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Abstract: We describe and analyze the Local Charged Particle Swarm Optimization (LCPSO) algo-
rithm, that we designed to solve the problem of tracking a moving target releasing scalar information
in a constrained environment using a swarm of agents. This method is inspired by flocking algorithms
and the PSO algorithm for function optimization. Four parameters drive LCPSO: the number of
agents; the inertia weight; the attraction/repulsion weight; and the inter-agent distance. Using APF,
we provide a mathematical analysis of the LCPSO algorithm under some simplifying assumptions.
First, the swarm will aggregate and attain a stable formation, whatever the initial conditions. Second,
the swarm moves thanks to an attractor in the swarm, which serves as a guide for the other agents
to head for the target. By focusing on a simple application of target tracking with communication
constraints, we then remove those assumptions one by one. We show the algorithm is resilient
to constraints on the communication range, and the behavior of the target. Results on simulation
confirm our theoretical analysis. This provides useful guidelines to understand and control the
LCPSO algorithm as a function of swarm characteristics as well as the nature of the target.

Keywords: PSO; OSL; tracking; flocking; swarm

1. Introduction

Controlling the collective behavior of a large number of robots is a complex task.
However, large natural multi-agent systems are known to work very well, such as bird
flocks [1–3], fish schools [2,4,5], ants using pheromones [2,6], or aggregations of bacteria
[2,7,8]. These self-organized systems have served as a source of inspiration to control
large formations of robots to prevent collisions between these robots [9]. The emergence
principle where complex collective behaviors arise from simple, elementary rules governing
individuals is the main topic of interest for artificial swarming systems. However, the
emergence of swarm behavior requires some constraints on the number of agents, the
environment, etc. Also, it is difficult to design the elementary rules for a specific desired
collective behavior to emerge.

One behavior in particular, flocking or schooling, enjoys a growing interest in the
scientific domain. [10] established a first landmark, giving the three rules of flocking
(alignment, cohesion, separation). Then Tanner, Jadbabaie and Pappas, in a two-part
article [11,12], made a fundamental mathematical analysis of the Reynolds rules using
the Artificial Potential Field (APF) approach. They proved that using potentials both
attractive and repulsive, the flock becomes homogeneous with equal inter-agent distance
and equal speed vectors at equilibrium. This behavior is resilient to external stimuli as long
as the agents are within communication range. By using these methods, and despite the
remaining challenges to designing the desired group behavior, the robotics community has
used swarm-based approaches for applications such as target tracking [13–17], Search And
Rescue (SAR) [18], or Odor Source Localization (OSL) [19–26], among others.

Ant Colony Optimization (ACO) [6] or Particle Swarm Optimization (PSO) [27] are
swarm intelligence algorithms used in the mathematical community of optimization. The
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strength of these approaches lies in using agents distributed in the workspace, sharing
information to search for the optimum of a fitness function. In particular, this community
strongly uses the PSO algorithm [13–15,18–21,28]. It is important to stress that optimization
algorithms like PSO, can also drive a swarm of actual robots [29]. This bridge between the
two communities of robotics and optimization shows that one common way to solve their
respective problems can be found through swarming.

In the present paper, we focus on tracking a mobile target leaving a semi-permanent
trail, such as a chemical scent or radioactive particles carried by the environment. This
problem could be described as Mobile Odor Source Localization (MOSL), a generalization
of OSL. We assume the information to be “scalar”, in that its value is a real, one-dimensional
number. As Section 2 will show, this problem is equivalent to maximizing a fitness function
varying with space and time. The plume model is simplified compared to the state-of-the-
art [30,31] to fasten the simulation results and obtain preliminary results, but those models
will be upgraded in a future work. In a terrestrial environment, instances of this problem
arise e.g. when tracking a moving source of nuclear radiation with possible counter-terrorist
applications [32,33], or finding the origin of polluted areas [34]. Applications in the marine
field include securing a specified area to detect intruders; to prevent illegal oil discharges
by ships using so-called “magic pipes”; localizing a pipeline leak [35,36], or various other
similar uses. A variant of PSO called Charged Particle Swarm Optimization (CPSO) was
proposed by [20,21] to solve OSL and head for a static odor source, with interesting results
[37]. CPSO differs from PSO in that repulsive components are added to avoid collisions
between agents in the swarm. The equations of flocking correlate with CPSO [38,39], or
more recently with the Extended PSO [28], but no mathematical analysis has yet linked up
those two fields.

In [40], for our MOSL problem, we proposed an algorithm called LCPSO, inspired by
CPSO, which takes into account communication constraints in distance between agents
that are representative of underwater systems [41]. Based on simulations, we showed
that the limited number of attracting agents allows a reactive tracking of one or multiple
moving targets avoiding collisions between agents, with better performances than the CPSO
algorithm. In this paper, we intend to demonstrate new results characterizing LCPSO.
First, we demonstrate that the positions of the center of gravity and attractor(s) will guide
the swarm, and this mechanism is the key to head for the source. Second, we show that
a distance parameter, req, which is an input of our algorithm, can control the surface of
the swarm. Finally, we show that, whatever the initial conditions, the swarm will attain a
stable formation, invariant to time and the place of the attractor. We prove these results
theoretically under some simplifying hypotheses, whatever the dimension D. We then
successively remove the simplifying hypotheses and show that the proposed theoretical
results are confirmed by simulations. These flocking behaviors have already been shown
in [12] and [39]. However, to the best of our knowledge, controlling the surface of the
swarm with an optimization algorithm such as PSO and its derivatives is new. Also, the
use of specific attractors to head for a goal indirectly, and in the same time keeping a strong
formation, has never been investigated before, to the best of our knowledge.

