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Abstract: The accurate forecasting of solar power output is essential for ensuring the stable and efficient 
operation of grid-connected photovoltaic (PV) systems, especially when faced with variable weather patterns. 
This research focuses on the integration of Machine Learning (ML) methodologies and climatic parameters to 
predict solar panel energy generation, with a specific emphasis on addressing consumption-production 
imbalances. Leveraging a dataset sourced from the Kaggle platform, the study is conducted in the context of 
Estonia, aiming to optimize solar energy utilization in this geographic region. The dataset, obtained from 
Kaggle, encompasses comprehensive information on climatic variables, including sunlight intensity, 
temperature, and humidity, alongside corresponding solar panel energy output. Leveraging machine learning 
algorithms, including XGBoost regression and neural networks, our model aims to identify complex patterns 
and relationships within the datasets. By tailoring the model to Estonia's climatic nuances, we seek to enhance 
the accuracy of energy production forecasts and, consequently, better manage the challenges associated with 
consumption-production imbalances. Furthermore, the research investigates the adaptability of the proposed 
model to diverse climatic conditions, ensuring its applicability for similar endeavors in other geographical 
locations. The performance of the forecasting model will be evaluated using error metrics like mean absolute 
error (MAE) and root mean squared error (RMSE). This study leverages a comprehensive dataset from Kaggle 
and utilizes advanced machine learning techniques to generate valuable insights. These insights can inform the 
development of sustainable energy policies and practices, ultimately leading to a more efficient and reliable 
renewable energy infrastructure. 

Keywords: Time series forecasting; LSTM; Bi-LSTM; Deep learning; ML; XGBoost; Energy; Solar 
Energy 

 

Introduction 

Soaring demand for sustainable energy solutions has solidified solar panels as a leading 
technology for harnessing renewable energy. While solar energy presents a clean and abundant 
alternative, its intermittent nature introduces challenges in maintaining a consistent balance between 
energy consumption and production. This research endeavors to address this challenge by 
integrating machine learning techniques with climatic parameters to predict solar panel energy 
generation, with a specific focus on the unique environmental context of Estonia. 

Previous research often focuses on predicting solar radiation, but a broader understanding is 
needed. Photovoltaic (PV) module output power is influenced by various factors beyond just sunlight 
intensity. Beyond just sunlight intensity, factors like cell health, type, configuration, angle of 
incidence, and weather conditions all affect a photovoltaic module's power output. Notably, the 
temperature of the solar cell within a PV system is one such critical factor that significantly impacts 
the amount of produced power. In contrast to the prevailing emphasis on solar radiation, this 
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research aims to delve into the broader spectrum of influences on PV module output power, offering 
a more comprehensive understanding of the complexities involved in predicting and optimizing 
solar energy generation[1]. Solar cell temperature isn't just about sunlight. Factors like ambient 
temperature, wind speed, and humidity all play a role.  This understanding is crucial, as researchers 
have explored weather data and classification to predict photovoltaic (PV) output power.  Shi et al. 
[2] explored weather classification for solar power forecasting. They categorized weather into clear 
sky, cloudy, foggy, and rainy conditions, and used this along with historical power data and Support 
Vector Machines (SVMs) to develop a one-day-ahead forecasting model for a single location in China. 
This approach demonstrates the potential of weather data for solar power prediction. Building on the 
importance of accurate weather data, Sangrody et al. [3] investigated uncertainties in weather 
forecasts for solar power prediction. Their research compared predicted and observed weather data, 
identified the most influential weather variables, and analyzed how data errors impact forecasting 
accuracy. This emphasizes the need for high-quality weather data in solar power forecasting models, 
a factor our proposed machine learning approach will address. In Ref [4], an investigation and 
comparison of three stacking techniques were conducted to integrate the prediction outputs of base 
learners. These techniques encompassed feed-forward neural networks, support vector regressors, 
and k-nearest neighbor regressors. This study introduces a machine learning approach that combines 
Kernel Principal Component Analysis (PCA) with XGBoost to improve the accuracy of one-hour-
ahead solar power predictions. Our model is built by integrating deterministic Weather Research and 
Forecasting (WRF) data obtained from the Taiwan Central Weather Bureau (CWB). Furthermore, we 
utilize an XGBoost model, constructed as an ensemble of decision trees, to provide valuable insights 
and precise forecasts in the prediction process [5]. In our study, we employed various algorithmic 
combinations to demonstrate their predictive efficacy in contrast to a conventional Multilayer 
Perceptron (MLP) and a physical forecasting model. The focus was on forecasting the energy output 
of 21 solar power plants [6]. This study introduces a hybrid model that combines a Long Short-Term 
Memory (LSTM) and Convolutional Neural Network (CNN)  for accurate prediction of stable power 
generation [7]. In the concluding section of the introduction, I intend to outline the objective of my 
study, which involves the comparative analysis of various time series prediction models for solar 
energy production. Specifically, I aim to evaluate the performance of XGBoost, LSTM and Bi-LSTM 
models in forecasting solar energy generation. This comparative assessment seeks to provide insights 
into the strengths and weaknesses of each model, contributing valuable findings to the field of 
renewable energy forecasting. The study is designed to be rigorous and comprehensive, utilizing 
established models from the machine learning domain to enhance the understanding of their 
applicability and effectiveness in predicting solar energy output. The outcomes of this research 
endeavor are anticipated to inform and guide future developments in renewable energy forecasting 
methodologies. 

