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Abstract: In robot navigation and manipulation, accurately determining the camera’s pose relative to 

the environment is crucial for effective task execution. In this paper, we systematically prove that this 

problem corresponds to the Perspective-3-Point (P3P) formulation, where exactly three known 3D 

points and their corresponding 2D image projections are used to estimate the pose of a stereo camera. 

In image-based visual servoing (IBVS) control, the system becomes overdetermined, as the 6 degrees 

of freedom (DoF) of the stereo camera must align with 9 observed 2D features in the scene. When 

more constraints are imposed than available DoFs, global stability cannot be guaranteed, as the 

camera may become trapped in a local minimum far from the desired configuration during servoing. 

To address this issue, we propose a novel control strategy for accurately positioning a calibrated 

stereo camera. Our approach integrates a feedforward controller with a Youla parameterization-

based feedback controller, ensuring robust servoing performance. Through simulations, we 

demonstrate that our method effectively avoids local minima and enables the camera to reach the 

desired pose accurately and efficiently. 

Keywords: PnP problem; Sterero camera system; image-based visual servoing; eye-in-hand 

configuration; feedforward and feedback control; accurate camera pose 

 

1. Introduction 

Determining the accurate pose of the camera is a fundamental problem in robot manipulations, 

as it provides the spatial transformation needed to map 3D world points to 2D image coordinates. 

The task involving camera pose estimation is essential for various applications, such as augmented 

reality [1], 3D reconstruction [2], SLAM [3], and autonomous navigation [4]. This becomes especially 

critical when robots operate in unstructured, fast-changing, and dynamic environments, performing 

tasks such as human-robot interaction, accident recognition and avoidance, and eye-in-hand visual 

servoing. In such scenarios, accurate camera pose estimation ensures that visual data is readily 

available for effective robotic control [5]. 

A classic approach to estimating the pose of a calibrated camera is solving the Perspective-n-

Point (PnP) problem [6], which establishes a mathematical relationship between a set of n 3D points 

in the world and their corresponding 2D projections in an image. To uniquely determine the pose of 

a monocular camera in space, it is a Perspective-4-Point (P4P) problem, where exactly 4 known 3D 

points and their corresponding 2D image projections are used. Bujnak et al. [7] generalize four 

solutions for P3P problem while giving a single unique solution existed for P4P problem in a fully 

calibrated camera scenario. To increase accuracy, modern PnP approaches considers more than three 

2D-3D correspondences. Among PnP solutions, EPnP (Efficient PnP) method finds the optimal 

estimation of pose from a linear system that expresses each reference point as a weighted sum of four 

virtual control points [8]. Another advanced approach, SQPnP (Sparse Quadratic PnP) formulates the 

problem as a sparse quadratic optimization, achieving enhanced accuracy by minimizing a sparse 

cost function [9]. 
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In recent years, many other methods have been developed to show improved accuracy than PnP 

based methods. For instance, Alkhatib et al. [10] utilize Structure from Motion (SfM) to estimate a 

camera’s pose by extracting and matching key features across various images taken from different 

viewpoints to establish correspondences. Moreover, Wang et al. [11] introduce visual odometry into 

camera’s pose estimations based on the movement between consecutive frames. In addition, recent 

advancements in deep learning have led to the development of models, such as Convolutional Neural 

Networks, specifically tailored for camera pose estimation [12–14]. However, these advanced 

methods often come with significant computational costs, requiring multiple images from different 

perspectives for accurate estimation. In contrast, PnP-based approaches offer a balance between 

accuracy and efficiency, as they can estimate camera pose from a single image, making them highly 

suitable for real-time applications such as navigation and scene understanding. 

In image-based visual servoing (IBVS) [15], the primary goal is to control a robot’s motion using 

visual feedback. Accurate real-time camera pose estimation is crucial for making informed control 

decisions, particularly in eye-in-hand (EIH) configurations [16,17], where a camera is mounted 

directly on a robot manipulator. In this setup, robot motion directly induces camera motion, making 

precise pose estimation essential. Due to its computational efficiency, PnP-based approaches remain 

widely applied in real-world IBVS tasks [18–20]. The PnP process begins by establishing 

correspondences between 3D feature points and their 2D projections in the camera image. The PnP 

algorithm then computes the camera pose from these correspondences, translating the geometric 

relationship into a format that the IBVS controller can use. By detecting spatial discrepancies between 

the current and desired camera poses, the robot can adjust its movements accordingly. 

However, PnP-based IBVS presents challenges for visual control in robotics. One key issue is 

that IBVS often results in an overdetermined system, where the number of visual features exceeds 

the number of joint variables available for adjustment. For example, at least four 2D-3D 

correspondences are needed for a unique pose solution [6], but a camera’s full six-degree-of-freedom 

(6-DOF) pose means that a 6-DOF robot may need to align itself with eight or more observed features. 

In traditional IBVS [15], the interaction matrix (or image Jacobian) defines the relationship between 

feature changes and joint velocities. When the system is overdetermined, this matrix contains more 

constraints than joint variables, leading to redundant information. Research [15] suggests that this 

redundancy may cause the camera to converge to local minima, failing to reach the desired pose. 

Although local asymptotic stability is always ensured in IBVS, global asymptotic stability cannot be 

guaranteed when the system is overdetermined. 

Many studies have explored solutions to mitigate the local minimum problem in IBVS. One 

approach, proposed by Nicholas et al. [21], introduces a switched control method, where the system 

alternates between different controllers to escape local minima and avoid singularities in the image 

Jacobian. Another strategy, developed by Chaumette et al. [22], utilizes a 2-1/2-D visual servoing 

technique, which combines image-based and position-based features. This integration allows the 

camera to navigate around local minima during motion execution. Roque et al. [23] implement a 

model predictive control (MPC) approach, optimizing the quadrotor’s trajectory to enhance 

robustness against local minima by predicting and adjusting control inputs in real time. 

While these methods achieve significant improvements in most scenarios, they also introduce 

computational challenges compared to traditional IBVS. The switched control method requires 

different control strategies tailored to specific dynamics, increasing the complexity of the overall 

control architecture [24]. The 2-1/2-D visual servoing method demands real-time processing of both 

visual and positional data, which can impose significant computational loads and limit performance 

in dynamic environments [25]. MPC approaches introduce additional computational overhead by 

requiring complex optimization at every time step, making real-time implementation costly [26]. 

In this paper, we focus on the PnP framework for determining and controlling the pose of a 

stereo camera within an image-based visual servoing (IBVS) architecture. In traditional IBVS, depth 

information between objects and the image plane is crucial for developing the interaction matrix. 

However, with a monocular camera, depth can only be estimated or approximated using various 
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algorithms [15], and inaccurate depth estimation may lead to system instability. In contrast, a stereo 

camera system can directly measure depth through disparity between two image planes, enhancing 

system stability. 

A key novelty of this paper is providing a systematic proof that stereo camera pose 

determination in IBVS can be formulated as a P3P (Perspective-3-Point) problem, which, to the best 

of our knowledge, has not been explored in previous research. Since three corresponding points, 

totaling nine coordinates, are used to control the six DoFs camera pose, the IBVS control system for 

a stereo camera is overdetermined, leading to the potential issue of local minima during control 

maneuvers. While existing approaches can effectively address local minima, they often introduce 

excessive computational overhead, making them impractical for high-speed real-world applications. 

To address this challenge, we propose a feedforward-feedback control architecture. The 

feedback component follows a cascaded control loop based on the traditional IBVS framework [15], 

where the inner loop handles robot joint rotation, and the outer loop generates joint angle targets 

based on visual data. One key improvement in this work is the incorporation of both kinematics and 

dynamics during the model development stage. Enhancing model fidelity in the control design 

improves pose estimation precision and enhances system stability, particularly for high-speed tasks. 

Both control loops are designed using Youla parameterization [27], a robust control technique that 

enhances resistance to external disturbances. The feedforward controller takes target joint 

configurations, which are associated with the desired camera pose as inputs, ensuring a fast system 

response while avoiding local minima traps. Simulation results presented in this paper demonstrate 

that the proposed control system effectively moves the stereo camera to its desired pose accurately 

and efficiently, making it well-suited for high-speed robotic applications. 