We organize our article as follows. Section 2 formalizes the MOSL problem while
Section 3 describes our models, particularly the PSO algorithm and the LCPSO algorithm to
track a mobile target. New contributions begin at Section 4, which provides a mathematical
analysis of the behavior of the LCPSO algorithm under some restricting hypotheses. Those
hypotheses are removed one by one to show that our algorithm is resilient to a limited
communication range. Section 5 provides simulations results of our algorithm in mobile
target tracking scenario. Finally, Section 6 concludes this paper and gives some perspectives
for future works.
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2. Problem formulation
2.1. The general MOSL problem

We extend the OSL problem, where the odor source is static, to the case of moving
source resulting in the MOSL problem. The objective is to localize a mobile target, char-
acterized by a D-dimensional position ps(t) varying with time t. This target is assumed
to release scalar information in the environment, such as an odor, heat, radioactivity, a
sound or radio wave; without losing generality we assume the intensity of this information
to be positive. We thus note u : RD × R 7→ R+; (p, t) → u(p, t). This information u is
assumed to be diffused and transported by the environment. This can be modeled by a partial
differential equation of variable u, which exact formulation depends on the problem at hand.
We assume furthermore that at any given time t, function u has aN unique point pmax(t)
where the information intensity u is maximum. We also assume that the diffusion and
transport mechanism is such that pmax(t) is very close to the position of the target ps(t)
so that for all practical purposes we may assume that ps(t) ≈ pmax(t) i.e. both terms can
be used interchangeably. Our problem is then to find pmax(t), which is then equivalent to
finding the position of the target at the same date.

The measure, made by the system’s sensors, will be denoted by function f : RD×R 7→
R+; (p, t)→ u(p, t) + β(p, t), where β(p, t) is a noise. We assume that the SNR is sufficient
so that the maximum of f still coincides with the maximum of u for all practical purposes.
In our simulations, we considered that function u had values in [0, 1] and the noise was
additive white Gaussian, uncorrelated in space and time, with a standard deviation σ taken
between 0 and 0.25 except where indicated. We leave issues raised by a poor SNR for future
research.

2.2. The toy problem used in this paper

Instead of describing the problem by a partial derivative equation, we may instead
assume that the solution of this equation is known explicitly. This is the approach we use
in the simulations presented in this paper because this is quicker to simulate. We use for
instance the following expression:

u(p, t + ∆t) =
1

1 + ‖p− ps(t)‖2︸ ︷︷ ︸
1

+ (1− e−
∆t
τ )u(p, t)︸ ︷︷ ︸
2

f (p, t) = u(p, t) + β(p, t)︸ ︷︷ ︸
3

(1)

In these equations, ∆t is a discrete time step. The equation (1) contains three elements
to represent real-world phenomena:

1. a spatial term which decreases with the distance between target position ps and any
position p in the workspace; this is the inverse square law induced by mechanisms of
conservation of power through propagation, modified with a constant additive term
in the denominator to prevent the value from becoming unreasonably large when
‖p− ps(t)‖ → 0;

2. a temporal term, representing a decay, inspired by the response to a first-order filter
model parameterized by the time constant τ;

3. an additive white Gaussian noise β(p, t) ∼ N (0, σ) in the whole environment, with
σ�max( f ), representing measurement noise.

In our paper, dimension D can be 1 or 2 or more, and it will be indicated explicitly
when it is necessary. Simulation results are not treated in higher dimensions, but we
assume that the results we present should be close to the results displayed in dimension
2 because there are no cross-dimensional terms in the PSO equation described below in
expression (2).

We must stress that the exact mechanism behind the generation of function u does not
need to be known for the problem to be solved. The only hypotheses that matter, are that i)
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there is only one spatial maximum for u at each date and ii) that the maximum is reached
close to the actual position of the target at a given date. This way, all that matters is finding
the maximum of u at each date by sampling f at the positions of the agents in the swarm.

This model is less complex that in the state-of-the-art [31,37,42], where the plume
model is dynamic and wih multiple local maxima. Environmental sensors help the modeli-
sation of this plume, an anemometer or ocean current sensor for example. However, in OSL,
the source is static, and the important point we wanted to highlight is the unpredictability
of the source behavior. Hence, study our algorithm with both the plume and source dy-
namics will complexify the analysis of our algorithm. For this reason, the analysis takes
into account only the dynamics of the source, and an analysis with a dynamic plume model
will be part of a future work. We note that the measurement noise can create multiple local
maxima, but this phonomenom can disappear instantaneously at the next time step for the
agent i.

3. Models
3.1. The PSO algorithm

PSO is an evolutionary algorithm, inspired by flocking birds [27]. We consider N
trackers sampling f at their position pi(t). This value is given by f

(
pi(t), t

)
from (1). The

trackers move to maximise f (pi(t), t). To do this, the PSO algorithm provides an update of
the speed vector vi(t) as follows:

vi(t + ∆t) = c0vi(t)︸ ︷︷ ︸
1

+ c1αi1(t)
(
pb

i (t)− pi(t)
)︸ ︷︷ ︸

2

+ c2αi2(t)
(
pg(t)− pi(t)

)︸ ︷︷ ︸
3

(2)

As described in (2), the speed vector at time t + ∆t is a sum of three elements:

1. The previous speed vector of tracker vi(t), weighted by a constant coefficient c0. c0 is
homogeneous to a (pseudo) mass and is sometimes called "inertia" in the community.

2. The difference between the current position of tracker i and its best historical position
noted pb

i (t) ( “b” for “best”). The best historical position pb
i (t) is the position pi(ti),

with ti between time 0 and t where measure f (pi, ti) was the greatest. This component
is weighted by a constant coefficient c1.

3. The difference between the position pg(t) (“g” for “global”) of the current swarm’s
best tracker and the current position of tracker i. The position of the best tracker of
swarm pg(t) is the tracker j measuring the greatest f (pj, t) among the N trackers of
the swarm. This component is weighted by a constant coefficient c2.

The second and last components are attractors, weighted by a random number, respec-
tively αi1(t) and αi2(t), uniformly distributed in [0; 1] and specific to agent i. These random
numbers provide diversity to the system and improve exploration, avoiding the swarm to
be trapped in a local optimum [27,43].

Using the Euler integration scheme, the updated position of tracker i is computed as
the sum of its previous position and the updated speed vector as follows [27]:

pi(t + ∆t) = pi(t) + ∆t · vi(t + ∆t) (3)

3.2. APF theory and flocking principles

In APF methods, the analysis is based on potential functions P
(
di,j(t)

)
, where di,j(t) =∥∥pi(t)− pj(t)

∥∥ is the Euclidean distance between agents i and j. The agent i uses a gradient
descent algorithm based on P

(
di,j(t)

)
to move. In flocking algorithms, we are interested in

a particular potential function P
(
di,j(t)

)
, described in Definition 1.

