

Article

Not peer-reviewed version

An Update on Biogeography of Decapod Crustaceans from a Collection of Soft-Bottom Macrofauna of the Central Mediterranean Sea

<u>Tiziano Bacci</u>*, <u>Monica Targusi</u>, Loretta Lattanzi, <u>Veronica Marusso</u>, Benedetta Trabucco, <u>Paolo Tomassetti</u>

Posted Date: 12 September 2023

doi: 10,20944/preprints202309.0725.v1

Keywords: decapod; crustacean; macrozoobenthos; biogeography; checklist; environmental monitoring; Mediterranean Sea

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

An Update on Biogeography of Decapod Crustaceans from a Collection of Soft-Bottom Macrofauna of the Central Mediterranean Sea

Tiziano Bacci *, Monica Targusi, Loretta Lattanzi, Veronica Marusso, Benedetta Trabucco and Paolo Tomassetti

ISPRA, Italian National Institute for Environmental Protection and Research, – Via Vitaliano Brancati 60, 00144 Rome, Italy; tiziano.bacci@isprambiente.it; monica.targusi@isprambiente.it; loretta.lattanzi@isprambiente.it; veronica.marusso@isprambiente.it; benedetta.trabucco@isprambiente.it; paolo.tomassetti@isprambiente.it

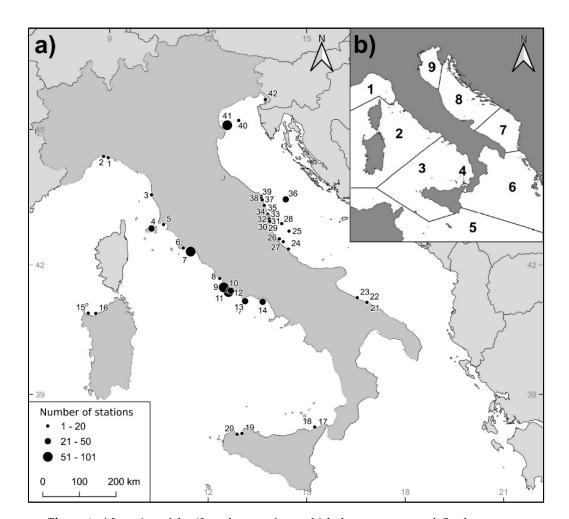
* Correspondence: tiziano.bacci@isprambiente.it

Abstract: Decapod crustaceans are important components of the fauna of soft bottom habitats. In this work, biogeographical updates of decapod crustaceans are provided through the analysis of a large soft bottom benthic macroinvertebrates data set of the central Mediterranean Sea. Decapod crustacean assemblages were collected in the last twenty years by a Van Veen grab on 42 study sites located along the Italian coasts at depths ranging from the surface up to 120 meters. Spatial distribution of the crustaceans examined, which include 123 species belonging to 40 families, has been investigated according to the biogeographical zones identified in the Italian Seas. Spatial distribution of 39 species has been updating, comparing the ISPRA decapod crustacean dataset with the most recent Italian checklists. For the species updated, number of specimens and environmental data, such as bathymetric range and habitat details, are provided for each site investigated. Data are discussed and compared with the existing literature, also referring to what is reported in the World Register of Marine Species (WoRMS), with the aims to contribute to the knowledge of biodiversity of the marine species provide useful data to assist the insiders to update checklists and registers at national and global scale and information on species ecology.

Keywords: decapod; crustacean; macrozoobenthos; biogeography; checklist; environmental monitoring; Mediterranean Sea

1. Introduction

Sedimentary habitats cover most of the ocean bottom and constitute the largest single ecosystem on earth in terms of spatial coverage [1]. Benthic infauna provide fundamental data that are relevant to general objectives of most marine monitoring programs: ensuring that human health is not threatened; ensuring that unacceptable harm is not done to the marine ecosystem or marine resources; and supplying managers with information that allows them to make informed decisions concerning continued, reduced, or expanded use of the ocean for waste disposal and other activities [2]. In this regard, environmental monitoring programs related to anthropogenic impact studies on the marine environment often use macrozoobenthos as indicators [3-8], since their dynamics permit an integrated valuation of the space - temporal alteration of the ecosystem [9]. At the same time, environmental monitoring programs can be also a source of valuable scientific data to increase the scientific knowledge of benthic communities and species [10]. Crustacean Decapoda Latreille, 1802 are one of the most important groups in terms of both species richness and ecological roles [11] in the marine environment, which constitute a key taxon linking lower and higher trophic levels [12]. Crustacean decapods total over 14,000 extant species worldwide [13], where they occur from the upper intertidal zone to hadal depths of the seafloor [14]. In the Italian seas there are most of the species typical of the Mediterranean basin [15], 293 of which, reported in the most recent Italian checklists [16]. Although community assemblages, distribution and abundance of decapod crustacean fauna have been described from many Authors in the Western, Central and Eastern Mediterranean basin [17–29] there are still significant gaps in the understanding of their distribution


and ecology. In this regard, the resulting faunal picture of decapod crustaceans in the Italian Seas is affected by the intensity of the research activity carried out in the various geographical zones considered and the knowledge on the real distribution of some species is lacking, especially for those difficult to catch [16].

This paper summarizes data from numerous environmental monitoring programs along the Italian continental shelf, with the aims to update biogeographical data on decapods crustaceans, through the analysis of a large soft bottom benthic macroinvertebrates data set of the central Mediterranean Sea. In this regard, spatial distribution of more of one hundred species were examined, according to the records available in the biogeographical zones in the Italian Seas [16]. Data are discussed and compared with the existing literature, also referring to what is reported in the World Register of Marine Species (WoRMS) [30], with the aims to contribute to the knowledge of biodiversity of the marine species, provide useful data to assist the insiders to update checklists and registers at national and global scale and information on species ecology.

2. Materials and Methods

2.1. Sampling Strategy, Field and Laboratory Procedures

Data from 42 study sites located along the Italian continental shelf were extracted from ISPRA's data set (Figure 1), gained through numerous environmental monitoring campaigns carried out in Italy from 1999 to 2022 for different purpose, such as sand dredging, offshore installation developments (i.e. gas platform, liquefied natural gas re-gasification structures, cable) aquaculture facilities, beach nourishments. Soft bottom benthic macroinvertebrates were collected by a Van Veen grab (0.1 m² covering area) at depths ranging from the surface up to 120 meters. For each case studies were reported number of sampling stations, divided into depth ranges (1–10 m; 10.1–20 m; 20.1–30 m; 30.1–50 m; >50 m) (Table l). Samples had been taken at 845 stations, differently placed and monitored in the time in each study site depending on the sampling strategy and project financing, collecting several thousand of samples overall. Sediments sampled were sieved through a 1-mm mesh and the retained material was preserved in seawater adding 4% CaCO3-buffered formalin. Macrozoobenthic samples were further sorted into major taxonomical groups and the collected decapods crustaceans counted and classified to the lowest possible taxonomic level.

