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Abstract:  To  address  the  issues  of  loss  of  important  detailed  features,  insufficient  contrast 

enhancement  and  high  computational  complexity  in  existing  low‐light  image  enhancing 

methodologies, this paper presents a low‐light image enhancement network(MSF‐ACA), which uses 

multi‐scale feature fusion and adaptive contrast adjustment. Focus is placed on designing the local‐

global image feature fusion module (LG‐IFFB) and the adaptive image contrast enhancement module 

(AICEB), in which the LG‐IFFB adopts the local‐global dual‐branching structure to extract multi‐scale 

image features, and utilizes the element‐by‐element multiplication method to fuse the local details 

with  the global  illumination distribution  to alleviate  the problem of serious  loss of  image details, 

while the AICEB fuses the linear contrast The AICEB incorporates linear contrast enhancement and 

confidence  adaptive  stopping mechanism,  which  dynamically  adjusts  the  computational  depth 

according  to  the  confidence  of  the  feature  map,  balancing  the  contrast  enhancement  and 

computational efficiency. According to the results of the experiment, the parameter count of MSF‐

ACA  is  0.02M,  and  compared with  today’s mainstream  algorithms,  the  suggested model  attains 

21.53dB in PSNR when evaluated on the LOL‐v2‐real evaluation dataset, and the BRI is as low as 

16.04 on the unpaired dataset DICM, which provides a better detail clarity and color fidelity in visual 

enhancement, and it is a highly efficient and robust low‐light image model. 

Keywords:  low‐light  image  enhancement;  multi‐scale  fusion  network;  adaptive  contrast 

enhancement; lightweight 

 

1. Introduction 

Low‐light  images  are  generally  caused  by  factors  such  as  insufficient  light  given  by  the 

environment,  limitations  or  malfunctions  of  the  equipment,  noisy  signals,  or  improperly  set 

parameters when shooting. The presence of such images can make it difficult to perform complex 

optical tasks, which include identity recognition and target detection. There is widespread use of low‐

light image enhancement algorithms in security surveillance, medical imaging and other fields [1–4]. 

How  can  the  luminance  of  an  image  be  enhanced,  its  colour  recovered  and  its  texture  details 

improved, while also boosting the computational efficiency of enhancing low‐light images. Studying 

this area is essential for enhancing images taken in low‐light. Low‐light image enhancement is one of 

the hot topics in the field of image processing. 

Image enhancement algorithms can be classified into two main subsets: conventional methods 

that are manually constructed parameters, and deep learning‐based methods for enhancing images. 
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Figure 1. A comprehensive investigation into the enhancement of micro‐optical images, enc‐ompassing state‐of‐

the‐art methodologies  incorporating HEP  [44], URetinex  [19]  and  FMR‐N‐et  [20],  is  undertaken  through  a 

meticulous  quantitative  and  qualitative  analysis  (i.e.,  PSNR/SSIM/parameter).Compared with  other  similar 

methods, the method in this paper achieves better enhancement results with fewer model parameters. 

Development using traditional methods based on artificially constructed parameters began in 

the mid‐to‐late  20th  century.These methods  improve  the  overall  visual  effect  by  adjusting  the 

illumination, contrast and colour of an image using artificial parameters. Typical algorithms include 

histogram  equalisation  [5–7],  gamma  correction  [8–10]  and  Retinex  [11–14].The  histogram 

equalisation method  improves  image  contrast by  redistributing values across pixels; The gamma 

correction method adjusts  the  luminosity and contrast of an overexposed or underexposed  image 

using a non‐linear transformation; and Retinex algorithm, which was proposed in collaboration with 

McCann and Land, is rooted in the visual system of the human eye and improves the effect of uneven 

lighting by separating the light and reflection components. Although these traditional algorithms can 

effectively improve image clarity and visual effect, they have problems such as relying on experts’ 

experience, poor scene adaptability, and general enhancement effect. 

Deep  learning  based  image  enhancement  algorithms  are  gradually  becoming  mainstream 

methods as their results are generally better than traditional algorithms. According to the training 

method, it falls into two categories: supervision‐based methods and unsupervision‐based methods. 

Methodologies  involving supervision necessitate the acquisition of paired datasets under  low and 

normal lighting conditions through synthesis, shooting and data enhancement, and utilize the paired 

data for supervised training of image enhancement models. Common low‐light image enhancement 

datasets include LOL dataset [15], MIT‐Adobe FiveK dataset [16], LIME dataset [17], etc. 

Zhang [18] et al. proposed Image Kindling the Darkness (Kindling the Darkness), which uses 

supervised learning to train the network using paired image datasets with good results. The network 

first breaks  the  image down  into  light and reflection parts. Then,  the  light component  is used  for 

lighting  adjustments,  while  the  reflection  component  is  employed  for  removing  degradations. 