Definition 1. The potential function P
(
di,j(t)

)
= Pa(di,j(t)

)
− Pr(di,j(t)

)
is a flocking potential

field if:

• P
(
di,j(t)

)
is a non-negative function of the distance di,j(t) between agents i and j,
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• Pr(di,j(t)
)

is monotonically increasing in [0,+∞[ and its gradient is the highest when
di,j(t)→ 0,

• Pa(di,j(t)
)

is monotonically increasing in ]0,+∞[ and its gradient is the highest when
di,j(t)→ +∞,

• P
(
di,j(t)

)
is convex and even,

• P
(
di,j(t)

)
attains its unique minimum when i and j are located at a desired distance req.
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Figure 1. Example of potential field P(di,j) with respect to Definition 1. req = 1 m.

Where Pa(di,j(t)
)

and Pr(di,j(t)
)

are, respectively, attractive and repulsive potential
fields. An example of such potential fields are shown in Fig. 1. It is a reactive approach to
guidance where the trajectory is not planned. Since P

(
di,j(t)

)
is convex, we can directly

use the sign of its gradient to describe the behavior of agents i and j. If the gradient is
positive, then agents i and j will repel each other. If the gradient is negative, then agents i
and j will attract each other. The agent will stop when it attains an equilibrium distance
req between agents i and j, where the potential function is null and stable in the sense of
Lyapunov [12,35,38]. Collisions between neighbors in the swarm are thus avoided and
the inter-agent distance is controlled owing to near-equilibrium distance parameter req.
Hence, the swarm will attain a stable formation, when individually each agent minimizes
its potential function, whatever the initial position of the agents. When the swarm is stable,
there is a velocity matching between the agents [12,44]. [45] use the consensus metric V(t)
as follows :

V(t) =
∑N

i=1 ∑N
j=1,j 6=1

∥∥vi(t)− vj(t)
∥∥

N(N − 1)
(4)

Hence, if limt→+∞ V(t) = 0, we are sure to attain a consensus in the swarm speed. We
define as follows the swarm stability :

Definition 2. The swarm is stable if there is a consensus as follows:

∀ε > 0, ∃t0/∀t ≥ t0, V(t) < ε

3.3. PSO formulated using the APF theory

As we have introduced APF theory and flocking principles, we can now rewrite the
PSO equation (2) as a gradient descent strategy:

vi(t + ∆t) = c0vi(t)−∇pi Pi(t) (5)

Here, Pi(t) is the potential field of PSO applied to agent i, providing equality of
equations (2) and (5). Since potential fields use only phenomena of attraction/repulsion
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with inter-agent distance, weight c0 does not appear in potential field Pi(t). So we find:

Pi(t) = Pa(∥∥∥pb
i (t)− pi(t)

∥∥∥)+ Pa(‖pg(t)− pi(t)‖
)

=
c1αi1(t)

2

∥∥∥pb
i (t)− pi(t)

∥∥∥2
+

c2αi2(t)
2
‖pg(t)− pi(t)‖2 (6)

Here, Pa(di,j(t)
)

is a generic potential attraction field known in APF literature as a
quadratic attractor [46]:

Pa(di,j(t)
)
= A · d2

i,j(t) (7)

Where A is a random number uniformly distributed in [0, c1
2 ] and [0, c2

2 ] respectively. Hence,
when the algorithm converges, all the agents will be located at the same position. So, to
apply this algorithm to robotics, we need to include repulsive mechanisms to be coherent
with Definition 1.

3.4. The LCPSO algorithm
3.4.1. Adding an anti-collision behavior to PSO: CPSO

The objective here is to determine a potential field Pi(t), inspired by PSO potential (6),
that meets Definition 1. To do this, [20] introduced a variation of PSO, called CPSO, which
was demonstrated experimentally with interesting results [20,37]. To derive the equations
of CPSO, we define the following unbounded repulsive potential [39]:

Pr(di,j(t)
)
= log

(
di,j(t)

)
(8)

This potential verifies that Pr(di,j(t))→ +∞ when di,j(t)→ 0. If we sum the attractive
potential (7) and the repulsive one (8), we obtain a potential that meets Definition 1.

Those models of potentials are not unique. The state of the art provides good examples
of possible potential functions for flocking algorithms [38,39]. However, for the analysis at
equilibrium, we need the attractive potential defined in (7) for two reasons. First, we keep
the links with the original PSO algorithm. Second, this particular model is necessary for
some theorems, Theorem 4 in particular, which is important to determine the characteristics
of our swarm formation.

The repulsive potential is then added to the PSO equation:

vi(t + ∆t) =c0vi(t) + c1αi1(t)
(

pb
i (t)− pi(t)

)
(9)

+ c2αi2(t)
(

pg(t)− pi(t)
)
− c3

N

∑
j=1,j 6=i

∇pi P
r(di,j(t)

)
where c3 is the constant repulsive weight between trackers i and j.

3.4.2. LCPSO, a CPSO variant to deal with some real-world constraints

First, to reflect limitations in communication links, a local communication constraint
is added to the model. Indeed, the best tracker position of the swarm pg(t) in equation (
9) is global, shared with each agent of the swarm. We use the local-best vector position
pl

i(t) (l for local), which is the position of tracker j in the neighborhood set of i where
measure f (pj, t) is the greatest. The neighborhood set Ni(t) is based on parameter rcom
which denotes the maximum communication range between tracker i and its neighbors
[12]. Beyond maximum communication range rcom data transmission is impossible, below
rcom transmission is perfect :

Ni(t) = {j|
∥∥pi(t)− pj(t)

∥∥ < rcom, i 6= j} ⊂ {1, · · · , N} (10)
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This decentralization was already proposed by [14,15] but to the best of our knowledge it
was never used in the aim of mobile target tracking. Each vehicle will have its own local
best position and will move towards its best neighbor.

Second, the best historical position pb
i (t) is removed in the proposed approach. This

is because the target is not static: it changes position with time.
Finally, to obtain a stable swarm formation, we set our random component αi2(t) to 1.

The analysis of the algorithm with random components can be the object of future work.
Those considerations lead to the following model, originally introduced in [40], and which
we named LCPSO:

vi(t + ∆t) =c0vi(t) + c2
(
pl

i(t)− pi(t)
)
− c3 ∑

j∈Ni(t)
∇pi P

r(di,j(t)
)

(11)

From equation (11), we can deduce the potential function of LCPSO as follows:

Pi(t) = Pa(∥∥∥pl
i(t)− pi(t)

∥∥∥)− ∑
j∈Ni(t)

Pr(di,j(t)
)

(12)

This potential meets Definition 1, and is illustrated in Fig. 1, with the corresponding
attractive (7) and repulsive potentials (8) used for the LCPSO. The Euler integration scheme
is the same as in equation (3).