Figure 1. a) Location of the 42 study areas from which data was extracted. Study areas are numbered (from 1 to 42) from the Ligurian Sea to the northern Adriatic Sea. The circles of the study areas 17 and 18 and 21 and 22 are partially overlapping respectively (for details see table 1). The dimension of the circle is proportional to the number of stations investigated in each area. b) The nine biogeographical zones described in the Italian Seas are as according to [31] and followed in the checklist of flora and fauna of the Italian Seas [32].

Table 1. The 42 study areas located in the biogeographical zones identified in the Italian Seas [31] and the related names of Italian Seas (C= central; S= southern; N=northern). Number of sampling stations for each study area divided into depth ranges.

Study areas		Biogeograp	Geogr	Numb er of		Depth ranges (m)					
	Sea	hic zone	Latitude	Longitude	station	0-	10.1-	20.1-	30.1-	>5	
		zone	(N)	(E)	s	10	20	30	50	0	
1. Genova #1	Ligurian Sea	1	44°23'16"	08°57'34"	3	0	3	0	0	0	
2. Genova #2	Ligurian Sea	1	44°24'59"	08°48'52"	3	1	2	0	0	0	
3. Livorno	Ligurian Sea	1	43°34'25"	10°16'44"	3	2	1	0	0	0	
4. Elba	N Tyrrhenian	2	4004010411	1001 (1011)	41	4	2	3	17	10	
	Sea	2	42°49'36"	10°16'31"	41	1	2		16	19	
5. Follonica	N Tyrrhenian		40054554	1000010011	_	0	0	2	2	0	
	Sea	2	42°54'51"	10°38'32"	5	0	0	3	2	0	
	N Tyrrhenian		4000014 = 11	4404419011	4.4	0	0	44	0	0	
6. Porto Ercole	Sea	2	42°23'17"	11°14'39"	11	0	0	11	0	0	

7. Montalto	C Tyrrhenian Sea	2	42°18'29"	11°28'01"	101	0	2	8	67	24
8. Castel Porziano	C Tyrrhenian Sea	2	41°41'21"	12°21'10"	12	3	3	3	3	0
9. Torvaianica	C Tyrrhenian Sea	2	41°29'07''	12°28'27"	82	8	4	4	8	58
10. Nettuno	C Tyrrhenian Sea	2	41°25'06"	12°38'42"	21	5	6	7	3	0
11. Anzio	C Tyrrhenian Sea	2	41°22'45"	12°37'17"	87	0	0	0	80	7
12. Sabaudia	C Tyrrhenian Sea	2	41°24'24"	12°41'35"	40	6	3	5	8	18
13. Terracina	C Tyrrhenian Sea	2	41°10'12"	13°07'32"	50	9	3	2	13	23
14.Gaeta	C Tyrrhenian Sea	2	41°09'18"	13°39'37"	33	0	4	2	10	17
15. Porto Torres	Sardinian Sea	2	40°53'42"	08°21'01"	17	0	0	5	12	0
16. Castelsardo	Sardinian Sea	2	40°53'16"	08°34'45"	9	0	0	2	7	0
17. Milazzo #1	S Tyrrhenian Sea	3	38°13'29"	15°14'46"	5	0	0	0	5	0
18. Milazzo #2	S Tyrrhenian Sea	3	38°12'38"	15°15'49"	8	4	2	1	1	0
19. Trappeto	S Tyrrhenian Sea	3	38°04'16"	13°01'54"	14	0	0	14	0	0
20. Castellammare del	S Tyrrhenian	2	2000210411	1005051	1.4	0	0	0	1.4	0
Golfo	Sea	3	38°03'04"	12°52'51"	14	0	0	0	14	0
21. Bari #1	S Adriatic Sea	7	41°08'28"	16°51'08"	3	1	2	0	0	0
22. Bari #2	S Adriatic Sea	7	41°08'33"	16°50'11"	7	2	4	1	0	0
23. Bisceglie	S Adriatic Sea	7	41°14'59"	16°32'32"	11	0	0	11	0	0
24. Ortona	C Adriatic Sea	8	42°21'49"	14°26'41"	5	0	0	0	5	0
25. Pescara #1	C Adriatic Sea	8	42°46'02"	14°27'50"	12	0	0	0	0	12
26. Pescara #2	C Adriatic Sea	8	42°35'36"	14°10'07''	12	0	12	0	0	0
27. Pescara #3	C Adriatic Sea	8	42°31′46"	14°17'17''	15	0	0	6	5	4
28. S. Benedetto del	C Admintia Con	8	42°E6'0E"	1 401 4'2 6''	10	0	0	0	0	10
Tronto	C Adriatic Sea	0	42°56'05"	14°14'36"	10	U	U	U	U	10
29. Grottammare	C Adriatic Sea	8	42°59'11"	13°52'30"	8	8	0	0	0	0
30. Cupramarittima	C Adriatic Sea	8	43°02'16"	13°51'36"	8	8	0	0	0	0
31. Massignano	C Adriatic Sea	8	43°03'29"	13°51'13"	4	4	0	0	0	0
32. Campofilone	C Adriatic Sea	8	43°04'40"	13°50'57"	4	4	0	0	0	0
33. Pedaso	C Adriatic Sea	8	43°06'04"	13°50'40"	6	6	0	0	0	0
34. Fermo	C Adriatic Sea	8	43°08'30"	13°49'15"	8	8	0	0	0	0
35. Civitanova Marche #1	C Adriatic Sea	8	43°20'20"	13°42'33"	8	8	0	0	0	0

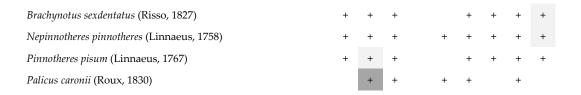
36. Civitanova Marche #2	C Adriatic Sea	8	43°28'27"	14°21'51"	36	0	0	0	0	36
37. Porto Recanati	C Adriatic Sea	8	43°27'47"	13°38'54"	14	14	0	0	0	0
38. Numana	C Adriatic Sea	8	43°30'23"	13°37'22"	10	10	0	0	0	0
39. Sirolo	C Adriatic Sea	8	43°32'33"	13°37'17"	6	6	0	0	0	0
40. Chioggia #1	N Adriatic Sea	9	45°11'37"	12°55'48"	18	0	0	4	14	0
41. Chioggia #2	N Adriatic Sea	9	45°05'28"	12°34'53"	71	15	5	51	0	0
42. Trieste	N Adriatic Sea	9	45°38'35"	13°44'33"	10	2	8	0	0	0

2.2. Data Analyses

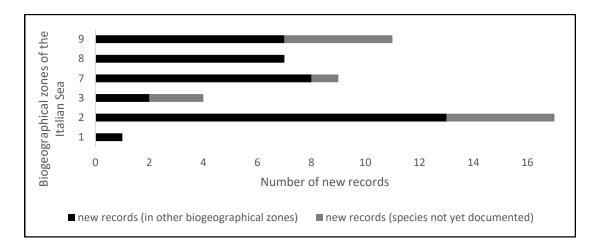
The spatial distribution of each species was analysed according to the division of the Italian Seas into nine biogeographical zones, proposed by [31] (Figure 1) and applied in the Italian checklist of marine flora and fauna [32]. No study areas were available for this study from biogeographical zones 4, 5 and 6. Spatial distribution of species has been updating, comparing the ISPRA decapod crustacean dataset with the most recent Italian checklists [32], highlighting: i) species included in Italian check list and in our study as new record in one or more biogeographical zone, ii) species of our study not included in Italian check list. For the species updated, number of specimens and environmental data, such as bathymetric range and habitat details, are provided for each site investigated. In addition, the biogeographical data for each species updated were analysed and compared also referring to geo-units and related sources reported in the World Register of Marine Species (WoRMS) [30] and to Ocean Biodiversity Information System (OBIS) [33] occurrences documented in WoRMS. If available, data was compared also with other existing literature.