However,  it requires multi‐stage  training, and  the convolutional neural networks  (CNNs) used  to 

decompose color images, perform noise reduction on reflectance, and adjust illumination need to be 

trained  independently and then connected together for end‐to‐end fine‐tuning, which complicates 

and lengthens the process of training. As an extension of the Retinex framework, Wu et al. [19] put 

forward  a  deep unrolling network  called URetinex‐Net,which makes use  of pair‐wise data,  and 

implements  image  enhancement  through  a manually  designed  a  priori  and  optimization‐driven 

approach.  This  method  achieves  excellent  results  in  noise  suppression  and  feature  detail 

preservation, but its strong dependence on training data and high computational complexity limit its 

generalization ability  in complex unknown scenes.FMR‐Net proposed by Chen  [20] et al.  is a  fast 
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multiscale  residual network, which  rapidly boosts  the  image quality  in  low‐light by combining a 

highly optimised residual block with a multibranch structure, while preserving  image details and 

contrast. while maintaining  image  details  and  contrast,  but  it  suffers  from  serious  loss  of  high‐

frequency details and insufficient noise suppression. 

The above methods are mainly based on supervised learning, in order minimise dependency on 

paired illumination datasets, numerous scholars put forward image enhancement methods founded 

on unsupervised learning for low‐light conditions. Jiang [21] et al. proposed EnlightenGAN, which 

uses generative adversarial networks for unsupervised learning and introduces a self‐regularization 

mechanism,  but  it  suffers  from  limited  generalization  and unstable  training,  etc. Guo  [22]  et  al. 

proposed  a  zero‐reference depth  curve  estimation method‐Zero‐DCE, which  learns  the dynamic 

range adjustment through image‐specific curves, but its problem is that the accuracy is limited under 

extreme conditions and  the non‐reference  loss function relies on  the  image‐specific curves, but  its 

accuracy is limited under extreme conditions and the non‐reference loss function relies on the image‐

specific  curves.  The  problem  lies  in  the  limited  accuracy  under  extreme  conditions  and  the 

dependence of the non‐reference loss function on empirical parameters (e.g., exposure values).Ma 

[23]  proposed  a  self‐calibrating  illumination  (SCI)  learning  framework,  which  achieves  fast 

convergence  of  multi‐stage  outputs  to  a  consistent  state  through  a  progressive  illumination 

estimation module with shared weights and a self‐calibration module,  thus requiring only single‐

stage  inference  at  test  time. Combined with  unsupervised  training  loss  (fidelity  and  smoothing 

constraints), it enhances the model’s adaptability to complex low‐light scenes. However, the network 

still suffers from detail loss or color bias. 

Currently,  low‐light  image  enhancement  algorithms  primarily  suffer  from  detail  feature 

degradation, inadequate contrast enhancement, as well as the model has a high computing burden, 

for this reason, a low‐light image enhancing network is put forward in this paper, which is founded 

upon multi‐scale feature fusion and adaptive contrast adjustment, and designs a local‐global image 

feature fusion module (LG‐IFFB) and an adaptive image contrast enhancement module (AICEB). LG‐

IFFB  extracts multi‐scale  image  features  through  a  local‐global  dual‐branch  structure  and  uses 

element‐by‐element multiplication  to  fuse  the  local  details with  the  global  light  distribution  to 

alleviate the problem of image detail loss; AICEB combines a linear contrast enhancement formula 

with  a  confidence  stability‐driven  adaptive  stopping  mechanism  to  dynamically  adjust  the 

computational  depth  according  to  the  confidence  of  the  feature  map,  balancing  the  contrast 

enhancement and  computational  efficiency. The primary outcomes of  this  study are  summarised 

below: 

1. A  low‐light  image enhancing network based upon multi‐scale  feature  fusion and contrast 

adaptive adjustment  is proposed  to achieve  low‐light  image  enhancement  through  a  lightweight 

architecture  synergizing multi‐scale  image  feature  fusion  with  dynamic  optimization  of  image 

contrast. 

2. A local‐global image feature fusion module (LG‐IFFB) is designed, which adopts a dual‐path 

structure  of  local  branching  and  global  branching  to  simultaneously  extract  local  and  global 

information  at different  scales of  the  image,  realizing  a balance between detail preservation  and 

global  light optimization, and providing parameter mapping more suitable  for complex  low‐light 

scenes for the subsequent luminance enhancement network. 

3. An adaptive  image contrast enhancement module  (AICEB)  is proposed, which consists of 

multiple iterative sub‐modules, each of which dynamically generates contrast enhancement factors 

and  luminance  parameters  through  an  adaptive  attention  normalization  block  (AANBlock).  A 

confidence  scoring  mechanism  is  introduced  in  the  module  to  realize  the  adaptive  contrast 

enhancement, effectively balancing the contrast enhancement and computational efficiency. 