4. Analysis of the properties of LCPSO
4.1. Metrics and hypothesis

While we already illustrated the behavior of the LCPSO algorithm earlier through
simulation [40], these properties were only shown intuitively. We now wish to give some
mathematical basis to this intuition. We make the following assumptions that will be valid
throughout the mathematical analysis of this section:

• Communication range is unlimited. As a result, the local-best attractor pl
i(t) is the

best tracker position of the swarm pg(t).
• We focus our efforts on the APF analysis (c0 = 0). So the speed vector vi(t + ∆t) is

updated only with the gradient descent of the potential field equation.
• The target’s behavior is not known from the swarm’s point of view and can be dynamic.

Tracker i measures f (pi, t) and adjusts its local-best position pl
i(t) as a function of

maximum measurement of the neighborhood. Since the communication range is small,
we make the hypothesis that information exchange is instantaneous between the
trackers and is limited to their position in absolute coordinates and their measurements,
without noise.

To illustrate the inter-agent distance between nearest neighbors in the swarm, we
introduce a new function, the swarm spacing ρ(N). We normalize this spacing by req, a
parameter allowing us to control the inter-agent equilibrium distance when the swarm is
stable, and the number of agents N :

ρ(N) =
1

req · N
N

∑
i=1

min
i 6=j

di,j (13)

Another important parameter is the surface area taken up by the swarm. For some
cases, this parameter is critical to have a good tracking of the source. As we will see in
Section 4.2, swarm formations have a convex hull inside a ball, and we will thus be able to
represent this surface with only one parameter, the radius of this ball rmax. Whatever the
dimension, we have :

rmax = max
i∈[1,··· ,N]

‖p̄− pi‖
req

(14)
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With p̄ the center of gravity of our swarm, represented by the following equation:

p̄(t) =
1
N

N

∑
i=1

pi(t) (15)

Our swarm model has a lot of mathematical similarities with the models of [39]. So,
for conciseness, the demonstrations too close from [39] are not given, and the other ones are
in the appendix. Moreover, all the theorems presented in this paper are true regardless of
the repulsive potential Pr(di,j), as long as it respects Definition 1. Thus, we could imagine
that, if the repellent potential is not suitable, we could test others that exist in the state of
the art [38,39].

4.2. Behavior of LCPSO

We suppose that the agents’ positions are taken in RD, with D the dimension. S(t) is
the set of agents’ positions pi(t) of the swarm at time t, i ∈ [1, · · · , N]. Let us note C(t) as
a convex hull1 of S(t): it is a continuous subset of RD. Then let us note C̄(t) as the convex
polygon of S(t). It is a manifold of dimension D− 1 which displays the surface taken by
the swarm2. We set y(t) ∈ RD the optimum position of f at date t: y(t) = arg maxy f (y, t).
We suppose that this optimum is unique and is the position of the target ps(t) propagating
information.

We define the set B(t), which contains the best attractors of the swarm at time t which
minimised the Euclidean distance with respect to y(t).

B(t) = {p(t) ∈ RD|p(t) = arg min
p(t)∈S(t)

‖p(t)− y(t)‖} (16)

The set S(t) being discrete, we introduce the set S̄(t), defined as the set of the points
of S(t) which are in the convex polygon C̄(t) of S(t). We summarize the behavior of our
swarm with the following theorem:

Theorem 1. We assume that each agent follows the LCPSO equation (11), with c0 = 0 and
rcom → +∞. Then the center of gravity of the swarm is heading towards the attractor pg(t), and
its velocity vector is equal to :

v̄(t + ∆t) = c2
(
pg(t)− p̄(t)

)
(17)

Hence, if the swarm is stable in the sense of Definition 2, all agents follow the speed
vector of the center of gravity. Hence, the attractor position gives the direction that the
swarm will follow. In the MOSL case, we have defined it as the agent that has measured the
strongest information f (pg, t) at time t; it is thus the agent that is the closest to the target.

1 In dimension 1, C(t) = [min(S(t)); max(S(t))].
2 In dimension 1, C̄(t) = {min(S(t)), max(S(t))}, with card(C̄(t)) = min(2, N).
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(b) Transition state
Figure 2. Possible states for the swarm; the target is in red.

We distinguish two particular states. The first one is the transition state, with y(t) /∈
C(t). In this state, the attractors are necessarily and intuitively the agents located on the
hull of the swarm: B(t) ⊆ S̄(t). Trying to catch up with these attractors, the agents in
the swarm will accelerate to their maximum speed and then remain at this speed, in a
steady state. Thanks to (17) and rmax, the maximal speed vmax is predictable. This state is
illustrated in Fig. 2b in dimension 2. The second case is the steady state, with y(t) ∈ C(t).
In this state, all agents of S(t) are potentially attractive, i.e. B(t) ⊆ S(t). In this case, the
swarm will follow a speed close to that of the target. Thus, the closer the attractor is to the
center of gravity, the slower its speed will be. In the case of tracking a static target, our
swarm will head towards the source, and will stop when y(t) = p̄(t), shown in Fig. 2a in
dimension 2.

4.3. Analysis with N = 2 agents

As we have c0 = 0, there are only interaction forces between the agents. We consider,
without loss of generality, that the attractor is agent 1. The potential functions derived from
(12) becomes:

P1(t) = c3Pr
1
(
d1,2(t)

)
P2(t) =

c2

2
Pa

2
(
d2,1(t)

)
+ c3Pr

2
(
d2,1(t)

)
We can see that the potential functions P1(t) and P2(t) are only dependent on inter-

agent distance d1,2(t). We deduce the following theorem:

Theorem 2. A swarm of N = 2 agents following the potential field P(t) = P1(t) + P2(t) in a

gradient descent strategy will converge to an inter-agent distance at equilibrium req =
√

2c3
c2

.

