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Abstract: In robot navigation and manipulation, accurately determining the camera’s pose relative to
the environment is crucial for effective task execution. In this paper, we systematically prove that this
problem corresponds to the Perspective-3-Point (P3P) formulation, where exactly three known 3D
points and their corresponding 2D image projections are used to estimate the pose of a stereo camera.
In image-based visual servoing (IBVS) control, the system becomes overdetermined, as the 6 degrees
of freedom (DoF) of the stereo camera must align with 9 observed 2D features in the scene. When
more constraints are imposed than available DoFs, global stability cannot be guaranteed, as the
camera may become trapped in a local minimum far from the desired configuration during servoing.
To address this issue, we propose a novel control strategy for accurately positioning a calibrated
stereo camera. Our approach integrates a feedforward controller with a Youla parameterization-
based feedback controller, ensuring robust servoing performance. Through simulations, we
demonstrate that our method effectively avoids local minima and enables the camera to reach the
desired pose accurately and efficiently.

Keywords: PnP problem; Sterero camera system; image-based visual servoing; eye-in-hand
configuration; feedforward and feedback control; accurate camera pose

1. Introduction

Determining the accurate pose of the camera is a fundamental problem in robot manipulations,
as it provides the spatial transformation needed to map 3D world points to 2D image coordinates.
The task involving camera pose estimation is essential for various applications, such as augmented
reality [1], 3D reconstruction [2], SLAM [3], and autonomous navigation [4]. This becomes especially
critical when robots operate in unstructured, fast-changing, and dynamic environments, performing
tasks such as human-robot interaction, accident recognition and avoidance, and eye-in-hand visual
servoing. In such scenarios, accurate camera pose estimation ensures that visual data is readily
available for effective robotic control [5].

A classic approach to estimating the pose of a calibrated camera is solving the Perspective-n-
Point (PnP) problem [6], which establishes a mathematical relationship between a set of n 3D points
in the world and their corresponding 2D projections in an image. To uniquely determine the pose of
a monocular camera in space, it is a Perspective-4-Point (P4P) problem, where exactly 4 known 3D
points and their corresponding 2D image projections are used. Bujnak et al. [7] generalize four
solutions for P3P problem while giving a single unique solution existed for P4P problem in a fully
calibrated camera scenario. To increase accuracy, modern PnP approaches considers more than three
2D-3D correspondences. Among PnP solutions, EPnP (Efficient PnP) method finds the optimal
estimation of pose from a linear system that expresses each reference point as a weighted sum of four
virtual control points [8]. Another advanced approach, SQPnP (Sparse Quadratic PnP) formulates the
problem as a sparse quadratic optimization, achieving enhanced accuracy by minimizing a sparse
cost function [9].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In recent years, many other methods have been developed to show improved accuracy than PnP
based methods. For instance, Alkhatib et al. [10] utilize Structure from Motion (SfM) to estimate a
camera’s pose by extracting and matching key features across various images taken from different
viewpoints to establish correspondences. Moreover, Wang et al. [11] introduce visual odometry into
camera’s pose estimations based on the movement between consecutive frames. In addition, recent
advancements in deep learning have led to the development of models, such as Convolutional Neural
Networks, specifically tailored for camera pose estimation [12-14]. However, these advanced
methods often come with significant computational costs, requiring multiple images from different
perspectives for accurate estimation. In contrast, PnP-based approaches offer a balance between
accuracy and efficiency, as they can estimate camera pose from a single image, making them highly
suitable for real-time applications such as navigation and scene understanding.

In image-based visual servoing (IBVS) [15], the primary goal is to control a robot’s motion using
visual feedback. Accurate real-time camera pose estimation is crucial for making informed control
decisions, particularly in eye-in-hand (EIH) configurations [16,17], where a camera is mounted
directly on a robot manipulator. In this setup, robot motion directly induces camera motion, making
precise pose estimation essential. Due to its computational efficiency, PnP-based approaches remain
widely applied in real-world IBVS tasks [18-20]. The PnP process begins by establishing
correspondences between 3D feature points and their 2D projections in the camera image. The PnP
algorithm then computes the camera pose from these correspondences, translating the geometric
relationship into a format that the IBVS controller can use. By detecting spatial discrepancies between
the current and desired camera poses, the robot can adjust its movements accordingly.

However, PnP-based IBVS presents challenges for visual control in robotics. One key issue is
that IBVS often results in an overdetermined system, where the number of visual features exceeds
the number of joint variables available for adjustment. For example, at least four 2D-3D
correspondences are needed for a unique pose solution [6], but a camera’s full six-degree-of-freedom
(6-DOF) pose means that a 6-DOF robot may need to align itself with eight or more observed features.
In traditional IBVS [15], the interaction matrix (or image Jacobian) defines the relationship between
feature changes and joint velocities. When the system is overdetermined, this matrix contains more
constraints than joint variables, leading to redundant information. Research [15] suggests that this
redundancy may cause the camera to converge to local minima, failing to reach the desired pose.
Although local asymptotic stability is always ensured in IBVS, global asymptotic stability cannot be
guaranteed when the system is overdetermined.

Many studies have explored solutions to mitigate the local minimum problem in IBVS. One
approach, proposed by Nicholas et al. [21], introduces a switched control method, where the system
alternates between different controllers to escape local minima and avoid singularities in the image
Jacobian. Another strategy, developed by Chaumette et al. [22], utilizes a 2-1/2-D visual servoing
technique, which combines image-based and position-based features. This integration allows the
camera to navigate around local minima during motion execution. Roque et al. [23] implement a
model predictive control (MPC) approach, optimizing the quadrotor’s trajectory to enhance
robustness against local minima by predicting and adjusting control inputs in real time.

While these methods achieve significant improvements in most scenarios, they also introduce
computational challenges compared to traditional IBVS. The switched control method requires
different control strategies tailored to specific dynamics, increasing the complexity of the overall
control architecture [24]. The 2-1/2-D visual servoing method demands real-time processing of both
visual and positional data, which can impose significant computational loads and limit performance
in dynamic environments [25]. MPC approaches introduce additional computational overhead by
requiring complex optimization at every time step, making real-time implementation costly [26].

In this paper, we focus on the PnP framework for determining and controlling the pose of a
stereo camera within an image-based visual servoing (IBVS) architecture. In traditional IBVS, depth
information between objects and the image plane is crucial for developing the interaction matrix.
However, with a monocular camera, depth can only be estimated or approximated using various
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algorithms [15], and inaccurate depth estimation may lead to system instability. In contrast, a stereo
camera system can directly measure depth through disparity between two image planes, enhancing
system stability.