2. Methods 

The  MSF‐ACA  model  architecture  is  illustrated  in  Figure  2.  Firstly,  the  low‐light  image 

undergoes a convolutional operation that increases its amount of channels for feature maps, resulting 
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in 24 channels.Then, using the local‐global image feature fusion module (LG‐IFFB), the image multi‐

scale image features U are extracted and fused.In the luminance enhancement network, the multi‐

scale  image  features U are  first uniformly channelized, and each group of the segmented features 

serves as a luminance tuning parameter mapping, which is utilized to perform luminance adjustment 

on the original image m. Specifically, through the optimization process of eight iterations, the output 

of the Luminance‐enhanced feature map Θ. Θ will then be used as a component of the input to two 

subsequent cascaded Adaptive Image Contrast Boosting Modules (AICEBs), where the input to the 

first AICEB  is  the  two Θs, and  the output  is  the  intermediate  feature map Y.  Input  to  the second 

AICEB is the intermediate feature maps Y and Θ, while its output represents the intermediate features 

map Z. AICEB dynamically generates contrast  factors and  luminance parameters, and adaptively 

terminates  the  redundant  computation  through  a  confidence  scoring  mechanism  to  balance 

performance and efficiency. The two AICEBs sequentially optimize the features in a recursive form 

to gradually improve the image contrast and brightness. Finally, MSF‐ACA fuses the channels and 

reconstructs the image by using a 3×3 convolutional fusion channel.The main structure of MSF‐ACA 

references the residual join learning mechanism of local combination global [24]. 

 

Figure 2. MSF‐ACA model structure. 

2.1. Local‐Global Image Feature Fusion Block 

Local Global  Image Feature Fusion Block  (LG‐IFFB), Figure  2(B)  illustrates  its  structure,  the 

division of the process is primarily into two steps: first, multi‐scale feature extraction; second, image 

feature fusion. 

Inspired by  the structure of RFDB  [24] as well as RRFB  [24], LG‐IFFB employs a multi‐scale 

reparameterization  technique  for  feature  extraction,which  outputs  six  different  scales  of  image 

features  (denoted  as  L1  to  L6)  by  cascading  six  kinds  of  convolutional  kernel  to maximise  the 

preservation  image  texture  information.In order  to  reduce memory  loss, ADD operation  is used 

instead of Concat operation for feature fusion. In addition, we segment the input feature channels 

and select only one‐fourth of the total number of channels to extract and fuse features. Remaining 

image feature channels are then directly combined with  the  fused  features using  the residual  join 

method. This design is conducive to enhanced computational efficiency as well as reduced feature 

redundancy within the cascade structure. 

Traditional multi‐scale feature fusion methods [43] usually perform only simple feature splicing 

or summing processing, which cannot deeply fuse to utilize the global contextual information of the 

features. In order to realize adaptive fusion of image features, LG‐IFFB is designed with a two‐branch 
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structure:  local branch and global branch. The  local branch  focuses on  the optimal  fusion of  local 

features, and  the usual practice  is  to extract  local  features using a single 3×3 convolution  [25–27], 

which ignores the correlation of multi‐scale local features. For this reason, in this paper, the input 

multiscale  image  features  (L1  to  L6)  undergo  a  1×1  convolutional  process  that  extends  their 

dimensionality.Next, a deep convolutional process is employed to extract local information, and in 

particular, for each scale, we splice the extracted local features with other local features extracted at 

different scales to enhance the correlation. The final generated locally optimized features L1L. .... .L6L 

is obtained by processing the spliced features using deep convolutions and activating functions. In 

the  global  branch,  the  image  features  at  each  scale  are  firstly  summed  to  form  a  combined 

representation U′ , and the global feature descriptor S is obtained by global average pooling (GAP), 

and the global feature The global feature descriptor S is processed by a fully connected (FC) network 

consisting of  two  linear  layers, a ReLU activation  layer and a Sigmoid  layer  to obtain  the  feature 

attention weight S′. The attention weight S’ is calibrated by multiplying it with each scale feature to 

obtain  the global calibration  feature L1G......L6G. Finally,the  local optimisation  feature  (L1L...L6L)  is 

multiplied by the global calibration feature (L1G...L6G), where the multiplication is performed element 

by element and fused to output the final fused feature map U. The fused feature map U contains both 

local details and global context information, which can significantly improve the feature expression 

capability.Compared with the DCE‐Net [22] in Zero‐DCE, which relies primarily on single‐branch 

convolution  for  learning  the mapping  relating  the  input  image  to  the best‐fit  curve,LG‐IFFB  can 

address the issue of detail loss or contrast imbalance in extremely low‐light or high‐dynamic‐range 

scenarios more  effectively  by  integrating  the  link with multi‐scale  local  details  and  global  light 

distribution. 

