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Abstract

We construct a real square system related to a given over-determined real
system. We prove that the simple real zeros of the over-determined system are
the simple real zeros of the related square system and the real zeros of the two
systems are one-to-one correspondence with the constraint that the value of the
sum of squares of the polynomials in the over-determined system at the real
zeros is identically zero. After certifying the simple real zeros of the related
square system with the interval methods, we assert that the certified zero is a
local minimum of the sum of squares of the input polynomials. If the value of
the sum of the squares of the input polynomials at the certified zero is equal
to zero, it is a zero of the input system. As an application, we also consider
the heuristic verification of the isolated zeros of polynomial systems and their
multiplicity structures. Notice that a complex system with complex zeros can
be transformed into a real system with real zeros.

Key words: over-determined polynomial system; isolated zeros; minimum
point; sum of squares; interval methods.

1 Introduction

Finding zeros of polynomial systems is a fundamental problem in scientific computing.
Newton’s method is widely used to solve this problem. For a fixed approximate
solution of a system, we can use the α-theory [3, 12, 33], the interval methods or the
optimization methods [13, 18, 22, 25, 30, 34] to completely determine whether it is
related to a zero of the system. However, the α-theory or the interval methods focuses
mainly on a simple zero of a square system, that is, a system with n equations and n
unknowns.

Some special certifications of a rational solution of rational polynomials with cer-
tified sum of squares decompositions are considered [2, 15, 17, 24, 28, 29, 32].
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How about singular zeros of a well-constrained polynomial system? Usually, an
over-determined system which contains the same zero as a simple one is constructed
by introducing new equations. The basic idea is the deflation techniques [1, 6, 7, 9, 10,
26, 27, 35]. In some references [4, 14, 19, 20, 23, 31], new variables are also included.
Moreover, some authors verify that a perturbed system possesses an isolated singular
solution within a narrow and computed error bound. The multiplicity structures of
singular zeros of a polynomial system are also studied [6, 10, 23]. Though it is in a
theoretical sense and global sense, the method in [1] provides a sufficient condition
that a zero is exactly a zero of a zero-dimensional polynomial system with rational
coefficients.

For the deflation methods mentioned above, on one hand, to be a zero of the
perturbed systems does not mean being a zero of the input system considering the
difference between the two systems; on the other hand, although the over-determined
systems without introducing new variables have the same zeros as the input systems,
the verification methods, such as the α-theory or the interval methods, could not be
used directly on the over-determined systems in general.

In [8], the authors extend the α-theory from well-constrained systems to over-
determined systems. A main result about Newton’s method given in their paper is
Theorem 4 [8], which says that under the condition of 2α1(g, ζ) < 1, where g =
(g1, . . . , gm) ∈ (C[x1, . . . , xn])m(m ≥ n), ζ is an attractive fixed point for Newton’s

method and simultaneously, a strict local minimum for ‖g‖2 =
m∑
j=1

‖gj‖2. However,

as they stated, whether the attracting fixed points for Newton’s method are always
local minima of ‖g‖2, or the zeros of the input system, is unknown.

In this paper, we consider the problem of certifying the simple real zeros of an
over-determined polynomial system. Given Σ = {f1, . . . , fm} ∈ (R[x1, . . . , xn])m(m ≥
n), we construct a new square system Σ′ = { ∂f

∂x1
, . . . , ∂f

∂xn
} with f =

m∑
i=1

f 2
i . After

transforming the input over-determined system into a square one, we can use both
the α-theory and the interval methods to certify its simple zeros. In this paper, we
only consider using the interval methods to certify the simple real zeros of the over-
determined system. We prove that the simple real zeros of the input system are local
minima of the sum of squares of the input polynomials. We also give the condition
that the local minimum is a simple zero of the input system.

Let R be the field of real numbers. Denote R[x] = R[x1, . . . , xn] as the polynomial
ring. Let F = {f1, . . . , fm} ⊂ R[x] be a polynomial system. Let p = (p1, . . . , pn) ∈ Rn.

The following theorem is our main result of this paper.

Theorem 1. Let Σ = {f1, . . . , fm} ⊂ R[x] (m ≥ n) and f =
m∑
i=1

f 2
i . Then, we have:

1. If p ∈ Rn is an isolated simple real zero of Σ, p is a local minimum of f ;

2. p is a simple real zero of Σ if and only if (p, 0) is a simple real zero of the
square system Σr = {J1(f), . . ., Jn(f), f − r}, where Ji(f) = ∂f

∂xi
and r is a new

variable.
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In the above theorem, we get a necessary and sufficient condition to certify the
simple real zeros of the input system Σ by certifying the simple real zeros of the square
system Σr. Therefore, to certify that p is a simple real zero of Σ, the key point is
verifying that f(p) = 0.

However, it is difficult to decide numerically if a point is a zero of a polynomial.
Thus we can not use the necessary and sufficient condition to certify the simple real
zeros of Σ by certifying the simple real zeros of Σr.