2. System Configuration 

An eye-in-hand robotic system has been developed to precisely control the pose of a stereo 

camera system, as illustrated in Figure 1. The robotic manipulator is equipped with six revolute joints, 

allowing unrestricted movement of the camera across six degrees of freedom (DoFs)—three for 

positioning and three for orientation. Assume a set of fiducial markers is placed in the workspace, 

with their coordinates fixed and predefined in an inertial frame. Utilizing the Hough transform [28] 

in computer vision, these markers can be detected and localized by identifying their centers in images 

captured by the stereo camera system. The control system within the robotic manipulator aligns the 

camera to its desired pose by matching the detected 2D features in the current frame with target 2D 

features. Throughout this process, it is assumed that all fiducial markers remain within the camera’s 

field of view. As depicted in Figure 1, multiple Cartesian coordinate systems are illustrated. The base 

frame {O} serves as an inertial reference fixed to the bottom of the robot manipulator, while the 

camera frame {C} is a body-fixed frame attached to the robot’s end-effector. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1603.v1

https://doi.org/10.20944/preprints202502.1603.v1


 4 of 26 

 

 

Figure 1. The eye-in-hand robot configuration. 

3. Proof of P3P for the Stereo Camera System 

Given its intrinsic parameters and a set of n correspondences between its 3D points and 2D 

projections to determine the camera’s pose is known as perspective-n-point (PnP) problem. This well-

known work [7] has proved that at least four correspondences are required to uniquely determine 

the pose of a monocular camera, a situation referred to as the P4P problem. 

To illustrate, consider the P3P case for a monocular camera. Let points A, B, and C exist in space, 

with 𝑂1, 𝑂2 and 𝑂3  representing different perspective centers. The angles ∠ AOB, ∠ AOC and ∠ 

BOC remain the same across all three perspectives. Given a fixed focal length, the image coordinates 

of points A, B, and C will be identical when observed from these three perspectives. In other words, 

it is impossible to uniquely identify the camera’s pose based solely on the image coordinates of three 

points. 

 

Figure 2. P3P case of a monocular camera. 

The PnP problem with a stereo camera has not been thoroughly addressed in prior research. A 

stereo camera can detect three image coordinates of a 3D point in space. This paper proposes that a 

complete solution to the PnP problem for a stereo camera can be framed as a P3P problem. Below is 

the complete proof of this proposition. 

Proof: 

For a stereo system, if all intrinsic parameters are fixed and given, we can readily compute the 

3D coordinates of an object point given the image coordinates of that point. This provides a unique 

mapping from the image coordinates of a point to its corresponding 3D coordinates in a Cartesian 
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frame. The orientation and position of the camera system uniquely define the origin and axis 

orientations of this Cartesian coordinate system in space. Consequently, PnP problem can be framed 

as follows: given n points with their 3D coordinates measured in an unknown Cartesian coordinate 

system in space, what is the minimum number n required to accurately determine the position and 

orientation of the 3D Cartesian coordinate frame established in that space? 

1) P1P problem with the stereo camera: 

If we know the coordinates of a single point in space, defined by a 3D Cartesian coordinate 

system, an infinite number of corresponding coordinate systems can be established. Any such 

coordinate system can have its origin placed on the surface of a sphere centered at this point, with a 

radius 𝑅 = √𝑋𝐶2
+ 𝑌𝐶2

+ 𝑍𝐶2
, where [𝑋𝐶, 𝑌𝐶 , 𝑍𝐶]𝑇 are the coordinates measured by the Cartesian 

system (see Figure 3). 

 

Figure 3. P1P Problem with a Stereo Camera System. 

2) P2P problem with the stereo camera: 

When the coordinates of two points in space are known, an infinite number of corresponding 

coordinate systems can be established. Any valid coordinate system can have its origin positioned on 

a circle centered at point O with a radius 𝑅 as illustrated in Figure 4. This circle is constrained by the 

triangle formed by points 𝑂𝐶 , 𝑃1, and 𝑃2, where the sides of the triangle are defined by the lengths 

𝑅1, 𝑅2  and 𝐷 . Specifically, 𝑅1 = √𝑋1
𝐶2

+ 𝑌1
𝐶2

+ 𝑍1
𝐶2

, 𝑅2 = √𝑋2
𝐶2

+ 𝑌2
𝐶2

+ 𝑍2
𝐶2

,  𝐷 =

√(𝑋1
𝐶 − 𝑋2

𝐶)2 + (𝑌1
𝐶 − 𝑌2

𝐶)2 + (𝑍1
𝐶 − 𝑍2

𝐶)2. 

The radius of the circle R corresponds to the height of the base D of the triangle. The center of 

the circle O is located at the intersection of the height and the base. 
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Figure 4. P2P problem with a stereo camera system. All potential cartesian systems are located on the circle 

plotted in red. 

3) P3P problem with the stereo camera: 

When three points in space are known, and the lines connecting these points are not collinear, 

we can uniquely establish one coordinate system. As illustrated in the figure below, three non-

collinear points define a plane in space, which has a uniquely defined normal unit vector 𝑛⃑ . Given 

the coordinates of the three points, we can calculate vectors as follows: the vector 𝑃1𝑃2
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   = (𝑋2

𝐶 −

𝑋1
𝐶 , 𝑌2

𝐶 − 𝑌1
𝐶 , 𝑍2

𝐶 − 𝑍1
𝐶), and the vector 𝑃1𝑃3

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   = (𝑋3
𝐶 − 𝑋1

𝐶 , 𝑌3
𝐶 − 𝑌1

𝐶 , 𝑍3
𝐶 − 𝑍1

𝐶). The unit vector 𝑛⃑  which is 

perpendicular to the plane formed by these three points, can be expressed as: 

𝑛⃑  = 
𝑃1𝑃2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ×𝑃1𝑃3⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ 

|𝑃1𝑃2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ×𝑃1𝑃3⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ |
  (1) 

Here, × denotes the cross product. 

The angles between 𝑛⃑  and XYZ axes of the coordinate system can be expressed as follows: 

cos(𝜃𝑥) = 𝑛⃑ ∙ 𝑖   (2) 

cos(𝜃𝑦) = 𝑛⃑ ∙ 𝑗  (3) 

cos(𝜃𝑧) = 𝑛⃑ ∙ 𝑘⃑  (4) 

Where 𝜃𝑥, 𝜃𝑦 and 𝜃𝑧 are the angles between 𝑛⃑  and the unit vectors in the X, Y, and Z directions, 

denoted as 𝑖 , 𝑗 , and 𝑘⃑  respectively. Therefore, with the direction 𝑛⃑  fixed in space, the orientations 

of each axis of the coordinate system can be computed uniquely. 

According to the P1P problem, the origin of the coordinate system must lie on the surface of a 

sphere centered at 𝑃1 with radius = √𝑋1
𝐶2

+ 𝑌1
𝐶2

+ 𝑍1
𝐶2

 as depicted in Figure 3. Each coordinate 

system established with a different origin point on the surface of this sphere results in a unique 

configuration of the axis orientations. Therefore, as the orientations of the axes are defined in space, 

the position of the frame (or the position of the origin) is also uniquely defined. 

In conclusion, the P3P problem is sufficient to solve the PnP problem for a stereo camera system. 

 

Figure 5. P3P Problem with a Stereo Camera System. 

Prove Concluded 

This proposition indicates that to uniquely determine the full 6 DoFs of the stereo camera, at 

least three points (or nine 2D features) are required to match in the image-based visual servoing 

control. 
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4. Model Development 

4.1. Stereo Camera Model 

Depth between the objects to the camera plane is either approximated or estimated in the IBVS 

for generating the interaction matrix [15]. Using a stereo camera system in IBVS eliminates the 

inaccuracies associated with monocular depth estimation, as it directly measures depth by leveraging 

the disparity between the left and right images. 

The stereo camera model is illustrated in Figure 6. A stereo camera consists of two lenses 

separated by a fixed baseline b. Each lens has a focal length 𝐹 (measured in mm) which is the distance 

from the image plane to the focal point. Assuming the camera is calibrated, the intrinsic parameters: 

b, 𝐹 is accurately estimated. A scene point 𝐼 is measured in the 3D coordinate frame {C} centered at 

the middle of the baseline with its coordinates as [𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶]𝑇 . The stereo camera model maps the 

3D coordinates of this point to its 2D coordinates projected on the left and right image plane as 

[𝑢𝑙 , 𝑣]𝑇 and [𝑢𝑟 , 𝑣]𝑇, respectively. The full camera projection map, incorporating both intrinsic and 

extrinsic parameters, is given by: 

𝑠 ∙ 𝑝𝑖𝑚𝑎𝑔𝑒 = 𝐾 ∙ [𝑅|𝑇] ∙ 𝑃𝐶  (5) 

Where 𝑝𝑖𝑚𝑎𝑔𝑒  are the image coordinates of the point and 𝑃𝐶  are the 3D coordinates measured in the 

camera frame {C}. 𝑠 is the scale factor that ensures correct projection between 2D and 3D features. 