2.2. Luminance Enhancement Network 

This study proposes a luminance enhancement function for luminance Enhancement Network, 

based  on  the  illumination  adjustment  curves  framework  of Zero‐DCE.  The developed  recurrent 

mapping function adheres to two fundamental design criteria: (1) preservation of inter‐pixel intensity 

relationships through enforced monotonicity constraints, and (2) implementation of computational 

simplicity  and  gradient  accessibility  to  enable  efficient  error  backpropagation.  The  luminance 

enhancement function is formulated as a parametric quadratic transformation and can be represented 

mathematically by the following expression: 

           p p‐1 p p‐1 p‐1E m = E m + S m E m 1 ‐ E m ,p 8   (1) 

where Sp (m) is the pixel‐by‐pixel parameter matrix,the luminance‐enhanced image resulting from p 

iterations  is  known  as Ep(m), whereas  the  enhanced  version  of  this  image  after p‐1  iterations  is 

referred  to  as  Ep‐1(m).Based  on  (1),  this  paper  presents  a  design  for  a  luminance  enhancement 

network, refer to Figure 2(C). Two parts make up the network’s inputs: the original low‐light image 

m ∈ RH×W×3 and the fused feature map U ∈ RH×W×24 after LG‐IFFB processing. The final output of the 

luminance feature map Θ∈ RH×W×24 with a channel number of 24 is obtained by dividing the LG‐IFFB 

output of  the  fused  feature map U  is partitioned  into  8  identical pixel‐by‐pixel parameter maps 

(Sp(m), m = 1, ..., 8) in order to take part in the iteration of the function.The initial input original image 

E0(m)  = m,  after  8  iterations,  outputs  a  3‐channel  enhanced  image E8(m), which  is  subsequently 

extended to 24 channels by 3 × 3 convolution to generate the luminance‐enhanced feature map Θ = 

Conv(E8(m)). 

2.3. Adaptive Image Contrast Enhancement Block 

Direct  contrast  enhancement  of  input  features  (e.g.,  linear  stretching)  introduces  noise  or 

distortion due to unstable feature distribution. In a style migration task, Vedaldi et al. [28] argued 

that  instance normalization  techniques  can  eliminate  the  contrast difference of  image  features  in 

order to allow the network to focus on learning content structure rather than luminance or colour 
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distribution.Drawing on this idea, this paper uses channel normalization technique to improve the 

stability  of  contrast  enhancement  of  image  features.  The  channel  normalization  operation  is  to 

normalize each channel of the input feature map separately so that its mean is 0 and variance is 1, 

i.e.,: 



＋

c c

2
c

h μ
h

σ ε

‐
=     (2) 

where the feature map of channel C is represented by hC, μc refers to the mean values of channel c, 

and σc refers to the standard deviation value of channel c. ε indicates the stabilisation coefficient. 

On  this  basis,this  paper  proposes  an  adaptive  image  contrast  enhancement  block  (AICEB). 

Figure  3(a)  illustrates  the  framework  of  the  AICEB.The  AICEB  consists  of  several  iterative 

submodules (Iteration Sub‐module), and each Iteration Sub‐module contains 1 Adaptive Attention 

Normalization Block (AANBlock) and 1 ReLu Activation layer.Figure 3(b) demonstrates the detailed 

architecture of  the AANBlock.The AICEB  comprises  several  iterative  submodules  (Iteration  Sub‐

module), and each iteration contains one Adaptive Attention Normalization Block (AANBlock) and 

one ReLu activation layer. Figure 3(b) illustrates the details of the AANBlock’s network structure. 

The AANBlock input in the kth submodule has two inputs: the luminance enhancement feature 

map Θ obtained after processing by the luminance enhancement network and the preceding iterative 

submodule Xk’s output feature map.For the 1st iterative submodule,X1 is the luminance feature map 

produced from the luminance enhancement network, which is represented by the symbol Θ.Through 

the  learning of  the  luminance  enhancement  feature map  Θ,  it generates  the parameters  a  and b 

needed for image contrast adjustment, thus allow the network to adaptively adjust the image contrast 

according to the luminance distribution information adaptively. The specific realization process is as 

follows: 

In each iterative sub‐module, take the kth iterative sub‐module as an example, the features of 

the luminance feature map Θ are first further extracted using a 3×3 convolution and a 5×5 convolution 

to obtain  the  feature map Θ’. Then,  the global  information of Θ’  is computed by Global Average 

Pooling (GAP) and Global Maximum Pooling (GMP), respectively, and the outputs of GAP and GMP 

are merged in the dimension of the channel to obtain statistical features of global information. The 

global information statistical features obtained from splicing are processed by a Fully Connected (FC) 

Layer and a Rectified Linear Unit (ReLU) activation functions are applied to generate the Channel 

Attention Weight T. Multiplying Θ’ with the channel attention weight T produces the feature map 

α*. The Relu Activation Function is used for guaranteeing that pixel values α* are non‐negative. Based 

on α*, a 7×7 convolutional layer combined with a Sigmoid Activation Function needs to be used in 

order to generate the feature map β*. In the formula for linearly enhancing the contrast, pixel values 

from the feature maps α* and β* act as the parameters a and b. 

Employing parameters a and b derived from feature maps α* and β*, a linear contrast transform 

is applied to the features that have been normalized by the channels, and the contrast‐enhanced result 

X’k+1 can be obtained. the output after ReLU activation processing is then output, i.e., it is the output 

of the kth iterative sub‐module, Xk+1. Particularly, in order to ensure the effective enhancement of the 

low‐light image contrast, a bias term of magnitude 1 is added to α * is added with a bias term of size 

1, i.e., α*+1. The specific formulation is set out below: 

U T(m,n) = a (m,n) + b,0 < m < H,0 < n < W     (3) 

where  T(m,n) andU(m,n) denote  the  image  features  to be enhanced and  the  image  features after 

contrast  enhancement,  respectively;  a  and  b  are  the  parameters  of  image  contrast  enhancement, 

specifically the pixel values of the feature maps α* and β*. 

k )k+1
*
+ 1

X ‐μ *
X = Relu(( ) +β

σ
α     (4) 
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where σ and μ represent the standard deviation and average of the feature map Xk, respectively. 

