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Abstract: To address the issues of loss of important detailed features, insufficient contrast
enhancement and high computational complexity in existing low-light image enhancing
methodologies, this paper presents a low-light image enhancement network(MSF-ACA), which uses
multi-scale feature fusion and adaptive contrast adjustment. Focus is placed on designing the local-
global image feature fusion module (LG-IFFB) and the adaptive image contrast enhancement module
(AICEB), in which the LG-IFFB adopts the local-global dual-branching structure to extract multi-scale
image features, and utilizes the element-by-element multiplication method to fuse the local details
with the global illumination distribution to alleviate the problem of serious loss of image details,
while the AICEB fuses the linear contrast The AICEB incorporates linear contrast enhancement and
confidence adaptive stopping mechanism, which dynamically adjusts the computational depth
according to the confidence of the feature map, balancing the contrast enhancement and
computational efficiency. According to the results of the experiment, the parameter count of MSE-
ACA is 0.02M, and compared with today’s mainstream algorithms, the suggested model attains
21.53dB in PSNR when evaluated on the LOL-v2-real evaluation dataset, and the BRI is as low as
16.04 on the unpaired dataset DICM, which provides a better detail clarity and color fidelity in visual
enhancement, and it is a highly efficient and robust low-light image model.

Keywords: low-light image enhancement; multi-scale fusion network; adaptive contrast
enhancement; lightweight

1. Introduction

Low-light images are generally caused by factors such as insufficient light given by the
environment, limitations or malfunctions of the equipment, noisy signals, or improperly set
parameters when shooting. The presence of such images can make it difficult to perform complex
optical tasks, which include identity recognition and target detection. There is widespread use of low-
light image enhancement algorithms in security surveillance, medical imaging and other fields [1-4].
How can the luminance of an image be enhanced, its colour recovered and its texture details
improved, while also boosting the computational efficiency of enhancing low-light images. Studying
this area is essential for enhancing images taken in low-light. Low-light image enhancement is one of
the hot topics in the field of image processing.

Image enhancement algorithms can be classified into two main subsets: conventional methods
that are manually constructed parameters, and deep learning-based methods for enhancing images.
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Figure 1. A comprehensive investigation into the enhancement of micro-optical images, enc-ompassing state-of-
the-art methodologies incorporating HEP [44], URetinex [19] and FMR-N-et [20], is undertaken through a
meticulous quantitative and qualitative analysis (i.e., PSNR/SSIM/parameter).Compared with other similar

methods, the method in this paper achieves better enhancement results with fewer model parameters.

Development using traditional methods based on artificially constructed parameters began in
the mid-to-late 20th century.These methods improve the overall visual effect by adjusting the
illumination, contrast and colour of an image using artificial parameters. Typical algorithms include
histogram equalisation [5-7], gamma correction [8-10] and Retinex [11-14].The histogram
equalisation method improves image contrast by redistributing values across pixels; The gamma
correction method adjusts the luminosity and contrast of an overexposed or underexposed image
using a non-linear transformation; and Retinex algorithm, which was proposed in collaboration with
McCann and Land, is rooted in the visual system of the human eye and improves the effect of uneven
lighting by separating the light and reflection components. Although these traditional algorithms can
effectively improve image clarity and visual effect, they have problems such as relying on experts’
experience, poor scene adaptability, and general enhancement effect.

Deep learning based image enhancement algorithms are gradually becoming mainstream
methods as their results are generally better than traditional algorithms. According to the training
method, it falls into two categories: supervision-based methods and unsupervision-based methods.
Methodologies involving supervision necessitate the acquisition of paired datasets under low and
normal lighting conditions through synthesis, shooting and data enhancement, and utilize the paired
data for supervised training of image enhancement models. Common low-light image enhancement
datasets include LOL dataset [15], MIT-Adobe FiveK dataset [16], LIME dataset [17], etc.

