Pre prints.org

Article Not peer-reviewed version

Outsourced Privacy-Preserving Feature
Selection Based on Fully Homomorphic
Encryption

Koki Wakiyama , Tomohiro |, Hiroshi Sakamoto i

Posted Date: 20 May 2025
doi: 10.20944/preprints202505.1442.v1

Keywords: privacy-preserving machine learning; fully homomorphic encryption; feature selection;
outsourced computation

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of
(=] Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/568776
https://sciprofiles.com/profile/24929

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Outsourced Privacy-Preserving Feature Selection
Based on Fully Homomorphic Encryption

Koki Wakiyama, Tomohiro I'® and Hiroshi Sakamoto *

Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, lizuka-shi,
Fukuoka, Japan
* Correspondence: hiroshi@ai.kyutech.acjp

Abstract: Feature selection is a technique that extracts a meaningful subset from a set of features in
training data. When the training data is large-scale, appropriate feature selection enables the removal
of redundant features, which can improve generalization performance, accelerate the training process,
and enhance the interpretability of the model. This study proposes a privacy-preserving computation
model for feature selection. Generally, when the data owner and analyst are the same, there is no need
to conceal the private information. However, when they are different parties or when multiple owners
exist, an appropriate privacy-preserving framework is required. Although various private feature
selection algorithms, they all require two or more computing parties and do not guarantee security
in environments where no external party can be fully trusted. To address this issue, we propose the
first outsourcing algorithm for feature selection using fully homomorphic encryption. Compared to a
prior two-party algorithm, our result improves the time and space complexity O (kn?) to O(kn log® 1)
and O(kn), where k and n denote the number of features and data samples, respectively. We also
implemented the proposed algorithm and conducted comparative experiments with the naive one.
The experimental result shows the efficiency of our method even with small datasets.

Keywords: privacy-preserving machine learning; fully homomorphic encryption; feature selection;
outsourced computation

1. Introduction

Feature selection is the process of identifying and selecting useful features (variables or attributes)
from a dataset with the aim of improving the performance of predictive models and optimizing
learning efficiency [1]. Consider a scenario in which a target variable is to be predicted using a large
number of potential explanatory variables, with the goal of building a simple yet effective predictive
model from a vast set of observations. For instance, in semiconductor manufacturing, more than tens
of thousands of external factors can influence the production process from silicon material to the final
product. If it is possible to identify in advance which of these factors are critical to product quality, then
it is sufficient to construct a classification model based only on those selected features—offering a range
of benefits. In practice, such preprocessing can lead to improvements in model accuracy, reductions in
training time, and enhanced interpretability of the model. Many feature selection algorithms based on
various criteria have been proposed to date [2-8].

In this study, we consider the feature selection in situations where the training data contains
privacy-sensitive information. When the data owner who needs a reasonable learning model and the
analyst required to construct the model are the same, privacy is generally not a concern as long as
there is no data leakage. However, our focus is on privacy-preserving computation in cases where
these two parties are separate. Existing frameworks to address this issue include techniques such as
secret sharing [9] and differential privacy [10]. In this work, from the perspective of outsourcing, we
focus on an approach based on fully homomorphic encryption (FHE) [11], which is a form of public-key
cryptosystem.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-9106-6192
https://orcid.org/0000-0002-3470-9187
https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

20f14

In secret sharing schemes, data is split and distributed among parties, which introduces a risk of
data leakage if those parties colludes maliciously. Differential privacy, on the other hand, prevents
leakage by injecting random noise into the data. However, there exists a trade-off between the amount
of noise added and the quality of the learning results, and it cannot guarantee complete protection
against data leakage.

By contrast, FHE enables all arithmetic and comparison operations to be performed directly on
encrypted data. Since only the data owner possessing the secret key can decrypt the final result, the
privacy guarantees are as strong as the underlying public-key encryption. The primary limitations of
FHE have been computational inefficiency and the challenge of outsourcing computation in scenarios
involving multiple data owners. However, recent advancements such as TFHE [12] and multi-key
homomorphic encryption schemes [13] are steadily overcoming these obstacles.

Therefore, we consider a simplified privacy-preserving problem for feature selection: The data
owner retains the training data along with a pair of generated public and private keys. Then, the
analyst receives the encrypted training data and performs feature selection using FHE scheme. The
result of the computation is then returned to the data owner, who decrypts it using the private key.

Note that the proposed method constitutes a fully outsourced computation [14,15] with only a
single round of communication between the data owner and the analyst. This aspect significantly
strengthens privacy protection. In non-fully outsourced scenarios, multiple interactions or queries
from a party may be required. During such interactions, partial decryption of maliciously crafted
messages from untrusted analyst could lead to unintentional leakage of the data owner’s private
information.