For many species, voucher specimens were available in ISPRA's reference collection, which is based on the material collected in numerous monitoring surveys.

3. Results


A total of 123 species of decapod crustaceans, belonging to 40 families distributed across the Italian biogeographical zones 1, 2, 3, 7, 8 and 9, were identified. Most of the study sites are in the zone 8 (38.1 %) and in the zone 2 (33.3 %), follow the zone 3 (9.5 %), the zones 9 and 7 (7.1 %) and the zone 1 (4.8 %). The largest number of stations fall between 30.1 and 50 meters (32.3 %) follow the depth range >50 m (27.0 %), the depth range 10.1-20 m (16.9 %), the depth range 0-10 m (16.0 %), the lesser one fall between 10.1 and 20 meters (7.8 %).

The allocation of the 123 species by biogeographical zones, as reported in the checklist of flora and fauna of the Italian Seas [32], is presented in white in Table 2. Results arising from the ISPRA decapod crustacean dataset confirmed the presence of these species in some biogeographical zones (in light grey) and updated the distribution of 32 of these species (in dark grey) if compared with the most recent Italian checklists [32]. In addition, the results shown the existence of 7 species in the Italian seas not yet documented in the Italian checklist (Table 2). Overall, the results if compared with the most recent Italian checklists [32] updated the biogeography of 39 species through 50 new records at biogeographical zone level (85 new records at study area level). The largest number of records have been recorded in zone 2, follow with larger number of records the zones 9, 7, follow with smaller number of records the zones 8, 3 and 1. No species not yet documented in the Italian checklist have been found in zones 8 and 1 (Figure 2).


Table 2. Distribution of the 123 species by the nine biogeographical zones of the Italian Seas. In white, the distribution of the selected species as reported in the checklist of flora and fauna of the Italian Seas [32]; in light grey, records confirming the species distribution; in dark grey, species included in Italian checklist and in our study as new record in one or more biogeographical zones; in black, species of our study not included in Italian check list.

Species Biogeographical Zones of Italian Seas										
	1	<u> </u>	2			6	7	0	0	es
Parapenaeus longirostris (Lucas, 1846)	<u>1</u> +	+	3	4	5 +	+	7	+	9	
Sicyonia carinata (Brünnich, 1768)	+	+	Ė	_	' _	+	+	+	_	
Solenocera membranacea (Risso, 1816)	+	+				+	+	+	+	
Richardina fredericii Lo Bianco, 1903	+	+	+		,		'	+		
·	+	+			+	+				
Balssia gasti (Balss, 1921)			,		Т			+		
Palaemon adspersus Rathke, 1836	+	+	+	+		+	+	+	+	
Alpheus glaber (Olivi, 1792)	+	+	+			+	+	+		
Alpheus dentipes Guérin, 1832	+	+	+	+	+	+	+	+	+	
Athanas nitescens (Leach, 1814)	+	+	+	+	+	+	+	+	+	
Athanas nitescens var. laevirhincus (Risso, 1816)		+								
Synalpheus gambarelloides (Nardo, 1847)	+	+	+	+	+	+		+	+	
Synalpheus africanus Crosnier & Forest, 1965			+							
Eualus occultus (Lebour, 1936)	+	+	+		+			+	+	
Eualus pusiolus (Krøyer, 1841)		+					+		+	
Eualus cranchii (Leach, 1817)	+	+	+	+	+	+	+	+	+	A1
Hippolyte leptocerus (Heller, 1863)	+	+	+			+	+	+	+	
Hippolyte inermis Leach, 1816	+	+	+	+	+	+	+	+	+	
Chlorotocus crassicornis (A. Costa, 1871)	+	+	+	+	+	+	+	+		
Processa acutirostris Nouvel & Holthuis, 1957	+	+	+	+	+	+	+	+	+	
Processa canaliculata Leach, 1815	+	+	+			+	+	+	+	
Processa edulis (Risso, 1816)	+	+	+	+	+	+	+	+	+	A2
Processa elegantula Nouvel & Holthuis, 1957	+	+	+			+		+	+	
Processa intermedia Holthuis, 1951									+	
Processa macrophthalma Nouvel & Holthuis, 1957	+	+	+	+	+	+	+	+	+	
Processa modica carolii Williamson in Williamson & Rochanabur										
anon, 1979	+	+	+		+	+		+	+	
Processa nouveli nouveli Al-Adhub & Williamson, 1975	+	+	+			+	+	+	+	
Aegaeon cataphractus (Olivi, 1792)	+	+	+			+	+	+		
Crangon allmanni Kinahan, 1860		+							+	
Crangon crangon (Linnaeus, 1758)			+				+	+	+	
Philocheras monacanthus (Holthuis, 1961)	+	+	+				+	+	+	
Philocheras bispinosus (Hailstone, 1835)		+	+				+	+	+	
Philocheras sculptus (Bell, 1847)	+	+	+					+	+	
Philocheras trispinosus (Hailstone in Hailstone & Westwood, 183										
5)	+	+	+					+	+	