A key novelty of this paper is providing a systematic proof that stereo camera pose
determination in IBVS can be formulated as a P3P (Perspective-3-Point) problem, which, to the best
of our knowledge, has not been explored in previous research. Since three corresponding points,
totaling nine coordinates, are used to control the six DoFs camera pose, the IBVS control system for
a stereo camera is overdetermined, leading to the potential issue of local minima during control
maneuvers. While existing approaches can effectively address local minima, they often introduce
excessive computational overhead, making them impractical for high-speed real-world applications.

To address this challenge, we propose a feedforward-feedback control architecture. The
feedback component follows a cascaded control loop based on the traditional IBVS framework [15],
where the inner loop handles robot joint rotation, and the outer loop generates joint angle targets
based on visual data. One key improvement in this work is the incorporation of both kinematics and
dynamics during the model development stage. Enhancing model fidelity in the control design
improves pose estimation precision and enhances system stability, particularly for high-speed tasks.
Both control loops are designed using Youla parameterization [27], a robust control technique that
enhances resistance to external disturbances. The feedforward controller takes target joint
configurations, which are associated with the desired camera pose as inputs, ensuring a fast system
response while avoiding local minima traps. Simulation results presented in this paper demonstrate
that the proposed control system effectively moves the stereo camera to its desired pose accurately
and efficiently, making it well-suited for high-speed robotic applications.

2. System Configuration

An eye-in-hand robotic system has been developed to precisely control the pose of a stereo
camera system, as illustrated in Figure 1. The robotic manipulator is equipped with six revolute joints,
allowing unrestricted movement of the camera across six degrees of freedom (DoFs)—three for
positioning and three for orientation. Assume a set of fiducial markers is placed in the workspace,
with their coordinates fixed and predefined in an inertial frame. Utilizing the Hough transform [28]
in computer vision, these markers can be detected and localized by identifying their centers in images
captured by the stereo camera system. The control system within the robotic manipulator aligns the
camera to its desired pose by matching the detected 2D features in the current frame with target 2D
features. Throughout this process, it is assumed that all fiducial markers remain within the camera’s
field of view. As depicted in Figure 1, multiple Cartesian coordinate systems are illustrated. The base
frame {O} serves as an inertial reference fixed to the bottom of the robot manipulator, while the
camera frame {C} is a body-fixed frame attached to the robot’s end-effector.
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Figure 1. The eye-in-hand robot configuration.

3. Proof of P3P for the Stereo Camera System

Given its intrinsic parameters and a set of n correspondences between its 3D points and 2D
projections to determine the camera’s pose is known as perspective-n-point (PnP) problem. This well-
known work [7] has proved that at least four correspondences are required to uniquely determine
the pose of a monocular camera, a situation referred to as the P4P problem.

To illustrate, consider the P3P case for a monocular camera. Let points A, B, and C exist in space,
with 0;, 0, and O3 representing different perspective centers. The angles 2 AOB, 2 AOC and 2
BOC remain the same across all three perspectives. Given a fixed focal length, the image coordinates
of points A, B, and C will be identical when observed from these three perspectives. In other words,
it is impossible to uniquely identify the camera’s pose based solely on the image coordinates of three
points.

Figure 2. P3P case of a monocular camera.

The PnP problem with a stereo camera has not been thoroughly addressed in prior research. A
stereo camera can detect three image coordinates of a 3D point in space. This paper proposes that a
complete solution to the PnP problem for a stereo camera can be framed as a P3P problem. Below is
the complete proof of this proposition.

Proof:

For a stereo system, if all intrinsic parameters are fixed and given, we can readily compute the
3D coordinates of an object point given the image coordinates of that point. This provides a unique
mapping from the image coordinates of a point to its corresponding 3D coordinates in a Cartesian
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frame. The orientation and position of the camera system uniquely define the origin and axis
orientations of this Cartesian coordinate system in space. Consequently, PnP problem can be framed
as follows: given n points with their 3D coordinates measured in an unknown Cartesian coordinate
system in space, what is the minimum number n required to accurately determine the position and
orientation of the 3D Cartesian coordinate frame established in that space?

1) P1P problem with the stereo camera:

If we know the coordinates of a single point in space, defined by a 3D Cartesian coordinate
system, an infinite number of corresponding coordinate systems can be established. Any such
coordinate system can have its origin placed on the surface of a sphere centered at this point, with a

radius R = VX2 +YC% +7 ¢?, where [X€, Y€, ZC]" are the coordinates measured by the Cartesian

system (see Figure 3).

~<
Pt
e

A possible satisfied|
: ) N
cartesian system 0.\C} <~ X axis N\ _

Figure 3. P1P Problem with a Stereo Camera System.

2) P2P problem with the stereo camera:

When the coordinates of two points in space are known, an infinite number of corresponding
coordinate systems can be established. Any valid coordinate system can have its origin positioned on
a circle centered at point O with a radius R as illustrated in Figure 4. This circle is constrained by the
triangle formed by points O¢, P;, and P,, where the sides of the triangle are defined by the lengths

R,R, and D . Specifically, R, = foz + Y2+ ZE R, = \/XZCZ +YE2 4 762, D=

VO = X9 + (1 - ¥ + (27 - Z5)
The radius of the circle R corresponds to the height of the base D of the triangle. The center of
the circle O is located at the intersection of the height and the base.
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Figure 4. P2P problem with a stereo camera system. All potential cartesian systems are located on the circle
plotted in red.

3) P3P problem with the stereo camera:

When three points in space are known, and the lines connecting these points are not collinear,
we can uniquely establish one coordinate system. As illustrated in the figure below, three non-
collinear points define a plane in space, which has a uniquely defined normal unit vector 7. Given
the coordinates of the three points, we can calculate vectors as follows: the vector PP, = (X§ —
XE,¥E —YE, ZE — Z€), and the vector PiP; = (XS — XE,YE —YE,Z§ — ZE). The unit vector 7 which is

perpendicular to the plane formed by these three points, can be expressed as:

27°1°3 1
|P1P, xP; P3| (1)

Here, x denotes the cross product.
The angles between n and XYZ axes of the coordinate system can be expressed as follows:

cos(0,)=n-T )
cos(8,) =n-j (©)
cos(8,) =7k 4)

Where 6,,6, and 0, are the angles between 71 and the unit vectors in the X, Y, and Z directions,
denoted as 7, j,and k respectively. Therefore, with the direction n fixed in space, the orientations
of each axis of the coordinate system can be computed uniquely.