Methodology 

To achieve the objectives of this study, a comprehensive methodology is employed, focusing on 
the comparison of different time series prediction models for solar energy production. The primary 
models under consideration include Long Short-Term Memory (LSTM) [8,9] , XGBoost [10,11], and 
Bidirectional Long Short-Term Memory (Bi-LSTM) [12]. 

Data Collection 

The dataset utilized in this study is sourced from Kaggle, a reputable platform known for its 
diverse and high-quality datasets. The Kaggle dataset selected contains relevant information on solar 
energy production, including key climatic variables such as sunlight intensity, temperature, and 
humidity. 

Data Preprocessing 
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Thorough preprocessing of the dataset involves handling missing values, normalizing data, and 
extracting relevant features. This step aims to enhance the quality and reliability of the input data for 
subsequent modeling. These all process as preprocessing in our study are done to extract the feature 
from the cleaned data one step prior importing into the model by splitting them into training data 
(80%), test data (10%) and validation data (10%), respectively, as shown in Figure 1.  

 

Figure 1. Data Preprocessing Workflow. 

Model Selection 

The choice of models, including LSTM, XGBoost, and Bi-LSTM, is driven by their established 
efficacy in time series prediction. Each model will be configured and fine-tuned to cater specifically 
to the characteristics of solar energy generation data. 

Long Short Term Memory (LSTM) 

The Long Short Term Memory (LSTM) model, a form of recurrent neural network (RNN), is 
renowned for its adeptness in handling sequential data, making it especially suitable for time series 
forecasting. LSTM incorporates a memory block responsible for retaining temporal information from 
the input data. Illustrated in Figure 2, the hidden layer of LSTM, known as the LSTM cell, 
encapsulates this functionality. In the context of predicting solar energy production, LSTM proves 
invaluable due to its capacity to capture long-term dependencies and intricate patterns within 
historical data [13]. Comprising memory cells and gates that regulate information flow, LSTM's key 
components include the input gate, forget gate, cell state, and output gate. This architectural design 
enables LSTM to selectively retain and discard information from previous time steps, facilitating the 
model's comprehension of complex temporal relationships. Proficient in learning sequential patterns 
over extended periods, LSTM excels in capturing the influence of various climatic factors, such as 
sunlight intensity, temperature, and humidity, on energy output over time. Its sequential learning 
nature equips LSTM to discern both short-term fluctuations and long-term trends. The LSTM model 
is trained using historical time series data, where input features encompass relevant climatic 
variables, and the target is the corresponding solar energy production. Throughout training, the 
model adjusts its parameters to minimize the disparity between its predictions and actual output, 
refining its capacity to generalize and make precise forecasts on unseen data [14]. Fine-tuning 
hyperparameters, including the number of LSTM layers, hidden units, and learning rate, is pivotal 
for optimizing the model's performance. Iterative experimentation with diverse configurations aids 
in identifying settings that yield the most accurate predictions for solar energy generation. Once 
trained, the LSTM model generates predictions for future solar energy production based on new 
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input data. Its ability to assimilate information from prior time steps enables adaptation to changing 
climatic conditions, offering a dynamic and responsive forecasting tool. 

 

Figure 2. Architecture of LSTM. 