Zhang [18] et al. proposed Image Kindling the Darkness (Kindling the Darkness), which uses
supervised learning to train the network using paired image datasets with good results. The network
first breaks the image down into light and reflection parts. Then, the light component is used for
lighting adjustments, while the reflection component is employed for removing degradations.
However, it requires multi-stage training, and the convolutional neural networks (CNNs) used to
decompose color images, perform noise reduction on reflectance, and adjust illumination need to be
trained independently and then connected together for end-to-end fine-tuning, which complicates
and lengthens the process of training. As an extension of the Retinex framework, Wu et al. [19] put
forward a deep unrolling network called URetinex-Net,which makes use of pair-wise data, and
implements image enhancement through a manually designed a priori and optimization-driven
approach. This method achieves excellent results in noise suppression and feature detail
preservation, but its strong dependence on training data and high computational complexity limit its
generalization ability in complex unknown scenes.FMR-Net proposed by Chen [20] et al. is a fast
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multiscale residual network, which rapidly boosts the image quality in low-light by combining a
highly optimised residual block with a multibranch structure, while preserving image details and
contrast. while maintaining image details and contrast, but it suffers from serious loss of high-
frequency details and insufficient noise suppression.

The above methods are mainly based on supervised learning, in order minimise dependency on
paired illumination datasets, numerous scholars put forward image enhancement methods founded
on unsupervised learning for low-light conditions. Jiang [21] et al. proposed EnlightenGAN, which
uses generative adversarial networks for unsupervised learning and introduces a self-regularization
mechanism, but it suffers from limited generalization and unstable training, etc. Guo [22] et al.
proposed a zero-reference depth curve estimation method-Zero-DCE, which learns the dynamic
range adjustment through image-specific curves, but its problem is that the accuracy is limited under
extreme conditions and the non-reference loss function relies on the image-specific curves, but its
accuracy is limited under extreme conditions and the non-reference loss function relies on the image-
specific curves. The problem lies in the limited accuracy under extreme conditions and the
dependence of the non-reference loss function on empirical parameters (e.g., exposure values).Ma
[23] proposed a self-calibrating illumination (SCI) learning framework, which achieves fast
convergence of multi-stage outputs to a consistent state through a progressive illumination
estimation module with shared weights and a self-calibration module, thus requiring only single-
stage inference at test time. Combined with unsupervised training loss (fidelity and smoothing
constraints), it enhances the model’s adaptability to complex low-light scenes. However, the network
still suffers from detail loss or color bias.

Currently, low-light image enhancement algorithms primarily suffer from detail feature
degradation, inadequate contrast enhancement, as well as the model has a high computing burden,
for this reason, a low-light image enhancing network is put forward in this paper, which is founded
upon multi-scale feature fusion and adaptive contrast adjustment, and designs a local-global image
feature fusion module (LG-IFFB) and an adaptive image contrast enhancement module (AICEB). LG-
IFFB extracts multi-scale image features through a local-global dual-branch structure and uses
element-by-element multiplication to fuse the local details with the global light distribution to
alleviate the problem of image detail loss; AICEB combines a linear contrast enhancement formula
with a confidence stability-driven adaptive stopping mechanism to dynamically adjust the
computational depth according to the confidence of the feature map, balancing the contrast
enhancement and computational efficiency. The primary outcomes of this study are summarised
below:

1. A low-light image enhancing network based upon multi-scale feature fusion and contrast
adaptive adjustment is proposed to achieve low-light image enhancement through a lightweight
architecture synergizing multi-scale image feature fusion with dynamic optimization of image
contrast.

2. A local-global image feature fusion module (LG-IFFB) is designed, which adopts a dual-path
structure of local branching and global branching to simultaneously extract local and global
information at different scales of the image, realizing a balance between detail preservation and
global light optimization, and providing parameter mapping more suitable for complex low-light
scenes for the subsequent luminance enhancement network.

3. An adaptive image contrast enhancement module (AICEB) is proposed, which consists of
multiple iterative sub-modules, each of which dynamically generates contrast enhancement factors
and luminance parameters through an adaptive attention normalization block (AANBlock). A
confidence scoring mechanism is introduced in the module to realize the adaptive contrast
enhancement, effectively balancing the contrast enhancement and computational efficiency.

2. Methods

The MSF-ACA model architecture is illustrated in Figure 2. Firstly, the low-light image
undergoes a convolutional operation that increases its amount of channels for feature maps, resulting

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0758.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2025

in 24 channels.Then, using the local-global image feature fusion module (LG-IFFB), the image multi-
scale image features U are extracted and fused.In the luminance enhancement network, the multi-
scale image features U are first uniformly channelized, and each group of the segmented features
serves as a luminance tuning parameter mapping, which is utilized to perform luminance adjustment
on the original image m. Specifically, through the optimization process of eight iterations, the output
of the Luminance-enhanced feature map ©. ® will then be used as a component of the input to two
subsequent cascaded Adaptive Image Contrast Boosting Modules (AICEBs), where the input to the
first AICEB is the two ®s, and the output is the intermediate feature map Y. Input to the second
AICEB is the intermediate feature maps Y and ©, while its output represents the intermediate features
map Z. AICEB dynamically generates contrast factors and luminance parameters, and adaptively
terminates the redundant computation through a confidence scoring mechanism to balance
performance and efficiency. The two AICEBs sequentially optimize the features in a recursive form
to gradually improve the image contrast and brightness. Finally, MSF-ACA fuses the channels and
reconstructs the image by using a 3x3 convolutional fusion channel. The main structure of MSF-ACA
references the residual join learning mechanism of local combination global [24].

