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Abstract: Recently concluded, large-scale cancer genomics studies involving multiregion sequencing of 

primary tumors and paired metastases appear to indicate that many or most cancer patients have one or more 

“clonal" mutations in their tumors. Clonal mutations are those that are present in all of a patient’s cancer cells. 

Achilles Therapeutics is currently the only company specifically targeting clonal mutations. However, they are 

doing so with tumor-derived T cells. To address the potential limitations of immunotherapy, I have devised 

another approach for exploiting clonal mutations, which I call “Oncolytic Vector Efficient Replication 

Contingent on Omnipresent Mutation Engagement” (OVERCOME). The ideal version of OVERCOME would 

likely employ a bioengineered facultative intracellular bacterium. The bacterium would initially be attenuated, 

but (transiently) reverse its attenuation upon clonal mutation detection. 
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Introduction 

Cancer has plagued multi-cellular organisms since their inception. However, we have only 

recently begun to develop effective targeted therapies. Most of said therapies have been for blood 

cancers. Gleevec, the BCR-ABL tyrosine kinase inhibitor, is a prime example of this; it was approved 

in 2001 for the treatment of chronic myelogenous leukemia [1]. Additionally, immunotherapies such 

as CAR T-cells have been developed that target T and B cell malignancies [2]. 

In certain instances, immunotherapies such as anti-PD1 antibodies can help treat melanoma. T-

VEC, an FDA-approved oncolytic herpesvirus, is also sometimes effective against melanoma [3]. It is 

somewhat unclear why melanomas respond so well to immunotherapy and T-VEC as opposed to 

many other types of cancer. 

T-VEC may exert its anti-tumor effects mainly by rendering melanoma lesions immunologically 

“hot”, rather than direct oncolysis [4]. It may also spread more easily through such lesions due to 

tight endothelial cell-to-cell junctions [5]. Thus, melanoma may simply be particularly amenable to 

immunotherapy. Perhaps this is because it is often caused at least in part by UV damage-mediated 

DNA mutations, which can be potently immunogenic [6]. 

Three other oncolytic viruses have been approved for clinical usage against solid tumors in other 

areas of the world: Rigvir, Oncorine, and Delytact [7]. Rigvir is an oncolytic enterovirus approved in 

Latvia for melanoma, Oncorine is a modified adenovirus that is used to treat head and neck cancer, 

and Delytact is a herpesvirus used to treat malignant gliomas. Rigvir may not be as efficacious as T-

VEC [8]. Like T-VEC, all three of these vectors appear to exert their oncolytic effects primarily by 

potentiating the anti-tumor immune response [9–11]. 

Finally, there is one FDA-approved bacterial vector that is used to treat non-muscle invasive 

bladder cancer, Bacillus Calmette–Guérin (BCG)[12]. It is a live attenuated strain of Mycobacterium 

bovis. Although it is one of the oldest tumor therapies, its mechanism of action still has not been fully 

elucidated. As with the aforementioned oncolytic viruses, however, BCG may mainly stimulate an 

immune response against bladder cancer cells rather than lyse them directly [13]. 
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Regardless, in most instances, the aforementioned therapies for solid tumors are not curative. 

That is largely because they do not target the tumors with sufficient specificity over normal tissue, 

and so must be attenuated. 

Clonal Mutations 

Clonal mutations are defined as mutations that are present in all of a patient’s cancer cells. 

Recently published results from large-scale cancer genomics studies that involve multiregion 

sequencing of primary tumors and paired metastases, like TRACERx [14], appear to indicate that 

many or most patients have at least one clonal mutation in their cancers [15–20]. 

Clonal mutations would be ideal targets for personalized therapy. Some tumors are in 

anatomical locales that are difficult or dangerous to biopsy, however. A non-invasive option for 

identifying a patient’s mutational spectrum, which is becoming increasingly feasible in terms of 

clinical application, would be to analyze circulating tumor cells [21] or circulating cell-free tumor 

DNA in the blood or cerebrospinal fluid [22–27]. Although it is possible to determine clonal 

mutations, targeting these mutations is not very facile at present. 