In order  to balance  the  image contrast enhancement effect and computational efficiency,  this 

paper  sets  out  a  proposal  for  an  adaptive  stopping mechanism  founded  on  the  stability  of  the 

confidence  level, while  iteratively  enhancing  the  image  contrast,  the  contrast  confidence  level  is 

calculated  in  real  time  to  evaluate  the  enhancement  results,  and  the  computational depth of  the 

network is adaptively adjusted, and its flow is presented in Figure 3(a). 

 

Figure 3. (a) Structure of AICEB (b) Structure of AANBlock. 

After  the  iterative  sub‐module  completes  the  image  contrast  enhancement  processing,  the 

confidence of the current results is generated using the contrast confidence calculation module C. The 

contrast confidence calculation module C consists of a variance calculation layer (Contrast), a Layer 

1×1 Convolution (Conv) followed by a Sigmoid Activation layer. Confidence is calculated as follows: 

Contrast confidence = Sigmoid(Conv( (x))) [0,1]   (5) 

where the variance calculation layer Contrast(x) is: 

2

hw
u v

u v

 ，
，

（ ） （ ）
1

Contrast x = x ‐μ     (6) 

w and h  refer  to  the width and height of  the  feature map x; xu,v  represent a pixel’s value at 

position (u,v) in feature map X; and μ indicates the mean value of all pixels in x. Variance is widely 

used to measure image pixel dispersion; the higher the variance, the greater the difference between 

pixels, i.e., the higher the contrast. If the absolute value of the difference of the confidence level for 

three consecutive times is less than the preset threshold λ, the enhancement effect of the feature map 

can be considered to be stabilized, and the iteration is terminated and exited: 

 k k‐1confidence ‐ confidence < λ, k {l, l ‐ 1, l ‐ 2}   (7) 

where confidencek represents the confidence at the kth layer, f is the index of the current iteration 

number k, and the value of f is not less than 3. The preset threshold λ is obtained by experiments on 

the validation set [15] by taking into account the average number of iterations and the PSNR loss, 

which is specifically taken as 0.0005. 
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2.4. Loss Function 

For the purpose of optimizing MSF‐ACA training, this paper uses spatial consistency loss, color 

consistency loss, mean absolute error loss,gradient‐guided structural consistency loss, and perceptual 

loss to comprehensively evaluate the image enhancement effect. 

Spatial Consistency Loss  (Lspa): The  structural  consistency  before  and  after  enhancement  is 

maintained by analyzing the luminance difference in the local region of the image, firstly, the image 

is divided into M pixel blocks, where each block p is compared with its four neighborhoods Ф(p); 

then the luminance differences between the reference image S and the enhanced image T between 

the corresponding blocks are calculated respectively, and finally the stability of the spatial relation is 

constrained by the mean value of the squared error: 

 
p

 
2

M
p=1 p q p q

q Φ( )
spa

1
L = M

M
S ‐S ‐ T ‐T     (8) 

Color Consistency Loss (Lcol): It is used to ensure the stability of the color distribution of the 

content during the image enhancement process. The loss function achieves this goal by constraining 

the intensity differences between different color channels. For any pair of channels (m, n) in the set 

of channel pairs ε,  the sum of  the squared differences of their average  intensity values
mI and

nI is 

computed: 

   
m n

m nI I
 


( , ) ε

2

colL = ‐ ,ε = (R,G),(R, B),(G B)        

  (9) 
Mean Absolute Error Loss (L1): It is mainly used to prevent images from localized overexposure 

or  underexposure.  This  loss  function  achieves  this  goal  by  comparing  the  difference  in  pixel 

luminance between the reference image and the enhanced image. The luminance value of the ith pixel 

in the reference image is denoted as Yi, and the luminance value of the corresponding pixel in the 

enhanced image is denoted as Oi, and let the total number of pixels in the image be N: 
N

N

i=1 i i
1

Y ‐O
L =                  

  (10) 
Gradient‐guided  Structural  Consistency  Loss  (Lgsc):  By  establishing  structural  similarity 

constraints  in  the gradient domain,  the consistency of  luminance, contrast and structural  features 

during  image  enhancement  is  effectively  maintained.This  paper  presents  the  gradient‐based 

structural  similarity  loss  function  (GSSIM).The  GSSIM method  outperforms  the  conventional  SSIM 

method in images with low light and blurring [29]. The gradient magnitude of the augmented image, 

O, is expressed as Go(u, v), whilst the gradient magnitude of the reference images, Y, is expressed as 