To prevent this, conventional approaches typically rely on assumptions that constrain the behavior
of the analysts. For example, the semi-honest model assumes that the analyst follows the protocol
faithfully but may attempt to extract as much information as possible from the data he receives.
However, imposing such assumptions compromises practical applicability. In contrast, our algorithm
requires only single round communication without decryption and ensures that the risk of data leakage
depends solely on the strength of the cryptosystem. The TFHE [12] used in this study is proven to be
at least secure against chosen-plaintext attacks (IND-CPA secure). Consequently, it offers a significant
advantage in terms of both security and practical usability compared to existing methods.

2. Related Works and Our Contributions

Feature selection is broadly categorized into filter method [16], wrapper method [17], and em-
bedded method [18]. Among these, the filter method evaluates the importance of features based on
information theory, making it faster than other methods and highly generalizable due to its indepen-
dence from specific models. While evaluation metrics such as mutual information are commonly
used in filter methods [19], this study focuses on feature selection based on a recently proposed
consistency measure [20]. Feature selection algorithms using consistency measures have been shown to
achieve both high computational efficiency and high classification accuracy on large-scale real-world
datasets [7,8]. In contrast, feature selection algorithms based on wrapper or embedded methods are
generally impractical for secure computation due to the high computational cost associated with
searching for optimal feature subsets or training models. Therefore, this study proposes a consistency
measure-based secure feature selection.

Homomorphic encryption (HE) is a framework for secure computation that leverages the ho-
momorphic properties of public-key cryptosystems. Specifically, if encrypted integers can be added
without decryption, the cryptosystem is said to be additive. Furthermore, if it supports both operations,
it is called FHE, e.g., RSA [21], the first public-key cryptosystem, is multiplicative but not additive.
Additionally, RSA is not a probabilistic encryption scheme—i.e., it does not produce different cipher-
texts for the same plaintext in each execution—making it vulnerable to chosen-plaintext attacks. The
first probabilistic HE [22] was capable of computing the sum (i.e., bitwise XOR) of encrypted bits.
Subsequently, a scheme enabling the addition of integers was proposed [23]. Later, the first HE capable

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

3o0f14

of both addition and multiplication was introduced [24], but it allowed only single multiplication
operation in overall computation, limiting its practicality for secure computation. Eventually, the first
FHE, which imposes no restrictions on the number of operations, was proposed [11], making arbitrary
secure computations theoretically possible. In practice, fast FHE libraries have become available [25],
expanding its applicability. The implementation of the algorithm proposed in this study also utilizes
such a library.

Although several private feature selection methods have been proposed to date [26-29], only a
few have addressed privacy-preserving computation for the consistency measure [30], and this study
is the first to attempt a fully outsourced computation for it. This is because the computation of the
optimal consistency measure reduces to the set cover problem known to be NP-hard [31]. Consequently,
approximation algorithms and acceleration techniques for solving this optimization problem have
been proposed [7,8], and in this study, we realize a secure fully outsourced computation of such an
algorithm.

A core technique in this approximate method is preprocessing via sorting. By sorting the entire
dataset with feature values as keys, it becomes possible to efficiently narrow down the important
features, enabling a heuristic approach to approximate optimal feature selection. However, executing
this algorithm over encrypted data is not straightforward. In general, the lower bound for comparison-
based sorting algorithms is Q)(nlog 1), but no secure outsourced computation method is currently
known that achieves this lower bound. At present, the fastest known method uses sorting networks
with a time complexity of O(nlog® 1) [33], which is also adopted in this study as preprocessing. It
should be noted, however, that if secret sharing among two or more parties is used, faster privacy-
preserving sorting becomes feasible [34]. Moreover, disregarding practical constraints, it is theoretically
possible to construct sorting networks with O(n log n) time complexity [35]. Nonetheless, both of these
approaches are outside the scope of this study.

Table 1 below summarizes HE-based private feature selection algorithms. Here, k and n denote
the number of features and data samples, respectively. A filter method [26] adopts the x? statistic as its
evaluation criterion and employs additively homomorphic encryption [23]. While this method has
a low offline computational cost, its communication overhead is greater than that of the proposed
method. Moreover, since it assumes two-party computation, it does not support fully outsourced
computation. Additionally, it has not been implemented. Another two-party protocol [30] uses the
same consistency measure as the proposed method and adopts the fastest FHE [12]. Although it
also achieves exactly single round complexity as our the method, it assumes a two-party setting and
therefore does not support fully outsourced computation.

Table 1. Comparison of HE-based feature selection algorithms.

Algorithm Metric Time Space #Round Outsourced
Rao et al. [26] x> O(kn) - Cp O(kn) o(1) partially
Ono etal. [30] consistency O(kn?) - Cc O(kn?) 1 partially

Proposed consistency O(knlog®n)-Cc O(kn) 1 fully

Cp and Cc are costs per single operation depending on the respective cryptosystems [12,23]. To enable a fair comparison under
the same conditions, the computational complexity of Ono et al. [30] is described only with respect to feature selection task,
omitting the preprocessing time required for data formatting. The term "partially" refers to decrypting the data in part before
obtaining the final result.