As an alterative, we refine and certify the simple real zeros of Σ by refining and
certifying a new square system Σ′ = {J1(f), . . ., Jn(f)} with the interval methods and
get a verified inclusion X, which contains a unique simple real zero x̂ of Σ′. In fact, x̂
is a local minimum of f , which also is a necessary condition for the certification. On
one hand, if f(x̂) = 0, by Theorem 1, (x̂, 0) is a simple real zero of Σr, and then x̂ is
a simple real zero of Σ. Thus, we certified the input system Σ. On the other hand,
if f(x̂) 6= 0, we can only assert that Σr has a unique zero in the verified inclusion
X× [0, f(x̂)], which means we certified the system Σr.

As an application of our method, we also give a heuristic method for certifying
not only the isolated singular zeros of polynomial systems, but also the multiplicity
structures of the isolated singular zeros of polynomial systems.

This paper is an extended version of the CASC’17 conference paper [5].
The paper is organized as below. We will introduce some notations and preliminar-

ies in the next section. In Section 3, we will give a method to show how to transform
an over-determined system into a square one. The interval verification method on the
obtained square system is considered in Section 4. At last, we give two applications
of our method in Section 5.

2 Preliminaries

Let C be the field of complex numbers. Denote C[x] = C[x1, . . . , xn] as the polynomial
ring. Let F = {f1, . . . , fm} ⊂ C[x] be a polynomial system. Let p = (p1, . . . , pn) ∈ Cn.
F(p) = 0 denotes that p is a zero of F(x) = 0.

Let A be a matrix. Denote AT as the transpose of A and rank(A) as the rank of
A. Let Mat(ai,j) denote the matrix whose i-th row j-th column element is ai,j.

Let Σ = {f1, . . . , fm} ⊂ C[x] be a polynomial system. Denote J(Σ) as the Jacobian
matrix of Σ. That is,

J(Σ) =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 .

For a polynomial f ∈ C[x], let J(f) denote ( ∂f
∂x1
, ∂f
∂x2
, . . . , ∂f

∂xn
), Ji(f) = ∂f

∂xi
and

Ji,j(f) = Jj(Ji(f)) = ∂2f
∂xj∂xi

. Denote Σr = {J1(f), . . ., Jn(f), f − r} with f =
m∑
j=1

f 2
j .

We denote the value of a function matrix A ∈ C[x]n×n at a point p ∈ Cn as A(p).
Let J(F)(p) denote the value of a function matrix J(F) at a point p, similarly for
J(f)(p).
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Definition 2. An isolated solution of F(x) = 0 is a point p ∈ Cn which satisfies:

∃ ε > 0 : {y ∈ Cn : ‖y − p‖ < ε} ∩ F−1(0) = {p}.

Definition 3. We call an isolated solution p ∈ Cn of F(x) = 0 a singular solution
if and only if

rank(J(F)(p)) < n.

Else, we call p a simple solution.

Definition 4. A stationary point of a polynomial function f(x) ∈ C[x] is a point
p ∈ Cn, which satisfies:

∂f

∂xi
(p) = 0, ∀ i = 1, . . . , n.

We can find the following lemma in many undergraduate text books about linear
algebra (see Example 7 on page 224 in [21] for example).

Lemma 5. Let A ∈ Rm×n be a real matrix with m ≥ n and B = AT A. Then the
ranks of A and B are the same, especially for the case that A is of full rank.

In the following, we will consider the real zeros of the systems with real coef-
ficients. It is reasonable since for a system (m equations and n unknowns) with
complex coefficients, we can rewrite the system into a new one with 2m equa-
tions and 2n unknowns by splitting the unknowns xi = xi,1 + ixi,2 and equations
fj(x1, . . . , xn) = gj,1(x1,1, x1,2, . . . , xn,1, xn,2)+i gj,2(x1,1, x1,2, . . . , xn,1, xn,2), where i2 =
−1, fj ∈ C[x], gj,1, gj,2 ∈ R[x], j = 1, . . . ,m, and find out the complex zeros of the
original system by finding out the real zeros of the new system.

3 Transforming Over-determined Polynomial Sys-

tems into Square Ones

In this section, we will show how to transform an over-determined polynomial system
into a square one with their zeros having a one-to-one correspondence, especially for
the simple zeros.

By Definition 4, we have the following lemma:

Lemma 6. Given a polynomial system Σ = {f1, . . . , fm} ⊂ R[x] (m ≥ n). Let

f =
m∑
i=1

f 2
i and Σ′ = {J1(f),J2(f), . . . ,Jn(f)}. If p ∈ Rn is an isolated real zero of

Σ′, then p is a stationary point of f .

Lemma 7. Let Σ = {f1, . . . , fm} ⊂ R[x] (m ≥ n), Σ′ = {J1(f),J2(f), . . . ,Jn(f)}
with f =

m∑
i=1

f 2
i . If p ∈ Rn is an isolated real zero of Σ, then we have:

1. p is an isolated real zero of Σ′;
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2. rank(J(Σ)(p)) = rank(J(Σ′)(p).

Proof. It is clear that p is an isolated real zero of Σ′ providing that p is an isolated

real zero of Σ, since Ji(f) = 2
m∑
k=1

fk Ji(fk).

To prove the second part of this lemma, we rewrite Ji(f) as follows.

