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Abstract: The financial market has been at the forefront of machine learning applications since the
1980s, yet accurate stock price prediction remains a significant challenge due to market complexity and
inherent volatility. This paper presents a comprehensive approach to stock market prediction through
the integration of Linear Regression (LR), Long Short-Term Memory (LSTM), and Autoregressive Inte-
grated Moving Average (ARIMA) methods. We evaluate these approaches using historical data from
five major stocks across different market sectors, demonstrating that traditional time series analysis
methods can achieve comparable or superior performance to complex deep learning approaches when
properly optimized. To validate our findings, we implement an integrated prediction and trading
support system that provides automated data processing and real-time updates, enabling effective
decision-making in dynamic market conditions. Our results suggest that the combination of multiple
prediction approaches, coupled with automated trading support, can significantly enhance investment
decision-making capabilities.

Keywords: stock price prediction; machine learning; LSTM; ARIMA; linear regression; trading system

I. Introduction
The rapid advancement of information technology and the increasing complexity of financial mar-

kets have fundamentally transformed stock trading practices[1]. Traditional stock trading methods[2,3],
which rely heavily on manual analysis and operations, have become insufficient in handling the mas-
sive volume of data generated by modern financial markets. This limitation is particularly evident
in markets such as the A-share market, which encompasses between 2,000 to 4,000 stocks[4] with
historical trading data spanning half a century.

The emergence of big data analytics and machine learning technologies presents unprecedented
opportunities for enhancing stock trading strategies[5]. Machine learning algorithms have been
widely adopted in financial market prediction[6,7]. These advanced computational methods offer
the capability to process and analyze vast amounts of historical data, identify complex patterns,
and generate predictive insights that would be impossible to achieve through traditional analysis
methods[8].

This research focuses on developing and evaluating a comprehensive stock prediction and trading
system that leverages three distinct machine learning approaches: Linear Regression (LR), Long
Short-Term Memory (LSTM)[9], and Autoregressive Integrated Moving Average (ARIMA). Our work
is motivated by several key objectives:

a) Development of Robust Prediction Models

We aim to create reliable stock price prediction models that can effectively process historical
market data and generate accurate short-term price forecasts. This involves the implementation and
optimization of multiple machine learning algorithms, each chosen for their specific strengths in
handling time-series data.
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b) Comparative Analysis of Methods

Through rigorous experimentation and analysis, we evaluate the performance of different predic-
tion methods across various stocks and market conditions. This comparison provides valuable insights
into the strengths and limitations of each approach.

c) Practical System Implementation

Beyond theoretical models, we develop a complete web-based trading system that integrates
these prediction models into a user-friendly platform. This system provides real-time predictions,
visualizations, and trading recommendations, bridging the gap between advanced analytics and
practical application.

d) Trading Strategy Optimization

Based on the predictions generated by our models, we design and implement trading algorithms
aimed at maximizing profitability through timely buy and sell decisions.

Our research contributes to both the theoretical understanding of stock price prediction methods
and their practical application in real-world trading scenarios. The system we develop demonstrates
the feasibility of utilizing machine learning approaches for financial decision-making, while our
comparative analysis provides insights into the relative effectiveness of different prediction methods.

II. Related Work
Recent advances in machine learning have led to significant developments in stock price prediction

methodologies. This section presents both the theoretical foundations and a comprehensive review of
relevant research across the three main approaches employed in our study: LSTM networks, ARIMA
models, and Linear Regression methods.

A. Deep Learning Approaches with LSTM

The foundation of modern deep learning approaches to financial forecasting lies in Recurrent
Neural Networks (RNN) and their advanced variants, as shown in Figure 1. RNNs introduce the
concept of memory in neural networks through self-looping mechanisms, allowing information
persistence across sequential data processing.

Figure 1. RNN with one layer.

However, traditional RNNs face challenges in maintaining long-term dependencies, leading to the
development of Long Short-Term Memory (LSTM) networks[10]. LSTM networks enhance the basic
RNN architecture through specialized memory cells containing input, forget, and output gates[11].
Each LSTM unit processes information through these gates, enabling selective information retention
and update. We can use a chain to represent the structure of LSTM. Inside each node of this chain,
there exists four neural network layers.