According to the P1P problem, the origin of the coordinate system must lie on the surface of a

sphere centered at P; with radius = JXf 2+ YE? +2E% as depicted in Figure 3. Each coordinate

system established with a different origin point on the surface of this sphere results in a unique
configuration of the axis orientations. Therefore, as the orientations of the axes are defined in space,
the position of the frame (or the position of the origin) is also uniquely defined.

In conclusion, the P3P problem is sufficient to solve the PnP problem for a stereo camera system.

Pointl Point2

P1= (XC,YC,ZE}._ e P2 — {XCJYCrZ:E}

/
i

Point3
P3= (XC:YC;Z:?)

Figure 5. P3P Problem with a Stereo Camera System.

Prove Concluded

This proposition indicates that to uniquely determine the full 6 DoFs of the stereo camera, at
least three points (or nine 2D features) are required to match in the image-based visual servoing
control.
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4. Model Development
4.1. Stereo Camera Model

Depth between the objects to the camera plane is either approximated or estimated in the IBVS
for generating the interaction matrix [15]. Using a stereo camera system in IBVS eliminates the
inaccuracies associated with monocular depth estimation, as it directly measures depth by leveraging
the disparity between the left and right images.

The stereo camera model is illustrated in Figure 6. A stereo camera consists of two lenses
separated by a fixed baseline b. Each lens has a focal length F (measured in mm) which is the distance
from the image plane to the focal point. Assuming the camera is calibrated, the intrinsic parameters:
b, F is accurately estimated. A scene point I is measured in the 3D coordinate frame {C} centered at
the middle of the baseline with its coordinates as [X¢,Y¢, Z¢]". The stereo camera model maps the
3D coordinates of this point to its 2D coordinates projected on the left and right image plane as
[u;, v]" and [u,,v]”, respectively. The full camera projection map, incorporating both intrinsic and
extrinsic parameters, is given by:

S * Pimage =K-[R|T]- P 5)

Where pimqge are the image coordinates of the pointand P are the 3D coordinates measured in the
camera frame {C}. s is the scale factor that ensures correct projection between 2D and 3D features.
K is the intrinsic matrix with a size of 3X3, and the mathematical expression is presented as:

F k
K=10 F Vo] (6)
0 0 1

Where k is the skew factor, which represents the angle between the image axes (1 and v axis). u,
and v, are coordinates offsets in image planes.

In Equation (5), R is the rotational matrix from camera frame {C} to each image coordinate frame,
and T is the translation matrix from camera frame {C} to each camera lens center. Since there is no
rotation between the camera frame {C} and image frames but only a translation along the X axis
occurs, the transformation matrices for the left and right image planes are expressed as:

1.0 0  -b/2

[RIT]pefe = [0 1 0] o0 (7)
0 0 1 0
10 0 B2

[RIT]right = [0 1 0] o0 (8)
0 0 1 0 |

Assume the u and v axis are perfectly perpendicular (take k = 0), and there are no offsets in the
image coordinates (take uy, = v, = 0) for both lens. Also, set factor s = Zf accounts for perspective
depth scaling. The projection equations for the left and right image planes can be rewritten in
homogeneous coordinates as:

XC

w7 [F 0 0] [1 0 0 b/ZYIC
Z,C-[v]zo F of-fo 1 0o | of]" )

ZC

1 o o 1llo o 1 0 1

1

XC

urF00100-b/2YIC
Z,C-[v]=0 Fool-lo 101 o |4 (10)

1 o o 1llo o 1 0211

Equations (9) and (10) establish the mathematical relationship between the 3D coordinates of a
point in the camera frame {C} and its 2D projections on the left and right image planes. The pixel
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value along the v -axis remains the same for both images. As a result, a scene point’s 3D coordinates
can be mapped to a set of three image coordinates in the stereo camera system, expressed as:

Stereo-camera mapping M : P = [X, Y, Z1" = pimage = [u, ur, v]" (11)

The mapping function M is nonlinear and depends on the stereo camera parameters P, camera,
specifically b, and F.

Scene object point P¢

@ (X€,Y€,29 E
S o)
! ry o
3 £
;|
&l D |
| o«
| ZL : ZR
| c | .
Left Image : ., Z; . : ngh’lt Image
—u, - plane
. plane \_!j"- . . , L—b,b
L L : Z axis Ug : R
| I
| .
C; X amg 0. {C L Cr
e ~ N
Left Camera Baseline center Right Camera
lens center lens center

Figure 6. The projection of a scene object on the stereo camera’s image planes. Note: The v-coordinate on each
image plane is not displayed in this plot but is measured along the axis that is perpendicular to and pointing out
of the plot.

4.2. Robot Manipulator Kinematic Model

A widely used method for defining and generating reference frames in robotic applications is
the Denavit-Hartenberg (D-H) convention [29]. In this approach, each robotic link is associated with
a Cartesian coordinate frame 0;X;Y;Z;. According to the D-H convention, the homogeneous
transformation matrix Aﬁ_l, which represents the transformation from frame i — 1 to frame i, can
be decomposed into a sequence of four fundamental transformations:

i-1 _
A;" = Rot, g Trans, g Transy q Roty 4,

Expanding the transformation into its matrix form:

(12)
Cg —Sq¢; 0 01 0o 0 O]t 0 0 ][l O 0 0
Ai-1|Sq; €q 0 0[j0 1 0 0]j0 1 0 0|0 €& —Sa O
¢ 0 0 1 off0 0 1 dif|0 0 1 O[]0 s ¢o O
0 0 o0 1/L0O 0 0 1110 0 0 1flp o 0 1
Cq Sqia;  SqiSa;  QiCq,
- Sq quca qusal alSqi (13)
0 S Ca, d;
0 0 0 1
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Note: cg, = cos (q;), Cq; = C0s (a;), Sg; = sin (q;), Sq, = sin («;) (14)

The parameters gq;, a;, @; and d; define the link and joint characteristics of the robot. Here, a;
is the link length, g; is the joint rotational angle, «; is the twist angle, and d; is the offset between
consecutive links. The values for these parameters are determined following the procedure outlined
in [29].