Ji(f) = 2 〈f1, . . . , fm〉 〈Ji(f1), . . . ,Ji(fm)〉T , (1)

where 〈 · 〉T is the transpose of a vector or a matrix 〈 · 〉. Then

Ji,j(f) = Jj(Ji(f)) = Jj(2
m∑
k=1

fk Ji(fk)) = 2
m∑
k=1

(Jj(fk)Ji(fk) + fk Ji,j(fk))

= 2 〈Jj(f1), . . . ,Jj(fm)〉 〈Ji(f1), . . . ,Ji(fm)〉T + 2
m∑
k=1

fk Ji,j(fk).

(2)

Then the Jacobian matrix of Σ′ is

J(Σ′) =

 J1,1(f) . . . J1,n(f)
...

. . .
...

Jn,1(f) . . . Jn,n(f)

 = Mat(Ji,j(f)).

We rewrite

Mat(Ji,j(f)) = 2ATA+ 2 Mat(
m∑
k=1

fk Ji,j(fk)), (3)

where

A =

 J1(f1) . . . Jn(f1)
...

. . .
...

J1(fm) . . . Jn(fm)


is an m × n matrix which is exactly the Jacobian matrix of Σ, that is, J(Σ) = A.
Then we have

J(Σ′)(p) = 2A(p)TA(p). (4)

By Lemma 5, the second part of the lemma is true. This ends the proof.

Remark. In our construction of f and Σ′, the degrees of the polynomials almost
be doubled compared to the original one. However, to evaluate the Jacobian matrix
of Σ′, we evaluate the Jacobian matrix of the original system plus m2n numerical
products. One can find it from Eq. (4) in the above proof. In fact, to get J(Σ′)(p),
we only need to compute A(p), which does not increase our actual computing degree.

As a byproduct, thanks to the doubled degree of the polynomials, our final certified
accuracy is also improved in Lemma 11.
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The following is the proof of Theorem 1:

Proof. In fact, by fixing the real zero p as an isolated simple zero in Lemma 7, we have
p is an isolated simple real zero of Σ′ = {J1(f), . . . ,Jn(f)}. Since p is an isolated
simple zero of Σ, A(p) is a column full rank matrix. Therefore, it’s easy to verify that
J(Σ′)(p) = 2A(p)TA(p) is a positive definite matrix. Thus, p is a local minimum of
f and the first part of the theorem is true . Now we consider the second part.

First, it’s easy to verify that p is the real zero of Σ if and only if (p, 0) is the real
zero of Σr. With the same method as proving Lemma 7, we can get

rank(J(Σ)(p)) = rank(J(Σr)(p, 0))− 1, (5)

which means that J(Σr)(p, 0) is of full rank if and only if J(Σ)(p) is of full rank.
Thus, p is an isolated simple zero of Σ if and only if (p, 0) is an isolated simple zero
of Σr. The second part is true. We have finished the proof.

From Theorem 1, we know that the simple real zeros of Σ and Σr are in one to
one correspondence with the constraint that the value of the sum of squares of the
polynomials in Σ at the simple real zeros is identically zero. Thus we can transform
an over-determined polynomial system into a square system Σr.

We will show a simple example to illustrate the theorem below.

Example 1. The simple zero p = (0, 0) of the over-determined system Σ = {f1, f2, f3}
corresponds to a simple zero of a square system Σr = {J1(f),J2(f), f − r}, where
f = f 2

1 + f 2
2 + f 2

3 with

f1 = x2 − 2 y, f2 = y2 − x, f3 = x2 − 2x+ y2 − 2 y.

We can verify simply that (p, 0) is a simple zero of Σr.

Though the simple real zeros of Σ and Σr have a one to one correspondence, it can
not be used directly to do certification of the simple zeros of Σ since we can not certify
r = 0 numerically. But we can certify the zeros of Σ′ = {J1(f),J2(f), . . . ,Jn(f)} as
an alternative, which is a necessary condition for the certification.

We will discuss it in next section.

4 Certifying Simple Zeros of Over-determined Sys-

tems

In this section, we consider certifying the over-determined system with the interval
methods. We will prove the same local minimum result as [8].

The classical interval verification methods are based on the following theorem:

Theorem 8. [18, 22, 30, 31] Let f = (f1, . . . , fn) ∈ (R[x])n be a polynomial system,
x̃ ∈ Rn, real interval vector X ∈ IRn with 0 ∈ X and real matrix R ∈ Rn×n be given.
Let an interval matrix M ∈ IRn×n be given whose i-th row Mi satisfies

{∇fi(ζ) : ζ ∈ x̃+X} ⊆Mi.
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Denote by I the n× n identity matrix and assume

−Rf(x̃) + (I −RM)X ⊆ int(X),

where int(X) denotes the interior of X. Then, there is a unique x̂ ∈ x̃ + X with
f(x̂) = 0. Moreover, every matrix M̃ ∈M is nonsingular. In particular, the Jacobian
J(f)(x̂) is nonsingular.

About interval matrices, there is an important property in the following theorem.

Theorem 9. [16] A symmetric interval matrix AI is positive definite if and only if it
is regular and contains at least one positive definite matrix.

Given an over-determined polynomial system Σ = {f1, . . . , fm} ⊂ R[x] with an
isolated simple real zero, we can compute a related square system

Σ′ = { ∂f
∂x1

,
∂f

∂x2
, . . . ,

∂f

∂xn
} with f =

m∑
j=1

f 2
j .