The memory cell maintains state information over arbitrary time intervals, while the gates control
information flow:
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Ct = ftCt−1 + ittanh(WC[ht−1, xt] + bC) (1)

where ft represents the forget gate, it the input gate, and Ct the cell state at time t.
Recent applications of LSTM in stock prediction have demonstrated remarkable success. Di

Persio and Honchar[9] demonstrated LSTM’s superior performance compared to traditional Recurrent
Neural Networks (RNN) and Gated Recurrent Units (GRU) in predicting Google stock prices using
five-day period data. Their work established LSTM as a particularly effective method for short-term
price predictions.

Further validation of LSTM’s effectiveness comes from Roondiwala’s implementation for Nifty
price prediction[12], achieving a remarkably low RMSE of 0.00859. Hossain’s research[13] advanced
this further by developing a hybrid model combining LSTM and GRU, analyzing data from 1950 to
2016 and achieving an MSE of just 0.00098.

B. Time Series Analysis with ARIMA

ARIMA models combine three key components - Autoregression (AR), Integration (I), and Moving
Average (MA) - to capture different aspects of time series behavior[14]. The AR component models
the relationship between current values and their lagged observations, while the MA component
incorporates the dependency between observations and residual errors. The Integration component
addresses non-stationarity through differencing operations. Figure 2 below shows the brief process of
ARIMA model.

Figure 2. ARIMA Model.

ARIMA models have maintained their relevance in stock price prediction despite the emergence
of newer methods. Ariyo’s 2014 study [15] provided a systematic approach to ARIMA model selection,
utilizing metrics such as Standard Error of Regression (SER), Adjusted R-square values, Bayesian
Information Criteria. Wang’s Proposed Hybrid Model (PHM) combined ARIMA with ESM and
BPNN[16], analyzing weekly data to demonstrate superior performance over single-model approaches.
Similarly, Zhang’s research[17] integrated ARIMA with RNN, achieving improved performance in
both linear and non-linear prediction scenarios.

C. Linear Regression Approaches and Variants

Linear Regression approaches in stock prediction assume linear relationships between input
features and future prices. The basic model takes the form:

Y = β0 + ∑(βi ∗ Xi) + ϵ (2)

where βi represents regression coefficients and ϵ the error term.
The input X can have more than one dimension and thus the corresponding linear equation could

have more coefficients, also, an interception needs to be added into the equation. Thus, the equation
can be represented using the format below:

yi = β0 + β1xi1 + ... + βpxip + ϵi = xT
i β + ϵi, i = 1, ..., n (3)

The fundamental concept remains establishing linear relationships between input features and
target prices, but the implementation varies significantly across different methods. Figure 3 shows the
sample of single LR.
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Figure 3. Caption.

Simple Linear Regression represents the most basic approach, handling one-dimensional input
data. As illustrated in Figure 3, this method establishes direct linear relationships between single input
features and target values. While conceptually straightforward, this approach demands substantial
computational resources and proves limited in handling the multidimensional nature of stock market
data.

The least squares method extends Linear Regression to handle multidimensional inputs, making
it particularly relevant for stock prediction where multiple features influence price movements. This
approach minimizes the sum of squared residuals, effectively fitting a regression hyperplane across
multiple dimensions. The method’s matrix-based computation enables efficient handling of high-
dimensional feature spaces, crucial for processing comprehensive market data.

Gradient descent offers an iterative optimization approach to Linear Regression, particularly
valuable for large-scale stock prediction tasks. This method iteratively refines coefficient values by
following the gradient of the error surface. The introduction of a learning rate parameter provides
crucial control over convergence behavior, allowing fine-tuned optimization based on specific market
characteristics.

Advanced regularization techniques, particularly Lasso and Ridge Regression, further enhance
Linear Regression’s applicability to stock prediction. These methods not only minimize prediction error
but also address model complexity through parameter regularization. This dual optimization proves
especially valuable in financial forecasting, where model simplicity often correlates with improved
generalization performance.

Recent work by Bhuriya[18] demonstrated Linear Regression’s competitive performance in stock
prediction, achieving accuracy rates of approximately 0.97 through careful method selection and
parameter optimization. These findings highlight the continued relevance of Linear Regression
approaches in financial forecasting, particularly when enhanced by appropriate variant selection and
optimization strategies.