Ethusa mascarone (Herbst, 1785)	+	+	+	+	+	+	+	+	+
Medorippe lanata (Linnaeus, 1767)	+	+	+	+	+	+	+	+	+
Ilia nucleus (Linnaeus, 1758)	+	+	+	+	+	+	+	+	+
Ebalia cranchii Leach, 1817		+	+				+	+	+
Ebalia deshayesi Lucas, 1846	+	+	+	+	+				+
Ebalia tuberosa (Pennant, 1777)	+	+	+		+	+	+	+	+
Ebalia edwardsii O.G. Costa, 1838	+	+	+	+	+	+		+	+
Ebalia granulosa H. Milne Edwards, 1837		+			+	+	+	+	+
Ebalia tumefacta (Montagu, 1808)		+							+
Achaeus cranchii Leach, 1817	+	+	+		+	+	+	+	+
Achaeus gracilis (O.G. Costa, 1839)	+	+	+		+	+	+	+	+
Macropodia linaresi Forest & Zariquiey Álvarez, 1964		+	+		+		+	+	+
Macropodia rostrata (Linnaeus, 1761)	+	+	+	+	+	+	+	+	+
Inachus dorsettensis (Pennant, 1777)	+	+	+	+	+	+	+	+	+
Inachus parvirostris (Risso, 1816)	+	+	+	+	+	+		+	
Eurynome aspera (Pennant, 1777)	+	+	+	+	+	+	+	+	+
Pisa muscosa (Linnaeus, 1758)	+	+	+	+	+	+		+	+
Pisa hirticornis (Herbst, 1804)	+	+	+	+		+		+	+
Derilambrus angulifrons (Latreille, 1825)	+	+	+	+	+	+	+	+	+
Parthenopoides massena (Roux, 1830)	+	+	+	+	+	+	+	+	+
Spinolambrus macrochelos (Herbst, 1790)	+	+	+		+	+	+	+	
Atelecyclus rotundatus (Olivi, 1792)	+	+	+	+		+	+	+	+
Atelecyclus undecimdentatus (Herbst, 1783)		+				+			
Corystes cassivelaunus (Pennant, 1777)	+					+		+	+
Primela denticulata (Montagu, 1808)	+	+	+		+	+	+	+	+
Sirpus zariquieyi Gordon, 1953	+	+	+	+	+	+		+	+
Thia scutellata (Fabricius, 1793)		+	+	+		+			
Bathynectes longipes (Risso, 1816)	+	+	+	+	+	+	+	+	
Liocarcinus bolivari (Zariquiey Álvarez, 1948)	+	+	+		+				+
Liocarcinus corrugatus (Pennant, 1777)	+	+	+	+	+	+	+	+	+
Liocarcinus depurator (Linnaeus, 1758)	+	+	+	+	+	+	+	+	+
Liocarcinus maculatus (Risso, 1827)	+	+	+	+	+	+	+	+	+
Liocarcinus navigator (Herbst, 1794)	+	+	+	+	+	+	+	+	+
Liocarcinus vernalis (Risso, 1827)	+	+	+	+		+	+	+	+
Liocarcinus zariquieyi (Gordon, 1968)	+	+	+	+	+		+	+	
Goneplax rhomboides (Linnaeus, 1758)	+	+	+	+	+	+	+	+	+
Eriphia verrucosa (Forskål, 1775)	+	+	+	+	+	+	+	+	+
Monodaeus couchii (Couch, 1851)	+	+	+		+	+	+	+	
Xantho pilipes A. Milne-Edwards, 1867	+	+	+	+	+	+	+	+	+
Pilumnus hirtellus (Linnaeus, 1761)	+	+	+	+	+	+	+	+	+
Pilumnus minutus De Haan, 1835			+						
Pilumnus spinifer H. Milne Edwards, 1834	+	+	+		+	+	+	+	+
Brachynotus gemmellari (Rizza, 1839)	+	+	+			+	+	+	+

Remarques: A1: reported as *Thoralus cranchii* (Leach, 1817) in the Italian checklist [32]. A2: reported as *Processa edulis edulis* (Risso, 1816) in the Italian checklist [32]. A3: reported as *Pestarella thyrrena* (Petagna, 1792) in the Italian checklist [32]. A4: reported as *Munida curvimana* ((A. Milne Edwards & Bouvier, 1894)) in the Italian checklist [32]. A5: reported as *Munida rutllanti* (Zariquiey Alvarez, 1952) in the Italian checklist [32].

Figure 2. Number of new records of our study for each Italian biogeographical zone *sensu* [32]. Number of new records of species not yet documented in the Italian checklist [32] are shown separately. The biogeographical zones 4, 5 and 6 have been omitted since no data were available for these zones in our study.

About the 50 new records at biogeographical zone level, for each species updated, are shown below the study areas investigated, number of specimens, bathymetric range and habitat details found in our work. In addition, are shown biogeographical data as reported in the World Register of Marine Species (WoRMS) [30] and other remarques from scientific literature if available. About the 49 new records information related to biogeographical zones, study areas investigated and geographical coordinates are also available in Table S1.

Richardina fredericii Lo Bianco, 1903

Italian biogeographical zone: 8; study area: Pescara #1; n. specimens: 1; depth: 116 m, habitat: bottoms of sandy mud; WoRMS: no documented distribution in Adriatic Sea.

Balssia gasti (Balss, 1921)

Italian biogeographical zone: 8; study area: San Benedetto del Tronto; n. specimens: 1; depth: 85 m, habitat: bottoms of mud; WoRMS: documented distribution in Adriatic Sea in [34].

Athanas nitescens var. laevirhincus (Risso, 1816)

Italian biogeographical zone: 2; study area: Castelsardo; n. specimens: 1; depth: 26 m; habitat: bottoms of sand; WoRMS: *Athanas nitescens var. laevirhincus* is not reported in the data base; other remarques: *Athanas nitescens var. laevirhincus* is described by different Authors [35–37,15]

Synalpheus africanus Crosnier & Forest, 1965

Italian biogeographical zone: 3; study area: Milazzo #2; n. specimens: 9; depth: 3 m; habitat: bottoms of rocky; WoRMS: no documented distribution in Tyrrhenian Sea; other remarques: the species is reported in southern Tyrrhenian Sea in [38], where it was sampled as part of a macrofauna monitoring campaign where scratching was also carried out on rocky bottoms.

Eualus occultus (Lebour, 1936)

Italian biogeographical zone: 2; study area: Porto Torres; n. specimens: 7; depth: 35 m; habitat: bottoms of sand; WoRMS: documented distribution in Tyrrhenian Sea in [34] and in Western Mediterranean [39,15].

Eualus pusiolus (Krøyer, 1841)

Italian biogeographical zone: 2; study area: Porto Torres; n. specimens: 5; depth: 34 m; habitat: bottoms of sand and muddy sand; WoRMS: no documented distribution in Mediterranean Sea, except in Malaga (Spain) [39].

Italian biogeographical zone: 7; study area: Bisceglie: n. specimens: 1; depth: 32 m; habitat: bottoms of muddy sand; WoRMS: no documented distribution in Mediterranean Sea, except in Malaga (Spain) [39].

Italian biogeographical zone: 9; study area: Chioggia #2; n. specimens: 3; depth: 28 m; habitat: bottoms of sand; WoRMS: no documented distribution in Mediterranean Sea, except in Malaga (Spain) [39].

Hippolyte leptocerus (Heller, 1863)

Italian biogeographical zone: 8; study area: San Benedetto del Tronto; n. specimens: 3; depth: 85 m; habitat: bottoms of mud; WoRMS: documented distribution in Adriatic Sea in [15,34].

Processa acutirostris Nouvel & Holthuis, 1957

Italian biogeographical zone: 2; study area: Castel Porziano, Porto Torres, Castelsardo, Porto Ercole, Follonica; n. specimens: 21; depth: from 22 to 25 m; habitat: bottoms of sand, muddy sand, sandy mud, mud; WoRMS: documented distribution in Tyrrhenian Sea [34] and in Western Mediterranean [15].

Italian biogeographical zone: 7; study area: Bisceglie, Bari #2: n. specimens: 30; depth: from 16 to 32 m; habitat: bottoms of muddy sand; WoRMS: documented distribution in Adriatic Sea in [15,34].

Processa canaliculata Leach, 1815

Italian biogeographical zone: 9; study area: Chioggia #2; n. specimens: 17; depth: from 18 to 28 m; habitat: bottoms of sand, muddy sand and sandy mud; WoRMS: documented distribution in Adriatic Sea in [15,34].