Dr. Charles Swanton, Chief Investigator of the TRACERx study, co-founded a company called 

Achilles Therapeutics in 2016; it is currently the only company specifically targeting clonal mutations. 

However, they are leveraging an immunotherapy tactic to do so, specifically tumor-derived T cells 

[28]. From a mechanistic perspective, immunotherapy may not be the best way to exploit clonal 

mutations. Firstly, many mutations affect intracellular antigens. While MHC class I complexes can 

display intracellular peptides derived from mutated proteins, 40-90% of human cancers 

downregulate said complexes [29]. Secondly, even if a mutant protein is on the cell's surface, some of 

the patient's cancer cells may evolve to downregulate the production of that mutant protein. The 

latter point applies to the display of peptides derived from mutant intracellular proteins via MHC 

class I complexes as well. 

Recently, I devised an approach for exploiting clonal mutations in solid tumors at least that can 

theoretically circumvent these issues, which I call “Oncolytic Vector Efficient Replication Contingent 

on Omnipresent Mutation Engagement” (OVERCOME)[30,31]. 

OVERCOME 

The general idea of OVERCOME is to use an oncolytic virus or intracellular bacterium with the 

broadest possible tropism that is either programmed not to replicate or attenuated until it detects one 

or more clonal mutations via molecular “switches”[30–37]. Moreover, many hyper-virulence 

modules could be triggered by clonal mutation detection [38–41]. Somewhat similar strategies have 

been proposed before with oncolytic viruses, but replication was not made dependent on mutation 

detection [42]. 

Crucially, with such a vector, clonally mutated genes can be forcibly upregulated via expressed 

or secreted transcriptional activators to essentially ensure a detection signal. As direct RNA export 

from bacteria is currently not very well-understood, a bacterial vector could secrete a multitude of 

transcriptional activator like effector (TALE)- or zinc finger (ZF)-activators instead of CRISPR-based 

activators [43,44]. However, these transcriptional activators would also be expressed or secreted in 

infected noncancerous cells, which might be problematic even just within the time it takes for 

treatment. Thus, a negative feedback circuit may be of use; in addition to switches that target the 

mutated part of the upregulated transcript or protein, it might be ideal to also express switches that 

detect it at one or more non-mutated sites. When the latter switches activate, further secretion of the 

TALE- or ZF-activators would be halted. 

Large mutations in promoters can also be targeted by transcriptionally upregulating their gene 

product, but smaller mutations in these locales may be less easily exploited. These regions and other 

clonally mutated intergenic regions could also theoretically be targeted by DNA-binding switches 

[45,46]. However, if the DNA is targeted, an enzymatic cascade may be required for sufficiently rapid 

amplification of the mutation “signal”[47]. Such a cascade might increase vector off-target activity. In 
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the near future, induced transcription of any intergenic region might be possible, which could lead 

to less off-target activity than an enzymatic cascade-based mechanism. 

Ideally, the vector would target all of a patient’s clonal mutations simultaneously, 

transcriptionally upregulate any clonally mutated genes, and conditionally become hyper-virulent in 

many ways. Such sophisticated bioengineering may require a lot of extra packaging space, however. 

Given the essentially unlimited packaging space of bacteria, an intracellular bacterium may be the 

best oncolytic vector in this context. 

Various attenuated intracellular bacterial species like Salmonella Typhimurium and Listeria 

monocytogenes can be intravenously injected in humans with minimal side effects [48–50]. Notably, 

bacteria naturally colonize tumors when injected intravenously [51]. Moreover, some bacteria at least 

are able to cross the blood-brain barrier after intravenous injection, which is a very helpful 

characteristic for treating central nervous system tumors like glioblastoma [52,53]. 

The three intracellular bacterial species that are best studied in the context of cancer are S. 

Typhimurium [54], L. monocytogenes [55], and Shigella flexneri [56]. I previously suggested the possible 

use of Vibrio natriegens as a vector because of its rapid replication rate [57] and the fact that only two 

genes are required for extracellular bacterial entry into mammalian cells [58], but it does not seem to 

survive in the cytoplasm of human cells [59]. A prophage-free strain of V. natriegens may be more 

applicable here [60]. 