GY(u, v). (u,v) are the row‐column coordinates representing the pixels in the image, whereas C acts 

as a stabilisation constant to prevent the denominator from equalling zero: 

 
u v

gsc

u v u v

o

o

u v u v

u v u v

 

     

Y
2 2

Y

2 G ( , )G ( , ) + C
L = 1 ‐

G ( , ) + G ( , ) + C
  (11) 

Perceptual Loss (Lperceptual): Perceptual loss aims to maintain semantic consistency between the 

augmented image and the reference image through deep feature alignment. To achieve this goal, the 

study uses an ImageNet‐based pre‐trained VGG network architecture as a static feature encoder.The 

layer  l  features obtained  from  the pre‐trained VGG network are represented by Φl(x) and Φl(y). x 

refers to  the  low‐light‐enhanced output  image, y denotes  the reference  image and λl  indicates the 

weight used for  the perceptual  loss of  layer  l.The VGG network  is used  to minimize  the distance 

between the low‐light‐enhanced image and reference image. ‖.‖2 denotes the L2 paradigm. 

l l l
l

 
2

perceptual
2

L (x, y) = λ (x) ‐ (y)   (12) 
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The total loss function (Ltotal) is the weighted average of the above five loss functions. 

gsc    spa 51 2 3 1 4col perceptualtota
L = L + L + L + L + Ll   (13) 

where   51   is the weight parameter of each loss function. 

3. Experiment 

3.1. Implementation Details 

In this paper, a total of 1,385 images are selected from the LOL datasets series (v1 [15] & v2 [30]), 

and with the objective of speeding up the training process, a 256×256 pixel size window is selected 

and the input images undergo center clipping. In the course of network training, Adam [32] optimizer 

was used, Adam optimizer optimized  the network  for 40  cycles(batch  size=1,  learning  rate=10⁻⁴). 

Initialisation of all the network weights was performed using a zero‐mean, 0.02 standard Gaussian 

function, while the bias was originally defined as a fixed value. Implementation of this entire process 

relied on the PyTorch [31] framework, and using an NVIDIA GeForce RTX 4060 graphics card, MSF‐

ACA underwent both training and evaluation phases. 

To  evaluate  the  proposed  low‐light  image  enhancement  approach,  the  proposed method  is 

compared with eight current state‐of‐the‐art low‐light image enhancement algorithms, specifically, 

CLIP‐LIT [33], DSLR [34], SCI [23], RUAS [41], URetinex [19], HEP [44], DeepLPF [35] and FMR‐ Net 

[20]. 

3.2. Comparison and Analysis of Paired Data Sets 

Quantitative analysis The efficacy of different enhancement methods on LOL‐v2 subsets (LOL‐

v2‐real  and  LOL‐v2‐syn)  was  assessed  through  four metrics:  PSNR  and  SSIM  [36]  for  quality 

evaluation, complemented by FLOPs for computational efficiency analysis, and the number of model 

parameters (Params) were chosen to analyze the computational complexity of the model. As can be 

seen from Table 1, excellent results were achieved  in regard  to the PSNR, FLOPs  ,and parametric 

evaluations are conducted across both real‐world and synthetic versions of the LOL‐v2 benchmark. 

SCI along with RUAS show remarkable model lightweighting performance, but the PSNR and SSIM 

of the LOL‐v2‐real and LOL‐v2‐syn datasets are significantly lower than those of the MSF‐ACA.On 

the LOL‐v2‐real dataset, MSF‐ACA has a PSNR of 21.53 dB, which is better than URetinex’s 20.79 dB, 

and an SSIM of 0.771, which is slightly lower than that of URetinex’s 0.814.On the LOL‐v2‐syn dataset, 

MSF‐ACA ranks higher in both PSNR and SSIM are ranked first in both metrics. In regard to the two 

important performance metrics, PSNR and SSIM, which characterise an image enhancement effect, 

both achieved the top two places, and the FLOPs of MSF‐ACA of this paper’s method is 29.97G, which 

is higher than that of URetinex’s 1.24G. However, the comprehensive performance of MSF‐ACA is 

better than that of URetinex on both datasets, with the performance gain far outweighing the increase 

in the computing cost. The size of the parameter of both models is 0.02M, which fully verifies the 

balance between performance  and  efficiency  in  lightweight design,  and  achieves SOTA  effect  in 

image quality and model complexity. 

Table 1. The LOL‐v2 dataset is used to facilitate quantitative comparisons. 