𝐾 is the intrinsic matrix with a size of 3X3, and the mathematical expression is presented as: 

𝐾 =  [
 𝐹 𝑘  𝑢0

0  𝐹  𝑣0

0 0 1

] (6) 

Where 𝑘 is the skew factor, which represents the angle between the image axes (u and v axis). 𝑢0 

and 𝑣0 are coordinates offsets in image planes. 

In Equation (5), R is the rotational matrix from camera frame {C} to each image coordinate frame, 

and T is the translation matrix from camera frame {C} to each camera lens center. Since there is no 

rotation between the camera frame {C} and image frames but only a translation along the 𝑋𝐶 axis 

occurs, the transformation matrices for the left and right image planes are expressed as: 

[𝑅|𝑇]𝐿𝑒𝑓𝑡 = [
 1 0  0
0  1  0
0 0 1

|
-𝑏/2
0
0

] (7) 

[𝑅|𝑇]𝑅𝑖𝑔ℎ𝑡 = [
 1 0  0
0  1  0
0 0 1

|
b/2
0
0

] (8) 

Assume the u and v axis are perfectly perpendicular (take k = 0), and there are no offsets in the 

image coordinates (take 𝑢0 = 𝑣0 = 0 ) for both lens. Also, set factor 𝑠 = 𝑍𝐼
𝐶  accounts for perspective 

depth scaling. The projection equations for the left and right image planes can be rewritten in 

homogeneous coordinates as: 

𝑍𝐼
𝐶 ∙ [

𝑢𝑙

𝑣
1
] = [

 𝐹 0  0
0  𝐹  0
0 0 1

] ∙ [
 1 0  0
0  1  0
0 0 1

|
𝑏/2
0
0

] ∙

[
 
 
 
𝑋𝐼

𝐶

𝑌𝐼
𝐶

𝑍𝐼
𝐶

1 ]
 
 
 

 (9) 

𝑍𝐼
𝐶 ∙ [

𝑢𝑟

𝑣
1

] = [
 𝐹 0  0
0  𝐹  0
0 0 1

] ∙ [
 1 0  0
0  1  0
0 0 1

|
-b/2
0
0

] ∙

[
 
 
 
𝑋𝐼

𝐶

𝑌𝐼
𝐶

𝑍𝐼
𝐶

1 ]
 
 
 

 (10) 

Equations (9) and (10) establish the mathematical relationship between the 3D coordinates of a 

point in the camera frame {C} and its 2D projections on the left and right image planes. The pixel 
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value along the 𝑣 -axis remains the same for both images. As a result, a scene point’s 3D coordinates 

can be mapped to a set of three image coordinates in the stereo camera system, expressed as: 

Stereo-camera mapping 𝑀 ：𝑃𝐶 = [𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶]𝑇 → 𝑝𝑖𝑚𝑎𝑔𝑒 = [𝑢𝑙 , 𝑢𝑟 , 𝑣]𝑇  (11) 

The mapping function 𝑀 is nonlinear and depends on the stereo camera parameters 𝑃𝑎_𝑐𝑎𝑚𝑒𝑟𝑎, 

specifically b, and 𝐹. 

 

Figure 6. The projection of a scene object on the stereo camera’s image planes. Note: The v-coordinate on each 

image plane is not displayed in this plot but is measured along the axis that is perpendicular to and pointing out 

of the plot. 

4.2. Robot Manipulator Kinematic Model 

A widely used method for defining and generating reference frames in robotic applications is 

the Denavit-Hartenberg (D-H) convention [29]. In this approach, each robotic link is associated with 

a Cartesian coordinate frame  𝑂𝑖𝑋𝑖𝑌𝑖𝑍𝑖 . According to the D-H convention, the homogeneous 

transformation matrix 𝐴𝑖
𝑖−1, which represents the transformation from frame 𝑖 − 1 to frame 𝑖, can 

be decomposed into a sequence of four fundamental transformations: 

𝐴𝑖
𝑖−1  =  𝑅𝑜𝑡𝑧,𝑞𝑖

𝑇𝑟𝑎𝑛𝑠𝑧,𝑑𝑖
𝑇𝑟𝑎𝑛𝑠𝑥,𝑎𝑖

𝑅𝑜𝑡𝑥,𝛼𝑖
 

Expanding the transformation into its matrix form: 

𝐴𝑖
𝑖−1=[

𝑐𝑞𝑖
−𝑠𝑞𝑖

0 0

𝑠𝑞𝑖
𝑐𝑞𝑖

0 0

0 0 1 0
0 0 0 1

] [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖

0 0 0 1

] [

1 0 0 𝑎𝑖

0 1 0 0
0 0 1 0
0 0 0 1

] [

1 0 0 0
0 𝑐𝛼𝑖

−𝑠𝛼𝑖
0

0 𝑠𝛼𝑖
𝑐𝛼𝑖

0

0 0 0 1

]  

(12) 

=[

𝑐𝑞𝑖
−𝑠𝑞𝑖

𝑐𝛼𝑖
𝑠𝑞𝑖

𝑠𝛼𝑖
𝑎𝑖𝑐𝑞𝑖

𝑠𝑞𝑖
𝑐𝑞𝑖

𝑐𝛼𝑖
−𝑐𝑞𝑖

𝑠𝛼𝑖
𝑎𝑖𝑠𝑞𝑖

0 𝑠𝛼𝑖
𝑐𝛼𝑖

𝑑𝑖

0 0 0 1

] (13) 
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Note: 𝑐𝜃𝑖
≡ cos (𝑞𝑖), 𝑐𝛼𝑖

≡ cos (𝛼𝑖), 𝑠𝜃𝑖
≡ sin (𝑞𝑖), 𝑠𝛼𝑖

≡ sin (𝛼𝑖) (14) 

The parameters 𝑞𝑖, 𝑎𝑖, 𝛼𝑖 and 𝑑𝑖 define the link and joint characteristics of the robot. Here, 𝑎𝑖 

is the link length, 𝑞𝑖 is the joint rotational angle, 𝛼𝑖 is the twist angle, and 𝑑𝑖  is the offset between 

consecutive links. The values for these parameters are determined following the procedure outlined 

in [29]. 

To compute the transformation from the end-effector frame 𝑂6𝑋6𝑌6𝑍6 (denoted as {E}) to the 

base frame 𝑂0𝑋0𝑌0𝑍0  (denoted as {O}), we multiply the individual transformations along the 

kinematic chain: 

𝑇6
0 = 𝐴1

0𝐴2
1𝐴3

2𝐴4
3𝐴5

4𝐴6
5 (15) 

Furthermore, the transformation matrix from the base frame {O} to the end-effector frame {E} 

can be derived by taking the inverse of 𝑇6
0: 

𝑇0
6 = (𝑇6

0)−1 (16) 

If a point 𝑃𝑂  is defined in the base frame, its coordinates in the end-effector frame 𝑃𝐸  can be 

found using: 

𝑃𝐸 = 𝑇0
6 𝑃𝑂  (17) 

Assuming that the camera remains static relative to the end-effector, we introduce a constant 

transformation matrix 𝑇𝐸
𝐶 that maps points from the end-effector frame {E} to the camera frame {C}. 

For a stereo camera system, this camera frame is located at the center of the stereo baseline, as shown 

in Figure 6. The coordinates of a point in space, measured in the base frame, can then be expressed in 

the camera frame as: 

𝑃𝐶 = 𝑇𝐸
𝐶𝑇0

6 𝑃𝑂 (18) 

Equation (18) describes how a given 3D point in the base frame 𝑃𝑂= [𝑋𝑂, 𝑌𝑂 , 𝑍𝑂] is mapped to 

the camera frame 𝑃 𝐶= [𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶] using transformation: 

Robot manipulator mapping ℋ ：𝑃𝑂 = [𝑋𝑂, 𝑌𝑂 , 𝑍𝑂]𝑇 → 𝑃𝐶 = [𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶]𝑇  (19) 

The mapping function ℋ  is nonlinear and depends on the current joint angle of robot 𝑞 =

[𝑞𝑖|i ϵ 1,2,3,4,5,6], robot geometric parameter 𝑃𝑎_𝑟𝑜𝑏𝑜𝑡 = [𝑎𝑖 , 𝛼𝑖 , 𝑑𝑖  |i ϵ 1,2,3,4,5,6], and constant 

transformation matrix 𝑇𝐸
𝐶 . 