Based on Lemma 7, a simple zero of Σ is a simple zero of Σ′. Thus, we can
compute the approximate simple zero of Σ by computing the approximate simple
zero of Σ′. Using Newton’s method, we can refine these approximate simple zeros
with quadratic convergence to a relative higher accuracy. Then, we can certify them
with the interval method mentioned before and get a verified inclusion X, which
possesses a unique certified simple zero of the system Σ′ by Theorem 8, denoting as
x̂ ∈ X.

However, even though we get a certified zero x̂ of the system Σ′, considering
Lemma 6, we cannot say x̂ is a zero of the input system Σ. Because the certified zero
x̂ is just a stationary point of f . Considering Theorem 1 and the difference between
Σ′ and Σr, we have the following theorem.

Theorem 10. Let Σ, Σ′, Σr, f , x̂ and the interval X be given as above. Then, we
have:

1. x̂ is a local minimum of f ;

2. there exists a verified inclusion X × [0, f(x̂)], which possesses a unique simple
zero of the system Σr. Especially, if f(x̂) = 0, the verified inclusion X possesses
a unique simple zero of the input system Σ.

Proof. First, it’s easy to see that computing the value of the matrix J(Σ′) at the
interval X will give a symmetric interval matrix, denoting as J(Σ′)(X). By Theorem
8, we know that for every matrix M ∈ J(Σ′)(X), M is nonsingular. Therefore, the
interval matrix J(Σ′)(X) is regular. Especially, the matrix J(Σ′)(x̂), which is the
Hessian matrix of f , is full rank and therefore, is positive definite. Thus, x̂ is a local
minimum of f . By Theorem 9, we know that J(Σ′)(X) is positive definite. Thus, for
every point q ∈ X, J(Σ′)(q) is a positive definite matrix. Considering Theorem 8, it’s
trivial that for the verified inclusion X × [0, f(x̂)], there exists a unique simple zero
of the system Σr. If f(x̂) = 0, by Theorem 1, the verified inclusion X of the system
Σ′ is a verified inclusion of the original system Σ.
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Remarks. 1. In the above proof, we know that for every point q ∈ X, J(Σ′)(q) is a
positive definite matrix.

2. By Theorem 8, we know that there is a unique x̂ ∈ X with Σ′(x̂) = 0. However,
we could not know what the exact x̂ is. According to the usual practice, in actual
computation, we will take the midpoint p̂ of the inclusion X as x̂ and verify whether
f(p̂) = 0 or not. Considering the uniqueness of x̂ in X, therefore, if f(p̂) = 0, we are
sure that the verified inclusion X possesses a unique simple zero of the input system
Σ. If f(p̂) 6= 0, we can only claim that there is a local minimum of f in the inclusion
X and X× [0, f(p̂)] is a verified inclusion for the system Σr.

Considering the expression of Σ and f and for the midpoint p̂ of X, we have a
trivial result below.

Lemma 11. Denote ε =
m

max
j=1
|fj(p̂)|. Under the conditions of Theorem 10, we have

|f(p̂)| ≤ mε2.

Based on the above idea, we give an algorithm below. In the verification steps,
we will apply the algorithm verifynlss in INTLAB [31], which is based on Theorem
8, to compute a verified inclusion X for the related square system Σ′. For simplicity,
denote the interval X = [x1, x1], · · · , [xm, xm] and the midpoint of X as p̂ = [(x1 +
x1)/2, . . . , (xm + xm)/2].

Algorithm 1 VSPS : verifying a simple zero of a polynomial system

Input: an over-determined polynomial system Σ := {f1, · · · , fm} ⊂ R[x] and an
approximate simple zero p̃ = (p̃1, · · · , p̃n) ∈ Rn.

Output: a verified inclusion X and a small non-negative number.
1: Compute f and Σ′;
2: Compute p̃′ := Newton(Σ′, p̃);
3: Compute X := verifynlss(Σ′, p̃′) and f(p̂);
4: if f(p̂) = 0, then
5: return (X, 0);
6: else
7: return (X, f(p̂)).
8: end if

The correctness and the termination of the algorithm is obvious by the above
analysis.

We give two examples to illustrate our algorithm.

Example 2. Continue Example 1. Given an approximate zero p̃ = (0.0003528, 0.0008131).
Using Newton’s method, we will get a higher accuracy approximate zero

p̃′ = 10−11 · (−0.104224090958505,−0.005858368844383).

Compute f = f 2
1 + f 2

2 + f 2
3 and Σ′ = {J1(f),J2(f)}. After applying the algorithm

verifynlss on Σ′, we have a verified inclusion:

X =

(
[−0.11330049261083, 0.11330049261083]
[−0.08866995073891, 0.08866995073891]

)
· 10−321.
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Based on Theorem 8, we know that there exists a unique x̂ ∈ X, s.t. Σ′(x̂) = 0.
Let Σr = {J1(f),J2(f), f − r}. By Theorem 1, we can certify the simple zero of

Σ by certifying the simple zero of Σr theoretically. Considering the difference between
Σ′ and Σr, we check first whether the value of f at some point in the interval X is
zero. According to the usual practice, we consider the midpoint p̂ of X, which equals
(0, 0) and further, f(p̂) is zero. Therefore, we are sure that there exists a unique
x̂ = (x̂, ŷ) ∈ X, s.t. Σr((x̂, 0)) = 0 and then, there exists a unique simple zero
(x̂, ŷ) ∈ X of the input system Σ, which means we certified the input system Σ.