3. Preliminaries
3.1. Consistency-Based Feature Selection
Let D = {dy,dy,...,d,} be a set of indices of data, associated with a set F = {f1, f»,..., fx} of

features and a class variable C, where the feature value d(f;) and the class label d(C) are defined for
each data d € D. Table 2 shows an example of the triple (D, F, C).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

4of 14

The feature selection is to find a minimal subset F/ C F relevant to C, where F’ is said to be
consistent if, for any d,d’ € D, d(f;) = d'(f;) for all f; € F/ implies d(C) = d’(C), and F’ is minimal, if
any proper subset of F/ is no longer consistent.

For example, consider the mutual information I(F’; C) for evaluating the relevance of F’ showing
in Table 2. We can see that f; is more important than f5 due to the fact I(f1;C) > I(f5;C). f1 and f»
of Table 2 will be chosen to explain C based on the score of I. However, a closer examination of D
reveals that f and f, cannot uniquely determine C. In fact, we find d, and ds with d»(f1) = d5(f1) and
dy(f2) = ds(f2) but da(C) # ds(C). On the other hand, we can see that f4 and f5 uniquely determine
C using the formula C = f4 @ f5 while I(fy; C) = I(f5;C) = 0. It becomes clear that I(F’; C) alone may
not always lead to appropriate feature selection.

Table 2. An example triple (D, F, C) shown in [8].

D fi f2 f3 fa fs C
a4 1 0 1 1 1 0
dy 1 1 0 0 0 0
ds 0 0 0 1 1 0
ds 1 0 1 0 0 0
ds 1 1 1 1 0 1
de 0 1 0 1 0 1
dy 0 1 0 0 1 1
dg 0 0 0 0 1 1
I(fl, C) 0.189 0.189 0.049 0.000 0.000

Let us review the notion of the consistency measure employed in this study. A consistency
measure 1 : 2F — [0,00) is a function to represent how far the data deviate from a consistent state,
where F is required to satisfy determinisity (i.e., u(F) = 0iif F is consistent) and monotonicity (i.e., F C G
implies y(F) > u(G)). In this study, we focus on the binary consistency: up;, (F) = 0, F is consistent; 1,
otherwise [7]. For other consistency measures, see e.g., rough set [2], ICR [5], and inconsistent pair [6].

As Table 2 illustrates, the importance of a feature f; is not determined solely by itself, but is
influenced by the relative relationship among other features. CWC [8] achieves superior feature
selection compared to other statistical measures by computing the relative importance of features.
Algorithm 1 outlines the procedure of CWC, where the consistency of the candidate set excluding
fi is evaluated to determine whether to select f;. Here, the order in which features f; are selected
significantly affects the result, so it is important to preprocess the triple (D, F,C) in advance. For
example, there is a known method that determines the order of f; by sorting the triple with the values
of f; as keys. This study also adopts that method.

Algorithm 1 CWC [7] over plaintexts

Require: A dataset (D, F,C);
Ensure: A minimal consistent subset of F;
1: fori=1,...,kdo
2. if F\ {f;} is consistent then
3 update F < F\ {fi};
4. endif
5. end for
6: return F;

3.2. Computation on FHE

The proposed FHE-based private feature selection is implemented using TFHE [25], one of
the fastest FHE library for bitwise addition (XOR ‘®’) and bitwise multiplication (AND °.") over
ciphertext. On TFHE, any /-bit integer m = (mq,my,...,my) is encrypted bitwise: E[m] =
(E[my],E[m3],..., E[my]).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

50f 14

Given E[b] and E[b'] (b, b’ € {0,1}), FHE allows to compute the bitwise operations E[b @ V'] and
E[b - b'] without decrypting E[b] and E[V']. It also allows all arithmetic and logical operations via XOR
and AND as follows: Let x, y represent {-bit integers and x;, y; the i-th bit of x, y, respectively. Let
c; represent the i-th carry-in bit and s; the i-th bit of the sum x 4 y. Then, we can obtain the private
full-adder E[x + y] using the relationss; = x; @ y; & ¢; and ¢cj11 = (x; B ¢;) - (y; B ¢i) D ¢;. We can
construct other operations such as subtraction, multiplication, and division based on the full-adder.

On the other hand, we can also obtain the private comparison E[cmp(>, x,y)] satifying cmp(>
,x,y) = 1if x > y and 0 otherwise, because cmp(>, x,y) is identical to the most significant bit of
y + (—x), which can be obtained without decryption. Here, (—x) is the bit complement of x obtained
by x; @ 1 for all i-th bits.

Thus, by using FHE, it is possible to perform all arithmetic operations and comparisons for
encrypted variables or elements of arrays. For simplicity, we represent such operations in plaintext
notation throughout the remainder of this paper. That is, unless otherwise stated or unless it may
cause confusion, an operation such as the addition of two encrypted integers E[x]| and E[y], resulting
in E[x + y|, will be denoted simply as x + y.