To use req as a parameter in our algorithm, we will replace our parameter c3 by an

expression including the so-called equilibrium distance req. To do this, we set c3 =
c2·r2

eq
2 . In

dimension D, the LCPSO algorithm can then be rewritten as follows:

vi(t + ∆t) = c0vi(t) + c2

(
pl

i(t)− pi(t)−
r2

eq

2

N

∑
j=1,j 6=i

∇pi P
r(di,j(t)

))
(18)

4.4. Swarm stability

Theorem 3. We consider a swarm of agents following equation (18), with potential functions
respecting Definition 1. For any p̃(0) ∈ RND, as t→ +∞, we have p̃(t)→ Ωe.
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With the vector p̃(t) which contains all the relative positions of the individuals in
the swarm and Ωe the invariant equilibrium set of the swarm ; they are detailed in the
appendix, with the proof. Hence, agents following (18) are going to reach stability in
the sense of Definition 2. If this Theorem is similar to the Theorem 1 of [39], the proof is
different because the LCPSO equation (18) is not stationnary.

4.5. Symmetry and robustness of the swarm formation

Due to the nature of the potential functions Pa(di,j) and Pr(di,j), their gradient is odd.
Consequently, there is a reciprocity of the interactions between agents, with respect to the
origin [39]. These reciprocal interactions will naturally lead the swarm to have a symmetrical
formation with respect to the center of gravity of the swarm p̄ when it is stable in the sense
of Definition 2 [39].

Contrary to the swarm models detailed in [38,39], all interactions are not bidirectional
when looking at the whole system. Indeed, if this is true for interactions of repulsion,
attraction relationships are unidirectional and directed towards the attractor. One could
therefore assume that a change of attractor influences the strength of the formation when it
is stable in the sense of Definition 1. However, with the LCPSO equation (18), the formation
is robust to this, regardless of the dimension D.

Theorem 4. By assuming N ≥ 2 agents using the flocking speed vector described in (18), whatever
the attractor pg(t), the equilibrium distance of agent i with the other agents will always be the same.

The proof is in the appendix. With the help of Theorem 2 from [39], we can see that
the formation is bounded whatever the dimension D :

Theorem 5. If the agents follow the LCPSO equation (18), as time progresses, all the members of
the swarm will converge to a hyperball :

Bε(p̄) = {p : ‖p− p̄‖ ≤ ε} where ε =
reqN

2

The proof is not present in this paper, because it is too similar to that of Theorem 2
from [39]. ε increases linearly as a function of N. We can see in Fig. 3b that the evolution of
rmax as a function of N, in dimension 1 or 2, does not have a linear evolution, but tends to
"flatten" when N increases: thus, this bound is real, but not adapted to approach the size of
the swarm in reality.

Now, we will look more prospectively at the properties of the stable formation. We
thus present conjectures, supported by simulation results, which will remain to be proven
mathematically afterwards. We do not display results in dimension 3, because the remarks
would be redundant with those in dimension 2. We use rmax and ρ(N) to illustrate the
evolution of the stable formations when N increases, depending on the dimension. The
results are shown in Fig. 3. In dimension 1, the formation of the agents when the swarm is
stable in the sense of Definition 2 is unique, so we don’t need several samples. In higher
dimension, the multiplicity of emergent formations as a function of N lead up to several
possible formations.

In dimension 1, we can see in Fig. 3a that the more N increases, the more the swarm
spacing ρ(N) decreases; this is rather logical, because the surface taken by the swarm
widens very quickly, as we can see in Fig. 3b. Hence, the more N increases, the more
certain agents are distant from the attractor, the more the attraction strength is high, the
more the swarm is compact.
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Figure 3. Swarm evolution and formation following the LCPSO equation (18). req = 7 m, c0 = 0,
c2 = 0.5.

In dimension 2, when N = 3, the equilibrium formation is an equilateral triangle.
When N is higher, the possible formations approach a circle whose the center of gravity
determines a point of symmetry in the interactions between agents. This formation presents
one or several layers where the position of the agents is aligned on circles, and it becomes
more difficult to predict it, as shown in Fig. 3f, with 2 layers for N = 15 agents. Moreover,
in Fig. 3b, we have 1 ≤ ρ(N) ≤ 1.3 whatever N and our samples: our parameter req is a
good representation of swarm spacing. Since there is multiple neighbors, the repulsive
potential energy of an agent i is much higher than in dimension 1, and consequently the
swarm spacing ρ(N) is higher in higher dimension. In Fig. 3e, we can see that the radius of
the ball containing all the agents rmax varies very few with the samples. Hence, the swarm
surface is predictable with few uncertainties.

4.6. Removing the simplifying hypotheses
4.6.1. Non-zero mass c0

In a real robot, the weight c0 must be taken into account and is set according to its
geometry and mass. This parameter will influence the speed norm of the agents when
the formation is stable according to Definition 2. To illustrate our point, we keep the
hypothesis that the attractor pg is always the same agent. Thanks to Theorem 1, we have
v̄eq = −c2

(
p̄(t)− pg(t)

)
when c0 = 0. v̄eq is invariant in time because the swarm formation

is stable. When c0 6= 0, we have:

v̄(t + ∆t) =c0 · v̄(t)− c2
(
p̄(t)− pg(t)

)
=c0 ·

(
c0 · v̄(t− ∆t)− c2

(
p̄(t− ∆t)− pg(t− ∆t)

))
+ v̄eq

=v̄eq ·
tmax

∆t

∑
k=0

ck
0 =

tmax→+∞

v̄eq

1− c0
(19)

Hence, if c0 influences the speed norm of the swarm, it does not influence its direction,
which depends only on the position of the attractor. However, the pseudo-mass c0 greatly
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influences the convergence time of the swarm during its transitory phase, since it smoothes
the trajectory of the agents by taking into account the previous velocity vector.

We support what we have just said by Monte-Carlo simulations as a function of c0 in
Fig. 4, for N = 7 and N = 15 agents in dimension 2. For N = 7, the agents are distributed
on the same circle around the center of gravity, while for N = 15, we have a distribution
on 2 levels, as in Fig. 3f. As our simulation time is tmax = 100 s, a convergence time close
to this number shows a high failure rate of the agents to converge, based on the fact that
it takes between 10 s and 30 s on our samples for them to converge when c0 = 0. The
maximal simulation time is arbitrary, but increase its value does not change the results, the
swarm is still unable to converge.