Network Structure
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Figure 2. MSF-ACA model structure.

2.1. Local-Global Image Feature Fusion Block

Local Global Image Feature Fusion Block (LG-IFFB), Figure 2(B) illustrates its structure, the
division of the process is primarily into two steps: first, multi-scale feature extraction; second, image
feature fusion.

Inspired by the structure of RFDB [24] as well as RRFB [24], LG-IFFB employs a multi-scale
reparameterization technique for feature extraction,which outputs six different scales of image
features (denoted as L1 to L6) by cascading six kinds of convolutional kernel to maximise the
preservation image texture information.In order to reduce memory loss, ADD operation is used
instead of Concat operation for feature fusion. In addition, we segment the input feature channels
and select only one-fourth of the total number of channels to extract and fuse features. Remaining
image feature channels are then directly combined with the fused features using the residual join
method. This design is conducive to enhanced computational efficiency as well as reduced feature
redundancy within the cascade structure.

Traditional multi-scale feature fusion methods [43] usually perform only simple feature splicing
or summing processing, which cannot deeply fuse to utilize the global contextual information of the
features. In order to realize adaptive fusion of image features, LG-IFFB is designed with a two-branch
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structure: local branch and global branch. The local branch focuses on the optimal fusion of local
features, and the usual practice is to extract local features using a single 3x3 convolution [25-27],
which ignores the correlation of multi-scale local features. For this reason, in this paper, the input
multiscale image features (L1 to L6) undergo a 1x1 convolutional process that extends their
dimensionality.Next, a deep convolutional process is employed to extract local information, and in
particular, for each scale, we splice the extracted local features with other local features extracted at
different scales to enhance the correlation. The final generated locally optimized features L1'. .... .L6"
is obtained by processing the spliced features using deep convolutions and activating functions. In
the global branch, the image features at each scale are firstly summed to form a combined
representation U’, and the global feature descriptor S is obtained by global average pooling (GAP),
and the global feature The global feature descriptor S is processed by a fully connected (FC) network
consisting of two linear layers, a ReLU activation layer and a Sigmoid layer to obtain the feature
attention weight S'. The attention weight S’ is calibrated by multiplying it with each scale feature to
obtain the global calibration feature L1C......L6S. Finally,the local optimisation feature (L1...L6") is
multiplied by the global calibration feature (L16...L6S), where the multiplication is performed element
by element and fused to output the final fused feature map U. The fused feature map U contains both
local details and global context information, which can significantly improve the feature expression
capability.Compared with the DCE-Net [22] in Zero-DCE, which relies primarily on single-branch
convolution for learning the mapping relating the input image to the best-fit curve,LG-IFFB can
address the issue of detail loss or contrast imbalance in extremely low-light or high-dynamic-range
scenarios more effectively by integrating the link with multi-scale local details and global light
distribution.

2.2. Luminance Enhancement Network

This study proposes a luminance enhancement function for luminance Enhancement Network,
based on the illumination adjustment curves framework of Zero-DCE. The developed recurrent
mapping function adheres to two fundamental design criteria: (1) preservation of inter-pixel intensity
relationships through enforced monotonicity constraints, and (2) implementation of computational
simplicity and gradient accessibility to enable efficient error backpropagation. The luminance
enhancement function is formulated as a parametric quadratic transformation and can be represented
mathematically by the following expression:

E,(m)=E,(m)+S, (m)E,, (m)(1-E,, (m)),p<8 (1)

where Sp (m) is the pixel-by-pixel parameter matrix, the luminance-enhanced image resulting from p
iterations is known as Ep(m), whereas the enhanced version of this image after p-1 iterations is
referred to as Epi(m).Based on (1), this paper presents a design for a luminance enhancement
network, refer to Figure 2(C). Two parts make up the network’s inputs: the original low-light image
m € R®W3 and the fused feature map U € R®W2 after LG-IFFB processing. The final output of the
luminance feature map @€ R*W24 with a channel number of 24 is obtained by dividing the LG-IFFB
output of the fused feature map U is partitioned into 8 identical pixel-by-pixel parameter maps
(Sp(m), m =1, ..., 8) in order to take part in the iteration of the function.The initial input original image
Eo(m) = m, after 8 iterations, outputs a 3-channel enhanced image Es(m), which is subsequently
extended to 24 channels by 3 x 3 convolution to generate the luminance-enhanced feature map © =
Conv(Es(m)).