4.3. Eye-in-Hand Kinematic Model 

By combining the stereo camera mapping 𝑀 from Equation (11) and the robot manipulator 

mapping ℋ from Equation (19), we define a nonlinear transformation 𝓕, which maps any point 

measured in the base frame {O} to its image coordinates as captured by the stereo camera. This 

transformation is expressed as: 

Eye-in-hand mapping ℱ ：𝑃𝑂 = [𝑋𝑂, 𝑌𝑂 , 𝑍𝑂]𝑇 → 𝑝𝑖𝑚𝑎𝑔𝑒 = [𝑢𝑙 , 𝑢𝑟 , 𝑣]𝑇  (20) 

The Mapping ℱ is nonlinear and depends on variables current joint angles: 𝑞 and parameters 

𝑃𝑎 , which includes stereo camera parameter 𝑃𝑎_𝑐𝑎𝑚𝑒𝑟𝑎 , robot geometric parameter 𝑃𝑎_𝑟𝑜𝑏𝑜𝑡 ,  and 

transformation matrix 𝑇𝐸
𝐶. In other words: 

For any time 𝑡 ≥ 0, 𝑝𝑖𝑚𝑎𝑔𝑒 =  ℱ(𝑞(𝑡), 𝑃𝑎, 𝑃𝑂)   (21) 

𝑃𝑎 = [𝑃𝑎𝑐𝑎𝑚𝑒𝑟𝑎
, 𝑃𝑎𝑟𝑜𝑏𝑜𝑡

, 𝑇𝐸
𝐶] (22) 
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4.4. Robot Inverse Kinematic Model 

Inverse kinematics determines the joint angles required to achieve a given camera pose relative 

to the inertial frame. The camera pose in the inertial frame can be expressed as a 4X4 matrix: 

𝑃𝑜𝑠𝑒𝑂 = [

𝑛𝑥 𝑠𝑥
𝑛𝑦 𝑠𝑦

𝑎𝑥 𝑑𝑥

𝑎𝑦 𝑑𝑦

𝑛𝑧 𝑠𝑧
0 0

𝑎𝑧 𝑑𝑧

0 1

] (23) 

Here, the vectors [𝑛𝑥, 𝑛𝑦 , 𝑛𝑧]
𝑇 , [𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧]

𝑇 and [𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧]
𝑇 represent the camera’s directional 

vectors for Yaw, Pitch, and Roll, respectively, in the base frame {C}. Additionally, the vector 

[𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧]
𝑇 denotes the absolute position of the camera center in the base frame {C}. 

The camera pose in the camera frame {C} is straightforward as it can be expressed as another 

4X4 matrix: 

𝑃𝑜𝑠𝑒𝐶 = [

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

] (24) 

The nonlinear inverse kinematics problem involves solving for the joint angles 𝑞 that satisfy the 

equation: 

𝑃𝑜𝑠𝑒𝐶 = 𝑇𝐸
𝐶 ∙ 𝑇0

6(𝑞) ∙ 𝑃𝑜𝑠𝑒𝑂   (25) 

where 𝑇𝐸
𝐶  is the transformation from the end-effector frame to the camera frame, and 𝑇0

6(𝑞) 

represents the transformation from the base frame to the end-effector frame, which is a function of 

the joint angles 𝑞. 

The formulas for computing each joint angle are derived from the geometric parameters of the 

robot. The results of the inverse kinematics calculations for the ABB IRB 4600 elbow manipulator [30], 

used for simulations in this paper, are summarized in Appendix A. 

4.5. Robot Dynamic Model 

Dynamic models are included in the inner joint control loop, which will be discussed in section 

6. Without derivation, the dynamic model of a serial of 6-link rigid, non-redundant, fully actuated 

robot manipulator can be written as [31]: 

(𝐷(𝑞) + 𝐽)𝑞̈ + (𝐶(𝑞, 𝑞̇) +
𝐵

𝑟
)𝑞̇ + g(𝑞) = 𝑢 (26) 

Where 𝑞 𝜖 ℝ6𝑋1 is the vector of joint positions, and 𝑢 𝜖 ℝ6𝑋1 is the vector of electrical power input 

from DC motors inside joints, 𝐷(𝑞)  𝜖 ℝ6𝑋6  is the symmetric positive defined matrix, 

𝐶(𝒒, 𝒒̇) 𝜖 ℝ6𝑋6 is the vector of centripetal and Coriolis effects, 𝑔(𝒒) 𝜖 ℝ6𝑋1  is the vector of 

gravitational torques, 𝐽𝜖 ℝ6𝑋6 is a diagonal matrix expressing the sum of actuator and gear inertias, 

𝐵 𝜖 ℝ6𝑋1 is the damping factor, 𝑟 𝜖 ℝ6𝑋1 is the gear ratio. 

5. Control Policy Diagram 

Figure 7 illustrates the overall control system architecture, designed to guide the robot 

manipulator so that the camera reaches its desired pose, 𝑝𝑜𝑠𝑒𝑂̅̅ ̅̅ ̅̅ ̅̅ 𝜖 ℝ4𝑋4, in the world space. To achieve 

this, three fiducial markers are placed within the camera’s field of view, with their coordinates in the 

inertial frame pre-determined and represented as 𝑃𝑂𝜖 ℝ9𝑋1. Using the robot’s inverse kinematics and 

the eye-in-hand kinematic model, the expected image coordinates of these fiducial markers, when 

viewed from the desired camera pose, are computed as 𝑝𝑖𝑚𝑎𝑔𝑒̅̅ ̅̅ ̅̅ ̅̅ 𝜖 ℝ9𝑋1 . These computed image 

coordinates serve as reference targets in the feedback control loop. 

The IBVS framework is implemented within a cascaded feedback loop. In the outer control loop, 

the camera controller processes the visual feedback error, 𝑒𝑝 , which represents the difference 

between the image coordinates of the fiducial points at the current and desired camera poses. Based 
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on this error, the outer loop generates reference joint angles, 𝑞𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝜖 ℝ
6𝑋1, to correct the robot’s 

configuration. 

The inner control loop, shown in Figure 8, incorporates the robot’s dynamic model to regulate 

the joint angles, ensuring they align with the commanded reference angles, 𝑞𝑟𝑒𝑓𝜖ℝ
6𝑋1. However, due 

to the limitations of low-fidelity and inexpensive joint encoders, as well as inherent dynamic errors 

such as joint compliance, high frequency noises and low frequency model disturbances are 

introduced into the system. All sources of errors from the joint control loop are collectively modeled 

as an input disturbance,  𝑑𝑞𝑇
 𝜖ℝ6𝑋1, which affects the outer control loop. 

The feedforward control loop operates as an open-loop system, quickly bringing the camera as 

close as possible to its target pose, despite the presence of input disturbances. The feedforward 

controller outputs a reference joint angle command,  𝑞𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑  𝜖ℝ
6𝑋1, which is sent to the inner 

loop to facilitate rapid convergence to the desired configuration. 

 

Figure 7. Feedforward-feedback control architecture. Note: In mathematics, the in-loop hardware is equivalent 

to the Eye-in-hand Kinematics Model. 

 

Figure 8. Inner joint angle control loop. 

6. Controller Designs 

6.1. Inner Joint Angle Control Loop 

As shown in Figure 8, the primary goal of the inner joint controller is to stabilize the manipulator 

dynamics, which is expressed as a nonlinear Equation (26). 

Simplify Equation (5.1) as follows: 
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𝑀(𝑞)𝑞̈ + ℎ(q, q̇ ) = u (27) 

With:  

𝑀(𝑞) =  𝐷(𝑞) + 𝐽 (28) 

ℎ(q, q̇ ) =  (𝐶(𝑞, 𝑞̇) +
𝐵

𝑟
)𝑞̇ + g(𝑞) (29) 

Then, transform the control input as following: 

𝑢 =  𝑀(𝑞)𝑣 + ℎ(q, q̇ )  (30) 

where 𝑣 𝜖ℝ6𝑋1 is a virtual input. Then, substitute for 𝑢 in Equation (27) using Equation (30), and 

since 𝑀(𝑞)𝜖 ℝ6𝑋6 is invertible, we will have a reduced system equation as follows: 

𝑞̈ =  𝑣 (31) 

This transformation is feedback linearization technique with the new system equation given in 

Equation (31). This equation represents 6 uncoupled double integrators. The overall feedback 

linearization method is illustrated in Figure 9. In this control block diagram, the joint angle 𝑞 

𝜖ℝ6𝑋1 are forced to follow the target joint angle 𝑞𝑅  𝜖ℝ6𝑋1. The Nonlinear interface transforms the 

linear virtual control input 𝑣 𝜖ℝ6𝑋1to the nonlinear control input 𝑢 𝜖ℝ6𝑋1 by using Equation (30). 