D. Hybrid and Comparative Approaches

Recent research has increasingly focused on combining multiple prediction methods to leverage
their respective strengths. As a result, LSTM model generally outperforms traditional neural networks
for long-term predictions[19–21]. For ARIMA model, it shows particular strength in handling seasonal
patterns[22] while Linear regression provides robust baseline performance and interpretability
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Our research builds upon these findings by implementing and comparing all three approaches
within a single integrated system, allowing for direct performance comparison under identical condi-
tions.

III. Data Collection and Processing
A. Dataset Description and Selection

This study employs historical stock price data from five major companies traded on the U.S.
stock market, obtained through the Yahoo Finance platform. The selected companies - Apple (AAPL),
Coca-Cola (KO), NVIDIA (NVDA), Pfizer (PFE), and Tesla (TSLA) - represent diverse market sectors
and exhibit varying patterns of market behavior. These companies were specifically chosen due to their
significant market presence, consistent trading volumes, and distinct market characteristics, providing
an ideal testbed for evaluating our prediction models across different market conditions.

The primary dataset spans a three-year period, a timeframe carefully selected to balance data
recency with sufficient sample size for model training. This duration provides enough historical
data to capture meaningful market patterns while avoiding the potential noise from outdated market
conditions that might not reflect current trading dynamics. For each trading day, the dataset includes
six fundamental metrics: opening price, daily high, daily low, closing price, adjusted closing price, and
trading volume. These metrics form the foundation for our predictive analysis and model development.

B. Data Preprocessing Methodology

Our preprocessing framework implements distinct strategies for each prediction model, recog-
nizing that different algorithms require specific data representations for optimal performance. This
targeted approach to preprocessing represents a key innovation in our methodology, significantly
enhancing the prediction accuracy of each model.

1) Linear Regression Preprocessing

For Linear Regression analysis, we developed a structured approach to feature engineering based
on temporal aggregation. The preprocessing involves combining five consecutive trading days into
a single observation unit, with the closing price five days ahead serving as the prediction target.
This creates a 25-dimensional input vector (5 features × 5 days) for each observation, with a single-
dimensional output target. This structure enables the model to capture short-term price patterns while
maintaining computational efficiency.

2) ARIMA Time Series Transformation

The ARIMA model implementation required careful attention to time series stationarity. We
applied first-order differencing to the closing price sequence to generate a stationary time series,
as illustrated in Figures 4 and 5 using NVIDIA stock data as an example. The stationarity of the
transformed series was rigorously validated through unit root testing, with all stocks showing p-values
below 10−10. This statistical validation confirmed that first-order differencing was sufficient to achieve
stationarity, eliminating the need for higher-order transformations.
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Figure 4. NVIDIA Stock Prices Before Differencing.

Figure 5. NVIDIA Stock Prices After First-Order Differencing.

3) LSTM Sequential Data Processing

For the LSTM model, we implemented a sophisticated sliding window approach to maintain
temporal relationships in the data. Each window contains several continuous trading days with a fixed
size w, creating sequential data segments for training. We reserved the most recent 10% of the data for
testing purposes, as shown in Figure 6 using S&P 500 data[4] as an illustration.

A critical innovation in our LSTM preprocessing was the implementation of window-specific
normalization. This step proved essential due to the tendency of stock prices to increase over time,
which can result in test data values significantly different from those seen during training. Figure 7
demonstrates the poor prediction performance when using non-normalized data, where the model
struggles with previously unseen price levels.
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Figure 6. S&P 500 price data visualization showing the temporal segmentation approach.

Figure 7. Comparison showing poor prediction performance with non-normalized data.

To address this challenge, we normalized each sliding window’s prices by dividing the values
by the last known price (the final price in the previous window Wt−1). This transformation converts
the prediction task from absolute price forecasting to relative change rate prediction, significantly
improving the model’s generalization capability. The normalized sliding window W ′

t at time t is
calculated as:

W ′
t = Wt/P(t − 1) (4)

where P(t-1) represents the last price in the previous window.
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C. Quality Control and Validation

The reliability of our prediction models depends heavily on the quality of the input data. We
implemented a comprehensive quality control framework that addresses common challenges in
financial time series data. This framework includes systematic detection and handling of missing
values, validation of extreme price movements, and verification of data consistency across multiple
sources. Special attention was paid to trading volume validation, ensuring that our analysis focuses on
periods of significant market activity.

