across the folds, stabilizing around 0.63, while the mean training accuracy reached approximately 

0.57, indicating the correct prediction rate. Validation Accuracy (last plot from the left): The plot shows 

considerable fluctuation, with a mean value of around 0.57, suggesting limited generalization to the validation 

data. 

 

Figure A2. S2: Training Loss and Accuracy (1st and 2nd plots from the left): The training loss plot showed 

variability across the folds, stabilizing around 0.33, while the mean training accuracy reached approximately 

0.87, reflecting a high proportion of correct classifications. Validation Accuracy (last plot from the left): the plot 

was more stable than S1, with a mean value of around 0.72, suggesting good generalization to the validation 

dataset. 

 

Figure A3. S3: Training Loss and Accuracy (1st and 2nd plots from the left): The training loss plot shows 

variability across the folds, stabilizing around 0.33, while the mean training accuracy reached approximately 

0.96, reflecting a high proportion of correct classifications. Validation Accuracy (last plot from the left): the plot 

was more stable than S2, with a mean value of around 0.81, suggesting the best generalization to the validation 

dataset. 
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Appendix B 

 

Figure A4. Confusion matrices comparing three methods of testing for Scenario 1. The matrices illustrate the 

classification performance between “Healthy” and “IS” classes using three different testing methods: Randomly 

Sampled Frames (left), Key Featuring Selected Frames (middle), and Chunk Averaged Frames (right). Randomly 

Sampled Frames: The model correctly classified 1 healthy clip and misclassified 5 as IS. It correctly classified 4 

Is clips, while 2 were misclassified as healthy. Key Featuring Selected Frames: In this method, 1 healthy clip was 

classified correctly, with 4 misclassified as IS. For IS, 5 were classified correctly, and 2 were misclassified as 

healthy. Chunk Averaged Frames: This approach resulted in 5 correct classifications for healthy clips and 10 

misclassifications as IS. For IS, 8 were correctly classified, and 1 was misclassified as healthy. 

 

Figure A5. The heatmap provides a comparison of confidence scores across three different testing methods—

RS, KF, and CA—applied to both healthy and non-healthy videos. Each square in the heatmap shows how 

confident the model was in its misclassifications for each video using the corresponding method. Darker shades 

of blue represent higher confidence levels (~0.7 to 1.0), while lighter shades indicate lower confidence (~0.5 to 

0.7). The colour legend at the bottom indicates false (red), partial false (orange), and completely false chunks 

(black). 

 

Figure A6. The bar graph for S1 shows the number of chucks in each clip. Each of those bars is segmented, 

showing the correct classifications in blue and partial misclassification in orange, and all chunks false in black. 
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The horizontal axis defines the number of chunks, while the vertical axis enumerates the clips that belong either 

to a healthy or non-healthy clip. The orange segments are to indicate where certain chunks in a clip are classified 

incorrectly, while the blue segments reflect the correctly classified segments. 

Appendix C 

 

Figure A7. Confusion matrices comparing three methods of testing for Scenario 2. The matrices illustrate the 

classification performance between “Healthy” and “Interstitial Syndrome (IS)” classes using three different 

testing methods: Randomly Sampled Frames (left), Key Featuring Selected Frames (middle), and Chunk 

Averaged Frames (right). Randomly Sampled Frames: The model correctly classified 2 healthy clips and 

misclassified 1 as IS. It correctly classified 9 IS clips, while none were misclassified as healthy. Key Featuring 

Selected Frames: In this method, 2 healthy clips were classified correctly, with 1 misclassified as IS. For IS, 9 were 

classified correctly, and none were misclassified as healthy. Chunk Averaged Frames: This approach resulted in 

13 correct classifications for healthy clips and 8 misclassifications as IS. For IS, 58 were correctly classified, and 

3 were misclassified as healthy. 

 

Figure A8. The heatmap provides a comparison of confidence scores across three different testing methods—

RS, KF, and CA—applied to both healthy and non-healthy videos. Each square in the heatmap shows how 

confident the model was in its misclassifications for each video using the corresponding method. Darker shades 

of blue represent higher confidence levels (~0.7 to 1.0), while lighter shades indicate lower confidence (~0.5 to 

0.7). The colour legend at the bottom indicates false (red), partial false (orange), and completely false chunks 

(black). 
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. 

Figure A9. The bar graph for S2 shows the number of chucks in each clip. Each of those bars is segmented, 

showing the correct classifications in blue and partial misclassifications in orange, and all chunks false in black. 

The horizontal axis defines the number of chunks, while the vertical axis enumerates the clips that belong either 

to a healthy or non-healthy clip. The orange segments are to indicate where certain chunks in a clip are classified 

incorrectly, while the blue segments reflect the correctly predicted segments. 
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