The output of the manipulator dynamic model, the joint angles, 𝑞 𝜖ℝ6𝑋1, and their first derivatives, 

𝑞̇ 𝜖ℝ6𝑋1 , are utilized to calculate 𝑀(𝑞) 𝜖 ℝ6𝑋6and ℎ(q, q̇ )  𝜖 ℝ6𝑋1 in the Nonlinear interface. The 

linear joint controller is designed using Youla parameterization technique [27] to control the 

nominally linear system in Equation (31). 

The design of a linear Youla controller with nominally linear plant is presented next. 

Since the transfer functions between all inputs to outputs in Equation (31) are the same and 

decoupled, it is valid to first design a Single Input and Single Output (SISO) controller and use the 

multiple of the same controller for a six-dimension to obtain the Multiple Input and Multiple Output 

(MIMO) version. In other words, first design a controller 𝐺𝐶𝑆𝐼𝑆𝑂
𝐼𝑛𝑛𝑒𝑟  that satisfies: 

𝑣𝑆𝐼𝑆𝑂 = 𝑞̈𝑆𝐼𝑆𝑂   (32) 

where 𝑣𝑆𝐼𝑆𝑂 is a single input to a nominally linear system and 𝑞̈𝑆𝐼𝑆𝑂  is the second order derivative of 

a joint angle. The controller in Figure 9 can be then written as: 
𝐺𝐶𝑀𝐼𝑀𝑂

𝐼𝑛𝑛𝑒𝑟 = 𝐺𝐶𝑆𝐼𝑆𝑂
𝐼𝑛𝑛𝑒𝑟 ∙ 𝐼6𝑋6 (33) 

where 𝐼6𝑋6 is a 6 × 6 identity matrix. The transfer function of the SISO nominally linear system from 

Equation (31) is: 

𝐺𝑝𝑆𝐼𝑆𝑂
𝐼𝑛𝑛𝑒𝑟 =

1

𝑠2
 (34) 

Note that 𝐺𝑝𝑆𝐼𝑆𝑂
𝐼𝑛𝑛𝑒𝑟  has two Bounded Input Bounded Output (BIBO) unstable poles at origin. To 

ensure internal stability of the feedback loop, the closed loop transfer function, 𝑇𝑆𝐼𝑆𝑂, should meet 

the interpolation conditions [32]: 
𝑇𝑆𝐼𝑆𝑂

𝑖𝑛𝑛𝑒𝑟  (𝑠 = 0) = 1 (35) 

𝑑𝑇𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟

𝑑𝑠
|𝑠=0 = 0 (36) 

Use the following relationship to compute a Youla transfer function: 𝑌𝑆𝐼𝑆𝑂 as: 

𝑇𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟 = 𝑌𝑆𝐼𝑆𝑂

𝑖𝑛𝑛𝑒𝑟𝐺𝑝𝑆𝐼𝑆𝑂
𝐼𝑛𝑛𝑒𝑟  (37) 

The 𝑇𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟  is designed so that it satisfies the conditions in Equations (35) and (36). The 

sensitivity transfer function, 𝑆𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟, is then calculated as follows: 

𝑆𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟 = 1 − 𝑇𝑆𝐼𝑆𝑂

𝑖𝑛𝑛𝑒𝑟  (38) 

Without providing the design details, the closed-loop transfer function can be in the following 

form to satisfy the interpolation conditions: 
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𝑇𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟 = 

(3𝜏𝑖𝑛𝑠 + 1)

(𝜏𝑖𝑛𝑠 + 1)3
  (39) 

Where 𝜏𝑖𝑛 specifies the pole and zero locations and represents the bandwidth of the control system. 

𝜏𝑖𝑛 can be tuned so that the response can be fast with less-overshoot. 

The next step is to derive 𝐺𝐶𝑆𝐼𝑆𝑂
𝐼𝑛𝑛𝑒𝑟  from relationships between the closed-loop transfer function, 

𝑇𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟 , the sensitivity transfer function, 𝑆𝑆𝐼𝑆𝑂

𝑖𝑛𝑛𝑒𝑟 , and the Youla transfer function, 𝑌𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟 , in Equations 

(40)–(42): 

𝑌𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟 = 𝑇𝑆𝐼𝑆𝑂

𝑖𝑛𝑛𝑒𝑟𝐺𝑝𝑆𝐼𝑆𝑂
𝐼𝑛𝑛𝑒𝑟−1

=
𝑠2(3𝜏𝑖𝑛

2𝑠 + 1)

(𝜏𝑖𝑛𝑠 + 1)3
  (40) 

𝑆𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟 = 1 − 𝑇𝑆𝐼𝑆𝑂

𝑖𝑛𝑛𝑒𝑟 = 
𝑠2(𝜏𝑖𝑛

3𝑠 + 3𝜏𝑖𝑛
2)

(𝜏𝑖𝑛𝑠 + 1)3
  (41) 

𝐺𝐶𝑆𝐼𝑆𝑂
𝐼𝑛𝑛𝑒𝑟 = 𝑌𝑆𝐼𝑆𝑂

𝑖𝑛𝑛𝑒𝑟𝑆𝑆𝐼𝑆𝑂
𝑖𝑛𝑛𝑒𝑟−1

=
 3𝜏𝑖𝑛

2𝑠 + 1

𝜏𝑖𝑛
3𝑠 + 3𝜏𝑖𝑛

2
  (42) 

From Equation (33), a MIMO controller can be computed as follows: 

𝐺𝐶𝑀𝐼𝑀𝑂
𝐼𝑛𝑛𝑒𝑟 = 

 3𝜏𝑖𝑛
2𝑠 + 1

𝜏𝑖𝑛
3𝑠 + 3𝜏𝑖𝑛

2
 ∙ 𝐼6×6  (43) 

Equation (43) provides the expression of the inner joint controller and the closed loop of the 

inner loop can be expressed as: 

𝑇𝑀𝐼𝑀𝑂
𝑖𝑛𝑛𝑒𝑟 = 

(3𝜏𝑖𝑛𝑠 + 1)

(𝜏𝑖𝑛𝑠 + 1)3
 ∙ 𝐼6×6  (44) 

 

Figure 9. Feedback linearization Youla control design for inner loop. 

6.2. Feedforward Control Loop 

The feedforward loop is an open loop, disturbed by input disturbances as shown in Figure 10. 

Feedforward controller is the inverse process of Inner-loop Joint control loop 𝑇𝑀𝐼𝑀𝑂
𝑖𝑛𝑛𝑒𝑟 , whose closed-

loop transfer function is given in Equation (44). 

Therefore, the feedforward controller can be designed as 

𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑 =
1

𝑇𝑖𝑛𝑛𝑒𝑟−𝑐𝑙𝑜𝑠𝑒𝑑
 

1

(𝜏𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠+1)2
=

(𝜏𝑖𝑛𝑠+1)3

(3𝜏𝑖𝑛𝑠+1)
 

1

(𝜏𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠+1)2
∙ 𝐼6×6  (45) 
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The double poles s = -1/𝜏𝑓𝑜𝑟𝑤𝑎𝑟𝑑 are added to make 𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑  proper. Choose 𝜏𝑓𝑜𝑟𝑤𝑎𝑟𝑑  so that 

the added double poles are 10 times larger than the bandwidth of the original improper 𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑 . In 

other words, 𝜏𝑓𝑜𝑟𝑤𝑎𝑟𝑑 is chosen as 

𝜏𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 0.1𝜏𝑖𝑛   (46) 

 

Figure 10. Feedforward control design 

6.3. Outer Feedback Control Loop 

In control system block diagram (Figure 7), the linear closed loop transfer function has been 

developed in equation (44) and the eye-in-hand kinematic model is a nonlinear map defined in 

Equations (21) and (22). 

When disturbed joint angles 𝑞̌ are inputs to the eye-in-hand model, the outputs are expressed 

as 𝑝𝑖𝑚𝑎𝑔𝑒 .̂  Revise Equation (22) accordingly, we have: 

𝑝𝑖𝑚𝑎𝑔𝑒̂ =  ℱ(𝑞̌(𝑡), 𝑃𝑎, 𝑃𝑂) (47) 

Where 𝑃𝑂𝜖 ℝ9𝑋1,  are fiducial markers’ coordinates in inertial frame, and 𝑃𝑎  are constant 

parameters, which consist of camera intrinsic parameters, robot geometric parameters, and 

transformation matrix between the end-effector to the camera. 

By choosing a set of linearized points 𝑞̆0𝜖 ℝ6𝑋1, the model expressed in Equation (47) can be 

linearized with those points in Jacobian matrix form as: 

𝑝𝑖𝑚𝑎𝑔𝑒̂ =  𝐽(𝑞̌0, 𝑃𝑎, 𝑃𝑂)𝑞̌(𝑡) + ℱ(𝑞̌0, 𝑃𝑎, 𝑃𝑂) (48) 

Where 𝐽(𝑞̌0, 𝑃𝑎, 𝑃𝑂) 𝜖 ℝ6𝑋6  is the Jacobian matrix of ℱ(𝑞̌(𝑡), 𝑃𝑎, 𝑃𝑂)  evaluated as 𝑞̌ =  𝑞̌0. 

