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Abstract

Modern engineering faces an unprecedented paradox: while our systems grow increasingly complex,
the tools we use to design and evaluate them must remain both reliable and transparent. Decisions
in energy, infrastructure, and construction no longer occur in isolation but within socio-technical
networks shaped by emerging technologies and artificial intelligence (AI). Among these advances,
large language models (LLMs) such as GPT have attracted attention for their ability to synthesize
solutions, interpret domain-specific queries, and generate outputs with minimal fine-tuning. Yet
beneath this promise lies a critical flaw—LLMs do not compute; they predict. Their reliance on
statistical associations often leads to biases, logical missteps, or hallucinated values, shortcomings
that become especially problematic when applied to structural engineering, where safety and
compliance are non-negotiable. This tension sets the stage for the present work. The dataset
introduced here responds to this gap by demonstrating how generative Al can be grounded within
validated computational workflows. Through the Model Context Protocol (MCP), ChatGPT was
connected to numerical solvers such as OpenSees and benchmarked against ETABS, ensuring
traceability, reproducibility, and compliance with seismic design standards. The dataset comprises
technical prompts, GPT outputs, verified numerical analyses, and comparative error metrics for four
reinforced concrete frame models designed under Ecuadorian (NEC-15) and U.S. (ASCE 7-22)
standards. Beyond a simple record, it exemplifies a reproducible methodology for embedding LLMs
within structural engineering practice. By curating and releasing this dataset, the study pursues three
goals: to strengthen reproducibility by enabling independent verification, to foster interdisciplinary
collaboration across Al civil engineering, and data science, and to establish benchmarks for context-
aware Al integration in high-stakes domains. In doing so, it not only illustrates the promise of
human-AI teaming but also highlights the limitations that must be addressed if generative models
are to be responsibly embedded in engineering decision-making.

Dataset: 10.17632/gh9sbjzz5z.1
Dataset License: CC BY 4.0

Keywords: generative Al-assisted structural analysis; model context protocol; human-machine
interaction; computational efficiency; LLM-FEM integration
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1. Summary

This dataset accompanies the study “Human-Al Teaming in Structural Analysis: A Model Context
Protocol Approach for Explainable and Accurate Generative AI” [1]. Engineering today operates in a
landscape where complexity is no longer the exception but the rule. Energy grids, transport networks,
and construction projects intertwine with social, economic, and environmental systems, forming
intricate socio-technical webs [2-5]. Within these environments, decision-making must not only be
accurate but also transparent and reproducible, as even small misjudgements can cascade into
consequences for safety, sustainability, and public trust. Against this backdrop, artificial intelligence
(AI) has emerged as a transformative force, offering the ability to process vast datasets and generate
insights at a speed unimaginable just a decade ago [6-10].

Among recent advances, large language models (LLMs) such as GPT have captured attention
for their capacity to generate solutions, interpret technical queries, and adapt flexibly across domains
with little additional training [8,11]. Their appeal lies in accessibility: engineers can pose complex
questions in natural language and receive structured outputs almost instantly. Yet this promise
carries an underexplored risk. By design, LLMs generate statistical predictions rather than verifiable
computations [12-14]. What reads as a precise answer may, in fact, be a plausible illusion—
embedding bias, misapplied logic, or entirely fabricated values. In structural engineering, where lives
depend on fidelity to physical laws and regulatory codes, these hallucinations are more than an
inconvenience; they are a critical barrier to safe adoption.

Addressing this tension requires moving beyond unbounded generative outputs toward
context-aware frameworks that anchor Al reasoning within validated workflows. The present study
takes up this challenge by employing the Model Context Protocol (MCP), a framework that natively
supports autonomous tool discovery and structured communication with external solvers [15-18].
Unlike orchestration tools such as LangChain [19], MCP allows generative models to interoperate
directly with numerical engines such as OpenSees, ensuring that outputs are traceable, reproducible,
and auditable. This integration not only reduces hallucinations but also enables compliance with
established seismic-resistant design standards [20,21].