Additionally, we developed a market calendar alignment procedure to synchronize trading days
across all stocks, accounting for market holidays and special trading sessions. This alignment ensures
consistency in our cross-stock analysis and model comparisons. The effectiveness of these preprocess-
ing strategies is reflected in the experimental results, where we observe significant improvements in
prediction accuracy across all models.

IV. Methodology
A. Algorithm Selection and Design

Our research implements three complementary approaches for stock price prediction: ARIMA,
Linear Regression, and LSTM networks. These methods were selected based on their distinct capabili-
ties in handling different aspects of financial time series analysis.

In the LSTM architecture, we leverage the sophisticated memory mechanism illustrated in Figure
8, where each node contains four interacting neural network layers. This structure proves crucial for
capturing market patterns across different time scales. The chain-like architecture, with its specialized
memory cells containing input, forget, and output gates, enables our model to selectively retain and
update information based on market conditions. Figure 1 demonstrates this internal structure, where
each gate plays a specific role in processing financial data streams.

Figure 8. Chain of LSTM and the structure of one node.

ARIMA models offer sophisticated time series analysis capabilities through the integration of
autoregressive and moving average components. Our implementation focuses on systematic parameter
optimization, utilizing statistical validation techniques including unit root testing and information
criteria analysis to establish optimal model configurations for varying market conditions.

Linear Regression in our framework extends beyond basic linear models to encompass multiple
optimization approaches. The implementation incorporates least squares estimation, gradient descent
optimization, and regularization techniques through Lasso and Ridge regression. This comprehensive
approach enables effective feature selection while maintaining model interpretability, crucial for
practical trading applications.

B. Model Selection Rationale

The selection of these three approaches is justified through both theoretical foundations and
practical considerations in financial forecasting. ARIMA’s statistical foundation provides robust
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handling of time series characteristics, particularly valuable for capturing seasonal patterns and trends
in market data. The model’s ability to handle non-stationary data through differencing makes it
particularly suitable for stock price analysis.

Linear Regression offers computational efficiency and interpretability, with its various implemen-
tations providing flexibility in handling different types of market data. The inclusion of regularization
techniques addresses the critical challenge of overfitting, while gradient descent optimization enables
effective handling of high-dimensional feature spaces.

LSTM’s sophisticated architecture addresses the limitations of traditional neural networks in
handling sequential data. The model’s memory cells and gate mechanisms enable capture of both short-
term and long-term dependencies in price movements, making it particularly suitable for markets
with complex temporal patterns.

C. Comparative Framework

Our evaluation framework emphasizes both theoretical capabilities and practical performance
metrics. The assessment considers prediction accuracy through standard metrics such as MSE and
RMSE, while also evaluating model robustness across different market conditions. This comprehensive
approach enables systematic comparison while ensuring practical relevance for trading applications.

The implementation incorporates specific optimizations for each method, with ARIMA parameters
dynamically adjusted based on market conditions, Linear Regression models adapting feature selection
and regularization strength, and LSTM implementations managing sequence length and batch size for
optimal performance[22].

Through this methodological framework, we establish a systematic approach to stock price
prediction that leverages the complementary strengths of statistical analysis and machine learning
techniques. The integration of these methods provides a robust foundation for accurate price prediction
across various market conditions and time horizons.

V. Experiments
Our experimental study presents a systematic evaluation of three prediction approaches across

diverse market conditions and stock characteristics. We focused on comparing the performance
of Linear Regression, LSTM, and ARIMA models across five representative stocks: Apple (AAPL),
Coca-Cola (KO), NVIDIA (NVDA), Pfizer (PFE), and Tesla (TSLA). The analysis encompasses multiple
dimensions of model performance, from feature engineering effectiveness to architectural optimization,
revealing significant insights into the relative strengths and limitations of each method.