Processa elegantula Nouvel & Holthuis, 1957

Italian biogeographical zone: 8; study area: S. Benedetto del Tronto; n. specimens: 9; depth: 85 m; habitat: bottoms of mud; WoRMS: no documented distribution in Adriatic Sea, except some OBIS occurrences in the northern.

Italian biogeographical zone: 9; study area: Chioggia #2: n. specimens: 88; depth: from 20 to 28 m; habitat: bottoms of sand, muddy sand and sandy mud; WoRMS: documented distribution in northern Adriatic Sea by OBIS occurrences.

Processa intermedia Holthuis, 1951

Italian biogeographical zone: 9; study area: Chioggia #2: n. specimens: 1; depth: 28 m; habitat: bottoms of sand; WoRMS: no documented distribution in Mediterranean Sea, except for some occurrences in Spain [15].

<u>Crangon allmanni Kinahan, 1860</u>

Italian biogeographical zone: 2; study area: Nettuno; n. specimens: 2; depth: 6 m; habitat: bottoms of muddy sand; WoRMS: no documented distribution in Mediterranean Sea.

Italian biogeographical zone: 9; study area: Chioggia #2: n. specimens: 2; depth: 28 m; habitat: bottoms of sand; WoRMS: no documented distribution in Mediterranean Sea.

Philocheras monacanthus (Holthuis, 1961)

Italian biogeographical zone: 7; study area: Bisceglie; n. specimens: 1; depth: 32 m; habitat: bottoms of muddy sand; WoRMS: documented distribution in Adriatic Sea in [15,34].

Philocheras sculptus (Bell, 1847)

Italian biogeographical zone: 2; study area: Porto Torres, Castelsardo; n. specimens: 20; depth: from 23 to 35 m; habitat: bottoms of sand and muddy sand; WoRMS: documented distribution in Tyrrhenian Sea in [34] and in Western Mediterranean [15].

Calocaris macandreae Bell, 1846

Italian biogeographical zone: 9; study area: Chioggia #2; n. specimens: 1; depth: 28 m; habitat: bottoms of sand; WoRMS: documented distribution in Adriatic Sea in [34].

Necallianassa acanthura (Caroli, 1946)

Italian biogeographical zone: 7; study area: Bisceglie; n. specimens: 2; depth: 32 m; habitat: bottoms of muddy sand; WoRMS: documented distribution in Adriatic Sea in [34].

Necallianassa truncata (Giard & Bonnier, 1890)

Italian biogeographical zone: 7; study area: Bisceglie; n. specimens: 4; depth: 32 m; habitat: bottoms of muddy sand; WoRMS: documented distribution in Adriatic Sea [34].

Italian biogeographical zone: 8; study area: S. Benedetto del Tronto: n. specimens: 5; depth: 85 m; habitat: bottoms of mud; WoRMS: documented distribution in Adriatic Sea in [34].

Gilvossius tyrrhenus (Petagna, 1792)

Italian biogeographical zone: 2; study area: Porto Ercole, Follonica; n. specimens: 8; depth: from 22 to 32 m; habitat: bottoms of mud and muddy sand; WoRMS: documented distribution in Tyrrhenian Sea in [34].

Gourretia denticulata (Lutze, 1937)

Italian biogeographical zone: 1; study area: Genova #1, Livorno; n. specimens: 4; depth: from 11 to 16 m; habitat: bottoms of debris; WoRMS: documented distribution in Ligurian Sea by OBIS occurrences.

Italian biogeographical zone: 2; study area: Elba, Follonica, Montalto, Porto Torres, Castelsardo, Gaeta: n. specimens: 204; depth: from 5 to 64 m; habitat: bottoms of mud, sandy mud, muddy sand, sand and debris; WoRMS: no documented distribution in Tyrrhenian Sea.

<u>Jaxea nocturna Nardo, 1847</u>

Italian biogeographical zone: 2; study area: Montalto, Torvaianica, Anzio, Nettuno, Sabaudia, Terracina, Gaeta; n. specimens: 79; depth: from 5 to 101 m; habitat: bottoms of mud and sandy mud; WoRMS: documented distribution in Tyrrhenian Sea in [34].

Upogebia deltaura (Leach, 1816)

Italian biogeographical zone: 3; study area: Castellamare del Golfo; n. specimens: 5; depth: 42 m; habitat: bottoms of mud; WoRMS: documented distribution in southern Tyrrhenian Sea by OBIS occurrences.

Upogebia mediterranea Noël, 1992

Italian biogeographical zone: 2; study area: Castelsardo; n. specimens: 1; depth: 26 m; habitat: bottoms of sand; WoRMS: documented distribution in Tyrrhenian Sea and in Western Mediterranean Sea in [34].

Upogebia stellata (Montagu, 1808)

Italian biogeographical zone: 9; study area: Trieste; n. specimens: 1; depth: 16 m; habitat: bottoms of sandy mud; WoRMS: no documented distribution in Mediterranean Sea except some OBIS occurrences in the southern Tyrrhenian Sea and Western Mediterranean Sea.

Upogebia tipica (Nardo, 1869)

Italian biogeographical zone: 1; study area: Livorno; n. specimens: 1; depth: 11 m; habitat: bottoms of debris; WoRMS: documented distribution in Ligurian Sea by OBIS occurrences.

Italian biogeographical zone: 2; study area: Elba, Montalto, Porto Ercole, Castel Porziano, Torvaianica, Anzio, Nettuno, Sabaudia, Gaeta, Castelsardo, Porto Torres; n. specimens: 116; depth: from 2 to 90 m; habitat: bottoms of mud, sandy mud, muddy sand, sand and debris; WoRMS: no documented distribution in Tyrrhenian Sea.

Calcinus tubularis (Linnaeus, 1767)

Italian biogeographical zone: 7; study area: Bisceglie; n. specimens: 1; depth: 32 m; habitat: bottoms of muddy sand; WoRMS: documented distribution in Adriatic Sea in [34].

Dardanus arrosor (Herbst, 1796)

Italian biogeographical zone: 9; study area: Chioggia #2; n. specimens: 2; depth: 28 m; habitat: bottoms of sand; WoRMS: documented distribution in Adriatic Sea in [34].

Dardanus calidus (Risso, 1827)

Italian biogeographical zone: 2; study area: Porto Ercole; n. specimens: 1; depth: 32 m; habitat: bottoms of mud; WoRMS: documented distribution in Tyrrhenian Sea in [34].

Paguristes syrtensis de Saint Laurent, 1971

Italian biogeographical zone: 2; study area: Elba; n. specimens: 5; depth: from 32 to 39 m; habitat: bottoms of sand, debris; WoRMS: documented distribution in central Tyrrhenian Sea by OBIS occurrences.

Anapagurus laevis (Bell, 1845)

Italian biogeographical zone: 7; study area: Bisceglie, Bari #2; n. specimens: 6; depth: from 16 to 18 m; habitat: bottoms of mud; WoRMS: documented distribution in Adriatic Sea in [34].