Bidirectional Long Short Term Memory (BiLSTM) 

The Bidirectional Long Short Term Memory (BiLSTM) model extends the traditional LSTM 
architecture by introducing bidirectional information flow. This enhancement enables the Bi-LSTM 
model to simultaneously consider both past and future information, thereby augmenting its 
capability to capture nuanced patterns in time series data [15]. 

The Bidirectional LSTM (Bi-LSTM) depicted in Figure 3  is developed to operate in two time 
directions. This is achieved through the connection of neurons from two separate hidden layers to a 
singular output layer. In contrast to unidirectional LSTMs, Bi-LSTM processes the input sequence in 
both forward and backward directions. This bidirectional flow enables the model to capture 
dependencies not only from past time steps but also from future time steps, providing a more 
comprehensive understanding of temporal relationships. Similar to LSTM, Bi-LSTM incorporates 
memory cells and gates for regulating information flow. The bidirectional structure introduces two 
sets of memory cells, one processing the sequence forward and the other backward. This dual 
memory cell approach enhances the model's capacity to capture complex dependencies in both 
directions [16]. The training process for Bi-LSTM is similar to that of LSTM, involving the adjustment 
of model parameters based on historical time series data. Fine-tuning of hyperparameters, such as 
the number of layers and hidden units in both forward and backward directions, is essential to 
optimize the model's performance. Bi-LSTM's bidirectional nature allows it to dynamically adapt to 
changing climatic conditions. This adaptability is vital for forecasting solar energy production, as the 
model can leverage information from both past and potential future states to adjust predictions in 
response to variations in sunlight intensity, temperature, and humidity. In summary, the 
Bidirectional Long Short-Term Memory (Bi-LSTM) model presents a powerful augmentation to the 
LSTM architecture, offering an improved capacity to capture temporal dependencies in both 
directions. This bidirectional approach enhances the model's contextual understanding and 
adaptability, making it a valuable asset for accurate time series forecasting in solar energy 
production. 
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Figure 3. Architecture of Bi-LSTM. 

XGBoost Model 

The XGBoost model, short for Extreme Gradient Boosting, is an ensemble learning algorithm 
renowned for its versatility and efficiency in handling diverse data types, including time series data. 
In the context of predicting solar energy production, XGBoost is employed as a robust alternative to 
neural network-based approaches, offering interpretability and scalability. XGBoost belongs to the 
family of gradient boosting algorithms, which construct a strong predictive model by combining the 
outputs of multiple weak learners, often decision trees. Each decision tree is trained sequentially to 
correct the errors of its predecessor, leading to a robust and accurate ensemble model [17]. One 
notable feature of XGBoost is its capability to assess the importance of different input features. The 
structure of XGBoost can be seen in Figure 4. In the context of solar energy forecasting, XGBoost can 
highlight the significance of climatic variables such as sunlight intensity, temperature, and humidity 
in influencing the energy output. This information aids in understanding the key drivers of solar 
energy production. XGBoost excels in capturing nonlinear relationships within the data. In the 
context of solar energy production, where the interaction between climatic variables and energy 
output can be nonlinear, XGBoost provides a flexible framework for modeling complex relationships. 
The core of XGBoost's power lies in its ensemble of decision trees. These trees collectively contribute 
to the model's predictive accuracy, with each tree focusing on different aspects of the input data. The 
combination of multiple trees enhances the model's capacity to capture diverse patterns and trends. 
The performance of the XGBoost model is heavily influenced by hyperparameter settings. Fine-
tuning parameters such as learning rate, maximum depth of trees, and regularization terms is crucial 
to optimizing the model's predictive capabilities for solar energy production forecasting. the XGBoost 
model presents a distinctive approach to time series prediction, leveraging the power of ensemble 
learning to capture complex relationships within solar energy production data. Its interpretability, 
regularization mechanisms, and ability to handle nonlinearities contribute to a comprehensive and 
comparative analysis of diverse modeling techniques in the context of renewable. 
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Figure 4. Architecture of XGBoost. 

A comprehensive comparative analysis will be conducted to highlight the strengths and 
weaknesses of each model. Insights gained from this analysis will contribute to a nuanced 
understanding of the applicability of LSTM, XGBoost, and Bi-LSTM in the context of solar energy 
production forecasting. This robust methodology ensures a systematic and thorough exploration of 
the selected time series prediction models, providing valuable insights that contribute to the 
advancement of renewable energy forecasting practices. 