A. Linear Regression Experiments

Our initial experiments with Linear Regression focused on the impact of feature selection on
prediction accuracy. We investigated two distinct approaches: using all available price metrics versus
using only closing prices. This comparison revealed unexpected insights into the relationship between
feature complexity and prediction accuracy. Table 1 presents our comprehensive analysis of prediction
accuracy across different feature configurations, incorporating both price ranges and trading volumes
to contextualize the improvements observed.

As evidenced by the data, technology sector stocks demonstrated particularly notable improve-
ments with feature reduction, with AAPL showing a 36.27% improvement in prediction accuracy
when using only closing prices. This pattern of improved performance with simplified feature sets
persisted across different market sectors, though with varying magnitudes. The sole exception was
PFE, where additional price metrics contributed positively to prediction accuracy, suggesting unique
characteristics in pharmaceutical sector price movements.
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Table 1. Linear Regression Performance Analysis.

Stock All At-
tributes
MSE

Close
Price
MSE

Range-
Normalized
Improve-
ment

Trading
Volume
Range

AAPL 63.150 40.243 36.27% 2.5M-
8.9M

KO 2.722 2.717 0.18% 0.8M-
2.1M

NVDA 625.501 602.997 13.60% 1.2M-
5.4M

PFE 8.727 9.464 -8.45% 1.5M-
4.2M

TSLA 18432.795 17195.716 6.71% 3.2M-
12.5M

B. LSTM Model Optimization

The LSTM implementation revealed complex relationships between network architecture and
prediction performance, as detailed in Figure 9 & Table 2. Our analysis focused on both architectural
configuration and sequence length optimization, with results demonstrating unexpected patterns
across different market conditions.

Figure 9. prediction comparison in LR
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Table 2. LSTM Performance Across Network Configurations.

Stock LSTM-
64 MSE

LSTM-
128
MSE

LSTM-
256
MSE

Trading
Volume
Range

AAPL 5.349 8.198 9.168 0.82
KO 0.179 0.117 1.179 0.31

NVDA 20.250 29.444 48.793 0.89
PFE 0.748 0.882 1.192 0.54

TSLA 741.964 744.730 1131.923 0.93

The relationship between network size and prediction accuracy exhibited clear patterns across
different stock characteristics. High-volatility stocks showed stronger correlations between trading
volume and prediction error, with TSLA demonstrating the highest sensitivity (correlation coefficient:
0.93). This pattern suggests that market volatility amplifies the of network architecture choices on
prediction accuracy.

Sequence length optimization revealed equally significant patterns, as shown in Table 3. The
optimal sequence length varied systematically with stock characteristics, suggesting a relationship
between market behavior and required historical context.

Table 3. LSTM Performance Across Network Configurations.

Stock Steps=20
MSE

Steps=25
MSE

Steps=30
MSE

Optimal
Configu-
ration

AAPL 7.236 8.193 8.198 20
KO 0.186 0.176 1.117 30

NVDA 39.688 16.504 29.444 25
PFE 0.869 0.931 0.882 20

TSLA 653.083 1004.143 744.73 25

C. ARIMA Model Performance

The ARIMA model implementation required careful determination of three key parameters: p
(autoregressive order), d (difference order), and q (moving average order). Our parameter selection
process followed a systematic approach based on statistical testing and empirical validation.

The first step involved determining the difference order d through unit root testing. As discussed
in our data preprocessing analysis, we applied first-order differencing to achieve stationarity in the
time series. The unit root tests yielded p-values below 10-̂10 for all stocks after one-time differencing,
providing strong statistical evidence to reject the null hypothesis of non-stationarity. This consistent
result across all stocks led us to set d=1 for our experiments.

Following the stationarity transformation, we employed Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) analysis to determine appropriate values for p and q. Two
graphs under these two analysis in NVDA are showed in Figure 10.

The ACF analysis guided our selection of the moving average order q, while PACF informed the
autoregressive order p. Figure 10 presents these functions for NVIDIA stock, where the blue zones
represent confidence intervals. Our analysis revealed that nearly all correlation values fell within these
confidence intervals after the first order, suggesting that both p=1 and q=1 would provide sufficient
model complexity. Table 4 presents the comparative analysis of different ARIMA configurations,
revealing the superior performance of simpler model structures.
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Figure 10. PACF and ACF graph in NVDA.