To compute the transformation from the end-effector frame 0zX(YsZ¢ (denoted as {E}) to the
base frame 0,X,YyZ, (denoted as {O}), we multiply the individual transformations along the
kinematic chain:

Tg = AYA3AZAGASAG (15)

Furthermore, the transformation matrix from the base frame {O} to the end-effector frame {E}
can be derived by taking the inverse of T¢:

Ty = (TH) ™ (16)

If a point P? is defined in the base frame, its coordinates in the end-effector frame PF can be
found using:

PE = Tg PO (17)

Assuming that the camera remains static relative to the end-effector, we introduce a constant
transformation matrix T that maps points from the end-effector frame {E} to the camera frame {C}.
For a stereo camera system, this camera frame is located at the center of the stereo baseline, as shown
in Figure 6. The coordinates of a point in space, measured in the base frame, can then be expressed in
the camera frame as:

P¢ = TECTO6 po (18)
Equation (18) describes how a given 3D point in the base frame P°=[X?,Y?,Z°] is mapped to

the camera frame P ¢=[X¢, Y, Z¢] using transformation:
Robot manipulator mapping # : P? = [X°,Y°,Z°]" - P¢ = [XC, Y, Z¢]" (19)

The mapping function # is nonlinear and depends on the current joint angle of robot q =
[q;li€ 1,2,3,4,5,6], robot geometric parameter P, ,,pot= [a;, @;, d; |i € 1,2,3,4,5,6], and constant
transformation matrix Tf.

4.3. Eye-in-Hand Kinematic Model

By combining the stereo camera mapping M from Equation (11) and the robot manipulator
mapping H from Equation (19), we define a nonlinear transformation ¥, which maps any point
measured in the base frame {O} to its image coordinates as captured by the stereo camera. This
transformation is expressed as:

Eye-in-hand mapping F : P? = [X°,Y?,Z°" > punage = [up, uy, v]” (20)

The Mapping F is nonlinear and depends on variables current joint angles: q and parameters
P,, which includes stereo camera parameter P, cumerq, TObOt geometric parameter P, ,opor, and
transformation matrix T£. In other words:

For any time t > 0, Pynage = F(q(t), Pa, P°) (21)
Pa = [Pacamera’ Parobot’ TEC (22)
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4.4. Robot Inverse Kinematic Model

Inverse kinematics determines the joint angles required to achieve a given camera pose relative
to the inertial frame. The camera pose in the inertial frame can be expressed as a 4X4 matrix:

Ny Sy a, d,

Pose® = |7 ¥ & 4 (23)
n, s; a, d,
0 0 0 1

Here, the vectors [ny,ny,,n,]", [sySy,s,]7and [ay, a,,a,]" represent the camera’s directional
vectors for Yaw, Pitch, and Roll, respectively, in the base frame {C}. Additionally, the vector
[d,, dy, d,]" denotes the absolute position of the camera center in the base frame {C}.

The camera pose in the camera frame {C} is straightforward as it can be expressed as another

4X4 matrix:
100 0
Pose¢ =10 3 9 0 (24)
000 1

The nonlinear inverse kinematics problem involves solving for the joint angles q that satisfy the
equation:

Pose® =T§ - Tg(q) - Pose® (25)

where Tf is the transformation from the end-effector frame to the camera frame, and T¢(q)
represents the transformation from the base frame to the end-effector frame, which is a function of
the joint angles q.

The formulas for computing each joint angle are derived from the geometric parameters of the
robot. The results of the inverse kinematics calculations for the ABB IRB 4600 elbow manipulator [30],
used for simulations in this paper, are summarized in Appendix A.

4.5. Robot Dynamic Model

Dynamic models are included in the inner joint control loop, which will be discussed in section
6. Without derivation, the dynamic model of a serial of 6-link rigid, non-redundant, fully actuated
robot manipulator can be written as [31]:

B
D@ +q+ (€@ +2q+8@) =u (26)

Where g € R®*? is the vector of joint positions, and u € R®*! is the vector of electrical power input
from DC motors inside joints, D(q) €R®*® is the symmetric positive defined matrix,
C(q,q) e R®*® is the vector of centripetal and Coriolis effects, g(q) e R®! is the vector of

]RGXG

gravitational torques, Je is a diagonal matrix expressing the sum of actuator and gear inertias,

]RGXl

B e R%*1 is the damping factor, 7 € is the gear ratio.

5. Control Policy Diagram

Figure 7 illustrates the overall control system architecture, designed to guide the robot
manipulator so that the camera reaches its desired pose, pose®e R***, in the world space. To achieve
this, three fiducial markers are placed within the camera’s field of view, with their coordinates in the
inertial frame pre-determined and represented as P?e R%**. Using the robot’s inverse kinematics and
the eye-in-hand kinematic model, the expected image coordinates of these fiducial markers, when
viewed from the desired camera pose, are computed as Dymage€ R**!. These computed image
coordinates serve as reference targets in the feedback control loop.

The IBVS framework is implemented within a cascaded feedback loop. In the outer control loop,
the camera controller processes the visual feedback error, ep, which represents the difference
between the image coordinates of the fiducial points at the current and desired camera poses. Based
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on this error, the outer loop generates reference joint angles, Ggeeapack€ R*1, to correct the robot’s
configuration.

The inner control loop, shown in Figure 8, incorporates the robot’s dynamic model to regulate
the joint angles, ensuring they align with the commanded reference angles, q,.reR***. However, due
to the limitations of low-fidelity and inexpensive joint encoders, as well as inherent dynamic errors
such as joint compliance, high frequency noises and low frequency model disturbances are
introduced into the system. All sources of errors from the joint control loop are collectively modeled
as an input disturbance, d,, €eR®*!, which affects the outer control loop.

The feedforward control loop operates as an open-loop system, quickly bringing the camera as
close as possible to its target pose, despite the presence of input disturbances. The feedforward
controller outputs a reference joint angle command, qfeeqforwara €R®*, which is sent to the inner
loop to facilitate rapid convergence to the desired configuration.