Example 3. Let Σ = {f1 = x21 + 3x1x2 + 3 x1x3 − 3x23 + 2 x2 + 2 x3, f2 = −3x1x2 +
x1x3 − 2x22 + x23 + 3x1 + x2, f3 = 2x2x3 + 3x1 − 3x3 + 2, f4 = −6x22x3 + 2x2x

2
3 +

6x22 + 15x2x3 − 6x23 − 9x2 − 7x3 + 6} be an over-determined system. Consider an
approximate zero

p̃ = (−1.29655, 0.47055,−0.91761).

Using Newton’s method, we get a higher accuracy zero

p̃′ = (−1.296687216045438, 0.470344502045004,−0.917812633399457).

Compute
f = f 2

1 + f 2
2 + f 2

3 + f 2
4 and Σ′ = {J1(f),J2(f),J3(f)}.

After applying the algorithm verifynlss on Σ′, we have a verified inclusion:

X =

 [−1.29668721603974, −1.29668721603967]
[ 0.47034450205107, 0.47034450205114]
[−0.91781263339256, −0.91781263339247]

 .

Similarly, based on Theorem 8, we know that there exists a unique x̂ ∈ X, s.t. Σ′(x̂) =
0.

Proceeding as in the above example, we consider the midpoint p̂ of X and compute
f(p̂) = 3.94·10−31 6= 0. Thus, by Theorem 10, we get a verified inclusion X×[0, f(p̂)],
which contains a unique simple zero of the system Σr. It means that X may contain
a zero of Σ. Even if X does not contain a zero of Σ, it contains a local minimum of
f , which has a minimum value no larger than f(p̂).

5 Two Applications

As an application, we consider certifying isolated singular zeros of over-determined
systems heuristically. Generally, dealing with the multiple zeros of polynomial systems
directly is difficult. The classical method to deal with the isolated singular zeros of
polynomial systems is the deflation technique, which constructs a new system owing
the same singular zero as an isolated simple one. Although the deflation method
can be used to refine or verify the isolated zero of the original system, it is a pity
that the multiplicity information of the isolated zero is missed. In this section, as
an application of the method of converting an over-determined system into a square
system in previous section, we give a heuristic method for certifying isolated singular
zeros of polynomial systems and their multiplicity structures.
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5.1 Certifying Isolated Singular Zeros of Polynomial systems

Recently, Cheng et al. [5] propose a new deflation method to reduce the multiplicity
of an isolated singular zero of a polynomial system to get a final system, which owns
the isolated singular zero of the input system as a simple one. Different from the
previous deflation methods, they consider the deflation of isolated singular zeros of
polynomial systems from the perspective of linear combination.

In this section, we first give a brief introduction of their deflation method and
then, show how our method is applied to certify the isolated singular zeros of the
input system in a heuristic way.

Definition 12. Let f ∈ C[x], p̃ ∈ Cn and a tolerance θ > 0, s.t. |f(p̃)| < θ. We say
f is θ-singular at p̃ if ∣∣∣∣∂f(p̃)

∂xj

∣∣∣∣ < θ,∀1 ≤ j ≤ n.

Otherwise, we say f is θ-regular at p̃.

Let F = {f1, . . . , fn} ⊂ C[x] be a polynomial system. p̃ ∈ Cn is an approximate
isolated zero of F = 0. Consider a tolerance θ. First, we can compute the polynomials
of all fi(i = 1, . . . , n), which is θ-regular at the approximate zero p̃. That’s to say, we
compute a polynomial set

G = {dγ
x(f)|dγ

x(f) is θ-regular at p̃, f ∈ F}.

Then, put G and F together and compute a subsystem H = {h1, . . . , hs} ⊂ G ∪ F,
whose Jacobian matrix at p̃ has a maximal rank s. If s = n, we get the final system
F̃′ = H. Else, we choose a new polynomial h ∈ G ∪ F \H and compute

g = h+
s∑
i=1

αihi, gj =
∂h

∂xj
, j = 1, . . . , n,

where αj, j = 1, . . . , n are new introduced variables. Next, we check if

rank(J(H, g1, . . . , gn)(p̃)) = n+ s. (6)

If (6) holds, we get the final system F̃′ = H ∪ {g1, . . . , gn}. Else, let H := H ∪
{g1, . . . , gn} ⊂ C[x,α] and repeat again until (6) holds.

Now, we give an example to illustrate the above idea.