Assuming 𝐶1 = 𝐽(𝑞̌0, 𝑃𝑎, 𝑃𝑂), 𝐶2 = ℱ(𝑞̌(𝑡), 𝑃𝑎, 𝑃𝑂) , therefore, Equation (48) can be rewritten as: 

𝑝𝑖𝑚𝑎𝑔𝑒̂ = 𝐶1𝑞̌(𝑡) + 𝐶2 (49) 

Let’s define 𝑝𝑖𝑚𝑎𝑔𝑒̂ ′ = 𝑝𝑖𝑚𝑎𝑔𝑒̂ − 𝐶2 , then, the overall block diagram of the linearized system is 

shown in Figure 11. 

 

Figure 11. Feedback loop with linearized model. 

The linearized plant transfer function is derived as: 

𝐺𝑝𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟 =
𝑝𝑖𝑚𝑎𝑔𝑒̂ ′

𝑞𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

= 𝐶1

 (3𝜏𝑖𝑛𝑠 + 1)

(𝜏𝑖𝑛𝑠 + 1)3
∙ 𝐼6×6 (50) 
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As 𝐶1 is coupled, the first step to derive an observer for the multivariable system using model 

linearization is to find the Smith-McMillan form of the plant [32]. 

To get Smith-McMillan form, we can decompose 𝐺𝑝𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟  𝜖 ℝ9𝑋6 with singular value 

decomposition (SVD) as: 

𝐺𝑝𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑈𝐿𝑀𝑝𝑈𝑟  
(51) 

where  𝑈𝐿𝜖 ℝ
9𝑋9 and 𝑈𝑟  𝜖 ℝ6𝑋6are the left and right unimodular matrices, and 𝑀𝑝  𝜖 ℝ9𝑋6 is the 

Smith-McMillan form of 𝐺𝑝𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟 . 

𝑀𝑝 is a diagonalized transfer function with each nonzero entry equals to a gain multiple the 

transfer function 
(3𝜏𝑖𝑛𝑠+1)

(𝜏𝑖𝑛𝑠+1)3
 ; For the 𝑖𝑡ℎ row of 𝑀𝑝 the entry on the diagonal is: 

𝑀𝑝(𝑖, 𝑖) = 𝑔𝑎𝑖𝑛(𝑖) ∙
(3𝜏𝑖𝑛𝑠+1)

(𝜏𝑖𝑛𝑠+1)3
, 𝑖𝜖(1,2,3,4,5,6)  (52) 

Where 𝑔𝑎𝑖𝑛 𝜖 ℝ6𝑋1 is a numerical vector. 

The design of a Youla controller for each nonzero entry in 𝑀𝑝  is trivial in this case as all 

poles/zeros of the plant transfer function are in the left half-plane, and therefore, they are stable. In 

this case, the selected decoupled Youla transfer function: 𝑀𝑌 can shape the decoupled closed loop 

transfer function, 𝑀𝑇, by manipulating poles and zeros. All poles and zeros in the original plant can 

be cancelled out and new poles and zeros can be added to shape the closed-loop system. Let’s select 

a Youla transfer function so that the decoupled closed-loop SISO system behaves like a second order 

Butterworth filter, such that: 

𝑀𝑇 = 
𝜔𝑛

2

(𝑠2+2ζ𝜔𝑛𝑠+𝜔𝑛
2)

∙ [
𝐼6×6 𝑍𝑒𝑟𝑜3×3

𝑍𝑒𝑟𝑜3×3 𝑍𝑒𝑟𝑜3×3
],   (53) 

where 𝜔𝑛  is called natural frequency and approximately sets the bandwidth of the closed –loop 

system. It must be ensured that the bandwidth of the outer-loop is smaller than the inner-loop, i.e., 

1/𝜔𝑛 > 𝜏𝑖𝑛 . ζ is called the damping ratio, which is another tuning parameter. 𝑍𝑒𝑟𝑜3×3  is a 3×3 

matrix with all entries equaling to zero. Note that the coordinates from the last point cannot be 

controlled in the feedback loop. 

Then we can compute the decoupled diagonalized Youla transfer functions 𝑀𝑌 𝜖 ℝ
6𝑋9. The 

diagonal entry of 𝑖𝑡ℎ row is denoted as 𝑀𝑌(𝑖, 𝑖): 

𝑀𝑌(𝑖, 𝑖) =
𝑀𝑇(𝑖,𝑖)

𝑀𝑝(𝑖,𝑖)
=

1

𝑔𝑎𝑖𝑛(𝑖)

𝜔𝑛
2

(𝑠2+2ζ𝜔𝑛𝑠+𝜔𝑛
2)

 
(𝜏𝑖𝑛𝑠+1)3

(3𝜏𝑖𝑛𝑠+1)
, , 𝑖𝜖(1,2,3,4,5,6)    (54) 

Similar to Equations (40)–(42), the final coupled Youla, closed loop, sensitivity, and observer 

transfer function matrices are computed as: 

𝑌𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟
𝑙𝑖𝑛𝑒𝑎𝑟 𝜖 ℝ6𝑋9 = 𝑈𝑅𝑀𝑌𝑈𝐿    (55) 

𝑇𝑦𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟 𝜖 ℝ9𝑋9 = 𝐺𝑝𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟 ∙ 𝑌𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟
𝑙𝑖𝑛𝑒𝑎𝑟     (56) 

𝑆𝑦𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟 𝜖 ℝ9𝑋9 =  1 − 𝑇𝑦𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟     (57) 

𝐺𝐶𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟
𝑙𝑖𝑛𝑒𝑎𝑟 𝜖 ℝ6𝑋9 = 𝑌𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟 ∙ (𝑆𝑦𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟

𝑙𝑖𝑛𝑒𝑎𝑟 )−1    (58) 

The controller developed in the above section is based on the linearization of the combined 

model at a particular linearized point 𝑞̌0. This controller can only stabilize at certain range of joint 

angles around 𝑞̌0. As current joint angles 𝑞̌0  deviates from 𝑞̌, the error between the estimated 

linearized system (48) and the true nonlinear system (47) increases. 

To tackle this problem, we develop an adaptive controller that is computed online based on 

linearization of the model at current joint angles. This control process is depicted in Figure 12. 

The first step is to estimate current joint angles 𝑞̃ from current measured images coordinates 

𝑝𝑖𝑚𝑎𝑔𝑒̂ . The mathematic models of eye-in-hand kinematic model been given in expression is defined 
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in Equation (22). Therefore, the mathematical function of the inverse model can be derived and 

expressed as: 

𝑞̃ =  ℱ−1(𝑝𝑖𝑚𝑎𝑔𝑒̂ ,𝑃𝑎,𝑃𝑂) (59) 

Where ℱ−1  is the inverse process of Equation (22), which is a combination of coordinate system 

transformation from the image frame to the end-effector frame and robot inverse kinematics process. 

Given estimated current angle 𝑞̃, we can calculate the Jacobian matrix of the nonlinear model at 

current time. By obtaining left and right unimodular matrices and Smith-McMillan form from 

singular value decomposition, the current linear controller 𝐺𝐶𝑀𝐼𝑀𝑂_𝑜𝑢𝑡𝑒𝑟
𝑙𝑖𝑛𝑒𝑎𝑟  can be built by Equations 

(55)-(58). 

 

Figure 12. Adaptive feedback loop. 

7. Simulations Results 

To evaluate the performance of our controller design, we simulated two scenarios in MATLAB 

Simulink using a Zed 2 stereo camera system [33] and an ABB IRB 4600 elbow robotic manipulator 

[30]. The specifications for the camera system and robot manipulator are summarized in the tables in 

the appendix. The camera system performs 2D feature estimation of three virtual points in space, 

with their coordinates in the inertial frame selected as: [-0.5𝑚 0 0]𝑇, [0 0 0.5𝑚]𝑇, [2𝑚, -2m, 0]𝑇. 

Many camera noise removal algorithms have been proposed and shown to be effective in 

practical applications, such as spatial filters [34], wavelet filters [35], and the image averaging 

technique [36]. Among these denoising methods, there is always a tradeoff between computational 

efficiency and performance. For this paper, we assume that the images captured by the camera have 

been preprocessed using one of these methods, and the noise has been almost perfectly attenuated. 