Based on FHE, we can design a private sorting algorithm as follows (e.g. [32]). Note that, in this
code, the variables gt, tmp, and any entry in the array arr [1. .n] are all encrypted. Therefore, after this
code is executed, the resulting arr[1..n] is sorted securely without revealing the private information
about arr[1..n].

// private bubble_sort over ciphertexts
void bubble_sort(int *arr,int n){
for(int i=0;i<n-1;i++){
for(int j=1;j<n-1;j++){

int gt=cmp(>,arr[j-11,arr[j1);
int tmp=gt*arr[j-1]~(lgt)*arr[j]l;
arr[j-1]=gt*arr[jl~('gt) *arr[j-1];
arr[j]=tmp;

However, it is difficult to improve the O(n?) time algorithm to O(nlogn). This is because
encrypting pointers is fundamentally meaningless. If pointers are in plaintext, information about the
input (e.g., the distribution of values) may be leaked. On the other hand, if the pointers are encrypted,
it becomes impossible to access the corresponding memory addresses, and thus computation cannot
proceed. Satisfying these conflicting requirements simultaneously appears to be impossible. This
difficulty can be partially avoided by using sorting network, where comparisons are performed only
between fixed pairs of elements, eliminating the need for pointers. Theoretically, we can construct an
optimum sorting network that achieves O(n log 1) comparisons [35], but the circuit size is impractically
large. Therefore, in practice, O(n log2 n) algorithm [33] is used. This study also adopts this approach.

4. Method
4.1. Sorting Network on FHE

Sorting via FHE is typically performed using sorting networks. It remains an open question
whether a fastest algorithm such as quicksort or mergesort can be effectively realized in FHE setting.
In this study, we adopt the Batcher’s odd-even mergesort [33] as the basis for sorting. Batcher’s
algorithm employs a recursively constructed sorting network according to the number of elements and
achieves sorting in O(nlog? 1) time. However, it requires that the number of data items be a power
of two. Therefore, if the input data size does not meet this condition, we insert appropriate dummy
elements beforehand to adjust the size. Moreover, since sorting network is basically not a stable sort,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

6 of 14

we attach a log n-bit suffix to each data element to ensure stability. This preprocessing does not affect
the correctness or quality of feature selection in any way.

4.2. A Naive Algorithm for Private CWC

In this study, we assume that the data analyst (i.e., an algorithm) receives the input triple (D, F, C)
in encrypted form, and that the algorithm is capable of performing FHE operations on encrypted data.

Here, (D, F,C) is possessed as an array, and the algorithm has access to any encrypted entry d;(f;)
ord;(C) fori € {1,2,...,n}andj € {1,2,...,k}. The private CWC (denoted pCWC) utilizes sorting
D with the feature vectors F = (fy, fa, ..., f¢) formed by f; € F. By sorting (D, F, C) with F as the key,
identical feature vectors are placed adjacent to each other, significantly speeding up the consistency
checking step.

Table 3 (upper) shows an input (D, F, C) and Table 3 (lower) shows the sorted (D, F, C) where each
original index d; is renamed by the sorted order D; and for each i € {1,2,...,k}, the corresponding
feature label L[i][j] is the unique grouping label of logn bits for D; defined by the feature vector
Fl.i] = (fu for -0 f)-

For example, Table 3 (lower), the labels Ls for D and D, are both 000, indicating that D1 and D,
belong to the same group based on identical feature vector values up to f5. Therefore, the consistency
check needs to be performed only for data points that share the same label associated with the tail
fi. Thus, by using the sorted (D, F, C) along with the corresponding feature labels in L[1..k][1..1], the
consistency checking process becomes significantly simplified.

Table 3. Sorted (D, F, C) and corresponding feature labels L;.

D f f2 f3 fa fs C
d, 1 0 1 0 0 1
ds 0 1 0 0 1 0
ds 0 1 0 0 1 0
dy 1 0 0 0 1 1
ds 1 0 1 1 1 0
fi: fa: f3: fa: f5:
sorted D 5] Lp)s] L@E)[L.5] LE][L.5] L[3][L.5] c
D1 (= dp) 0:000 1:000 0:000 0:000 1:000 0
Dy (= d3) 0:000 1:000 0:000 0:000 1:000 0
D3(=dy) 1:001 0:001 0:001 0:001 1:001 1
Dy (= dq) 1:001 0:001 1:010 0:010 0:010 1
Ds(= ds) 1:001 0:001 1:010 1:011 1:011 0

Algorithm 2 shows a naive pCWC computation based on the sorted (D, F,C) and the feature
labels. Given (D, F,C), consider the evaluation of each feature f; in F = {f1, f2,..., fx}- The algorithm
evaluates the consistency on the feature set I/ = F \ {f;}, obtained by removing f;, and obtains the
corresponding Boolean value b;. Specifically, b; is computed as:

n

b = /\((Di1 # D) V (Di—1(C) = D;(C)))
i=2

Here, by = 1 iff f; is selected. By reporting the resulting b = (by, ..., by) to the data owner, the selected
features are obtained after decrypting b.