The dataset described here illustrates this approach in practice. It comprises technical prompts,
raw GPT outputs, validated numerical analyses conducted in OpenSeesPy and ETABS, and
comparative metrics across four three-dimensional reinforced concrete frames designed in
accordance with the Ecuadorian Construction Standard NEC-15 [20] and the U.S. ASCE 7-22 [21].
Four modelling groups were evaluated: (i) GPT, using direct LLM prompting; (ii) GPT+MCP,
integrating generative interaction with solver-based computation; and two benchmark groups, (iii)
OpenSees and (iv) ETABS, developed manually for validation. The dataset reports inter-storey drifts
in X and Y, maximum displacements (m), base shear (kN), and fundamental periods (s), with relative
error analyses providing the basis for comparison. Beyond recording outputs, the dataset
demonstrates a reproducible methodology for embedding LLMs into structural analysis workflows
while preserving computational fidelity.

This work also lays a foundation for broader exploration. Current extensions of the MCP
framework investigate domains such as energy modelling, HVAC analysis, and sustainability-driven
optimization, with parallel applications emerging in BIM-linked generative workflows [11,22,23]. By
making the dataset publicly available, the study advances three objectives: (i) to strengthen
reproducibility by enabling independent verification, (ii) to foster interdisciplinary collaboration
between Al researchers, civil engineers, and data scientists, and (iii) to establish benchmarks for safe,
context-aware Al integration in high-stakes engineering. Ultimately, this dataset highlights both the
promise and the limits of generative Al in technical fields. It contributes not only to ongoing debates
on explainability and trust in Al, but also to the practical development of workflows where human
expertise and machine intelligence operate as genuine partners in structural decision-making.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2. Data Description

2.1. Prompt Description of the Study Case

The following subsection provides a structured explanation of the study case prompt, outlining
its components, order, and interpretation to ensure clarity and reproducibility of the analysis ( Table
1b)

2.1.1 Context

The first block establishes the role of the system. It defines that the model must act as an expert
in structural analysis, using both natural language and numerical simulation with OpenSeesPy. It
also specifies that the analyses must follow international seismic-resistant design standards.

e Purpose: Provide the professional and technical framework within which all subsequent
instructions must be interpreted.

2.1.2 Instructions

This section directs the type of analysis to be performed. The orders are:

¢ Analyse a three-dimensional reinforced concrete frame.
e Verify code compliance for inter-story drift.

e Apply structural optimisation if necessary.

e Purpose: Define the general workflow of the analysis.

2.1.3 Details

This block provides numerical input data required for analysis. The parameters are organised
as structured values:

e Material properties: modulus of elasticity.

e Geometry: spans in X and Y directions; storey heights.

¢ Cross-sections: beams and columns dimensions.

e Cracking factors: beams (0.7), columns (0.8).

e Loads: dead load (4.9 kN/m?), live load (1.9 kN/m?).

e Coefficients: load factors, base shear coefficient, torsion factor, drift amplification, maximum
allowable drift.

e Purpose: These values serve as tabular input data to be read directly by the solver. Each line
corresponds to a parameter category, and their interpretation is straightforward (e.g., geometric
dimensions in meters, load intensities in kN/m?2).

2.1.4 Tasks

This section enumerates the ordered computational tasks:
Task 1 — Linear Static Seismic Analysis

Perform seismic analysis with the equivalent lateral force method using OpenSeesPy.
Task 2 — Displacements and Drifts

Compute maximum displacements and story drifts for each level in both directions (X and Y).
Task 3 — Strict Numerical Validation

e Iterate through all inelastic drift values.

¢ Compare against maximum allowable drift (0.02).

e If one or more values exceed the limit, report the story number, direction, and drift value.
e Only if all drifts are < 0.02, compliance may be confirmed.

e Present results in tabular format with numerical precision.

Task 4 — Shear Forces and Vibration Modes
Determine floor-by-floor shear forces and vibration modes.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Task 5 — Structural Optimisation

e If non-compliance occurs, generate 10 alternatives by
modifying materials and section dimensions.

e Re-evaluate drifts for each configuration.

e Compare alternatives in tabular form.

e Highlight compliant and efficient options.

2.1.5 Intent

The final block specifies the expected output style:

e Generate an automated technical report.

e Include detailed structural analysis, code validation, and optimisation proposals when required.
e  Use technical language with clear tables.

e Ensure suitability for professional and academic environments.