In other words, the only remaining disturbances in the system are due to unmodeled joint dynamics, 

such as compliance and flexibility, which are modeled as input disturbances in the controlled system. 

Two scenarios were simulated: 

• Scenario 1: Without input disturbances. 

• Scenario 2: With a 1° step input disturbance added to each joint of the robot arms for the entire 

simulation time. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1603.v1

https://doi.org/10.20944/preprints202502.1603.v1


 17 of 26 

 

In both scenarios, the camera system starts from an initial pose in the inertial frame, denoted as 

𝑃𝑜𝑠𝑒𝑖𝑛𝑖𝑡𝑖𝑙𝑎
𝑂 , and maneuvers target pose, denoted as 𝑃𝑜𝑠𝑒𝑓𝑖𝑛𝑎𝑙

𝑂 . Table 1 summarizes the initial and final 

poses for each scenario, along with the corresponding joint configurations. 

Figures 13 and 15 present the responses of the six joint angles for the two scenarios, respectively. 

Figures 14 and 16 show the responses of the nine image coordinates over time for each scenario. In 

each case, the feedback-only controlled system (left plot) is compared to the feedforward-and-

feedback controlled system (right plot). These comparisons focus on overshoot, response time, and 

target tracking performance. 

Both scenarios are simulated with bandwidth of the inner-loop as 100𝑟𝑎𝑑/𝑠 and the bandwidth 

of the outer-loop as 10𝑟𝑎𝑑/𝑠. 

Table 1. Camera Pose and Robot Joint Angles at Initial and Final State of Simulation Scenarios. 

 

Form

at 

Camera Pose 
Robot Joint 

Angles 

[

𝑛𝑥 𝑠𝑥 𝑎𝑥 𝑑𝑥

𝑛𝑦 𝑠𝑦
𝑎𝑦 𝑑𝑦

𝑛𝑧 𝑠𝑧 𝑎𝑧 𝑑𝑧

] [

𝑞
1

𝑞
2

𝑞
3

𝑞
4

𝑞
5

𝑞
6

] 

Where [𝑛𝑥, 𝑛𝑦 , 𝑛𝑧]
𝑇,  [𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧]

𝑇and 

[𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧]
𝑇are  Yaw, Pitch, and Roll, and 

[𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧]
𝑇 (in meters) is the position, 

measured in inertial frame {O}. 

Where [𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6] in (degrees) are 

robot joint angles. 

 𝑺𝒄𝒆𝒏𝒂𝒓𝒊𝒐 𝟏 𝑺𝒄𝒆𝒏𝒂𝒓𝒊𝒐 𝟐 

 Camera Pose Robot Joint 

Angles 

Camera Pose Robot Joint 

Angles 

Initial 

State [
0 0 1 1.27
0 1 0 0

−1 0 0 1.57

] [
0° 0°
0° 0°
0° 0°

] [

−0.070 −0.998
−0.996 0.070

0.002 1.064
−0.060 0.964

−0.060 −0.007
0 0

−0.998 0.939
0 1

] [
42.40° 21.20°
4.58° −2.86°
66.46° −42.40°

] 

Final 

State [
−0.11 0.14 0.98 1.31
−0.09 0.98 −0.15 −0.01
−0.99 −0.10 −0.09 1.49

] [
0.48° 2.21°
2.05° −82.68°
9.46° 77.47°

] [
0 −1 0 1

−1 0 −1 1
0 0 0 1

] [
45° 18.59°

4.35° 0°
67.06° −45°

] 
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Figure 13. Scenario one (no disturbances): Response of robot joint angles. (Left: Feed-back only responses, Right: 

Feedforward-feedback responses). 
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Figure 14. Scenario one (no disturbances): Response of image coordinates. (Left: Feed-back only responses, Right: 

Feedforward-feedback responses). The three coordinates of the third point are only matched in the feedforward-

feedback approach. 
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Figure 15. Scenario two (add disturbances): Response of robot joint angles. (Left: Feed-back only responses, Right: 

Feedforward-feedback responses). 
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Figure 16. Scenario two (add disturbances): Response of image coordinates. (Left: Feed-back only responses, Right: 

Feedforward-feedback responses). The three coordinates of the third point are only matched in the feedforward-

feedback approach. 

The response plots indicate that both the feedback-only controller and the combined 

feedforward-and-feedback controller successfully stabilize the system and reach a steady state within 

three seconds, even in the presence of small input disturbances (Scenario Two). However, the 

feedback-only controller fails to guide the camera to its desired pose and falls into local minima, as 

evident from the third point’s coordinates (𝑢𝑙3, 𝑢𝑟3, 𝑣3,), which do not match the target at steady state. 

This issue arises from the overdetermined nature of the stereo-based visual servoing system, where 

the number of output constraints (9) exceeds the degrees of freedom (DoFs) available for control (6). 

As a result, the feedback controller can only match six out of nine image coordinates, leaving the rest 

coordinates unmatched. 

In contrast, the feedforward-and-feedback controller avoids local minima and accurately moves 

the camera to the target pose. This is because the feedforward component directly controls the robot’s 

joint angles rather than image features. Since the joint angles (6 DoFs) uniquely correspond to the 

camera’s pose (6 DoFs), the feedforward controller helps the system reach the global minimum by 

using the desired joint configurations as inputs. 

When comparing performance, the system with the feedforward controller exhibits a shorter 

transient period (less than 2 seconds) compared to the feedback-only system (less than 3 seconds). 

However, the feedforward controller can introduce overshoot, particularly in the presence of 

disturbances. This occurs because feedforward control provides an immediate control action based 

on desired setpoints, resulting in significant initial actuator input that causes overshoot. Additionally, 

a feedforward-only system is less robust against disturbances and model uncertainties. Fine-tuning 

the camera’s movement under these conditions requires a feedback controller. 

Therefore, the combination of feedforward and feedback control ensures fast and accurate 

camera positioning. The feedforward controller enables rapid convergence toward the desired pose, 

while the feedback controller improves robustness and corrects errors due to disturbances or 

uncertainties. Together, they work cooperatively to achieve optimal performance. 

8. Conclusions 

In this article, we first provide a systematic proof of the PnP problem for a stereo camera system 

and then propose an innovative control policy to address the overdetermination issues in image-

based visual servoing (IBVS) control. Results from two simulation scenarios demonstrate that the 

proposed algorithm successfully brings the camera to the desired pose with high accuracy and speed. 

Several existing approaches [21–23], mentioned in the introduction, have also addressed the 

issue of local minima in IBVS. Compared to those methods, the key advantage of our system is its 

simplicity and ease of implementation. A linear feedforward controller is sufficient to handle the local 

minimum problem without requiring complex online optimization as in MPC or additional 3D 

feature measurements as in 2 ½-D visual servoing. The feedback loop is designed following the 

traditional IBVS structure but incorporates a higher-fidelity dynamic model. The adaptive features 

in the feedback controller stabilize the system across the entire state space, achieved by combining 

multiple linear Youla-parameterized controllers. To reduce computational overhead, we can lower 

the online update frequency or predesign several linear Youla controllers offline and switch between 

them smoothly using a switching algorithm. 

However, the feedforward design introduces challenges, particularly with large overshoots that 

can cause erratic joint movements. This may increase the risk of accidents and potential damage to 

the robot. A possible solution is to optimize the controller parameters—such as bandwidth and 

damping ratios—which can be explored in future work. In addition, feedback and feedforward 

controllers can be designed simultaneously using 𝐻∞ control techniques [37], which optimizes the 

system’s stability and performance in the presence of disturbances. 
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In summary, this paper investigates the overdetermination problem in stereo-based IBVS tasks. 

While future improvements to the algorithm are possible, the proposed control policy has 

demonstrated significant potential as an accurate and fast solution for real-world eye-in-hand (EIH) 

visual servoing tasks. 

Appendix A 

In this section, we will show the geometric model of a specific robot manipulator ABB IRB 4600 

45/2.05[23] and a figure of a camera model: Zed 2 with dimensions [24]. This section also contains 

specification tables of robots’ dimensions, camera, and motor installed inside the joints of 

manipulators. 

 

Figure A1. IRB ABB 4600 Model with attached frames. 
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Figure A2. Zed 2 stereo camera model with dimensions. 

Table A1. Specification Table of ABB IRB 4600 45/2.05 Model (Dimensions). 

Parameters Values 

Length of Link 1: 𝐿1 495 mm 

Length of Link 2: 𝐿2 900 mm 

Length of Link 3: 𝐿3 175 mm 

Length of Link 3: 𝐿4 960 mm 

Length of Link 1 offset: 𝑎1 175 mm 

Length of Spherical wrist: 𝐿𝑡 135 mm 

Tool length (screwdriver): 𝑃𝐽̅̅
𝑡̅𝑜𝑜𝑙  127 mm 

Table A2. Specification Table of ABB IRB 4600 45/2.05 Model (Axis Working range). 