We have displayed only the most interesting results in Fig. 4. We can see that the
number of agents N as well as the weight c0 influence our convergence time Fig. 4. For
−0.1 ≤ c0 ≤ 0.5, we have 100% convergence for N = 15, but for N = 7, we can extend
the range of c0 to −0.5 ≤ c0 ≤ 0.7. Hence, the convergence to a stable formation is more
difficult when N increases. These conclusions are more restrictive than those of [47] on the
analysis of the PSO algorithm, since when |c0| >1, the PSO is unable to converge. Indeed,
when c0 is too important, the previous velocity vector is so influent that it will prevent the
swarm from stabilizing efficiently.
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(a) N = 7
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(b) N = 15
Figure 4. Evolution of convergence time of the formation with the LCPSO algorithm as a function of
c0 and N in dimension 2. c2 = 0.5, req = 7m.

4.6.2. Communication constraints

Obviously, communication constraints within the swarm yield to a limitation of our
system: for example, our N agents will only be able to communicate with certain other
agents, which will multiply the number of attractors and behaviors. We have different
phenomena that will constrain the swarm:

• Isolation of individuals: if, at any given time, one or more agents make bad choices,
they may be unable to communicate with anyone, and consequently they will be
unable to move following equation (18).

• Emergence of subgroups: two opposite attractors in the group can lead to the fission
of the group where all the agents are connected in two or more subgroups, so there is
no more direct or indirect link between any agent i and j.

We illustrate these cases in Fig. 5, with the illustration of an efficient tracking of
a source, in Fig. 5a, and a less efficient tracking, in Fig. 5b. The source follows the
environment function (1) after t = 100 s. We can see the importance of the setting of
req compared to rcom. In Fig. 5b, we can see the isolated agents, which are attracted by
themselves, and consequently unable to move, and sub-groups of 2 robots, which are
unable to track the target because they are too few. We will discuss in Section 5 the choice
of these parameters, since it is directly related to the tracking performance of the target.
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(b) rcom = 15 m, req = 10 m
Figure 5. Example of mobile source tracking in dimension 2 with the LCPSO algorithm (18) when
t = 100 s. N = 20, c0 = 0, c2 = 2, τ = 1, β(p, t) ∼ N (0, 0.25)

5. Results

To measure the evolution of tracking, we use the metric D100 = ‖p̄− ps‖, a derivative
of the D25 metric used in [40]. ps(t) is the target’s position, and D100 is the distance between
the center of gravity and the position of the source. Subscript 100 defines the fact that
100% of the swarm elements are taken into account. If D100 >> rmax · req, we will logically
consider that the target tracking is "bad" and failed. If 0 < D100 < rmax · req, we consider
that the tracking is "good".

5.1. Dimension 1

The trackers measure information released by the dynamic source following environ-
ment equation (1) without temporal decrease (τ → +∞). An attractor is represented by
green stars in Fig. 6. It is the agent with the highest information measured at time t within
its communication limits.

The target follows a periodic trajectory. Its speed follows a cosine function with a
period T = tmax

4 , with tmax the simulation time. In Fig. 6, we illustrate such a tracking
scenario with agents which follow LCPSO equation (18). The distance between the swarm
center of gravity and D100 oscillates, but the swarm is still able to track the target, with en
error limited in space (D100 ≤ 1.5 m with rmax larger than 10 m). Moreover, the swarm is
still centred on the target.
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(a) Source tracking as a function of time
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(b) Evolution of D100 as a function of time
Figure 6. Example of LCPSO tracking a source following a periodic trajectory with communication
constraints. N = 10, c0 = 0.8, c2 = 2, req = 2.5 m, rcom = 5 m, β(p, t) ∼ N (0, 1)
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Figure 7. Evolution of the mean of D100 as a function of rcom and req. N = 10, c0 = 0.8, c2 = 2,
β(p, t) ∼ N (0, 0.5), τ → +∞

In Fig. 7, we illustrate the average of D100 during the whole simulation as a function
of req and rcom in dimension 1. We have used a Monte-Carlo method with 100 samples. We
can observe in the simulation results that the target tracking is inefficient when req ≥ 8

10 rcom
(between “bad” and “correct” results), but is efficient elsewhere. Farther are parameters
away from this limitation, better are the results.

5.2. Dimension 2

In Dimension 2, we have already performed an analysis on target tracking in a previous
article [40]. We have shown in simulation results that the LCPSO algorithm was relevant to
track an underwater mobile target with communication constraints [40]. A maximal speed
constraint is necessary, arbitrarily set to vmax = 5 m.s−1, because the capacities to lose the
swarm must be controlled. We extend the work made in this article studying two types of
trajectories for the source to illustrate their impact on tracking performances:

• The source follows an elliptical trajectory, centered on (0, 0)T , with radius Lx = 15 m
and Ly = 10 m and initial position at point (−40,−40)T . This choice is arbitrary, but
the important thing is to see how the swarm reacts with violent heading changes,
periodically coming back in the area that the agents are monitoring. The speed of the
source oscillates between 2 and 4 m.s−1.

• The source has a constant trajectory, i.e. a constant heading. It always starts from the
point (−40,−40)T , with a speed of 3 m.s−1 and a heading of 0.8 rad.s. The heading is
chosen to cross the area monitored by our agents.

5 10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

25

30

Figure 8. Tracking fail of agents following the LCPSO algorithm (18) as a function of N. c0 = 0.5,
c2 = 0.5, req = 7m, rcom = 20 m

We can see in Figure 8 that when N > 15, the tracking fail percentage increases
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gradually, especially for the constant trajectory. This is due to the environment function
f : if some agents are too far from the source, they will only be able to measure the noise;
and, even worse, this will also be the case for their neighbors. Consequently, the swarm
will be dislocated into packets. This phenomenon is illustrated in Figure 5b. In the case of
a constant trajectory, the isolated agents have very little chance of finding the group that
succeeds in tracking it, unlike the elliptical trajectory where the source comes back. Thus,
with communication restrictions, it is necessary to limit the number of agents that will track
the source, in order to have better tracking performance and do not waste resources; we can
see that between 10 and 15 agents, the source tracking is optimal whatever its trajectory.

We add Fig. 9 to give an operational point of view of our algorithm, as a function
of rcom and req, with the same parameters [40]. With the help of Figure 8, the number of
agents is fixed to N = 10. In Fig. 9, we can observe more restrictions than in dimension 1.
Indeed, there is an area where a too low req degrades the results whatever rcom, because
agents are too close from each other, and the swarm is unable to have a stable formation.
There are also more important restrictions on communication limits, in comparison with
Dimension 1. Indeed, if req is too much important compared to rcom, the number of isolated
agents increases and the swarm is unable to track the target. Under this limit, some agents
can lose the group, but without consequences on tracking performances, as illustrated in
Figure 5b.
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Figure 9. D100 (m) evolution as a function of req and rcom in dimension 2. N = 10, c0 = 0.8, c2 = 2,
β(p, t) ∼ N (0, 0.25), τ = 1.