Italian biogeographical zone: 8; study area: S. Benedetto del Tronto, Civitanova Marche #1: n. specimens: 2; depth: from 85 to 87 m; habitat: bottoms of mud and sand; WoRMS: documented distribution in Adriatic Sea in [34].

Italian biogeographical zone: 9; study area: Chioggia #1, Chioggia #2: n. specimens: 13; depth: from 5 to 30 m; habitat: bottoms of sand and debris; WoRMS: documented distribution in Adriatic Sea in [34].

Anapagurus petiti Dechancé & Forest, 1962

Italian biogeographical zone: 7; study area: Bisceglie; n. specimens: 4; depth: 32 m; habitat: bottoms of muddy sand; WoRMS: no documented distribution in Adriatic Sea.

Anapagurus smythi Ingle, 1993

Italian biogeographical zone: 2; study area: Porto Ercole; n. specimens: 2; depth: 32 m; habitat: bottoms of mud; WoRMS: documented distribution in Mediterranean Sea except some occurrences in the Ionian Sea [34].

Dactylonida curvimana (A. Milne Edwards & Bouvier, 1894)

Italian biogeographical zone: 8; study area: S. Benedetto del Tronto; n. specimens: 2; depth: 85 m; habitat: bottoms of mud; WoRMS: no documented distribution in Adriatic Sea.

Pisidia bluteli (Risso, 1816)

Italian biogeographical zone: 3; study area: Milazzo #1, Castellamare del Golfo; n. specimens: 5; depth: from 35 to 43 m; habitat: bottoms of mud and sandy mud; WoRMS: documented distribution in Tyrrhenian Sea in [34].

Ebalia granulosa H. Milne Edwards, 1837

Italian biogeographical zone: 9; study area: Chioggia #2; n. specimens: 1; depth: 28 m; habitat: bottoms of sand; WoRMS: documented distribution in Adriatic Sea in [34].

Ebalia tumefacta (Montagu, 1808)

Italian biogeographical zone: 2; study area: Montalto, Porto Torres; n. specimens: 5; depth: from 34 to 50 m; habitat: bottoms of mud, sandy mud and muddy sand; WoRMS: no documented distribution in Tyrrhenian Sea.

Italian biogeographical zone: 9; study area: Chioggia #2; n. specimens: 1; depth: 28 m; habitat: bottoms of sand; WoRMS: documented distribution by OBIS occurrences in northern Adriatic Sea.

Atelecyclus undecimdentatus (Herbst, 1783)

Italian biogeographical zone: 2; study area: Follonica, Porto Torres; n. specimens: 2; depth: from 22 to 40 m; habitat: bottoms of sand and muddy sand; WoRMS: documented distribution in Tyrrhenian Sea in [34].

Pilumnus minutus De Haan, 1835

Italian biogeographical zone: 3; study area: Milazzo #2; n. specimens: 1; depth: 7 m; habitat: bottoms of rock; WoRMS: documented distribution in Mediterranean Sea as alien species in [20,40], where it was sampled as part of a macrofauna monitoring campaign where scratching was also carried out on rocky bottoms.

Brachynotus gemmellari (Rizza, 1839)

Italian biogeographical zone: 7; study area: Bisceglie; n. specimens: 1; depth: 32 m; habitat: bottoms of muddy sand; WoRMS: documented distribution in Adriatic Sea in [34].

Palicus caronii (Roux, 1830)

Italian biogeographical zone: 2; study area: Elba; n. specimens: 1; depth: 51 m; habitat: bottoms of debris; WoRMS: documented distribution in Tyrrhenian Sea in [34].

4. Discussion

New relevant evidence emerged from the comparison of the results of this study with preexisting knowledge, analyzing the distribution of 123 species of crustacean decapods in the Italian Sea. The present study contributes to the knowledge of soft-bottom marine invertebrate's biodiversity of the Central Mediterranean Sea by through 49 new records.

With the idea of providing useful data to assist the insiders to update checklists and registers at national and global scale, two reference data set were taken into account by a double-step analysis. Firstly, the Italian checklists [32] were compared with data of our study since it represents the most recent data set at national level officially accepted, hoping to facilitate the next updates of these checklists. In this regard, we updated the biogeography of 39 species, some of which have never been reported in the Italian seas from this national checklist. Secondly, the World Register of Marine Species (WoRMS) [30] was selected since it proves a worldwide register, it contains a huge amount of information constantly updated also related to other data information system, and it is now usually taken as a reference at international level. In this regard, direct comparisons among information contained in the Italian checklists [32], the World Register of Marine Species [30] and our data of this research highlighted several mismatches, which could be of great use to all insiders.

In addition, bathymetry and habitat data reported for each recorded species represent important information on the species ecology. In fact, although the ecological issue is not the main objective of this work, this information integrates the previous knowledge on the ecology of the species and can be a starting point for further studies and investigations.

Since knowledge on distribution of decapod crustaceans in the Italian seas is connected to intensity of the research activity performed in the various geographical zones [16], there are still significant gaps today on this issue. A higher sampling effort increases the chances of rare species being found as also shown for example by our data in the geographical zone 2, characterized by the second larger number of ISPRA's study areas and with the highest number of sampling stations investigated. This relationship between number of sampling stations investigated and number of new records is confirmed by our data in most of cases examined with some exceptions, since other factors evidently come into play. Sampling frequency can obviously further affect the possibilities of catching new species, as showed for example in the geographical sector 9, where a large study area was investigated by ISPRA for many years. Differently, despite in the geographical sector 7 have been carried out a few samplings by ISPRA, it showed a significant number of new records, probably suggesting a no high current knowledge of the area. These evidences of our research and other proves arising from similar investigations could direct specific studies aimed at filling current information gaps.

In addition, this study outlines the importance of environmental monitoring programs related to anthropogenic impact studies as a source of important scientific data on marine invertebrate biogeography and ecology. Frequent monitoring surveys and common sampling methodologies, like those of our research, allow the collection of numerous and comparable data from different study areas, allowing the integration of multidisciplinary information, also opening the way to more specific research and experiments [10]. In this regard, in fact, in addition to public environmental data, there is a large amount of environmental data collected by a variety of subjects, public and private, such as data derived from environmental characterizations and monitoring required for environmental assessment (e.g., EIA) procedures. These data, although collected frequently and often collected with high detail on a local scale in area of particular interest, often remain available only as grey literature and are rarely valued and made accessible to the scientific community. It is fragmented and not available due to the absence of specific and adequate centralized systems that help to organize and collect this type of detailed data in a homogeneous and functional way [41].

The importance of accessibility of environmental data is even more evident when the information refers to biodiversity, as in the case of macrozoobenthic assemblages, issue of this

research. An accurate identification of macrozoobenthos requires the intervention of specialist taxonomists, an excellent conservation of the organisms and the presence of a reliable fauna description. Some diagnostic characters are sometimes of doubtful detection and the specimen cannot always be rechecked over time, since the reference collections do not necessarily remain always available, and the specimens can be partially or totally lost for various reasons [42–45]. For all these reasons, it is very important to have redundancy of information from different sources, to mutually confirm the reports and information acquired and to be able to have increasingly robust official reference data sets, increasingly up-to-date and free of potential misunderstandings, often existing on these issues. In this regard, Carriker [46] stressed the importance of accurate identification to unlock the storage and retrieval system of scientific information, given that a species name is the doorway to its literary pedigree.