We next analyze the complexity of our algorithm where in the following discussion, we assume
that the cost of each homomorphic operation under FHE is constant. That is, the computational cost of
arithmetic and comparison operations on encrypted data is treated as O(1), unless otherwise specified.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

7 of 14

Algorithm 2 Naive pCWC for ciphertexts

Require: An encrypted (D, F,C);
Ensure: A minimal consistent subset of F;
1. fort=k,k—1,...,1do
sort (D, F/,C) with F’ as the key for F' = F\ {f;};
3. compute L[j][i] forallj=1,2,...,kandi=1,2,...,n;
4. compute the consistency b; € {0,1} of (D, F/,C);
5. update D;(f;) < Di(ft) - b foralli =1,2,...,n;
6: end for
7. return b = (b1, by, ..., by) representing the selected subset of F;

Theorem 1. Algorithm 2 (naive pCWC) on ciphertexts simulates Algorithm 1 (CWC) on plaintexts. The time
and space complexities are O(k*nlog® n) and O(kn) for |F| = k and |D| = n, respectively.

Proof. Assuming that (D, F’,C) is already sorted, the feature label L[t][i] of D; for F|..t] can be com-
puted based on whether D; 1(..f;) = D;(..f;) holds, where D;(..f;) stands for D;(f1) - - - D;(f). When
the predecessor L[t][i — 1] for D;_; is already defined, using the logical bit x to indicate whether
D;_1(..ft) = D;(..ft), the next L[t][i] is defined as: L[i] +— L[i — 1] 4+ —x. These computations can be per-
formed on FHE. Moreover, the logical bit b;, which determines whether the feature f; should be selected,
can also be computed by FHE according to its definition. By updating each f; as: D;(f¢) < D;(ft) - bz,
we can effectively remove f; from (D, F, C). Thus, Algorithm 2 correctly simulates the original CWC
on plaintexts.

When sorting the encrypted (D, F/,C) using a sorting network, the number of comparisons
required is O(kn log2 n). Since our method appends a [log n]-bit suffix to each data entry to achieve
stable sorting, the computation time for one feature f; becomes O(knlog® n). Therefore, the total
computation time across all features is O (k%1 log® 1). The space complexity is clear. [

4.3. Improved Private CWC

In the naive approach, sorting of (D, F/, C) is iterated for each F' = F \ {f;} with specified f; € F,
resulting in high computational cost. Therefore, we aim to accelerate this algorithm. It should be noted
that, since (D, F, C) are encrypted, pointer-based referencing cannot be used. In this study, we propose
a method that avoids full sorting at each step by partitioning F into two sequences—selected features
and unprocessed features—and processing them independently before merging the results.

The key concept here is to utilize the feature labels in L[t][1..n] introduced in Algorithm 2 for
partial sorting. Suppose that we are focusing on a current feature f;. That is, feature selection has
already been completed for the suffix vector F[t + 1..] = (fi41, ft,. .., fr). In this case, we define the
feature labels for F[t + 1..] and store them in the array PostL[1..n] as follows: PostL[i] = PostL[i'] iff
Di(fj+1--) = Dy (fj41-)- This groups the suffix sequences of F that share the same feature vector.

As shown in Algorithm 2, feature labels for any prefix vector E[..t] are stored in the array L[t][1..1].
Therefore, to group (D, F \ {fi},C), we first independently compute L[t][1..1] for prefix vector F[..t]
and PostL[1..n] for the corresponding suffix vector F[t + 1..], and then calculate the ranks of L[t][1..7]
and PostL[1..n] to merge them correctly. This approach enables us to avoid iterative sorting for the
entire (D, F/,C).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

8 of 14

Algorithm 3 Improved pCWC for ciphertexts

Require: An encrypted (D, F,C);
Ensure: A minimal consistent subset of F;
1: sort (D, F,C) with [as the key;
compute the feature label L[j][i] forallj =1,2,...,kandi=1,2,...,n;
initialize PostL[1..n] < (0,0,...,0) and MapL[l..n] < (1,2,...,n);
fort =k, ...,1do
sort (fi41[1..n], PostL[1..n], C[1..n], MapL[1..n]) as the key f;1[1..n];
update PostL[1..n] by the sorted f;1[1..n];
sort (f;, L[t — 1][1..n]) by the inverse MapL~![1..n];
compute the consistency by € {0,1} of (L[t — 1][1..n], PostL[1..n], C[1..n]);
update f; : Dy(f) < Dy(ft) - by forall ¢ =1,2,...,n;
end for_’
: return b = (b1, by, ..., by) representing the selected subset of F;

—_ =
= e

The task of Algorithm 3 is divided into three phases: preprocessing on (D, F, C) (Figure 1), partial
sorting of (D, F, C) with respect to a specific feature f; (Figure 2), and the decision-making and update
of (D, F,C) based on f; (Figure 3), respectively.