Results and Discussion 

The empirical evaluation of Bidirectional Long Short Term Memory (BiLSTM), Long Short Term 
Memory (LSTM) and XGBoost models for solar energy production forecasting offers nuanced 
insights into their respective performances. Evaluation metrics, including Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE), were employed to assess the predictive performance 
of each model. These metrics serve as quantitative measures to gauge the accuracy and reliability of 
each model's predictions. 

Prediction Analysis 

The evaluation of three distinct models, Bidirectional Long Short Term Memory (BiLSTM), Long 
Short Term Memory (LSTM) and XGBoost, for solar energy production forecasting revealed 
insightful patterns. LSTM exhibited commendable accuracy in capturing both short and long-term 
dependencies, proving effective in handling sequential data. BiLSTM, with its bidirectional 
architecture, demonstrated enhanced contextual understanding by considering both past and future 
information, particularly beneficial for scenarios where anticipating future trends is crucial. XGBoost, 
employing ensemble learning, excelled in handling nonlinear relationships within the data and 
provided valuable insights into the importance of climatic variables. Each model showcased specific 
strengths and considerations; LSTM's proficiency in sequential patterns, Bi-LSTM's enhanced 
contextual understanding, and XGBoost's robustness in capturing nonlinearities. The choice among 
these models depends on the specific characteristics of the forecasting task and dataset, offering a 
diverse set of tools for accurate solar energy production predictions. 

Figure 5 presents a comparative analysis of the activation functions ReLU (Rectified Linear Unit) 
and tanh in the Long Short Term Memory (LSTM) model. The plot illustrates the impact of these 
activation functions on the LSTM's ability to capture complex patterns and dependencies within the 
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solar energy production data. ReLU, known for its efficiency in handling vanishing gradient 
problems, is contrasted with tanh, which introduces non-linearity and is particularly adept at 
managing input data in the range of -1 to 1. The objective is to assess how the choice of activation 
function influences the model's performance and its capacity to capture intricate relationships.  In 
Figure 6, a similar examination is conducted on the Bidirectional Long Short Term Memory (BiLSTM) 
model, again employing ReLU and tanh as activation functions. Given Bi-LSTM's bidirectional 
nature, understanding the impact of activation functions becomes crucial for capturing dependencies 
from both past and future information. The comparative visualization aims to elucidate the nuances 
in the model's response to different activation functions, providing insights into their effectiveness 
for solar energy production forecasting.  These figures contribute valuable information to the 
discussion on the role of activation functions in LSTM and Bi-LSTM models, guiding researchers and 
practitioners in making informed decisions regarding the selection of activation functions based on 
the characteristics of the dataset and the intricacies of the forecasting task. 

 
Figure 5. Activation Function Comparison in LSTM Model. (a) ReLU Activation and (b) tanh 
Activation. 

 

Figure 6. Activation Function Comparison in Bi-LSTM Model. (a) ReLU Activation and (b) tanh 
Activation. 

Figure 7 presents an epoch-to-loss analysis for the XGBoost model, offering valuable insights 
into the training dynamics and convergence behavior of the model during the learning process. This 
graphical representation allows for a visual assessment of how the loss evolves over successive 
epochs, providing information on the model's learning rate, convergence stability, and potential 
overfitting or underfitting tendencies. Analyzing the trend in the loss curve facilitates the 
identification of the optimal number of epochs, beyond which further training may lead to 
diminished generalization on unseen data. Interpreting Figure 7 enables a deeper understanding of 
the training process and aids in making informed decisions regarding hyperparameter tuning, 
regularization, and overall model optimization. 
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Figure 8 comprises three distinct subplots, each illustrating the comparison between real and 
predicted energy generation over successive timesteps for the Long Short Term Memory (LSTM), 
Bidirectional Long Short Term Memory (BiLSTM), and XGBoost models. 

The blue line represents the actual energy generation values over different timesteps, while the 
orange line depicts the corresponding predicted values generated by models. This visual 
representation allows for a direct comparison between the model's predictions and the ground truth, 
providing insights into the model's accuracy in capturing temporal dependencies. 

 

Figure 7. XGBoost Training Loss. 