We hope our research can contribute to the knowledge of biodiversity of the marine species and it can stimulate the return of large existing databases but not yet available both through manuscripts like this, and through the development of further and specific web platforms, able to enhance the large amount of existing environmental data also relating to anthropic impact studies within the environmental assessment. We hope the increasing awareness of importance of environmental monitoring data to increase the state of knowledge of biodiversity of our seas, will promote the centralization and availability of such information for the benefit of the entire scientific community.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper posted on Preprints.org, Table S1: records_decapod crustaceans.

Author Contributions: Conceptualization, T.B.; investigation, T.B., M.T., L.L., V.M., B.T. and P.T.; data curation, T.B.; validation, T.B., M.T., L.L., V.M., B.T. and P.T; writing—original draft preparation, T.B.; writing—review and editing, T.B., M.T., L.L., V.M., B.T. and P.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data and materials are available upon request.

Acknowledgments: The authors thank all participants in sampling and laboratory activities, Anna Maria Cicero, Rossella Di Mento, Massimo Gabellini, Erika Magaletti, Chiara Maggi, Luisa Nicoletti, Ornella Nonnis, Daniela Paganelli, Salvatore Porrello, Claudia Virno Lamberti for the coordination of the numerous projects from which the data of our work have been acquired, Fabio Bertasi for the scientific support.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Snelgrove, P.V.R. The Importance of Marine Sediment Biodiversity in Ecosystem Processes. Ambio 1997, 26, 578–583.
- 2. Bilyard, G.R. The Value of Benthic Infauna in Marine Pollution Monitoring Studies. *Marine Pollution Bulletin* **1987**, *18*, 581–585, doi:10.1016/0025-326X(87)90277-3.
- 3. Simonini, R.; Ansaloni, I.; Bonini, P.; Grandi, V.; Graziosi, F.; Iotti, M.; Massamba-N'Siala, G.; Mauri, M.; Montanari, G.; Preti, M.; et al. Recolonization and Recovery Dynamics of the Macrozoobenthos after Sand Extraction in Relict Sand Bottoms of the Northern Adriatic Sea. *Marine Environmental Research* **2007**, *64*, 574–589, doi:10.1016/j.marenvres.2007.06.002.
- 4. Manoukian, S.; Spagnolo, A.; Scarcella, G.; Punzo, E.; Angelini, R.; Fabi, G. Effects of Two Offshore Gas Platforms on Soft-Bottom Benthic Communities (Northwestern Adriatic Sea, Italy). *Marine Environmental Research* **2010**, *70*, 402–410, doi:10.1016/j.marenvres.2010.08.004.
- Trabucco, B.; Grossi, L.; Marusso, V.; Bacci, T.; Bertasi, F.; Ceracchi, S.; Lomiri, S.; Vani, D.; Virno Lamberti,
 Macrozoobenthic Assemblages around a Marine Terminal for Re-Gasifying Liquefied Natural Gas
 (LNG) in the North Adriatic Sea (Italy). *Journal of the Marine Biological Association of the United Kingdom* 2015,
 400:10.1017/S0025315415000338.
- 6. Tomassetti, P.; Gennaro, P.; Lattanzi, L.; Mercatali, I.; Persia, E.; Vani, D.; Porrello, S. Benthic Community Response to Sediment Organic Enrichment by Mediterranean Fish Farms: Case Studies. *Aquaculture* **2016**, 450, 262–272, doi:10.1016/j.aquaculture.2015.07.019.