Table 1. Structural Analysis Case Study: (a) Three-dimensional model implemented in OpenSees and ETABS,
and (b) natural language specification expressed in MIDI-formatted prompt.

GRAVITATIONAL
LOADS

ELEVATION VIEW
SEISMIC

LOADS

dx | dx | dx )

@ G

3D MODEL . -~ c R

PLAN VIEW

(@)

prompt = (
"Context:"
"You are an expert in structural analysis using natural language and numerical simulation with OpenSeesPy. "
"The implemented system is capable of interpreting technical prompts and generating automated structural simulations "

"based on international seismic-resistant design standards."

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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"Instructions:"

"Analyse a three-dimensional reinforced concrete frame, verify code compliance for inter-story drift, "
"and apply structural optimization if necessary."

"Details:"

"The modulus of elasticity for concrete is 21,458,890.83 kN/m2. "

"The structural system has spans of 4.0 and 4.0 meters in the X direction, and spans of 4.0 and 4.0 meters in the Y direction.
"The structure has 2 stories, with story heights of: 3.0 and 3.0 meters respectively. "

"Beams have a cross-sectional dimension of 0.25 x 0.30 meters, and columns are 0.30 x 0.30 meters. "

"Cracking factors are 0.7 for beams and 0.8 for columns. "

"Dead load is 4.9 Kn/m? and live load is 1.9 kN/m? "

"The weight coefficients are: 1.0 for dead load, 0.15 for live load, 0.1488 for base shear coefficient, "

"1.0 for vertical distribution of base shear, 0.05 for accidental torsion, "

"and a drift amplification factor of 6.0 is applied to estimate inelastic drift. The maximum allowable drift is 0.02."
"Tasks:"

"1. Perform linear static seismic analysis using the equivalent lateral force method with OpenSeesPy. "

"2. Compute maximum displacements and story drifts per level and direction (X and Y). "

"3. Perform strict numerical validation:"

" - Iterate through all obtained inelastic drift values. "

" - For each value, compare it against the allowable maximum (0.02). "

" - If *at least one value* exceeds 0.02, *you must not state that all values are compliant™®. "

" - Report precisely: story number, direction (X or Y), and the drift value that exceeds the limit.
" - Only if *all drifts* are < 0.02, the code compliance can be confirmed. "

" - Present results in tabular format and be rigorous with numerical precision."

"4. Also determine floor-by-floor shear forces and vibration modes."

"S. Structural optimization:"

" - If any drift exceeds the limit, propose a structural optimisation based on displacements, "

" storey drifts, shear forces, and vibration modes. "

" - Generate 10 alternatives by modifying material properties and section dimensions. "

" - Evaluate drift for each alternative and present the comparison in tabular format. "

" - Highlight the configurations that meet code requirements and provide better structural efficiency."

"Intent:"

"Generate an automated technical report, including detailed structural analysis, code validation, "

"and optimisation in case of non-compliance. The output must be expressed in technical language and clear tables, "

"suitable for professional and academic environments."

(b)

Note: In panel (a), dx and dy denote the span lengths in the X and Y directions, respectively; their values

1.

vary according to the specific study case.

2.2. Dataset Significance

The dataset generated in this study is organised around four primary indicators of seismic
performance —storey drift, maximum displacement, base shear, and building period —evaluated
across four structural cases (A-D) (Table 2) using standalone GPT, GPT+MCP, OpenSees, and ETABS.
The data are presented in tabular and graphical formats, with consistent units: meters (m) for
displacements, dimensionless ratios for storey drift, kilonewtons (kN) for base shear, and seconds (s)

). Distributed under a Creative Comm CC BY license.
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for the building period. This structure ensures comparability between approaches and facilitates

interpretation against seismic code requirements.

Table 2. Geometric, mechanical, and loading parameters defining the study case A.