Figure 1 illustrates the preprocessing of (D, F,C). Here, it is assumed that the sorting of (D, F, C)
has already been completed, and each D; represents its rank in the sorted order. For this sorted (D,F,C),
alabel L; is assigned to each D; based on F[..t], such that L[¢][i] = L[t][j] iff D;(..f;) = Dj(..ft). That s,
L[#][1..n] group labels for D;s sharing the same value of F|..].

Improved private CWC (Phase 1): feature labels for prefix of F: (f1, f2, -+, fx)

(1) Sort (D, F, €) with the key F: (f1, f2, .-, fx)
(2) Make feature labels L[j][1..n] based on the prefix (fy, f2, ..., f;) for grouping D = {Dy, D,, ..., D,,}

(1) Started (D, F, C)

D f1 f2 ft fen fr 4
Dy 0 0 0 0 0 1 (2) Make feature labels L[j][1..n]
D, 0 0 0 0 1 0 |
L[1] L[2 w L[] Llt+1] .. L[k
D, 0 0 1 [1] (2] [¢] [] (K]
Dy lix 21 lea lie+1)1 li1
Dy 0 1
D, li2 bz leo liern),2 b2
p, 1 1 1
D; ly; Ly le lie+1) Ly
Div1 ligsny Ly lerny Lern),arn L iv1)
Dn ll,n lz,n lt,n l(t+1),n lk,n

Figure 1. Phase 1 of the improved algorithm corresponding to Line 1 - 3 in Algorithm 3.

Next, we focus on a specific feature f; and determine whether it should be selected. For this
purpose, we require the sorting result of (D, F/,C), where F/ = F \ {f;} (see Figure 2). However, since
E[..t — 1] has already been sorted, we divide F into F[..t — 1], f;, and E[t 4 1..] with the current f;, and
only F[t +1..] is sorted . Because the sorting of F[..t — 1] is performed sequentially for t = k,k—1,...,t,
it only needs to be executed for the current value of f;. As a result, the computational cost is significantly
reduced compared to naively sorting both the prefix and suffix for every possible f;.

However, performing sorting on F[..t — 1] breaks the alignment between the previously syn-
chronized F[..t — 1] and E[t + 1..]. To keep this correspondence, we introduce a reference array
MapL[1..n] initialized by (1,2, ...,n), and sort (PostL[1..n], MapL[1..n]) simultaneously. We then com-
pute the inverse array MapL~![1..n] by sorting (1,2,...,n) with MapL[1..n] as the key, and by sorting
MapL~[1..n] together with E[t + 1..], the synchronization between the prefix and corresponding suffix

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

9of 14

of F is maintained. Through this procedure, we obtain the correctly sorted result of (D, F/,C) without
fr excluded.

Figure 3 illustrates the task for verifying the consistency of the sorted (D, F/,C) and determines
whether f; is a necessary feature. Since this information is extracted as an encrypted logical bit by, the
decision can be reflected back to (D, F, C) by computing the product of b; with all values of f;. These
operations are carried out sequentially in the order t = k,k —1,...,1, and by decrypting the resulting
bit vector b = (b1,by,...,by), we obtain the final feature selection result.

Improved private CWC (Phase 2): feature labels for suffix (f, fr—1, ---» i)

(3) Sort (f¢41, PostL, C, MapL) with f,,4
(4) Update PostL by the sorted fyyq [

(5) Sort (fy, L[t — 1], MapL™1) with the inverted

index MapL~!

(L[t — 1], PostL, C) is synchronized based on
the feature vector (fe41, fe+2, --» fx)

5),
\ \ ! | | l
L[t—1] fe fer1 (4) PostL c MapL

D, l(t—l),l 0 0 pll 1 4
Dz l(t—1),2 0 0 plz 0 1
D; L1 1 0 pl; 1 8
Diyq le-1),1+1) 1 0 Pliys 0 n
D, lie-1)n 1 1 pl, 1 i

Figure 2. Phase 2 (Line 4 -7) of Algorithm 3.

Improved private CWC (Phase 3): consistency-based feature selection

(6) Check the consistency of (L[t — 1], PostL, C)
(7) Reflect the verification b, € {0,1} onto f; : b=1 iff f,is selected

(6) b,

o r N —

(7) fe* by
Lit—1] fe fes1 PostL MapL
D1 l(t—l),l 0 0 pll' 4
D, l(t—l),z 0 0 plz' 1
D; Lie—1)i 1 0 pl;’ 1
Diyq le-1),G+1) 1 0 plivs 0 n
D, l(t—l),n 1 1 ol 1 t

Figure 3. Phase 3 (Line 8 - 9) of Algorithm 3.