This visual assessment in Figure 8 aids in identifying how well each model aligns with the actual 
energy generation trends. Discrepancies between real and predicted values can highlight areas of 
improvement or strengths in the models' forecasting capabilities. Researchers and practitioners can 
utilize these visualizations to refine and optimize their chosen models for more accurate and reliable 
solar energy production predictions. 

Figure 9 visually represents the influence of activation functions, specifically ReLU (Rectified 
Linear Unit) and tanh, on the predictions of the Bidirectional Long Short Term Memory (BiLSTM) 
model for the test dataset. The subplot showcases two distinct lines: one denoting the actual values 
of energy generation over different timesteps (blue line), and the other representing the predicted 
values generated by the Bi-LSTM model with ReLU activation (orange line) and tanh activation 
(green line). This comparison allows for a direct evaluation of how the choice of activation function 
impacts the Bi-LSTM model's ability to forecast energy generation patterns. 

The influence of data characteristics, including variations in sunlight intensity, temperature, and 
humidity, on model performance is evident. Models may exhibit varying levels of sensitivity to 
different climatic factors, emphasizing the importance of tailoring the choice of model to the unique 
attributes of the dataset.  In conclusion, the comparative analysis provides a comprehensive 
understanding of the performance of  BiLSTM, LSTM and XGBoost models in predicting solar 
energy production. The insights gained contribute valuable knowledge to the field of renewable 
energy forecasting, paving the way for improved methodologies and informed decision-making in 
the transition towards sustainable energy systems. 

The performance metrics for the three models—Bidirectional Long Short Term Memory 
(BiLSTM), Long Short Term Memory (LSTM), and XGBoost—based on MAE and RMSE for both 
training and testing datasets are summarized in the Table 1: 

Table 1. Model Performance Metrics on Training and Testing Datasets. 

Model Train MAE Test MAE Train RMSE Test RMSE 

Bi-LSTM 0.0073 0.0680 0.0171 0.1186 
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LSTM 0.0088 0.0687 0.0200 0.1187 

XGBoost 0.0052 0.0842 0.0136 0.1421 

 
The XGBoost model exhibits the lowest Train MAE and RMSE, indicating its effectiveness in 

capturing training data patterns. However, it demonstrates a higher Test MAE and RMSE compared 
to the BiLSTM and LSTM models, indicating potential challenges in generalizing to unseen data. Both 
BiLSTM and LSTM models achieve comparable performance, with Bi-LSTM slightly outperforming 
in terms of Train and Test. The overall performance of each model can be assessed based on a balance 
between Train and Test metrics, considering their ability to capture patterns during training and 
generalize to new data during testing. 

 

Figure 8. Comparative Analysis of Real vs. Predicted Energy Generation Over Timesteps for (a) 
LSTM, (b) Bi-LSTM, and (c) XGBoost Models. 
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Figure 9. Activation Function Impact on Bi-LSTM Predictions for Test Data. 

Conclusion 

This study conducted a comprehensive investigation into the predictive capabilities of three 
distinct models—Long Short Term Memory (LSTM), Bidirectional Long Short Term Memory 
(BiLSTM), and XGBoost—in the context of solar energy production forecasting. The evaluation 
encompassed a thorough analysis of training and testing metrics, activation function impact, and real 
vs. predicted energy generation over timesteps. The results revealed nuanced differences among the 
models, each demonstrating unique strengths and considerations. The Bi-LSTM model exhibited 
superior performance in capturing both short and long-term dependencies, achieving the lowest Test 
MAE and RMSE. The LSTM model, while comparable to Bi-LSTM, showed slightly higher metrics. 
The XGBoost model demonstrated strong training performance but faced challenges in generalizing 
to unseen data, evidenced by higher Test MAE and RMSE. Activation function analysis highlighted 
the influence of ReLU and tanh on Bi-LSTM predictions, providing insights into their impact on 
forecasting accuracy. Real vs. predicted energy generation visualizations illustrated the models' 
effectiveness in aligning predictions with actual trends. Ultimately, the choice of the most suitable 
model depends on specific forecasting requirements, computational considerations, and the dataset's 
characteristics. Future work may explore hybrid models, further tuning of hyperparameters, and the 
transferability of models to diverse geographical locations. Overall, this study marks a significant 
step toward advancing the understanding and application of machine learning techniques in 
renewable energy prediction. 
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