Methods 
Complexity  LOLV2‐real  LOLV2‐syn 

FLOPs(G)  Params(M)  PSNR↑  SSIM↑  PSNR↑  SSIM↑ 

CLIP‐LIT  18.24  0.27  15.26  0.601  16.16  0.666 

DSLR  5.88  14.93  17.00  0.596  13.67  0.623 

SCI  0.06  0.0003  17.30  0.540  16.54  0.614 

RUAS  0.83  0.003  18.37  0.723  16.55  0.652 

URetinex  1.24  0.02  20.79  0.814  13.10  0.642 

HEP  14.07  1.32  18.29  0.747  16.49  0.649 

DeepLPF  5.86  1.77  14.10  0.480  16.02  0.587 
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FMR‐Net  102.77  0.19  20.56  0.736  19.09  0.657 

Ours  29.97  0.02  21.53  0.771  20.27  0.716 

Visual analysis Figure 4 and Figure 5 show the visual comparison results between this paper’s 

method and other state‐of‐the‐art image enhancement methods on paired datasets, the LOL‐v2‐real 

dataset is selected in Figure 4 and the LOL‐v2‐Synthetic dataset is selected in Figure 5. The results 

from Figure 4 and Figure 5 show that the FMR‐Net method is poor in detail retention, although it 

improves in brightness, with obvious noise and artifacts in some regions.DeepLPF is deficient in both 

detail retention and brightness enhancement. On the other hand, the method in this paper not only 

significantly improves the overall brightness when enhancing the low‐light image, but also performs 

well in detail retention, the details in the image are clearly visible, yielding an effect that matches the 

ground truth in visual fidelity. In addition, as can be seen from the zoomed‐in regions in Figs. 4 and 

5, FMR‐Net still  lacks  in  the processing of details, with obvious noise appearing  in some regions, 

URetinex has the problem of color deviation on LOL‐v2‐Synthetic, and the color and luminance of 

the  enhanced  image  produced  by  DeepLPF  deviates  significantly  from  the  referenced  image, 

compared to which, the approach outlined presented in this paper effectively boosts local and global 

contrast, producing sharper details while also performing well in noise suppression for better visual 

results. 

 

Figure 4. visual comparison on the LOL‐v2 real dataset. 

 

Figure 5. visual comparison on the LOL‐v2 Synthetic dataset. 

3.3. Comparison and Analysis of Unpaired Data Sets 

Quantitative Analysis The proposed MSF‐ACA was compared with competing methodologies 

using five unpaired datasets (LIME [17], DICM [7], NPE [38],MEF [37], and VV) to further validate 

its effectiveness. Two non‐reference perceptual metrics, PI  [40] and BRI  [39], were chosen  for  the 

evaluation of  the visual quality of  the enhancement results. The visual quality  is  indicated by the 

lower the metrics, the better. (Table 2 expresses the first‐ranked and second‐ranked results achieved 

on  a  particular metric  by  bolding  and  underlining,  respectively). As  demonstrated  by  Table  2, 

experimental results demonstrate our approach obtains the lowest BRI and PI scores on LIME, DICM 
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as well as MEF datasets, as well as the lowest PI scores across the NPE and VV data sets. In the context 

of average scores across the two metrics, the method in this paper is the lowest on all five datasets, 

indicating the proposed method still achieves satisfactory performance metrics in unseen real‐world 

scenarios. 

Table 2. Comparison of quantitative assessment of unpaired datasets. 

Methods 
DICM  LIME  MEF  NPE  VV 

BRI↓    PI↓  BRI↓  PI↓  BRI↓  PI↓  BRI↓  PI↓  BRI↓  PI↓ 

CLIP‐LIT  24.18  3.55  20.43  3.07  20.67  3.11  19.37  2.91  36.00  5.40 

DSLR  25.67  4.07  22.68  6.01  22.49  6.74  33.69  5.07  28.35  6.64 

SCI  27.92  3.70  25.17  3.37  26.71  3.28  28.88  3.53  22.80  3.64 

RUAS  46.88  5.70  34.88  4.58  42.12  4.92  48.97  5.65  35.88  4.32 

URetinex  24.54  3.56  29.02  3.71  34.72  3.66  26.09  3.15  22.45  2.89 

HEP  25.74  3.01  31.86  5.74  30.38  3.28  29.73  2.36  39.86  2.98 

DeepLPF  19.93  3.59  24.70  4.45  22.40  4.04  17.09  3.08  23.75  4.28 

FMR‐Net  19.63  2.91  28.96  3.77  21.67  3.25  18.01  2.70  17.56  2.64 

Ours  14.45  2.36  16.61  2.76  18.31  2.70  25.44  1.78  28.02  2.32 

Visual analysis Figure 6 shows the visual comparison results between this paper’s method and 

the competing methods on the unpaired dataset, and rows 1‐3 in the figure correspond to the image 

enhancement results from the DICM, MEF, and VV datasets, respectively. For images from the DICM 

dataset,  the overall brightness of  the house  and  the details of  the  sky  sunset  color  can be better 

recovered;  for  images  from  the MEF  dataset,  the  sky  and  cloud  colors  can  be  enhanced more 

naturally; for images from the VV dataset, the RUAS method and the SCI method underperform in 

the recovery of the overall brightness, and in comparison with the CLIP‐LIT and the HEP methods, 

the method of this paper can better recover the texture color of the wall. Overall, this paper’s method 

can  still  effectively  recover  the  lighting  and  recreate  the  image’s  details  in  unknown  scenes, 

demonstrating its ability to generalise. 

 

Figure 6. visual comparison on DICM, MEF, and VV non‐reference datasets. 