6. Conclusion

In this paper, we carried out an analysis of LCPSO algorithm that merges the spirit of
PSO and flocking algorithms. This analysis is supported by mathematical theorems, that
apply regardless of the dimension, or when necessary, by Monte-Carlo results, especially
concerning communication constraints. Using only one attractor in a limited area permits
to follow a target accurately. We summarise the contributions of this paper by the following
points.

First, the formation at equilibrium is resilient to communication limits and the bru-
tal moves of the target because equation (18) is only based on measurements at time t.
Moreover, we have proven analytically that the formation will stay stable in the sense of
Definition 2 whatever the dimension and the place of the attractor(s) in the swarm. The
strength of this formation avoids collisions between agents and losing agents with com-
munication constraints. Finally, the speed is intrinsically limited and predictable thanks to
equation (17).

The stability of the swarm formation whatever the conditions (communication limits
and the behavior of the target) makes our algorithm applicable in very constrained en-
vironments, like underwater scenario for example. LCPSO algorithm is resilient to the
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breakdown of some agents because the attractor depends on measurements and can be
exchanged easily with another agent. Communication limits do not degrade our swarm
formation, and the simplicity of LCPSO allows the robot to embed only few computing
power.

Our work still has many limitations, which we acknowledge here. First, the plume
model should be modified to be more realistic [31,42] to include the problem of mea-
surement noise with a low SNR and the problem of noise correlation (in our case the
measurement noise was uncorrelated in time and space). Second, we left out some con-
straints in our algorithm. For instance, we do not consider localization problems of agents
with real sensors: while an exact absolute position is not important for our algorithm, a
correct relative position is still necessary. This is an issue in the underwater environment,
for instance. However, better positioning in challenging environments can often be en-
hanced using techniques such as SLAM [48,49] using variants of Kalman filters [46] or
Interval Analysis [50] to take position uncertainty into account; our work can integrate
these methods. Third, robotic constraints on the motion of agents could be applied on our
model, in particular for heading and speed or with a linearisation of the agents’ trajectory
[12]. Finally, we only used information in a scalar form. If we considered, when feasible,
non-scalar information, resolving our problem could be easier. For example, we could
measure a local gradient for function f to indicate the direction of its maximum. All of
these limitations and possible solutions are left out for future work.
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AAPF Advanced Artificial Potential Fields
ACO Ant Colony optimisation
APF Artificial Potential Field
AUV Autonomous Underwater Vehicles
BCO Bee Colony Optimization
CPSO Charged Particle Swarm Optimization
CPT Chemical Plume Tracing
EA Evolutionary Algorithm
GA Genetic Algorithm
LCPSO Local Charged Particle Swarm Optimization
MOSL Moving odor Source Localisation
OSL Odor Source Localization
PSO Particle Swarm Optimization
SAR Search and Rescue
SLAM Simultaneous Localization And Mapping
SNR Signal-to-noise ratio

Appendix A Proofs

Theorem 1 We assume that each agent follows the LCPSO equation (11), with c0 = 0 and
rcom → +∞. Then the center of gravity of the swarm is heading towards the attractor pg(t), and
its velocity vector is equal to v̄(t + ∆t) = c2

(
pg(t)− p̄(t)

)
. Furthermore, if the swarm is stable

in the sense of Definition 2, all agents follow the speed vector of the center of gravity.

Proof. We calculate the speed vector of the center of gravity as follows:

v̄(t + ∆t) =
1
N

N

∑
i=1

vi(t + ∆t)

⇒=
1
N

N

∑
i=1

(
c2

(
pg(t)− pi(t)

)
+ c3

N

∑
j=1,j 6=i

∇pi P
r
(

di,j(t)
))

⇒=
c2

N

((
Npg(t)−

N

∑
i=1

pi(t)
)
+ c3

N−1

∑
i=1

N

∑
j=i+1

(
∇pj P

r(di,j(t)
)
+∇pi P

r(di,j(t)
)))

In the last line of development, the second part contains all the gradients of the repulsion
potentials. Since this potential meets Definition 1, their gradients are odd. Consequently,
we have ∇pj(t)P

r(di,j(t)
)
= −∇pi(t)P

r(di,j(t)
)
, so the sum is null. If we also remember the

definition of the center of gravity (15), we have:

v̄(t + ∆t) = c2
(
pg(t)− p̄(t)

)
Equation (17) is equal to the gradient of the model of attractive potential defined in

relation (7). Thus, we have v̄(t + ∆t) = −∇p̄Pa(datt,p̄(t)
)
, and we can see that it is indeed

the center of gravity that is attracted by the attractor pg(t). Moreover, if we are stable in
the sense of Definition 2, we have :

v̄(t + ∆t) =
1
N

N

∑
i=1

vi(t + ∆t) = vi(t + ∆t)∀i ∈ [1, · · · , N]

Theorem 2 A swarm of N = 2 agents following the potential field P(t) = P1(t) + P2(t) in

a gradient descent strategy will converge to an inter-agent distance at equilibrium req =
√

2c3
c2

.

Proof. The velocity vectors will only fit on the
(
p1(0)p2(0)

)
line, which depends on the

initial position of the agents 1 and 2. We can therefore perform our analysis in dimension 1
without loss of generality, and the position and speed of the agents are respectively the
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scalar values pi(t) and vi(t). We suppose that there is no collision, so d1,2(t) ∈]0;+∞[. In
this interval, P(t) ∈ C∞. So we can use the property of a convex function: if the second
derivative of P(t) is null or positive, then this function is convex.

P(t) =
c2

2
d2

1,2(t)− 2c3 log
(
d1,2(t)

)
⇒ ∂P(t)

∂d1,2(t)
= c2d1,2(t)− sign

(
p1(t)− p2(t)

) 2c3

d1,2(t)

⇒ ∂2P(t)
∂d2

1,2(t)
= c2 +

2c3

d2
1,2(t)

As d1,2(t) ∈]0;+∞[, ∂2P(d1,2(t))
∂d2

1,2(t)
is always positive, so the potential field P(t) is convex. As

we have built P(t) as a gradient descent strategy, the equilibrium distance can be found
with the minimum of P(t) in the sense of Lyapunov, whatever the agent i:

∇p2 P(t) = 0

⇒− c2
(

p2(t)− p1(t)
)
+ 2

c3

(
p2(t)− p1(t)

)
|p2(t)− p1(t)|2

= 0

⇒
(

p1(t)− p2(t)
)
(c2 −

2c3

d2
1,2

) = 0

⇒d1,2 = req =

√
2c3

c2

Theorem 4 By assuming N ≥ 2 agents using the flocking speed vector described in (18),
whatever the attractor, the equilibrium distance of agent i with the other agents will always be the
same.