Desired pose in

inertial frame of Robot Inverse
the stereo camera ™ #| Ki ti
system: Pose? Inematics
Rabot jaint angl
onot joint angles Feedforward Afecdforwara
at desired camera Controll
pose: § o ontroller Input
Target fiducial disturbance: dg

! markers’
Fiducial markers coordinates in
coordinates in inertial image frame:

frame: P7 J Eye-in-hand Pimage i Camera Outer “rer | Inner-Loop Joint | 7
. -{: i ) ( )
i i @ Controller Control

Kinematics
Afeedback Robot joint angles with
disturbances:§

Robot manipulator
Current fiducial markers’ b
coordinates in image
frame: Pinage
Stereo camera

> .
/0
Fiducial Ma rkmn‘# Yn

g
. ® R,
R" Camera frame (C} Base frame {D
'y

Figure 7. Feedforward-feedback control architecture. Note: In mathematics, the in-loop hardware is equivalent
to the Eye-in-hand Kinematics Model.

Y

Iref €q Inner Joint u | Manipulator q
—f+_ > .
- controller Dynamics

Feedback

Figure 8. Inner joint angle control loop.

6. Controller Designs
6.1. Inner Joint Angle Control Loop
As shown in Figure 8, the primary goal of the inner joint controller is to stabilize the manipulator

dynamics, which is expressed as a nonlinear Equation (26).
Simplify Equation (5.1) as follows:
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M(@)§+h(q,q) =u (27)
With:

M(q) = D(q) +] (28)

. .. B_.
h(q,q) = (C(q,9) + ol g(@) (29)

Then, transform the control input as following;:

u= M(qv+h(q,q) (30)

where v €R®*! is a virtual input. Then, substitute for u in Equation (27) using Equation (30), and

R6X 6

since M(q)e is invertible, we will have a reduced system equation as follows:

G=v (31)

This transformation is feedback linearization technique with the new system equation given in
Equation (31). This equation represents 6 uncoupled double integrators. The overall feedback
linearization method is illustrated in Figure 9. In this control block diagram, the joint angle g
eR%*! are forced to follow the target joint angle gz eR®**. The Nonlinear interface transforms the
linear virtual control input v €R®*'to the nonlinear control input u eR®*! by using Equation (30).
The output of the manipulator dynamic model, the joint angles, g eR®*?, and their first derivatives,
¢ €eR%*?, are utilized to calculate M(q) € R®*®and h(q, q) e R®*'in the Nonlinear interface. The
linear joint controller is designed using Youla parameterization technique [27] to control the
nominally linear system in Equation (31).

The design of a linear Youla controller with nominally linear plant is presented next.

Since the transfer functions between all inputs to outputs in Equation (31) are the same and
decoupled, it is valid to first design a Single Input and Single Output (SISO) controller and use the

multiple of the same controller for a six-dimension to obtain the Multiple Input and Multiple Output

Inner
Csiso

Vsiso = Gsiso (32)

(MIMO) version. In other words, first design a controller G that satisfies:

where vggo is a single input to a nominally linear system and {50 is the second order derivative of
a joint angle. The controller in Figure 9 can be then written as:

Germo = Gesiso ~ loxs (33)
where Igxs isa 6 X 6 identity matrix. The transfer function of the SISO nominally linear system from
Equation (31) is:

Ginner — 1 (34)

psiso ~ g2

Note that G;%¢" has two Bounded Input Bounded Output (BIBO) unstable poles at origin. To

ensure internal stability of the feedback loop, the closed loop transfer function, Tgso, should meet
the interpolation conditions [32]:

TIWr (s =0) =1 (35)
AT
- lseo =0 (36)
Use the following relationship to compute a Youla transfer function: Yo as:
Tinner — Yinner Glnner
SIso — SISO PSISO (37)

The T&W™ is designed so that it satisfies the conditions in Equations (35) and (36). The
sensitivity transfer function, S&9%", is then calculated as follows:
Ssiso = 1—Tsiso" (38)
Without providing the design details, the closed-loop transfer function can be in the following
form to satisfy the interpolation conditions:
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. Brips + 1)
Tinner _ 39
SISO (Tins + 1)3 ( )

Where 1, specifies the pole and zero locations and represents the bandwidth of the control system.

T;, can be tuned so that the response can be fast with less-overshoot.

ner

. . 1
The next step is to derive G¢g e

from relationships between the closed-loop transfer function,

T the sensitivity transfer function, SZ7%7, and the Youla transfer function, Y45, in Equations
(40)—(42):
. . s2Btiyis + 1)
yinner _ pinner cInner~—1 _ in (40)
SISO siso Upgso (Tips + 1)
2(, 3 2
Sinner — 1 _ Tinner _ S (Tin s+ 3Ti” ) (41)
SISO SISO (T + 1)
2
. . -1 3Tin s+1
GITLTLET — inner cinner — 42
Csiso SISO +“SISO Tin3s + 3Tin2 ( )
From Equation (33), a MIMO controller can be computed as follows:
q p
2
Glnner _ 3Tin s+1 (43)

C = T 3., 2. 2 lexe
MIMO Tinss + 3Tin2

Equation (43) provides the expression of the inner joint controller and the closed loop of the
inner loop can be expressed as:

Tinner _ (3Tl'nS + 1)

MIMO — m “lexe (44)

' w = M(q)v + h(q,d)

Arer €q Inner Joint v, Nonlinear u Manipulator q!
O Rz

= controller i interface Dynamics ;
1 ]
; 7 !
1 ]
: Nominally Linear System: G, :
q,q
Feedback q

Figure 9. Feedback linearization Youla control design for inner loop.

6.2. Feedforward Control Loop

The feedforward loop is an open loop, disturbed by input disturbances as shown in Figure 10.
Feedforward controller is the inverse process of Inner-loop Joint control loop T, whose closed-
loop transfer function is given in Equation (44).

Therefore, the feedforward controller can be designed as

1 1 _ (Tins+1)3 1
Tinner—closed (Tforwards+1)2 (3Tins+1) (Tforward5+1)2

Tforward = “lexe (45)
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The double poles s = -1/Toyqra are added to make Tryryara proper. Choose Trgpyara SO that
the added double poles are 10 times larger than the bandwidth of the original improper T¢yryarq- In
other words, Trorwarq is chosen as

Tforward = O-ITin (46)

Input
disturbance: d,

Tinner
MIMO |
P\ObOt_JC"”t angles Robot joint angles with
at desired camera Gfeedforward disturb. 1l
pose: 7 Feedforward Inner-Loop sturhances
) — »
Controller Joint Control

Figure 10. Feedforward control design

6.3. Outer Feedback Control Loop

In control system block diagram (Figure 7), the linear closed loop transfer function has been
developed in equation (44) and the eye-in-hand kinematic model is a nonlinear map defined in
Equations (21) and (22).