Table 4. ARIMA Parameter Configuration Analysis.

Stock ARIMA(1,1,1)
MSE

ARIMA(2,1,2)
MSE

Improvement
Factor

Price Volatil-
ity Index

AAPL 0.0004 0.002 5.19x 0.42
KO 0.004 0.008 1.73x 0.18

NVDA 1.210 6.866 5.67x 0.56
PFE 0.024 0.032 1.33x 0.24

TSLA 0.172 48.672 281.54x 0.89

Our analysis of the ARIMA results revealed several significant patterns. Notably, the ARIMA(1,1,1)
configuration consistently outperformed more complex models across all stocks, with improvement
factors ranging from 1.73x for stable stocks (KO) to an extraordinary 281.54x for highly volatile
stocks (TSLA). This pattern suggests that increased model complexity may actually hinder prediction
accuracy, particularly in volatile market conditions. The price volatility index, calculated as the
standard deviation of daily returns, shows a strong correlation with the magnitude of improvement
achieved by simpler models.
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D. Comparative Analysis

The comprehensive comparison of all three approaches revealed unexpected patterns in prediction
accuracy across different market conditions. Table 5 presents the cross-model performance analysis,
incorporating both prediction accuracy metrics and market characteristic indicators. And the test
prediction graphs are shown in Figure 10.

Table 5. Cross-Model Performance Comparison.

Stock LR MSE ARIMA MSE LSTM MSE
AAPL 40.243 0.0004 5.349

KO 2.717 0.004 0.117
NVDA 602.997 1.210 16.504

PFE 9.464 0.024 0.748
TSLA 17195.716 0.172 653.038

Figure 11. Performance Comparison of three algos.
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The superior performance of ARIMA across all stocks challenges conventional assumptions
about the relationship between model complexity and prediction accuracy. ARIMA’s consistent
outperformance of both LSTM and Linear Regression suggests that traditional time series methods,
when properly implemented and optimized, can capture essential price dynamics more effectively
than more complex approaches.

The relationship between model performance and market characteristics reveals interesting
patterns. High-volatility stocks (TSLA, NVDA) show larger absolute errors across all models, but
maintain consistent relative performance patterns. The influence of trading volume on prediction
accuracy varies significantly across models, with LSTM showing particular sensitivity to volume
fluctuations as evidenced by the correlation analysis presented in the previous sections.

E. Discussion and Implications

Our experimental results challenge several fundamental assumptions in stock price prediction.
The consistent superior performance of ARIMA suggests that market prediction accuracy may depend
more on appropriate model selection and optimization than on model complexity. The effectiveness of
reduced feature sets in Linear Regression and simpler network architectures in LSTM further supports
this conclusion.

The relationship between market characteristics and model performance provides valuable
insights for practical implementation. High-volatility stocks benefit most significantly from proper
model selection, while stable stocks show more consistent performance across different approaches.
These findings have significant implications for the design of automated trading systems, suggesting
that model selection should be dynamically adjusted based on market conditions rather than following
a one-size-fits-all approach.

The experimental results also highlight the importance of proper data preprocessing and model
optimization. The success of our stationarity transformation in ARIMA and the impact of sequence
length optimization in LSTM demonstrate that careful attention to these technical details can sig-
nificantly impact prediction accuracy. These findings provide practical guidance for implementing
effective stock prediction systems in real-world trading environments.

VI. Conclusion
Our research develops an integrated stock prediction system that combines machine learning

models with practical trading applications. Through systematic evaluation of ARIMA, LSTM, and
Linear Regression approaches, we demonstrate that ARIMA consistently achieves superior prediction
accuracy across diverse market conditions. This finding challenges the common assumption that
complex deep learning models necessarily provide better financial predictions, suggesting that well-
optimized traditional statistical methods remain highly effective for stock price forecasting.

However, our analysis also reveals the inherent challenges in stock prediction, as market move-
ments are influenced by numerous factors beyond standard price metrics, including market sentiment,
external events, and broader economic indicators.

These findings suggest that future developments in stock prediction should focus on effectively
incorporating diverse information sources while maintaining model reliability. As market complexity
continues to increase, the balance between model sophistication and practical applicability remains
crucial for developing effective trading support systems.
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