Axis Movement Working range 

Axis 1 rotation +180° to -180° 

Axis 2 arm +150° to -90° 

Axis 3 arm +75° to -180° 

Axis 4 wrist +400° to -400° 

Axis 5 bend +120° to -125° 

Axis 6 turn +400° to -400° 

Table A3. Specification Table of Stereo Camera Zed 2. 

Parameters Values 

Focus length: f 2.8 mm 

Baseline: B 120 mm 

Weight: W 170g 

Depth range: 0.5m-25m 

Diagonal Sensor Size: 6mm 

Sensor Format: 16:9 

Sensor Size: W X H 5.23mm X 2.94mm 

Angle of view in width: 𝛼 86.09° 

Angle of view in height: 𝛽 55.35° 

Table A4. Specification Table of Motors and gears. 

Parameters Values 

DC Motor 

Armature Resistance: 𝑅 0.03 Ω 

Armature Inductance: 𝐿 0.1 mH 

Back emf Constant: 𝐾𝑏 7 mv/rpm 

Torque Constant: 𝐾𝑚 0.0674 N/A 

Armature Moment of Inertia: 𝐽𝑎  0.09847 kg𝑚2 

Gear 

Gear ratio: 𝑟 200:1 

Moment of Inertia: 𝐽𝑔 0.05 kg𝑚2 

Damping ratio: 𝐵𝑚 0.06 

Appendix B 

In this section, we will show forward kinematics and inverse kinematics of the 6 DoFs revolute 

robot manipulators. The results are consistent with the model ABB IRB 4600. 
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Forward kinematics refers to the use of kinematic equations of a robot to compute the position 

of the end-effector from specified values for the joint angles and parameters. The equations are 

summarized in the below: 

𝑛𝑥 = 𝑐1𝑠23(𝑠4𝑠6 − 𝑐4𝑐5𝑐6)- 𝑠1(𝑠4𝑐5𝑐6 + 𝑐4𝑠6) − 𝑐1𝑐23𝑠5𝑐6 

𝑛𝑦 = 𝑠1𝑠23(𝑠4𝑠6 − 𝑐4𝑐5𝑐6) + 𝑐1(𝑠4𝑐5𝑐6 + 𝑐4𝑠6) − 𝑠1𝑐23𝑠5𝑐6 

𝑛𝑧 = 𝑐23(𝑠4𝑠6 − 𝑐4𝑐5𝑐6) + 𝑠23𝑠5𝑐6 

 

(B1) 

𝑠𝑥 = 𝑐1𝑠23(𝑠4𝑐6 + 𝑐4𝑐5𝑐6)+𝑠1(𝑠4𝑐5𝑠6 − 𝑐4𝑐6) + 𝑐1𝑐23𝑠5𝑠6 

𝑠𝑦 = 𝑠1𝑠23(𝑠4𝑐6 + 𝑐4𝑐5𝑐6) − 𝑐1(𝑠4𝑐5𝑠6 − 𝑐4𝑐6) + 𝑠1𝑐23𝑠5𝑠6 

𝑠𝑧 = 𝑐23(𝑠4𝑐6 + 𝑐4𝑐5𝑐6) − 𝑠23𝑠5𝑠6 

 

(B2) 

𝑎𝑥 = −𝑐1𝑠23𝑐4𝑠5 − 𝑠1𝑠4𝑠5 + 𝑐1𝑐23𝑐5 

𝑎𝑦 = −𝑠1𝑠23𝑐4𝑠5 + 𝑐1𝑠4𝑠5 + 𝑠1𝑐23𝑐5 

𝑎𝑧 = 𝑐23𝑐4𝑠5 − 𝑠23𝑐5 

 

(B3) 

𝑑𝑥 = 𝐿𝑡(−𝑐1𝑠23𝑐4𝑠5 − 𝑠1𝑠4𝑠5 + 𝑐1𝑐23𝑐5) + 𝑐1(𝐿3𝑠23 + 𝐿2𝑠2 + 𝑎1) 

𝑑𝑦 = 𝐿𝑡(−𝑠1𝑠23𝑐4𝑠5 + 𝑐1𝑠4𝑠5 + 𝑠1𝑐23𝑐5) + 𝑠1(𝐿3𝑠23 + 𝐿2𝑠2 + 𝑎1) 

𝑑𝑧 =  𝐿𝑡(𝑐23𝑐4𝑠5 − 𝑠23𝑐5) + 𝐿3𝑐23 + 𝐿2𝑐2 + 𝐿1 

 

(B4) 

Note: 𝑐𝑖 ≡ cos(𝑞𝑖), 𝑠𝑖 ≡ sin(𝑞𝑖) 

𝑐𝑖,𝑗 ≡ cos(𝑞𝑖 + 𝑞𝑗), 𝑠𝑖,𝑗 ≡ sin(𝑞𝑖 + 𝑞𝑗) 

𝑖, 𝑗 ∈ {1,2,3,4,5,6} 
 

(B5) 

where [𝑛𝑥, 𝑛𝑦 , 𝑛𝑧]
𝑇, [𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧]

𝑇and [𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧]
𝑇are the end-effector’s directional vector of Yaw, Pitch 

and Roll in base frame 𝑂0𝑋0𝑌0𝑍0 (Figure A1). And [𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧]
𝑇 are the vector of absolute position of 

the center of the end-effector in base frame 𝑂0𝑋0𝑌0𝑍0. For a specific model ABB IRB 4600-45/2.05 

(Handling capacity: 45 kg/ Reach 2.05m) the dimensions and mass are summarized in Table A1. 

Inverse kinematics refers to the mathematical process of calculating the variable joint angles 

needed to place the end-effector in a given position and orientation relative to the inertial base frame. 

The equations are summarized in the below: 

𝑝𝑥 = 𝑑𝑥 − 𝐿𝑡𝑎𝑥 

𝑝𝑦 = 𝑑𝑦 − 𝐿𝑡𝑎𝑦 

𝑝𝑧 = 𝑑𝑧 − 𝐿𝑡𝑎𝑧 

 

(B6) 

𝑞1 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑝𝑦

𝑝𝑥
) (B7) 

𝑞2 = 
𝑝𝑖

2
− arccos (

𝐿2
2 + (√𝑝𝑥

2 + 𝑝𝑦
2 − 𝑎1)

2
+ (𝑝𝑧 − 𝐿1)

2 − 𝐿3
2 − 𝐿4

2

2𝐿2√𝐿3
2 + 𝐿4

2

)

− 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑝𝑧 − 𝐿1

√𝑝𝑥
2 + 𝑝𝑦

2 − 𝑎1

)  

(B8) 

𝑞3 = 𝜋 − arccos (
𝐿2

2 + 𝐿3
2 + 𝐿4

2 − (√𝑝𝑥
2 + 𝑝𝑦

2 − 𝑎1)
2
− (𝑝𝑧 − 𝐿1)

2

2𝐿2√𝐿3
2 + 𝐿4

2

)

− arctan (
𝐿4

𝐿3
) 

 

(B9) 

𝑞5 = arccos (𝑐1𝑐23𝑎𝑥 + 𝑠1𝑐23𝑎𝑦 − 𝑠23𝑎𝑧) (B10) 
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𝑞4 = arctan (
𝑠1𝑎𝑥 − 𝑐1𝑎𝑦

𝑐1𝑠23𝑎𝑥 + 𝑠1𝑠23𝑎𝑦 + 𝑐23𝑎𝑧
) (B11) 

𝑞6 = −arctan (
𝑐1𝑐23𝑠𝑥 + 𝑠1𝑐23𝑠𝑦 − 𝑠23𝑠𝑧

𝑐1𝑐23𝑛𝑥 + 𝑠1𝑐23𝑛𝑦 − 𝑠23𝑛𝑧
) 

 

(B12) 

Note: 𝑐𝑖 ≡ cos(𝑞𝑖), 𝑠𝑖 ≡ sin(𝑞𝑖) 

𝑐𝑖,𝑗 ≡ cos(𝑞𝑖 + 𝑞𝑗), 𝑠𝑖,𝑗 ≡ sin(𝑞𝑖 + 𝑞𝑗) 

𝑖, 𝑗 ∈ {1,2,3,4,5,6} 
 

(B13) 

where [𝑛𝑥, 𝑛𝑦 , 𝑛𝑧]
𝑇, [𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧]

𝑇 , [𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧]
𝑇and [𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧]

𝑇 have been defined above in the forward 

kinematic discussion. 
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