When disturbed joint angles § are inputs to the eye-in-hand model, the outputs are expressed
as Pumage- Revise Equation (22) accordingly, we have:

Punage = F(4(¢), Pa, P°) (47)

Where P% R°!!, are fiducial markers’ coordinates in inertial frame, and Pa are constant
parameters, which consist of camera intrinsic parameters, robot geometric parameters, and
transformation matrix between the end-effector to the camera.

By choosing a set of linearized points §°¢ R®*?, the model expressed in Equation (47) can be
linearized with those points in Jacobian matrix form as:

Pimage = J(§° Pa, P®)4(t) + F(4°, Pa, P°) (48)

Where J(g° Pa,P°) e R®*® is the Jacobian matrix of F(G(t),Pa,P°) evaluated as §= ¢°.
Assuming €, = J(§° Pa, P°), C, = F({(t), Pa, P°) , therefore, Equation (48) can be rewritten as:

Punage = C14(t) + C; (49)

Let’s define pinage’ = Pimage — C2, then, the overall block diagram of the linearized system is
shown in Figure 11.

Target fiducial inner L
Outer T i
kers’ G, MIMO i C,
comndinates in Cmimo i 2|1 Current fiducial markers’
imare frame: ! ! coordinates in image
fmage Trame: W _feedb i — I frame: Pima,
Pimage “ | Camera Outer [ Inner-Loop |4 il |Pimege Pimage
@ "l . ! Pimage = C1q ;
= Controller loint Control ! ;
' :
i

Linearized Eye-in-Hand Kinematic model

Figure 11. Feedback loop with linearized model.

The linearized plant transfer function is derived as:

—

linear _ Dunage QBtips + 1)

PMIMO_outer - 1)3
- Qreedback (Tins+ 1)

“loxe (50)
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As C; is coupled, the first step to derive an observer for the multivariable system using model
linearization is to find the Smith-McMillan form of the plant [32].

G linear

v € R%*¢ with singular value
MIMO _outer

To get Smith-McMillan form, we can decompose

decomposition (SVD) as:
G linear — ULMp Ur

pMIMO_outer

(51)

where U e R% and U, e R%*€are the left and right unimodular matrices, and M, € R%*¢is the

Smith-McMillan form of G, ;:,rll;aor outer’

M, is a diagonalized transfer function with each nonzero entry equals to a gain multiple the

transfer function % ; For the i*" row of M, the entry on the diagonal is:
mn
LN oy (BTins+1l)
M, (i,i) = gain(i) —(Tins+1)3,16(1,2,3,4,5,6) (52)

Where gain € R®*! is a numerical vector.

The design of a Youla controller for each nonzero entry in M, is trivial in this case as all
poles/zeros of the plant transfer function are in the left half-plane, and therefore, they are stable. In
this case, the selected decoupled Youla transfer function: My can shape the decoupled closed loop
transfer function, My, by manipulating poles and zeros. All poles and zeros in the original plant can
be cancelled out and new poles and zeros can be added to shape the closed-loop system. Let’s select
a Youla transfer function so that the decoupled closed-loop SISO system behaves like a second order
Butterworth filter, such that:

_ wn? ¢ lexe Zerosys
My = (s2+2Lwps+wn?) [Zero3x3 ZeT03X3]’ (53)

where w, is called natural frequency and approximately sets the bandwidth of the closed —loop
system. It must be ensured that the bandwidth of the outer-loop is smaller than the inner-loop, i.e.,
1/w, > Ty C is called the damping ratio, which is another tuning parameter. Zerosy; is a 3X3
matrix with all entries equaling to zero. Note that the coordinates from the last point cannot be
controlled in the feedback loop.

Then we can compute the decoupled diagonalized Youla transfer functions My € R®*°. The
diagonal entry of i*" row is denoted as My (i, i):

Mr(i,0) _ 1 wnz (‘L’inS+1)3
Mp (i)  gain(@) (s24+2{wns+wn?) (3Tips+1)"’

My(i,i) =

i€(1,2,3,4,5,6) (54)

Similar to Equations (40)—(42), the final coupled Youla, closed loop, sensitivity, and observer
transfer function matrices are computed as:

Yﬂl/lilrll\ggtoutere ]R6X9 = UR MY UL (55)
yjlflrll;laor_outere R = Gpjlflrll;aor_outer ' Yﬁ}l]‘sgt"uwr (56)

y E?;Z,outere R*® = 1- Ty Il\flr};‘t)r,outer (57)
GC;fITIl:/I‘g,outere RO = I‘E’i}lﬂ";gt"uter ) (Syll\flr};llg,outer)_l (58)

The controller developed in the above section is based on the linearization of the combined
model at a particular linearized point §°. This controller can only stabilize at certain range of joint
angles around §°. As current joint angles §° deviates from §, the error between the estimated
linearized system (48) and the true nonlinear system (47) increases.

To tackle this problem, we develop an adaptive controller that is computed online based on
linearization of the model at current joint angles. This control process is depicted in Figure 12.

The first step is to estimate current joint angles § from current measured images coordinates
Dimage- The mathematic models of eye-in-hand kinematic model been given in expression is defined
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in Equation (22). Therefore, the mathematical function of the inverse model can be derived and
expressed as:

G = F ' (Pumage Pa, P°) (59)

Where F~! is the inverse process of Equation (22), which is a combination of coordinate system
transformation from the image frame to the end-effector frame and robot inverse kinematics process.
Given estimated current angle §, we can calculate the Jacobian matrix of the nonlinear model at

current time. By obtaining left and right unimodular matrices and Smith-McMillan form from
linear

singular value decomposition, the current linear controller Ge 0 ourer

(55)-(58).

can be built by Equations

Current fiducial

markers’ coordinates Estimated Curren
in image frame: joint angles of
Pimage manipulation :g§

Inverse of Eye-in-

. ) —— Jacobian Matrix
Hand Kinematics

(G Pa,P9)
UL Y
M .
MIMO Youla [, P Singular Value
Parameterization UR Decomposition

error between

targe and current A 4 Actuator inout
measured image ctuator input from
coordinates: e, G, linear feedback: greeapack
CMIMO_outer >

Figure 12. Adaptive feedback loop.

7. Simulations Results

To evaluate the performance of our controller design, we simulated two scenarios in MATLAB
Simulink using a Zed 2 stereo camera system [33] and an ABB IRB 4600 elbow robotic manipulator
[30]. The specifications for the camera system and robot manipulator are summarized in the tables in
the appendix. The camera system performs 2D feature estimation of three virtual points in space,
with their coordinates in the inertial frame selected as: [-0.5m 0 0]7, [0 0 0.5m]”, [2m, -2m, 0]7.