A possible benefit of using a facultative intracellular bacterium over an obligate intracellular 

bacterium would be that it may not need to invade very many cancer cells; activated vectors could 

transmit the detection signal to nearby intracellular bacteria that have not detected clonal mutations 

yet or in general - and extracellular bacteria - via AI-1, a membrane-permeable quorum sensing 

molecule [61]. 

Extremely broad tropism via “zippering” could be imbued via the expression of multiple 

adhesins that bind ubiquitously expressed cell surface proteins - and perhaps an assortment of 

invasins [62–65]. The Salmonella Pathogenicity Island 1 type 3 secretion system would also enable 

entry into a wide variety of cell types through a “triggering” mechanism [66,67]. 

In order to avoid xenophagy prior to the detection of one or more clonal mutations, the bacteria 

could even replicate up to a tolerable copy number inside host cells, restrained via quorum sensing - 

perhaps with AI-2[68]. A vacuolar pathogen like S. Typhimurium may have to express an importer 

on the surface of its vacuole to ensure quorum sensing via AI-2. 

An example of a molecular switch that could target a clonally mutated transcript would involve 

Pumby modules, which allow for modular recognition of RNA in the same way that transcription 

activator-like effectors (TALEs) can readily be generated to recognize custom DNA sequences. Dual 

RNA-binding switches would be used to dock next to one another specifically on the mutated 

transcript, resulting in split intein splicing and reconstitution of an orthogonal protease [32]. 

Alternatively, a new CRISPR-based technique that could be used is “Craspase”, an RNA-guided 

protease [37]. The RNA cleavage capacity of Craspase should be abolished in this context. Crucially, 

this system could potentially detect clonal point mutations, similar to “SHERLOCK”[69]. 

However, Craspase would require the export or release of RNA into the host cell cytoplasm. 

There are two options for this. The most straightforward one is as follows. Intracellular copies of the 

bacterial vector could continuously replicate asymmetrically initially or after reaching quorum 

sensing levels [70,71], wherein one progeny cell survives and the other lyses to release RNA elements 

used to at least help upregulate or detect cancerous mutations [37,72,73]. A vacuolar pathogen like S. 

Typhimurium may have to lyse its surrounding vesicle to enable this approach [72]. 

The second option for a Gram-positive vector at least, like L. monocytogenes, is that Eno or Zea 

could perhaps be programmed to bind and thus enable secretion of custom RNA molecules like the 

Craspase gRNA [74,75]. 

The facultative intracellular bacterial vector could respond to a clonal mutation through 

activation of Craspase to cleave a pro-peptide; the resulting peptide could then activate a two-

component regulatory system [76,77]. A vacuolar pathogen may have to express a peptide importer 

on the surface of its surrounding vesicle in order to ensure maximal activation at least. Instead, nitric 
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oxide production could be tied to switch activation, thereby avoiding concerns about vacuolar 

peptide permeability [78]. 

Craspase could also activate regulated intramembrane proteolysis in the context of Gram-

positive bacteria [79]. 

As opposed to viruses, the restoration of intracellular bacterial replication potential or 

attenuation reversal may need to be transient in order to avoid systemic infections. 

Additionally, for neuron-based cancer, at least, Toxoplasma gondii could eventually be helpful 

[80]. 

Finally, it is theoretically possible that some number of patients may have no clonal mutations 

in their cancers. 

In this unlikely scenario, a small set of subclonal mutations that together are present in all of 

their cancer cells could be targeted. 

Conclusions 

It is clear that effective therapies for solid tumors are urgently needed. While immunotherapy 

has had much success in the realm of blood cancers, it is unclear whether it will end up being similarly 

efficacious for solid tumors. From a mechanistic standpoint, targeting cell surface antigens certainly 

seems like a less promising strategy than targeting mutated nucleic acids or proteins from the interior 

of the cell. Thus, the development of a facultative intracellular bacterial vector that can surmount 

these mechanistic challenges could be crucial to curing solid tumors. 
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