Example 4. Consider a polynomial system F = {f1 = −9
4

+ 3
2
x1 +2x2 +3x3 +4x4−

1
4
x21, f2 = x1− 2x2− 2x3− 4x4 + 2 x1x2 + 3 x1x3 + 4 x1x4, f3 = 8− 4x1− 8x4 + 2 x24 +

4x1x4 − x1x24, f4 = −3 + 3x1 + 2 x2 + 4 x3 + 4 x4}. Consider an approximate singular
zero

p̃ = (p̃1, p̃2, p̃3, p̃4) = (1.00004659,−1.99995813,−0.99991547, 2.00005261)

of F = 0 and the tolerance ε = 0.005.
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First, we have the Taylor expansion of f3 at p̃:

f3 = 3 · 10−9 − 3 · 10−9(x1 − p̃1) + 0.00010522(x4 − p̃4) + 0.99995341(x4 − p̃4)2

−0.00010522(x1 − p̃1)(x4 − p̃4)− (x1 − p̃1)(x4 − p̃4)2.

Consider the tolerance θ = 0.05. Since

|f3(p̃)| < θ,

∣∣∣∣∂f3∂xi
(p̃)

∣∣∣∣ < θ(i = 1, 2, 3, 4),

∣∣∣∣∂2f3∂x24
(p̃)

∣∣∣∣ > θ,

we get a polynomial
∂f3
∂x4

= −8 + 4 x1 + 4x4 − 2x1x4,

which is θ-regular at p̃. Similarly, by the Taylor expansion of f1, f2, f4 at p̃, we have
that f1, f2, f4 are all θ-regular at p̃.

Thus, we have

G = {f1, f2,−8 + 4 x1 + 4x4 − 2x1x4, f4}.

Compute
r = rank(J(G)(p̃), ε) = 3.

We can choose

H = {h1 = f1, h2 = f2, h3 = −8 + 4 x1 + 4x4 − 2x1x4}

from G ∪ F. To h = f4 ∈ G ∪ F \H, let

g = h+ α1h1 + α2h2 + α3h3.

By solving a Least Square problem:

LeastSquares((J(H, h)(p̃))T [α1, α2, α3,−1]T = 0),

we get an approximate value:

(α̃1, α̃2, α̃3) = (−1.000006509,−0.9997557989, 0.000106178711).

Then, compute

g1 =
∂g

∂x1
= 3 +

3

2
α1 + α2 + 4α3 −

1

2
α1x1 + 2α2x2 + 3α2x3 + 4α2x4 − 2α3x4,

g2 =
∂g

∂x2
= 2 + 2α1 − 2α2 + 2α2x1,

g3 =
∂g

∂x3
= 4 + 3α1 − 2α2 + 3α2x1,

g4 =
∂g

∂x4
= 4 + 4α1 − 4α2 + 4α3 + 4α2x1 − 2α3x1,
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and we get a polynomial set

H′ = {h1, h2, h3, g1, g2, g3, g4},

which satisfies
rank(J(H′)(p̃, α̃1, α̃2, α̃3), ε) = 7.

Thus, we get the final system F̃′(x,α) = H′.

In the above example, given a polynomial system F with an isolated singular
zero p, by computing the derivatives of the input polynomials directly or the linear
combinations of the related polynomials, we compute a new system F̃′, which has a
simple zero. However, generally, the final system F̃′ do not contain all fi(i = 1, . . . , n).
Thus, in order to ensure that the simple zero or parts of the simple zero of the square
system F̃′ really correspond to the isolated singular zero of the original system, we
put F and F̃′ together and consider certifying the over-determined system F ∪ F̃′ in
the following.

Example 5. Continue with Example 4. we put F and F̃′ together and get the over-
determined system Σ = F ∪ F̃′. According to our method in Section 4, let

f =
4∑
j=1

f 2
j + h23 +

4∑
j=1

g2j .

Then, we compute

Σ′ = { ∂f
∂x1

, . . . ,
∂f

∂x4
,
∂f

∂α1

, . . . ,
∂f

∂α3

} and Σr = {Σ′, f − r}.

After applying the algorithm verifynlss on Σ′ at (p̃, α̃1, α̃2, α̃3), we have a verified
inclusion:

X =



[ 0.99999999999979, 1.00000000000019]
[−2.00000000000060,−1.99999999999945]
[−1.00000000000040,−0.99999999999956]
[ 1.99999999999998, 2.00000000000002]
[−1.00000000000026,−0.99999999999976]
[−1.00000000000022,−0.99999999999975]
[−0.00000000000012, 0.00000000000010]


By Theorem 8, we affirm that there is a unique isolated simple zero x̂ ∈ X, s.t.

Σ′(x̂) = 0.
Next, as what we do in Example 2 and Example 3, we consider the midpoint (p̂, α̂)

of X and compute f(p̂, α̂) = 4.0133 · 10−28. Thus, by Theorem 10, we get a verified
inclusion X × [0, f(p̂, α̂)], which contains a unique simple zero of the system Σr. It
means that X may contain a zero of Σ. Even if X does not contain a zero of Σ, it
contains a local minimum of f , which has a minimum value no larger than f(p̂, α̂).
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In the above example, we get the verified inclusion X× [0, f(p̂, α̂)] of the system
Σr. Noticing that f(p̂, α̂) 6= 0, according to Theorem 10, we are not sure if the verified
inclusion X contains a unique simple zero of the system Σ. While, considering the
value of f(p̂, α̂) is very small, under certain numerical tolerance condition(for example
10−25), we can deem that the verified inclusion X contains a simple zero of the system
Σ. That’s to say, we certified the over-determined system Σ and further certified the
original system F.