3.4. Ablation Experiment 

The  LOL‐v2  dataset  is  used  to  perform  ablation  experiments.Using  the  luminance‐only 

enhancement network as the baseline model, the performance difference is analyzed by adding the 

corresponding modules to verify the efficacy of the Local‐Global Image Feature Fusion Module (LG‐

IFFB), and Adaptive Image Contrast Enhancement Block (AICEB) proposed in this paper. 

Local‐Global  Image  Feature  Fusion Block Model A  introduces  only  the  local‐global  image 

feature fusion module based on the baseline model, which improves the SSIM and PSNR metrics to 

0.01 and 0.74dB, respectively. From Figure 7, it is clear that the model A results in a greater image 
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texture than the baseline model, such as the clouds in the sky, the texture of trees, and so on. This 

proves that adding the local‐global image feature fusion module can learn more expressive features. 

Adaptive Image Contrast Enhancement Block Model B and Model C are based on Model A, 

further adding Adaptive Image Contrast Enhancement Module (AICEB), a fixed number of iterations 

is used by Model B, in this paper, the iteration count for each AICEB is pre‐set to 10 and there are two 

AICEB modules,  so  the  overall  iteration  count  is  20. Model  C  employs  the  adaptive  stopping 

mechanism proposed in this paper. 

From Table 3, it can be found that there is no improvement in the SSIM metric value and the 

PSNR metric is improved by 0.39 dB for Model B compared to Model A. Model C, by introducing the 

adaptive stopping mechanism, the number of iterations decreases by an average of 9.9 iterations and 

the average running time decreases by 0.08s compared to Model B, while the PSNR and SSIM metric 

values are improved by 0.77 dB and 0.04, respectively. The accuracy and computational efficiency of 

the model in processing images are improved at the same time. From the visual test in Figure 7, the 

color and contrast of the image are significantly improved. The effectiveness of the AICEB module 

and the adaptive stopping mechanism proposed herein has been proven. 

Ablation  test outcomes  for  the quantity of AICEB modules, as carried out  in  this paper, are 

displayed  in Table 4. When 3 AICEB modules are  introduced  into  the model, compared with  the 

introduction of 2 AICEBs,  there  is no  improvement  in  either  the PSNR or  the SSIM metrics, but 

average  iteration  and  running  times  have  increased  significantly.When  the  number  of  AICEB 

modules is 2, a balance between the accuracy and efficiency of the model can be achieved. 

Table 3. results of ablation experiments. 

Models  LG‐IFFB 

AICEB 

(fixed 

iteration) 

AICEB  PSNR  SSIM 

Number 

of 

iterations↓ 
Time(s)↓ 

Baseline        18.37  0.66  ‐  ‐ 

A  √      19.11  0.67  ‐  ‐ 

B  √  √    19.50  0.67  20  0.22 

C  √    √  20.27  0.71  10.1  0.14 

 

Figure 7. visual comparison of ablation studies. 

Table 4. ablation studies of the number of AICEB modules. 

Number of AICEB  1  2  3 

PSNR/SSIM  19.79/0.68  20.27(+2.4%)/0.71(+4.4%) 20.20(+2.0%)/0.71(+4.4%) 

Number of iterations  7.3  10.1(+38%)  26.4(+261%) 

Average running time（s）  0.11  0.14(+27%)  0.22(+100%) 
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3.5. Selection of Iteration Thresholds 

The threshold value λ for the adaptive stopping mechanism in the AICEB module is determined 

based  on  the  combined  consideration of  the  average number  of  iterations  and PSNR  loss.  From 

0.00001 to 0.001, five different thresholds are selected, and the number of iterations and PSNR values 

in different cases are shown  in Table 5.  It  is not difficult  to  find  that when λ = 0.0005,  the model 

reduces the number of iterations by 14% while the PSNR loss is only 10%, which realizes the balance 

between accuracy and efficiency, and for this reason, the λ threshold is set to 0.0005 in this paper. 

Table 5. Comparison of different thresholds and number of iterations and PSNRs. 

Threshold  0.00001  0.00005  0.0001  0.0005  0.001 

Number of iterations  20  19.5  19(‐3%)  16.3(‐14%)  15.1(‐20%) 

PSNR  7.6  9.9  9.4(‐5%)  8.9(‐10%)  8.4(‐15%) 

4. Conclusions 

In  this  paper,  a  lightweight  network  (MSF‐ACA)  combining multi‐scale  feature  fusion  and 

contrast adaptive adjustment is proposed to effectively realize high‐quality enhancement to images 

taken  in  low‐light conditions. By designing a  local‐global  two‐branch  feature  fusion module  (LG‐

IFFB),  the  integration  of multi‐scale  local  details  and  global  illumination  information  effectively 

alleviates the problem of texture loss; an adaptive image contrast enhancement module (AICEB) is 

introduced  to adaptively balance  the  computational efficiency and enhancement effect  through a 

confidence  scoring mechanism. A  large  number  of  experiments  show  that MSF‐ACA  not  only 

outperforms  existing  methods  on  typical  datasets,  but  also  has  a  significant  advantage  in 

computational complexity. 
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