Category Parameter Magnitude
Geometry Number of Stories 2
Story Heights 3.0, 3.0 m (from bottom to
top)
Spans in X Direction 40m,4.0m
Spans in Y Direction 40m,4.0m
Sections Beam Cross-Section 0.25m x0.30 m
Column Cross-Section 0.30 m x 0.30 m
Cracking Factor (Beams) 0.7
Cracking Factor (Columns) 0.8
Material Concrete Young’'s Modulus 21,458,890.83 kN/m?
Loads Dead Load 4.9 kN/m?2
Live Load 1.9 kN/m?
Dead Load Weight Coefficient 1.0
Live Load Weight Coefficient 0.15
Seismic Base Shear Coefficient 0.1488
Parameters
Vertical Distribution Coefficient 1.0
Accidental Torsion Coefficient 0.05
Drift Amplification Factor (for Inelastic
. 6.0
Drift)
Maximum Allowable Drift 0.02
2 Note: table interpretation of the structured prompt.

d0i:10.20944/preprints202509.0212.v1

- Storey Drift: Storey drift values are reported for each storey in both the X and Y directions (Table
3). These tables allow readers to observe the vertical distribution of drift across cases and
computational methods. Storey drift quantifies the relative displacement between consecutive
levels and is a key parameter for NEC-15 compliance, which establishes a 2% upper limit. Reading
guide: Table 3 display raw drift values per storey and direction, enabling direct verification of inter-storey
deformation patterns.

Table 3. Storey drift in the X direction computed for the study case A .

Inter-Story Drift X
Case  Story GPT  GPT+MCP OPENSEES  ETABS
2 0.009 0.013 0.013 0.013
1 0.007 0.012 0.012 0.012

A

- Maximum Displacement: The maximum story displacements in the X and Y directions
summarised numerically in Table 4. This dataset provides insight into global deformation
profiles, which are essential for evaluating the likelihood of structural interaction with
neighboring buildings. Reading quide: Table 4 reports the corresponding numerical values of the
displacement in meters for each computational method.

Table 4. Maximum interstorey displacement in the X (m).

Storey GPT GPT+MCP OPENSEES ETABS
A 0.047 0.01264 0.01264 0.01282

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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- Base Shear: Table 5 presents the base shear (kN) values for the studied cases. These results
quantify the seismic demand transmitted to the foundation and reflect the combined influence of
structural weight and stiffness. Reading guide: Table 5 provides total base shear per case and method,
facilitating cross-model comparison.

Table 5. Base shear (kN) in study case A.

Case GPT GPT+MCP OPENSEES ETABS
A 10.09 13.969 13.969 13.97

- Building Period. The fundamental period of vibration for each case is shown in Table 6. As an
indirect measure of stiffness, the building period is critical for understanding overall structural
dynamics, where shorter periods generally correspond to reduced displacements. Reading guide:
Figure 4 presents the variation of the fundamental period across study cases, while Table 11 provides the
tabulated values per method.

Table 6. Building period (s) in study case A.

Case GPT GPT+MCP OPENSEES ETABS
A 0.38 0.485 0.485 0.489

Taken together, these datasets form the empirical basis of the study’s argument. The definition
of consistent study groups supports validation across computational approaches, while the
structured results are presented through storey drift, displacement, base shear, and period. These
indicators collectively establish compliance with NEC-15 drift limits, with GPT+MCP offering
corrective alternatives when design parameters exceed code requirements.

The dataset demonstrates that GPT+MCP, integrated with OpenSees through the MCP protocol,
delivers results consistent with conventional software benchmarks, while reducing computation
times. The dataset therefore not only enables verification of outputs but also provides a foundation
for future studies exploring new design alternatives or extending Al-assisted methodologies to other
structural typologies.

2.3. Relative Error as a Measure of Accuracy

To complement the raw structural response results, the dataset also contains derived values of
relative error, calculated with respect to ETABS benchmarks. The metric was computed using
Equation (1):

X —X
Relative Error = Xmodel ETABS| X 100% 1)

XETABS

Where X represents one of the evaluated structural response parameters: storey drift, maximum
displacement, base shear, or period. This formulation normalises deviations across methods, making
results directly comparable regardless of units or magnitude.

The dataset includes separate relative error tables for each parameter, as well as summary tables
reporting the maximum relative errors across cases A-D. For instance, Table 7 presents the relative
error for base shear. Each column corresponds to a computational method (GPT, GPT+MCP,
OpenSees), and each row indicates a structural case. An additional row reports the standard
deviation (SD) of the maximum error across cases, which reflects the stability of the method. The
values are expressed in percentages (%).

Table 7. Relative error (%) with respect to ETABS in the evaluation of max displacement in the X and Y

directions.