5.2 Certifying the Multiplicity Structures of Isolated Singu-
lar Zeros of Polynomial Systems

In recent years, Mourrain et al.[10, 11] propose a new deflation method, which can be
used to refine the accuracy of an isolated singular zero and the parameters introduced
simultaneously and what’s more, the parameters can describe the multiplicity struc-
ture at the zero. They also prove that the number of equations and variables in this
deflation method depends polynomially on the number of variables and equations of
the input system and the multiplicity of the singular zero. However, although they
also show that the isolated simple zeros of the extended polynomial system correspond
to zeros of the input system, the extended system is usually an over-determined sys-
tem. Therefore, the problem of knowing the multiplicity structure of the isolated
singular zero exactly becomes the problem of solving or certifying the isolated simple
zero of the over-determined system.

In this section, we first give a brief introduction of their deflation method and then,
show how our method is applied to certify the multiplicity structure of the isolated
singular zero of the input system heuristically.

Let F = {f1, . . . , fm} ⊂ C[x]. Let p = (p1, . . . , pn) ∈ Cn be an isolated multiple
zero of F. Let I = 〈f1, . . . , fm〉, mp be the maximal ideal at p and Q be the primary
component of I at p so that

√
Q = mp.

Consider the ring of power series C[[∂p]] := C[[∂1,p, . . . , ∂n,p]] and we use the
notation for β = (β1, . . . , βn) ∈ Nn:

∂βp(f) := ∂β11,p · · · ∂βnn,p =
∂|β|f

∂xβ11 · · · ∂x
βn
n

(p), for f ∈ C[x].

The deflation method based on the orthogonal primal-dual pairs of bases for the
space C[x]/Q and its dual D ⊂ C[∂], which is illustrated in the following lemma.

Lemma 13. Let F, p, Q, D be as in the above and δ be the multiplicity of F at p.
Then there exists a primal-dual basis pair of the local ring C[x]/Q with the following
properties:

(a) The primal basis of the local ring C[x]/Q has the form

B := {(x− p)α0 , (x− p)α1 , . . . , (x− p)αδ−1}.
We can assume that α0 = 0 and that the monomials in B are connected to 1.
Define the set of exponents in B

E := {α0, . . . , αδ−1}.
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(b) The unique dual basis Λ = {Λ0,Λ1, . . . ,Λδ−1} ⊂ D orthogonal to B has the form:

Λ0 = ∂α0
p = 1p,

Λ1 =
1

α1!
∂α1
p +

∑
|β|<|α1|
β/∈E

να1,β
1

β!
∂βp ,

...

Λδ−1 =
1

αδ−1!
∂αδ−1
p +

∑
|β|<|αδ−1|

β/∈E

ναδ−1,β
1

β!
∂βp ,

The above lemma says that once given a primal basis B of the local ring C[x]/Q,
there exists a unique dual basis Λ, which can be used to determine the multiplicity
structure of p in F and further the multiplicity δ of p, orthogonal to B. Based on
the known primal basis B, Mourrain et.al construct the following parametric multi-
plication matrices, which can be used to determine the coefficients of the dual basis
Λ.

Definition 14. Let B as defined in Lemma 13 and denote the exponents in B by
E := {α0, . . . , αδ−1} as above. Let

E+ :=
n⋃
i=1

(E + ei)

with E + ei = {(γ1, . . . , γi + 1, . . . , γn) : γ ∈ E} and we denote ∂(E) = E+ \ E. We
define an array µ of length nδ(δ − 1)/2 consisting of 0’s, 1’s and the variables µαi,β
as follows: for all αi, αk ∈ E and j ∈ {1, . . . , n} the corresponding entry is

µαi,αl+ej =


1, if αi = αk + ej

0, if αk + ej ∈ E, αi 6= αk + ej

µαi,αl+ej , if αk + ej /∈ E.

The parametric multiplication matrices corresponding to E are defined for i = 1, . . . , n
by

Mti(µ) :=

0 µα1,ei µα2,ei · · · µαδ−1,ei

0 0 µα2,α1+ei · · · µαδ−1,α1+ei
...

...
...

0 0 0 · · · µαδ−1,αδ−2+ei

0 0 0 · · · 0

.

Definition 15. (Parametric normal form). Let K ⊂ C be a field. We define

Nz,µ : K[x] −→ K[z,µ]δ

f 7−→ Nz,µ(f) := f(z + M(µ))[1] =
∑
γ∈Nn

1

γ!
∂γz (f)M(µ)γ[1].

where [1] = [1, 0, . . . , 0] is the coefficient vector of 1 in the basis B.
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Based on the above lemma and definitions, the multiplicity structure are charac-
terized by polynomial equations in the following theorem.