Many camera noise removal algorithms have been proposed and shown to be effective in
practical applications, such as spatial filters [34], wavelet filters [35], and the image averaging
technique [36]. Among these denoising methods, there is always a tradeoff between computational
efficiency and performance. For this paper, we assume that the images captured by the camera have
been preprocessed using one of these methods, and the noise has been almost perfectly attenuated.
In other words, the only remaining disturbances in the system are due to unmodeled joint dynamics,
such as compliance and flexibility, which are modeled as input disturbances in the controlled system.

Two scenarios were simulated:

e  Scenario 1: Without input disturbances.

e  Scenario 2: With a 1° step input disturbance added to each joint of the robot arms for the entire
simulation time.
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In both scenarios, the camera system starts from an initial pose in the inertial frame, denoted as
Posed ;1o and maneuvers target pose, denoted as Pose}’ma,. Table 1 summarizes the initial and final
poses for each scenario, along with the corresponding joint configurations.

Figures 13 and 15 present the responses of the six joint angles for the two scenarios, respectively.
Figures 14 and 16 show the responses of the nine image coordinates over time for each scenario. In
each case, the feedback-only controlled system (left plot) is compared to the feedforward-and-
feedback controlled system (right plot). These comparisons focus on overshoot, response time, and
target tracking performance.

Both scenarios are simulated with bandwidth of the inner-loop as 100rad/s and the bandwidth
of the outer-loop as 10rad/s.

Table 1. Camera Pose and Robot Joint Angles at Initial and Final State of Simulation Scenarios.

Robot Joint
Camera Pose J
Form Angles
at n, S, @ dy 4, 4,
ny Sy ay dy 33 34
n, s, a, d, 5 Y
Where [ny,n,,n,]", [y Sy,s,]"and Where (¢4, 92, G3, 44 G5, 46) in (degrees) are
[ay, ay, az]Tare Yaw, Pitch, and Roll, and robot joint angles.
[dy,dy,d,]" (in meters) is the position,
measured in inertial frame {O}.
Scenario 1 Scenario 2
Camera Pose Robot Joint Camera Pose Robot Joint
Angles Angles
Initial 0 0 1 127 0° 0° —0.070 —0998 0.002 1| [42.40° 21.20°
State 01 0 0 0° 0° —0.996 0070 —0.060 d|458° —286
-1 0 0 157 0° 0° —0.060 —-0.007 —-0.998 ( 66.46° —42.4(
0 0 0 o '
Final —-0.11 0.14 098 1.] [0.48°  2.21° 0 -1 0 1 [ 45° 18.59°]
State —-0.09 098 —-0.15 —{|2.05° —82.6§ -1 0 -1 1 4.35° 0°
-0.99 -0.10 —0.09 1 [9.46° 77.47] 0 0 01 67.06° —45°
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Figure 13. Scenario one (no disturbances): Response of robot joint angles. (Left: Feed-back only responses, Right:
Feedforward-feedback responses).
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Figure 14. Scenario one (no disturbances): Response of image coordinates. (Left: Feed-back only responses, Right:
Feedforward-feedback responses). The three coordinates of the third point are only matched in the feedforward-

feedback approach.
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Figure 15. Scenario two (add disturbances): Response of robot joint angles. (Left: Feed-back only responses, Right:

Feedforward-feedback responses).
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Figure 16. Scenario two (add disturbances): Response of image coordinates. (Left: Feed-back only responses, Right:
Feedforward-feedback responses). The three coordinates of the third point are only matched in the feedforward-
feedback approach.

The response plots indicate that both the feedback-only controller and the combined
feedforward-and-feedback controller successfully stabilize the system and reach a steady state within
three seconds, even in the presence of small input disturbances (Scenario Two). However, the
feedback-only controller fails to guide the camera to its desired pose and falls into local minima, as
evident from the third point’s coordinates (ul3 ur; v3 ), which do not match the target at steady state.
This issue arises from the overdetermined nature of the stereo-based visual servoing system, where
the number of output constraints (9) exceeds the degrees of freedom (DoFs) available for control (6).
As a result, the feedback controller can only match six out of nine image coordinates, leaving the rest
coordinates unmatched.

In contrast, the feedforward-and-feedback controller avoids local minima and accurately moves
the camera to the target pose. This is because the feedforward component directly controls the robot’s
joint angles rather than image features. Since the joint angles (6 DoFs) uniquely correspond to the
camera’s pose (6 DoFs), the feedforward controller helps the system reach the global minimum by
using the desired joint configurations as inputs.

When comparing performance, the system with the feedforward controller exhibits a shorter
transient period (less than 2 seconds) compared to the feedback-only system (less than 3 seconds).
However, the feedforward controller can introduce overshoot, particularly in the presence of
disturbances. This occurs because feedforward control provides an immediate control action based
on desired setpoints, resulting in significant initial actuator input that causes overshoot. Additionally,
a feedforward-only system is less robust against disturbances and model uncertainties. Fine-tuning
the camera’s movement under these conditions requires a feedback controller.

Therefore, the combination of feedforward and feedback control ensures fast and accurate
camera positioning. The feedforward controller enables rapid convergence toward the desired pose,
while the feedback controller improves robustness and corrects errors due to disturbances or
uncertainties. Together, they work cooperatively to achieve optimal performance.

8. Conclusions

In this article, we first provide a systematic proof of the PnP problem for a stereo camera system
and then propose an innovative control policy to address the overdetermination issues in image-
based visual servoing (IBVS) control. Results from two simulation scenarios demonstrate that the
proposed algorithm successfully brings the camera to the desired pose with high accuracy and speed.

Several existing approaches [21-23], mentioned in the introduction, have also addressed the
issue of local minima in IBVS. Compared to those methods, the key advantage of our system is its
simplicity and ease of implementation. A linear feedforward controller is sufficient to handle the local
minimum problem without requiring complex online optimization as in MPC or additional 3D
feature measurements as in 2 %-D visual servoing. The feedback loop is designed following the
traditional IBVS structure but incorporates a higher-fidelity dynamic model. The adaptive features
in the feedback controller stabilize the system across the entire state space, achieved by combining
multiple linear Youla-parameterized controllers. To reduce computational overhead, we can lower
the online update frequency or predesign several linear Youla controllers offline and switch between
them smoothly using a switching algorithm.