2.3. Adaptive Image Contrast Enhancement Block

Direct contrast enhancement of input features (e.g., linear stretching) introduces noise or
distortion due to unstable feature distribution. In a style migration task, Vedaldi et al. [28] argued
that instance normalization techniques can eliminate the contrast difference of image features in
order to allow the network to focus on learning content structure rather than luminance or colour
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distribution.Drawing on this idea, this paper uses channel normalization technique to improve the
stability of contrast enhancement of image features. The channel normalization operation is to
normalize each channel of the input feature map separately so that its mean is 0 and variance is 1,
ie.,:

A h -
p o hepe )

1/0§—|—£

where the feature map of channel C is represented by hc, pic refers to the mean values of channel c,
and ocrefers to the standard deviation value of channel c. & indicates the stabilisation coefficient.

On this basis,this paper proposes an adaptive image contrast enhancement block (AICEB).
Figure 3(a) illustrates the framework of the AICEB.The AICEB consists of several iterative
submodules (Iteration Sub-module), and each Iteration Sub-module contains 1 Adaptive Attention
Normalization Block (AANBlock) and 1 ReLu Activation layer.Figure 3(b) demonstrates the detailed
architecture of the AANBlock.The AICEB comprises several iterative submodules (Iteration Sub-
module), and each iteration contains one Adaptive Attention Normalization Block (AANBlock) and
one ReLu activation layer. Figure 3(b) illustrates the details of the AANBlock’s network structure.

The AANBIlock input in the kth submodule has two inputs: the luminance enhancement feature
map O obtained after processing by the luminance enhancement network and the preceding iterative
submodule Xxs output feature map.For the 1st iterative submodule,Xi is the luminance feature map
produced from the luminance enhancement network, which is represented by the symbol ®.Through
the learning of the luminance enhancement feature map ©, it generates the parameters a and b
needed for image contrast adjustment, thus allow the network to adaptively adjust the image contrast
according to the luminance distribution information adaptively. The specific realization process is as
follows:

In each iterative sub-module, take the kth iterative sub-module as an example, the features of
the luminance feature map O are first further extracted using a 3x3 convolution and a 5x5 convolution
to obtain the feature map ®’. Then, the global information of ®” is computed by Global Average
Pooling (GAP) and Global Maximum Pooling (GMP), respectively, and the outputs of GAP and GMP
are merged in the dimension of the channel to obtain statistical features of global information. The
global information statistical features obtained from splicing are processed by a Fully Connected (FC)
Layer and a Rectified Linear Unit (ReLU) activation functions are applied to generate the Channel
Attention Weight T. Multiplying ® with the channel attention weight T produces the feature map
a*. The Relu Activation Function is used for guaranteeing that pixel values a* are non-negative. Based
on a, a 7x7 convolutional layer combined with a Sigmoid Activation Function needs to be used in
order to generate the feature map 3*. In the formula for linearly enhancing the contrast, pixel values
from the feature maps a* and 3* act as the parameters a and b.

Employing parameters a and b derived from feature maps a* and 3%, a linear contrast transform
is applied to the features that have been normalized by the channels, and the contrast-enhanced result
X'k can be obtained. the output after ReLU activation processing is then output, i.e,, it is the output
of the kth iterative sub-module, Xiw+1. Particularly, in order to ensure the effective enhancement of the
low-light image contrast, a bias term of magnitude 1 is added to a * is added with a bias term of size
1, i.e., a*+1. The specific formulation is set out below:

Um,n)=axT@m,n)+b,0<m<H0<n<W 3)

where T(m,n)and U(m, n) denote the image features to be enhanced and the image features after

contrast enhancement, respectively; a and b are the parameters of image contrast enhancement,
specifically the pixel values of the feature maps a* and (3*.