Theorem 2. Algorithm 3 (improved pCWC) on ciphertexts simulates Algorithm 1 (CWC) on plaintexts. The
time and space complexities are O (knlog® n) and O(kn) for |F| = k and |D| = n, respectively.

Proof. We first show the correctness of Algorithm 3, that is it correctly simulates Algorithm 2. To
establish this, it is sufficient to prove that for any feature f;, Algorithm 3 (1) correctly sorts (D, F \
{ft},C), and (2) accurately determines the consistency of the sorted (D, F \ {f;},C).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

10 of 14

As a result of preprocessing, for any ¢, (D, F, C) is already sorted using the prefix vector F[..t] =
(f1, f2,- .-, ft) as the key, and thus the correct label L[t][i] for D; has been computed.

Now, assuming that the feature labels PostL[1..n] corresponding to the suffix E[t + 2..] has been
computed in the previous loop, we can obtain the updated ranks for the extended suffix F[t + 1.] by
sorting PostL[1..n] using f;;1 as the key. Then, by updating PostL[1..n] based on the sorted values
and their corresponding f;,1 values, we can compute the new PostL[1..n] that reflects the extended
suffix F[t + 1..]. All of these computations can be performed under FHE, in the same manner as in
Algorithm 2.

The next necessary step is to restore the correspondence between L[t — 1][1..n] and PostL[1..n].
The array L[t — 1][1..n] has retained its original order from the initial sorting for prefixes, whereas
the current PostL[1..n] has been reordered according to the current suffix. Suppose that the previous
PostL[1..n] corresponding to the suffix E[t + 2..] was already synchronized with L[t — 1][1..n].

To preserve the previous ordering of PostL[1..n] (i.e., the ordering synchronized with L[t — 1][1..n]),
we first sort the initialized index array MapL[1..n] = (1,2,...,n) together with PostL[1..n]. Then, since
the original positions of MapL[1..n] are retained in the inverse index array MapL~![1..n], we can
restore the correct correspondence between L[t — 1][1..n] and PostL[1..n] by sorting L[t — 1][1..n] using
MapL~'[1..n] as the key. All of these operations can be performed solely through sorting on encrypted
data under FHE.

Moreover, since both f; 11 and C are always kept in synchronization with PostL[1..n], and each
ft is always sorted in accordance with L[t — 1][1..n], Algorithm 3 correctly sorts (D, F \ {f¢},C). The
consistency check applied to the sorted (D, F \ {f},C) is identical to that in Algorithm 2. Therefore,
we conclude that the improved algorithm correctly simulates the naive one.

Next, we evaluate the computational complexity. The sorting of (D, F, C) in Lines 2—4 is identical
to that of Algorithm 2, and thus requires O(kn log® 1) time.

Among Lines 6-15, the most computationally expensive operations are the sorting steps in Line 8
and Line 10. In Line 8, sorting is performed using f;11 as the key. To ensure stability, a log n-bit suffix
is appended to each entry, allowing the operation to be treated as sorting integers of O(logn) bits.
Therefore, the time complexity is O(log® n).

In Line 10, sorting is performed using MapL[1..n] as the key. Since MapL[1..n] is initialized
as (1,2,...,n), no additional suffix is required for stable sorting, and this operation also runs in
O(nlog® n) time. Because the above process is repeated k times, the overall computational time is
O(knlog® n).

Finally, the additional data structures used by Algorithm 3, besides (D, F, C), include L[1..k][1..n],
PostL[1..n], MapL[1..n], and MapL~'[1..n]. Since each of these has a size of O(kn), the total space
complexity of the algorithm is also O(kn). O

5. Experimental Results

We implemented the proposed private CWC (Algorithm 3) in C++. For FHE operations, we used
TFHE library [25]. The experiments were conducted on a machine equipped with an Intel(R) Core(TM)
19-10900X CPU running at 3.70GHz and 32 GB of memory. We used gcc version 11.4.0 as the compiler.
All experiments were executed inside a Docker container specifically built for this purpose.

To evaluate the effectiveness of the proposed method (Algorithm 3), we compared it with the naive
baseline approach (Algorithm 2). In the baseline algorithm, label computation becomes a bottleneck
due to the need for k sorting operations, which makes the method impractical for large values of k. To
address this issue, a decision-tree-based data structure can be used to classify encrypted feature vectors
and assign labels without sorting [36,37]. Assuming this data structure, the computational complexity
of the baseline algorithm becomes O(kn?logn), and then, the total complexity of Algorithm 2 can
be considered as O(min{k?nlog® n, kn?log n}). In contrast, the improved method (Algorithm 3) has
a complexity of O(knlog® n). We experimentally compared the execution times of these algorithms
while varying k and .