Proof. We develop our method below to find an equilibrium distance di,j between agents i
and j, ∀(i, j) ∈ [1, · · · , N]. At equilibrium, we have:

vi(t + ∆t) = vj(t + ∆t)

⇒
r2

eq

2
·

N

∑
k=1,k 6=i

pi(t)− pk(t)
d2

i,k
−
(
pi(t)− pg(t)

)
=

r2
eq

2
·

N

∑
k=1,k 6=j

pj(t)− pk(t)
d2

j,k
−
(
pj(t)− pg(t)

)
⇒pj(t)− pi(t) =

r2
eq

2
·
(

N

∑
k=1,k 6=j

pj(t)− pk(t)
d2

j,k
−

N

∑
k=1,k 6=i

pi(t)− pk(t)
d2

i,k

)

⇒di,j =

∥∥∥∥∥ r2
eq

2
·
(

N

∑
k=1,k 6=j

pj(t)− pk(t)
d2

j,k
−

N

∑
k=1,k 6=i

pi(t)− pk(t)
d2

i,k

)∥∥∥∥∥ (A1)

We can see that the mathematical relation (A1) does not depend on the attractor position,
neither does it depend on constant weight c2, so inter-agent distance di,j does not change
as a function of the attractor in the swarm.

For the following theorem, we define a relative position where the origin is the center
of gravity of the swarm and its temporal derivative:

p̃i(t) =pi(t)− p̄(t) (A2)
˙̃pi(t) =ṗi(t)− ˙̄p(t) (A3)
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We note below the invariant equilibrium set of the swarm :

Ωe = {p̃ : ˙̃p = 0} (A4)

With p̃T = [p̃T
1 , p̃T

2 , · · · , p̃T
N ] ∈ RND which represents the state of our system. In

automatic, the ṗ represents the continuous time derivative of a p position. When this
expression is reduced to discrete time, we have ṗ = v(t + ∆t). p̃ ∈ Ωe implies that ˙̃pi = 0
for any i ∈ [1, · · · , N], and therefore ṗi = ˙̄p whatever i.

Theorem 3 We consider a swarm of agents according to equation (18), with potential
functions respecting the Definition 1. For any p̃(0) ∈ RND, when t→ +∞, we have p̃(t)→ Ωe.

Proof. We define the potential function for the system J(p̃) below :

J
(
p̃(t)

)
= c2

N

∑
i=1

(
Pa(‖p̃i(t)‖

)
−∑

j 6=i
Pr(∥∥p̃i(t)− p̃j(t)

∥∥))+ A

Where A is a positive constant, set to obtain J as a definite positive function that
vanishes when we apply the gradient of J. The goal is to manage the area where the
potentials balance each other, thanks to the nature of repulsive and attractive components.
Indeed, in Figure 1, we can see that attraction dominates when d is high and repulsion
dominates when d is low, and in those two cases the global potential is positive. Hence,
J
(
p̃(t)

)
> 0 and we can use this function as a Lyapunov function for our system. Taking

the gradient of J(p̃), and respecting the p̃i position of the agent i, we get:

∇p̃i J(p) = c2

(
∇p̃i P

a(‖p̃i(t)‖
)
−∑

j 6=i
∇p̃i P

r(∥∥p̃i(t)− p̃j
∥∥)) (A5)

With the help of the centroïd speed equation (17) and the LCPSO speed equation (18),
we have :

˙̃pi(t) = ṗi(t)− ˙̄p(t)

= c2

(
pg(t)− pi(t) +

r2
eq

2

N

∑
i 6=j

pi(t)− pj(t)
d2

i,j(t)
−
(
pg(t)− p̄(t)

))
= c2

(
− p̃i(t) +

r2
eq

2

N

∑
i 6=j

p̃i(t)− p̃j(t)∥∥p̃i(t)− p̃j(t)
∥∥2

)
= −c2

(
∇p̃i P

a(‖p̃i(t)‖
)
−∑

j 6=i
∇p̃i P

r(∥∥p̃i(t)− p̃j(t)
∥∥)) = −∇p̃i J(p̃)

Now, if we take the temporal derivative of the Lyapunov function as a function of
time t, we have :

J̇(p̃) = [∇p̃ J(p̃)]T ˙̃p =
N

∑
i=1

(
[∇p̃i J(p)]T ˙̃pi

)
= −

N

∑
i=1

∥∥ ˙̃pi(t)
∥∥2 ≤ 0

For all t, implying a decrease of J(p̃) unless p̃i = 0 for all i = 1, · · · , N, and our system
is stable in the sense of Lyapunov. In addition, we have [∇p̃i J(p)]T ˙̃pi = −‖p̃i‖2 for all i,
which implies that all individuals in a direction of decrease of J(p̃). From the attraction
and repulsion properties of Definition 1, we know that attraction dominates over short
distances and that it dominates over longer ranges. This implies that over long distances, a
decay of J(p̃) is due to agents moving closer together, while over short distances, the decay
is due to agents repelling each other. In other words, regardless of the initial position of
the agents, the set defined as Ω0 = {p̃ : J(p̃) ≤ J

(
p̃(0)

)
} is compact. Therefore, the agent

states are bounded and the set defined as Ωp̃ = {p̃(t) : t ≥ 0} ⊂ Ω0 is compact and we
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can apply Lasalle’s invariance principle, arriving at the conclusion that as t → +∞, the
state p̃(t) converges to the largest invariant subset of the set defined as:

Ω1 = {p̃ ∈ Ωp̃ : J̇(p̃) = 0} = {p̃ ∈ Ωp̃ : ˙̃p = 0} ⊂ Ωe (A6)

Since Ω1 is invariant and satisfies Ω1 ⊂ Ωe, we have p̃(t)→ Ωe when t→ +∞, which
concludes this proof.
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