GPT GPT+MCP OPENSEES

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Case X Y X Y X Y
A 266.529 235.335 1.427 1.427 1.427 1.427

How to read the data. The relative error column for each method indicates its proportional
deviation from ETABS. Values closer to zero denote higher accuracy and stronger agreement with
the benchmark. The inclusion of SD allows users to evaluate not only the accuracy in individual cases
but also the variability across different structural configurations. For example, the GPT-only method
exhibits high relative errors (230-270%) with large dispersion, while GPT+MCP and OpenSees
maintain relative errors consistently close to zero (<1.427%) with negligible variability.

Relevance of the metric. The relative error dataset enables three main uses:

o Benchmarking performance: It provides a direct comparison of novel Al-assisted methods (GPT and
GPT+MCP) against a widely validated standard (ETABS).

o Cross-parameter evaluation: Since relative error is unitless, it permits consistent assessment across
storey drift (%), displacements (m), base shear (kN), and period (s).

o Reproducibility and extension: Researchers can employ the provided error tables to reproduce the
evaluation, extend the analysis to new structural typologies, or integrate the metric into broader
model validation frameworks.

By including relative error in addition to raw results, the dataset provides a transparent and
standardized measure of accuracy. This reinforces the robustness of the GPT+MCP approach, which
is shown to achieve performance commensurable with established engineering tools.

3. Methods

3.1. Architecture Workflow

The dataset was generated using a modular client-server workflow structured under the Model-
Context Protocol. The architecture separates natural language reasoning from structural simulation,
thereby ensuring transparency and reproducibility. Three functional layers were defined. The Client
Layer processes user prompts through a large language model (GPT-40) and translates them into
structured JSON schemas specifying geometry, materials, and load conditions. The Server Layer,
implemented with FastAPI (3.1.1), validates inputs, orchestrates tool invocation, and manages
execution order. The External Application Layer integrates OpenSeesPy (3.8.x interface to OpenSees
3.7.1), which performs seismic analyses including inter-storey drift evaluation, shear force
distribution, and modal response.

3.2. Data Collection and Processing

Natural language prompts (CIDI-style specifications) were employed to generate multiple
reinforced concrete frame models (Table 1 and 2). Parameters included storey heights, spans, cross-
sectional dimensions, and seismic coefficients. Each prompt was parsed into machine-readable
inputs, which OpenSeesPy converted into three-dimensional analysis models. Structural outputs
consisted of storey drifts, shear distributions, and vibration modes. These raw outputs were compiled
into structured JSON tables to ensure consistency and ease of reuse.

3.3. Validation and Curation

Validation was performed through two complementary strategies. First, syntactically distinct
but semantically equivalent prompts were tested to verify that the system produced consistent model
definitions. Second, results from GPT+MCP workflows were benchmarked against manually
implemented OpenSees and ETABS (20.3.0) models. Relative error analysis quantified deviations
across platforms, with results showing near-identical outputs for GPT+MCP and manual OpenSees
models. Curation procedures included schema enforcement, error logging, and systematic rejection
of incomplete inputs.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.5. Data Quality and Noise Control

Potential sources of noise included missing prompt parameters, ill-typed values, solver non-
convergence, and infeasible geometries. A two-tier error-handling mechanism was implemented.
Client-side validation ensured compliance with structured JSON schemas, while server-side
monitoring detected solver errors or stability thresholds. Ambiguities and inconsistencies were
explicitly logged, and outputs failing validation were excluded from the curated dataset. These
mechanisms ensure high-quality, reproducible data suitable for downstream analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

LLM Large Language Model

GPT Generative Pre-trained Transformer

MCP Model Context Protocol

BIM Building Information Modeling

HVAC Heating, Ventilation, and Air Conditioning

NEC-15 Norma Ecuatoriana de la Construccion 2015

ASCE 7-22  American Society of Civil Engineers Standard 7-2022
ETABS Extended Three-dimensional Analysis of Building Systems
OpenSees  Open System for Earthquake Engineering Simulation

OpenSeesPy Python interface to OpenSees

JSON JavaScript Object Notation

API Application Programming Interface

FastAPI Fast Application Programming Interface (Python framework)
CIDI Context-Instruction-Details-Intent
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