X, - *
LA 4)

X471 = Relu((a +1) o
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where o and 1 represent the standard deviation and average of the feature map Xx, respectively.

In order to balance the image contrast enhancement effect and computational efficiency, this
paper sets out a proposal for an adaptive stopping mechanism founded on the stability of the
confidence level, while iteratively enhancing the image contrast, the contrast confidence level is
calculated in real time to evaluate the enhancement results, and the computational depth of the
network is adaptively adjusted, and its flow is presented in Figure 3(a).

Sub-module

from the Brightness
Enhancement Network

!

output

(a)

Figure 3. (a) Structure of AICEB (b) Structure of AANBlock.

After the iterative sub-module completes the image contrast enhancement processing, the
confidence of the current results is generated using the contrast confidence calculation module C. The
contrast confidence calculation module C consists of a variance calculation layer (Contrast), a Layer
1x1 Convolution (Conv) followed by a Sigmoid Activation layer. Confidence is calculated as follows:

confidence = Sigmoid(Conv(Contrast(x))) € [0,1] (5)

where the variance calculation layer Contrast(x) is:

Contrast (x) = 1 > (X, o )? (6)
hw 4, v

w and h refer to the width and height of the feature map x; xu. represent a pixel’s value at
position (1,v) in feature map X; and u indicates the mean value of all pixels in x. Variance is widely
used to measure image pixel dispersion; the higher the variance, the greater the difference between
pixels, i.e., the higher the contrast. If the absolute value of the difference of the confidence level for
three consecutive times is less than the preset threshold A, the enhancement effect of the feature map

can be considered to be stabilized, and the iteration is terminated and exited:

|conﬁden<:ek - confidencek_1| <A Vvkefll1-1,1-2} 7)

where confidencex represents the confidence at the kth layer, f is the index of the current iteration
number k, and the value of f is not less than 3. The preset threshold A is obtained by experiments on
the validation set [15] by taking into account the average number of iterations and the PSNR loss,
which is specifically taken as 0.0005.
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2.4. Loss Function

For the purpose of optimizing MSF-ACA training, this paper uses spatial consistency loss, color
consistency loss, mean absolute error loss,gradient-guided structural consistency loss, and perceptual
loss to comprehensively evaluate the image enhancement effect.

Spatial Consistency Loss (Lspa): The structural consistency before and after enhancement is
maintained by analyzing the luminance difference in the local region of the image, firstly, the image
is divided into M pixel blocks, where each block p is compared with its four neighborhoods ®(p);
then the luminance differences between the reference image S and the enhanced image T between
the corresponding blocks are calculated respectively, and finally the stability of the spatial relation is
constrained by the mean value of the squared error:

> (s,-8, [T, -T,|) ®)

qe®(p)

1
Lspa = ﬁ z MII;A:l

Color Consistency Loss (Lc): It is used to ensure the stability of the color distribution of the
content during the image enhancement process. The loss function achieves this goal by constraining
the intensity differences between different color channels. For any pair of channels (m, n) in the set

of channel pairs ¢, the sum of the squared differences of their average intensity valuesI™ and 1" is
computed:
2
L=, 2 (1"-1")",e= {R G), (R B),(GxB)}
©)
Mean Absolute Error Loss (L1): It is mainly used to prevent images from localized overexposure
or underexposure. This loss function achieves this goal by comparing the difference in pixel
luminance between the reference image and the enhanced image. The luminance value of the ith pixel
in the reference image is denoted as Yi, and the luminance value of the corresponding pixel in the
enhanced image is denoted as O;, and let the total number of pixels in the image be N:
Iy -o
' N
(10)
Gradient-guided Structural Consistency Loss (Lgc): By establishing structural similarity
constraints in the gradient domain, the consistency of luminance, contrast and structural features
during image enhancement is effectively maintained.This paper presents the gradient-based
structural similarity loss function (Gssm).The Gssv method outperforms the conventional SSIM
method in images with low light and blurring [29]. The gradient magnitude of the augmented image,
O, is expressed as Go(u, v), whilst the gradient magnitude of the reference images, Y, is expressed as
Gy(u, v). (u,v) are the row-column coordinates representing the pixels in the image, whereas C acts
as a stabilisation constant to prevent the denominator from equalling zero:
L 2ZUZVG02(u,V)GY(u,V)+C i an
23| Gy [ + 2.2 Gy )] +C

gsc

Perceptual Loss (Lperceptual): Perceptual loss aims to maintain semantic consistency between the
augmented image and the reference image through deep feature alignment. To achieve this goal, the
study uses an ImageNet-based pre-trained VGG network architecture as a static feature encoder.The
layer [ features obtained from the pre-trained VGG network are represented by ®i(x) and ®i(y). x
refers to the low-light-enhanced output image, y denotes the reference image and A: indicates the
weight used for the perceptual loss of layer .The VGG network is used to minimize the distance
between the low-light-enhanced image and reference image. Il.ll2denotes the L2 paradigm.