- 7. Spagnolo, A.; Auriemma, R.; Bacci, T.; Balković, I.; Bertasi, F.; Bolognini, L.; Cabrini, M.; Cilenti, L.; Cuicchi, C.; Cvitković, I.; et al. Non-Indigenous Macrozoobenthic Species on Hard Substrata of Selected Harbours in the Adriatic Sea. *Marine Pollution Bulletin* **2017**, doi:10.1016/j.marpolbul.2017.12.031.
- 8. Targusi, M.; La Porta, B.; Lattanzi, L.; La Valle, P.; Loia, M.; Paganelli, D.; Pazzini, A.; Proietti, R.; Nicoletti, L. Beach Nourishment Using Sediments from Relict Sand Deposit: Effects on Subtidal Macrobenthic Communities in the Central Adriatic Sea (Eastern Mediterranean Sea-Italy). *Marine Environmental Research* 2019, 144, 186–193, doi:10.1016/j.marenvres.2018.12.006.
- 9. Pearson, T.H.; Rosenberg, R. Macrobenthic Succession in Relation to Organic Enrichment and Pollution of the Marine Environment. *Oceanography and Marine Biology: An Annual Review* **1978**, *16*, 229–311.
- La Porta, B.; Tomassetti, P.; Lomiri, S.; Marzialetti, S.; Vani, D.; Penna, M.; Lanera, P.; Nicoletti, L. Ecology and Spatial Distribution of Selected Polychaete Species from the Italian Continental Shelf. *Italian Journal of Zoology* 2011, 78, 290–303, doi:10.1080/11250003.2011.588443.
- 11. Abele, L.G. Species Diversity of Decapod Crustaceans in Marine Habitats. *Ecology* **1974**, *55*, 156–161, doi:10.2307/1934629.
- 12. Cartes, J.E. Feeding Strategies and Partition of Food Resources in Deep-Water Decapod Crustaceans (400–2300 m). *Journal of the Marine Biological Association of the United Kingdom* **1998**, 78, 509–524, doi:10.1017/S002531540004159X.
- 13. De Grave, S.; Pentcheff, N.; Ahyong, S.; Chan, T.Y.; Crandall, K.; Dworschak, P.; Felder, D.; Feldmann, R.; Fransen, C.; Goulding, L.; et al. A Classification of Living and Fossil Genera of Decapod Crustaceans. *The Raffles bulletin of zoology* **2009**, *supplement* 21, 1–109.
- 14. Noël, P.; Monod, T.; Laubier, L. Crustacea in the Biosphere. In *Treatise on Zoology Anatomy, Taxonomy, Biology. The Crustacea, Volume 4 Part B*; Brill, 2014; pp. 3–115 ISBN 978-90-04-26493-9.
- D'Udekem d'Acoz, C. Inventaire et Distribution Des Crustacés Décapodes de l'Atlantique Nord-Oriental, de La Méditerranée et Des Eaux Continentales Adjacentes Au Nord de 25 N. Collection Patrimoines Naturels 1999
- 16. Froglia F. Crustacea, Malacostraci, Decapoda. Biologia Marina Mediterranea. 2010, 17 (suppl. 1), 519-534.
- 17. Cartes, J.E.; Sarda, F. Abundance and Diversity of Decapod Crustaceans in the Deep-Catalan Sea (Western Mediterranean). *Journal of Natural History* **1992**, *26*, 1305–1323, doi:10.1080/00222939200770741.
- 18. Maynou, F.; Conan, G.Y.; Cartes, J.E.; Company, J.B.; Sardà, F. Spatial Structure and Seasonality of Decapod Crustacean Populations on the Northwestern Mediterranean Slope. *Limnology and Oceanography* **1996**, 41, 113–125, doi:10.4319/lo.1996.41.1.0113.
- 19. Abelló, P.; Carbonell, A.; Torres, P. Biogeography of Epibenthic Crustaceans on the Shelf and Upper Slope off the Iberian Peninsula Mediterranean Coasts: Implications for the Establishment of Natural Management Areas. *Scientia Marina* **2002**, *66*, 183, doi:10.3989/scimar.2002.66s2183.
- 20. Galil, B.; Froglia, C.; Noël, P. CIESM Atlas of Exotic Species in the Mediterranean. Vol. 2. Crustaceans: Decapods and Stomatopods. *F. Briand (ed). Monaco: CIESM Publishers* **2002**.
- 21. Pipitone, C.; Arculeo, M. The Marine Crustacea Decapoda of Sicily (Central Mediterranean Sea): A Checklist with Remarks on Their Distribution. *Italian Journal of Zoology* **2003**, 70, 69–78, doi:10.1080/11250000309356498.
- 22. Cartes, J.E.; Maynou, F.; Moranta, J.; Massutí, E.; Lloris, D.; Morales-Nin, B. Patterns of Bathymetric Distribution among Deep-Sea Fauna at Local Spatial Scale: Comparison of Mainland vs. Insular Areas. *Progress in Oceanography* **2004**, *60*, 29–45, doi:10.1016/j.pocean.2004.02.001.
- 23. Company, J.B.; Maiorano, P.; Tselepides, A.; Politou, C.Y.; Plaity, W.; Rotllant, G.; Sardá, F. Deep-Sea Decapod Crustaceans in the Western and Central Mediterranean Sea: Preliminary Aspects of Species Distribution, Biomass and Population Structure. *Scientia Marina* **2004**, *68*, 73–86, doi:10.3989/scimar.2004.68s373.
- 24. Politou, C.-Y.; Maiorano, P.; D'Onghia, G.; Mytilineou, C. Deep-Water Decapod Crustacean Fauna of the Eastern Ionian Sea. *Belgian Journal of Zoology* **2005**, 135.
- 25. Ungaro, N.; Marano, C.; Ceriola, L.; Martino, M. Distribution of Demersal Crustaceans in the Southern Adriatic Sea. *Acta Adriatica (marusic@izor.hr); Vol.46 No.1* **2005**, 46.
- 26. Fanelli, E.; Colloca, F.; Ardizzone, G. Decapod Crustacean Assemblages off the West Coast of Central Italy (Western Mediterranean). *Scientia Marina* **2007**, *71*, 19–28.
- 27. Follesa, M.C.; Porcu, C.; Gastoni, A.; Mulas, A.; Sabatini, A.; Cau, A. Community Structure of Bathyal Decapod Crustaceans off South-Eastern Sardinian Deep-Waters (Central-Western Mediterranean). *Marine Ecology* **2009**, *30*, 188–199, doi:10.1111/j.1439-0485.2009.00323.x.
- 28. Torres, A.; Dos Santos, A.; Balbín, R.; Alemany, F.; Massutí, E.; Reglero, P. Decapod Crustacean Larval Communities in the Balearic Sea (Western Mediterranean): Seasonal Composition, Horizontal and Vertical Distribution Patterns. *Journal of Marine Systems* **2013**, doi:10.1016/j.jmarsys.2013.11.017.

- 29. Gonulal, O.; Sezgin, M.; Oztürk, B. Diversity and Bathymetric Distribution of Decapod Crustaceans Attracted to Baited Traps from the Middle Slope of the Northern Aegean Sea. *Crustaceana* **2014**, *87*, doi:10.1163/15685403-00003278.
- 30. WoRMS World Register of Marine Species Available online: https://www.marinespecies.org/ (accessed on 7 August 2023).
- 31. Bianchi, C.N. Proposta di suddivisione dei mari italiani in settori biogeografici. *Estratto dal Notiziario della Società Italiana di Biologia Marina*. **2004**, *46*.
- 32. Relini, G. (ed.) Checklist of Flora and Fauna of the Italian Seas. *Biologia Marina Mediterranea*. **2010**, *17* (suppl.1).
- 33. Ocean Biodiversity Information System Available online: https://obis.org/ (accessed on 7 August 2023).
- 34. Türkay, M. Personal Decapoda Distribution Database for Europe. In; 2015.
- 35. Lagardère, J.-P. *Les Crevettes de côtes du Maroc*; Travaux de l'Institut scientifique chérifien et de la Faculté des sciences. Sér. Zoologie; 1971;
- 36. Zariquiey Alvarez, R. Crustáceos Decápodos Ibéricos. 1968.
- 37. Falciai, M. Guida Dei Crostacei Decapodi d'Europa; Scienze Naturali; Franco Muzzio Editore, 1992;
- 38. Bacci, T.; Marusso, V.; Trabucco, B.; Magaletti, E. First Record of Synalpheus Tumidomanus Africanus (Crosnier & Forest, 1965) (Caridea, Alpheidae) in Italian Waters. *Crustaceana* **2010**, *83*, doi:10.1163/001121610X502939.
- 39. Alvarez, R.Z. Crustaceos Decapodos Ibericos. Investigación Pesquera 1968, 32, 1-499.
- 40. Streftaris, A.Z.& E.P., N. Globalisation in Marine Ecosystems: The Story of Non-Indigenous Marine Species across European Seas. *Oceanogry and Marine Biology: an Annual Review* **2005**, 43, 419-453.
- 41. AA.VV. Report of Data Collected for Posidonia Oceanica Management and Transplant. Report Action B.3. LIFE SEPOSSO (LIFE16 GIE/IT/000761); 2020.
- 42. Lardicci, C.; Abbiati, M.; Crema, R.; Morri, C.; Bianchi, C.N.; Castelli, A. The Distribution of Polychaetes along Environmental Gradients: An Exemple from the Orbitello Lagoon, Italy. *Marine Ecology* **1993**, *14*, 35–52, doi:10.1111/j.1439-0485.1993.tb00363.x.
- 43. Todorova, V., Konsulova, T. Manual for Quantitative Sampling and Sample Treatment of Marine Soft-Bottom Macrozoobenthos 2005.
- 44. Bacci, T.; Trabucco, B.; Marzialetti, S.; Marusso, V.; Lomiri, S.; Vani, D.; Lamberti, C.V. Taxonomic Sufficiency in Two Case Studies: Where Does It Work Better? *Marine Ecology* **2009**, *30*, doi:10.1111/j.1439-0485.2009.00324.x.
- 45. Eleftheriou, A. Methods for the Study of Marine Benthos Fourth Edition; 2013; ISBN 978-0-470-67086-6.
- 46. Carriker, M.R. The Crucial Role of Systematics in Assessing Pollution Effects on the Biological Utilization of Estuaries. *Estuarine Pollution Control and Assessment, proceedings of conference* **1976**, 1, 487–506.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.