Theorem 16. [11] Let K ⊂ C be any field, F ⊂ K[x], and let p ∈ Cn be an isolated
zero of F. Let Q be the primary ideal at p and assume that B is a basis for K[x]/Q
satisfying the conditions of Lemma 13. Let E ⊂ Nn be as in Lemma 13 and Mi(µ)
for i = 1, . . . , n be the parametric multiplication matrices corresponding to E as in
Definition 14 and Nz,µ be the parametric form as in Definition 15. Then (z,µ) =
(p,ν) is an isolated zero with multiplicity one of the polynomial system in K[z,µ]:{

Nz,µ(fk) = 0, for k = 1, . . . ,m,

Mi(µ) · Mj(µ)− Mj(µ) · Mi(µ) = 0, for i, j = 1, . . . , n.
(7)

The second equation of (7) gives a pairwise commutation relationship of the para-
metric multiplication matrices. What’s more, Theorem 16 makes sure that Equation
(7) has an isolated zero (p,ν) of multiplicity one. Thus, it can be used to deflate the
isolated zero p of the input system F and simultaneously determine the multiplicity
structure of p.

Now, we show an example to illustrate how their method works.

Example 6. Let F = {f1 = x1 + x2 + x21, f2 = x1 + x2 + x22} be a polynomial system
with an 3-fold isolated zero p = (0, 0). Given the primal basis B = {1, x1, x21}, which
satisfies the properties of Lemma 13, we can compute the parametric multiplication
matrices:

Mt1(µ) =

0 1 0
0 0 1
0 0 0

 , Mt2(µ) =

0 µ1 µ2

0 0 µ3

0 0 0

 .
Thus, Equation (7) generates the following polynomials:

1). N (f1) = 0 gives the polynomials x1 + x2 + x21, 1 + 2x1 + µ1, 1 + µ2;

2). N (f2) = 0 gives the polynomials x1 +x2 +x22, 1+(1+2x2)µ1, (1+2x2)µ2 +µ1µ3;

3). M1M2 − M2M1 = 0 gives the polynomial µ3 − µ1.

Furthermore, Theorem 16 promises that (p, ν1, ν2, ν3) is an isolated zero with multi-
plicity one of the system F′ = {f1, f2, 1 + 2x1 + µ1, 1 + µ2, 1 + (1 + 2x2)µ1, (1 +
2x2)µ2 + µ1µ3, µ3 − µ1}.

On one hand, from the above example, we can see that given a polynomial system F
with an isolated zero p, by Theorem 16, we will get an extended system F′ ⊂ C[x,µ],
which owns an isolated zero (p,ν) with multiplicity one. What’s more, by Lemma
13, we have the dual basis

Λ = {1, ∂1 + ν1∂2,
1

2
∂21 + ν2∂2 + ν3∂1∂2 +

1

2
ν1ν3∂

2
2},

which corresponds to the primal basis B = {1, x1, x21}.
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On the other hand, it is not hard to see that Equation (7) defined in Theorem
16 usually gives an over-determined extended system F′. Once given an approximate
zero (p̃, ν̃), as what the authors say in Corollary 4.12 in [23], we can use random
linear combinations of the polynomials in F′ to produce a square system, which will
have a simple zero at (p,ν) with high probability. Furthermore, Newton’s method
can be used on this square system to refine (p̃, ν̃) to a higher accuracy. However, this
operation can only return an approximate multiplicity structure of the input system
F with a higher accuracy. Next, we consider employing our certification method to
certify the multiplicity structure of F.

Example 7. Continue to consider Example 6. Let Σ = F′ = {f1, f2, g1 = 1 + 2x1 +
µ1, g2 = 1 +µ2, g3 = 1 + (1 + 2x2)µ1, g4 = (1 + 2x2)µ2 +µ1µ3, g5 = µ3−µ1}. Given
an approximate zero

(p̃, ν̃) = (0.15, 0.12,−1.13,−1.32,−1.47).

By Algorithm 1, with Newton’s method, we will get a higher accuracy zero

(p̃′, ν̃ ′) = (0.000000771, 0.000001256,−1.000002523,−1.000000587,−1.000001940).

Then, let

f = f 2
1 + f 2

2 +
5∑
j=1

g2j

and compute
Σ′ = {J1(f),J2(f),Jµ1(f),Jµ2(f),Jµ3(f)}.

After applying the algorithm verifynlss on Σ′ at (p̃′, ν̃ ′), we have a verified inclusion:

X =


[−0.00000000000001, 0.00000000000001]
[−0.00000000000001, 0.00000000000001]
[−1.00000000000001, −0.99999999999999]
[−1.00000000000001, −0.99999999999999]
[−1.00000000000001, −0.99999999999999]

 .

Based on Theorem 8, we know that there exists a unique (x̂, µ̂) ∈ X, s.t. Σ′(x̂, µ̂) = 0.
Similarly, as what we do in Example 2 and Example 3, we consider the midpoint

(p̂, ν̂) of X and compute f(p̂, ν̂) = 0. Thus, by Theorem 10, we are sure that there
exists a unique simple zero (x̂1, x̂2, ν̂1, ν̂2, ν̂3) of the input system Σ in the interval X,
which means we certified the input system Σ.

According to the analysis in the above example, we know that after applying
our Algorithm 1 on the extended system Σ = F′, we get a verified inclusion X,
which possesses a unique simple zero of F′. Noticing that the values of the variables
µ1, µ2, µ3 in F′ determine the coefficients of the dual basis Λ, thus, certifying the
extended system F′ means certifying the multiplicity structure of the input system F
at p. So, by Theorem 10, as long as f(x̂, µ̂) = 0, we are sure that we certified not only
the isolated singular zero of the input system F, but also its multiplicity structure.
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