Lperceproal 06 = 22, Jo,00-0,00 12
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The total loss function (Lwtal) is the weighted average of the above five loss functions.

L = wlLspa + O)ZLcol + 0)3L1 + OJ4L + 0)5Lperceptua1 (13)

total gsc

where ©;.....05 is the weight parameter of each loss function.

3. Experiment
3.1. Implementation Details

In this paper, a total of 1,385 images are selected from the LOL datasets series (v1 [15] & v2 [30]),
and with the objective of speeding up the training process, a 256x256 pixel size window is selected
and the input images undergo center clipping. In the course of network training, Adam [32] optimizer
was used, Adam optimizer optimized the network for 40 cycles(batch size=1, learning rate=10-%).
Initialisation of all the network weights was performed using a zero-mean, 0.02 standard Gaussian
function, while the bias was originally defined as a fixed value. Implementation of this entire process
relied on the PyTorch [31] framework, and using an NVIDIA GeForce RTX 4060 graphics card, MSE-
ACA underwent both training and evaluation phases.

To evaluate the proposed low-light image enhancement approach, the proposed method is
compared with eight current state-of-the-art low-light image enhancement algorithms, specifically,
CLIP-LIT [33], DSLR [34], SCI [23], RUAS [41], URetinex [19], HEP [44], DeepLPF [35] and FMR- Net
[20].

3.2. Comparison and Analysis of Paired Data Sets

Quantitative analysis The efficacy of different enhancement methods on LOL-v2 subsets (LOL-
v2-real and LOL-v2-syn) was assessed through four metrics: PSNR and SSIM [36] for quality
evaluation, complemented by FLOPs for computational efficiency analysis, and the number of model
parameters (Params) were chosen to analyze the computational complexity of the model. As can be
seen from Table 1, excellent results were achieved in regard to the PSNR, FLOPs ,and parametric
evaluations are conducted across both real-world and synthetic versions of the LOL-v2 benchmark.
SCI along with RUAS show remarkable model lightweighting performance, but the PSNR and SSIM
of the LOL-v2-real and LOL-v2-syn datasets are significantly lower than those of the MSF-ACA.On
the LOL-v2-real dataset, MSF-ACA has a PSNR of 21.53 dB, which is better than URetinex’s 20.79 dB,
and an SSIM of 0.771, which is slightly lower than that of URetinex’s 0.814.0n the LOL-v2-syn dataset,
MSEF-ACA ranks higher in both PSNR and SSIM are ranked first in both metrics. In regard to the two
important performance metrics, PSNR and SSIM, which characterise an image enhancement effect,
both achieved the top two places, and the FLOPs of MSF-ACA of this paper’s method is 29.97G, which
is higher than that of URetinex’s 1.24G. However, the comprehensive performance of MSF-ACA is
better than that of URetinex on both datasets, with the performance gain far outweighing the increase
in the computing cost. The size of the parameter of both models is 0.02M, which fully verifies the
balance between performance and efficiency in lightweight design, and achieves SOTA effect in
image quality and model complexity.

Table 1. The LOL-v2 dataset is used to facilitate quantitative comparisons.

Methods Complexity LOLV2-real LOLV2-syn
FLOPs(G) Params(M) PSNR? SSIM1 PSNR? SSIM1
CLIP-LIT 18.24 0.27 15.26 0.601 16.16 0.666
DSLR 5.88 14.93 17.00 0.596 13.67 0.623
SCI 0.06 0.0003 17.30 0.540 16.54 0.614
RUAS 0.83 0.003 18.37 0.723 16.55 0.652
URetinex 1.24 0.02 20.79 0.814 13.10 0.642
HEP 14.07 1.32 18.29 0.747 16.49 0.649
DeepLPF 5.86 1.77 14.10 0.480 16.02 0.587
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FMR-Net 102.77 0.19 20.56 0.736 19.09 0.657
Ours 29.97 0.02 21.53 0.771 20.27 0.716