However, the feedforward design introduces challenges, particularly with large overshoots that
can cause erratic joint movements. This may increase the risk of accidents and potential damage to
the robot. A possible solution is to optimize the controller parameters—such as bandwidth and
damping ratios—which can be explored in future work. In addition, feedback and feedforward
controllers can be designed simultaneously using H,, control techniques [37], which optimizes the
system’s stability and performance in the presence of disturbances.
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In summary, this paper investigates the overdetermination problem in stereo-based IBVS tasks.
While future improvements to the algorithm are possible, the proposed control policy has
demonstrated significant potential as an accurate and fast solution for real-world eye-in-hand (EIH)
visual servoing tasks.

Appendix A

In this section, we will show the geometric model of a specific robot manipulator ABB IRB 4600
45/2.05[23] and a figure of a camera model: Zed 2 with dimensions [24]. This section also contains
specification tables of robots’ dimensions, camera, and motor installed inside the joints of
manipulators.
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Figure A2. Zed 2 stereo camera model with dimensions.

Table A1. Specification Table of ABB IRB 4600 45/2.05 Model (Dimensions).

Parameters Values

Length of Link 1: L, 495 mm
Length of Link 2: L, 900 mm
Length of Link 3: L; 175 mm
Length of Link 3: L, 960 mm
Length of Link 1 offset: a; 175 mm
Length of Spherical wrist: L, 135 mm
Tool length (screwdriver): P, 127 mm

Table A2. Specification Table of ABB IRB 4600 45/2.05 Model (Axis Working range).

Axis Movement

Working range

Axis 1 rotation

+180° to -180°

Axis 2 arm

+150° to -90°

Axis 3 arm

+75° to -180°

Axis 4 wrist

+400° to -400°

Axis 5 bend +120° to -125°
Axis 6 turn +400° to -400°

Table A3. Specification Table of Stereo Camera Zed 2.
Parameters Values
Focus length: f 2.8 mm
Baseline: B 120 mm
Weight: W 170g
Depth range: 0.5m-25m
Diagonal Sensor Size: 6mm
Sensor Format: 16:9
Sensor Size: W X H 5.23mm X 2.94mm
Angle of view in width: a 86.09°
Angle of view in height: f 55.35°

Table A4. Specification Table of Motors and gears.

Parameters Values
DC Motor
Armature Resistance: R 0.03 Q)
Armature Inductance: L 0.1 mH
Back emf Constant: K, 7 mv/rpm
Torque Constant: K, 0.0674 N/A
Armature Moment of Inertia: J, 0.09847 kgm?
Gear
Gear ratio: r 200:1
Moment of Inertia: J, 0.05 kgm?
Damping ratio: B, 0.06

Appendix B

In this section, we will show forward kinematics and inverse kinematics of the 6 DoFs revolute

robot manipulators. The results are consistent with the model ABB IRB 4600.
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Forward kinematics refers to the use of kinematic equations of a robot to compute the position
of the end-effector from specified values for the joint angles and parameters. The equations are
summarized in the below:

Ny = €1523(S4S6 — €4C5C6)- 51(S4C5C6 + €456) — €1C2355C6
Ny, = 51523(54S6 — C4C5C6) + €1(54C5C + €4S6) — S1C2355C6

(B1)
N, = C23(S45¢ — C4C5C6) + S2355C6
Sy = €1523(54C6 + €4C5C6)+51(S4C556 — €4C6) + €1C2355S6
Sy = 51523(54C6 + C4C5C6) — €1(S4C556 — €4C6) + S1C2355S6 (B2)
Sz = C23(S4C6 + C4C5C6) — 5235556
Ay = —C1523C4S5 — S15455 + €1C23C5
Ay = —51593C4Sc + C154S5 + S1C>=C
y 1523€4S5 + €154S5 + 51C23Cs (B3)
A; = C23C4S5 — S23C5
dy = Li(—C1523C4S5 — 515455 + €1C23C5) + ¢1(L3Sz3 + LS, + ay)
dy = L¢(—51523C4S5 + €154S5 + S1C23C5) + S1(L3Sz3 + Lys; +aq) (B4)

d; = Li(C23C4S5 — S33C5) + L3Caz + Lacy + Ly

Note: ¢; = cos(q;), s; = sin(q;)

cij = cos(q; + q;), si; = sin(q; + q;) (85)
i,j €1{1,2345,6}

where [ny,ny,n,]", [y Sy,5,]"and [ay, a,, a,]" are the end-effector’s directional vector of Yaw, Pitch
and Roll in base frame 0yX,Y,Z, (Figure Al). And [d,,d,,d,]" are the vector of absolute position of
the center of the end-effector in base frame 0,X,YyZ,. For a specific model ABB IRB 4600-45/2.05
(Handling capacity: 45 kg/ Reach 2.05m) the dimensions and mass are summarized in Table Al.

Inverse kinematics refers to the mathematical process of calculating the variable joint angles
needed to place the end-effector in a given position and orientation relative to the inertial base frame.
The equations are summarized in the below:

Dx = dy — Leay

py = dy — Lea,
(B6)
Pz = dz - Ltaz
q1 = arctan(p—y) (B7)
Px ,
i L+ (Vo2 +py2—a1) + (o, — Ly)? = L3* — L,
4y = %_ arccos ( 2 ( Px Dy 1) (p, 1) 3 4 )
2L, /ng + L,° (BS)
—L
—arctan ( R )

2V, pxz + pyz —aq
2
L22 + L32 + L42 - (\/ Dx* + pyz - a1) - (o, — L1)2)

2L, /ng + L2 59)

qz = m — arccos (

tan (24
arctan (L3)

qs = arccos (C1Cz3ay, + S1C234, — Sp3a;) (B10)
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Slax - Clay
q, = arctan ( (B11)
C15230y + S1S230y + €230,
C1C23Sx T 51C23Sy — 5235,
qe = —arctan (.
C1C23My + S1C3My — Sp3N, (B12)

Note: ¢; = cos(q;), s; = sin(q;)

Cij = cos(qi + qj), Sij = sin(qi + q]-) (B13)
i,j €{1,2,34,5,6}

where [ny,ny,n,]", [sySy,5,1", [ay, ay,a,]"and [d,,d,,d,]" have been defined above in the forward
kinematic discussion.
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