Visual analysis Figure 4 and Figure 5 show the visual comparison results between this paper’s
method and other state-of-the-art image enhancement methods on paired datasets, the LOL-v2-real
dataset is selected in Figure 4 and the LOL-v2-Synthetic dataset is selected in Figure 5. The results
from Figure 4 and Figure 5 show that the FMR-Net method is poor in detail retention, although it
improves in brightness, with obvious noise and artifacts in some regions.DeepLPF is deficient in both
detail retention and brightness enhancement. On the other hand, the method in this paper not only
significantly improves the overall brightness when enhancing the low-light image, but also performs
well in detail retention, the details in the image are clearly visible, yielding an effect that matches the
ground truth in visual fidelity. In addition, as can be seen from the zoomed-in regions in Figs. 4 and
5, FMR-Net still lacks in the processing of details, with obvious noise appearing in some regions,
URetinex has the problem of color deviation on LOL-v2-Synthetic, and the color and luminance of
the enhanced image produced by DeepLPF deviates significantly from the referenced image,
compared to which, the approach outlined presented in this paper effectively boosts local and global
contrast, producing sharper details while also performing well in noise suppression for better visual
results.

input FMR-Net URetinex DeepLPF Ours GT

Figure 4. visual comparison on the LOL-v2 real dataset.

input FMR-Net HEP DeepLPF Ours GT

Figure 5. visual comparison on the LOL-v2 Synthetic dataset.

3.3. Comparison and Analysis of Unpaired Data Sets

Quantitative Analysis The proposed MSF-ACA was compared with competing methodologies
using five unpaired datasets (LIME [17], DICM [7], NPE [38], MEF [37], and VV) to further validate
its effectiveness. Two non-reference perceptual metrics, PI [40] and BRI [39], were chosen for the
evaluation of the visual quality of the enhancement results. The visual quality is indicated by the
lower the metrics, the better. (Table 2 expresses the first-ranked and second-ranked results achieved
on a particular metric by bolding and underlining, respectively). As demonstrated by Table 2,
experimental results demonstrate our approach obtains the lowest BRI and PI scores on LIME, DICM
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as well as MEF datasets, as well as the lowest PI scores across the NPE and VV data sets. In the context
of average scores across the two metrics, the method in this paper is the lowest on all five datasets,
indicating the proposed method still achieves satisfactory performance metrics in unseen real-world
scenarios.

Table 2. Comparison of quantitative assessment of unpaired datasets.

DICM LIME MEF NPE VvV
BRI, PI] BRI, ©PI, BRI, PI, BRI PI, BRI PI|
CLIP-LIT 2418 355 2043 3.07 2067 311 1937 291 3600 5.40

Methods

DSLR 2567 407 2268 601 2249 674 33.69 507 2835 6.64
SCI 2792 370 2517 337 2671 328 2888 353 2280 3.64
RUAS 46.88 570 3488 458 4212 492 4897 565 3588 432
URetinex 2454 356 29.02 371 3472 366 2609 315 2245 289
HEP 2574 301 3186 574 3038 328 2973 236 39.86 298

DeepLPF 1993 359 2470 445 2240 404 17.09 3.08 2375 428
FMR-Net 1963 291 2896 377 2167 325 1801 270 1756 2.64
Ours 1445 236 16.61 276 1831 270 2544 178 28.02 232

Visual analysis Figure 6 shows the visual comparison results between this paper’s method and
the competing methods on the unpaired dataset, and rows 1-3 in the figure correspond to the image
enhancement results from the DICM, MEF, and VV datasets, respectively. For images from the DICM
dataset, the overall brightness of the house and the details of the sky sunset color can be better
recovered; for images from the MEF dataset, the sky and cloud colors can be enhanced more
naturally; for images from the VV dataset, the RUAS method and the SCI method underperform in
the recovery of the overall brightness, and in comparison with the CLIP-LIT and the HEP methods,
the method of this paper can better recover the texture color of the wall. Overall, this paper’s method
can still effectively recover the lighting and recreate the image’s details in unknown scenes,
demonstrating its ability to generalise.

input CLIP-LIT RUAS SCI HEP Ours

Figure 6. visual comparison on DICM, MEF, and VV non-reference datasets.

3.4. Ablation Experiment

The LOL-v2 dataset is used to perform ablation experiments.Using the luminance-only
enhancement network as the baseline model, the performance difference is analyzed by adding the
corresponding modules to verify the efficacy of the Local-Global Image Feature Fusion Module (LG-
IFFB), and Adaptive Image Contrast Enhancement Block (AICEB) proposed in this paper.

Local-Global Image Feature Fusion Block Model A introduces only the local-global image
feature fusion module based on the baseline model, which improves the SSIM and PSNR metrics to
0.01 and 0.74dB, respectively. From Figure 7, it is clear that the model A results in a greater image

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0758.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2025 d0i:10.20944/preprints202506.0758.v1

12 of 15

texture than the baseline model, such as the clouds in the sky, the texture of trees, and so on. This
proves that adding the local-global image feature fusion module can learn more expressive features.

Adaptive Image Contrast Enhancement Block Model B and Model C are based on Model A,
further adding Adaptive Image Contrast Enhancement Module (AICEB), a fixed number of iterations
is used by Model B, in this paper, the iteration count for each AICEB is pre-set to 10 and there are two
AICEB modules, so the overall iteration count is 20. Model C employs the adaptive stopping
mechanism proposed in this paper.

From Table 3, it can be found that there is no improvement in the SSIM metric value and the
PSNR metric is improved by 0.39 dB for Model B compared to Model A. Model C, by introducing the
adaptive stopping mechanism, the number of iterations decreases by an average of 9.9 iterations and
the average running time decreases by 0.08s compared to Model B, while the PSNR and SSIM metric
values are improved by 0.77 dB and 0.04, respectively. The accuracy and computational efficiency of
the model in processing images are improved at the same time. From the visual test in Figure 7, the
color and contrast of the image are significantly improved. The effectiveness of the AICEB module
and the adaptive stopping mechanism proposed herein has been proven.

Ablation test outcomes for the quantity of AICEB modules, as carried out in this paper, are
displayed in Table 4. When 3 AICEB modules are introduced into the model, compared with the
introduction of 2 AICEBs, there is no improvement in either the PSNR or the SSIM metrics, but
average iteration and running times have increased significantly. When the number of AICEB
modules is 2, a balance between the accuracy and efficiency of the model can be achieved.

Table 3. results of ablation experiments.

AICEB Number
Models LG-IFFB (fixed AICEB PSNR SSIM of Time(s)|
iteration) iterations|
Baseline 18.37 0.66 - -
A v 19.11 0.67 - -
B v v 19.50 0.67 20 0.22
C v v 20.27 0.71 10.1 0.14

input Baseline A B C GT

Figure 7. visual comparison of ablation studies.

Table 4. ablation studies of the number of AICEB modules.

Number of AICEB 1 2 3

PSNR/SSIM 19.79/0.68 20.27(+2.4%)/0.71(+4.4%) 20.20(+2.0%)/0.71(+4.4%)
Number of iterations 7.3 10.1(+38%) 26.4(+261%)

Average running time (s)  0.11 0.14(+27%) 0.22(+100%)
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3.5. Selection of Iteration Thresholds

The threshold value A for the adaptive stopping mechanism in the AICEB module is determined
based on the combined consideration of the average number of iterations and PSNR loss. From
0.00001 to 0.001, five different thresholds are selected, and the number of iterations and PSNR values
in different cases are shown in Table 5. It is not difficult to find that when A = 0.0005, the model
reduces the number of iterations by 14% while the PSNR loss is only 10%, which realizes the balance
between accuracy and efficiency, and for this reason, the A threshold is set to 0.0005 in this paper.

Table 5. Comparison of different thresholds and number of iterations and PSNRs.

Threshold 0.00001 0.00005 0.0001 0.0005 0.001
Number of iterations 20 19.5 19(-3%) 16.3(-14%) 15.1(-20%)
PSNR 7.6 9.9 9.4(-5%) 8.9(-10%) 8.4(-15%)

4. Conclusions

In this paper, a lightweight network (MSF-ACA) combining multi-scale feature fusion and
contrast adaptive adjustment is proposed to effectively realize high-quality enhancement to images
taken in low-light conditions. By designing a local-global two-branch feature fusion module (LG-
IFFB), the integration of multi-scale local details and global illumination information effectively
alleviates the problem of texture loss; an adaptive image contrast enhancement module (AICEB) is
introduced to adaptively balance the computational efficiency and enhancement effect through a
confidence scoring mechanism. A large number of experiments show that MSF-ACA not only
outperforms existing methods on typical datasets, but also has a significant advantage in
computational complexity.
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