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

11 0f 14

The experimental results are illustrated in Figure 4. Figure 4a compares the computation time of
the proposed algorithm, which has a theoretical complexity of O (kn log® 1), with a naive implementa-
tion that uses decision-tree-based secure computation [36-38] and has a complexity of O(kn?logn).
In this experiment, we measured the computation time of both algorithms as the number of records
n increases. The results clearly show that the proposed method reduces computation time even for
relatively small values of 7, and this advantage becomes more pronounced as 7 increases.

Time comparison of algorithms at k =8 Time of proposed algorithm wrt. (k,n)

300,000 25,000

250,000 20,000
200,000
15,000
150,000
10,000
100,000
e . I l
o S - 0 — - -
32 64 128 16 32

256 n=8§

mnaive M proposed k=4 =8 m16 W32

@) (b)
Figure 4. Time (sec.) comparison of proposed and naive algorithms at several (k, n).

On the other hand, Figure 4b shows the impact of the parameters (k, 1) on the computation time
of the proposed algorithm. In this experiment, we compared the execution time for k € {4,8,16,32}
and 1 € {8,16,32}. Although the theoretical time complexity of the proposed method is O(kn log® 1),
the results empirically confirm that the computation time increases linearly with k. Therefore, it
is confirmed that the proposed privacy-preserving computation algorithm behaves as expected by
design.

6. Discussion

In this study, we proposed a feature selection algorithm based on FHE. While various plaintext
feature selection methods have been studied, consistency-based feature selection has been shown to
offer both scalability and effectiveness. Therefore, the development of privacy-preserving computation
protocols for consistency-based feature selection is a critical research challenge.

Although existing FHE-based two-party algorithms have addressed this goal to some extent, the
protocol proposed in this work is the first to realize fully outsourced computation for consistency-based
feature selection. We demonstrated that our proposed privacy-preserving algorithm is superior both
theoretically and experimentally compared to a naive approach that uses decision-tree-based data
structures under secure computation.

On the other hand, the proposed algorithm has several directions for future improvement. First,
this work assumes that the input data (D, F, C) is binary. Removing this assumption and extending
the algorithm to support multi-valued or symbolic attribute domains is one of the most important
future enhancements. Since TFHE library [25] used in this study, is optimized for bitwise and integer
operations, alternative libraries or methods capable of handling real-valued data more efficiently
should be considered. In addition, while this study assumes a point-to-point computation model
between data owner and analyst, extending the model to support one-to-many computations is also
important for broader applicability. Such an extension could be realized by leveraging multi-key
FHE [39-42].

By addressing these aspects, the proposed algorithm can be extended and adapted to enable
privacy-preserving feature selection across a wide range of application domains such as FHE-based
machine learning [43-47] and federated machine learning [48-51].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

12 of 14

Author Contributions: Conceptualization, H.S.; methodology, K.W., T.I. and H.S.; software, K.W.; validation,
K.W. and T.L; formal analysis, KW., T.I. and H.S.; investigation, K.W. and T.I; resources, K.W.; data curation, K.W.
and H.S.; writing—original draft preparation, K.W.; writing—review and editing, T.I. and H.S; visualization, H.S.;
supervision, H.S.; project administration, H.S.; funding acquisition, T.I. and H.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded in part by JSPS KAKENHI (Grant Number 23K11233, 23K28049, 21H05052),
and JST AIP Acceleration Research JPMJCR24U4, Japan.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable
Data Availability Statement: Not applicable.

Conflicts of Interest: Not applicable.

References

1. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014 40, 16-28.
https://doi.org/10.1016 /j.compeleceng.2013.11.024

2. Pawlak, Z. Rough Sets, Theoretical aspects of reasoning about data. Kluwer Academic Publishers, 1991.
https://doi.org/10.1007 /978-94-011-3534-4

3. Liu, H.;; Motoda, H.; Dash, M. A monotonic measure for optimal feature selection. In Proceedings of the
10th European Conference on Machine Learning, Chemnitz, Germany, 21-23 April 1998; pp. 101-106.
https:/ /doi.org/10.1007 /bfb0026678

4. Zhao, Z.; Liu, H. Searching for interacting features. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence, Hyderabad, India, 612 January 2007; pp. 1156-1161. http:/ /ijcai.org/Proceedings/
07 /Papers/187.pdf

5. Dash, M,; Liu, H. Consistency-based search in feature selection. Artificial Intell. 2003, 151, 155-176. doi:
10.1016/S0004-3702(03)00079-1

6. Arauzo-Azofra, A.; Benitez,] M.; Castro, J.L. Consistency measures for feature selection. J. Intell. Inf. Syst.
2008, 30, 273-292. https:/ /doi.org/10.1007 /s10844-007-0037-0

7. Shin, K,; Fernandes, D.; Miyazaki, D. Consistency measures for feature selection: A formal definition, relative
sensitivity comparison, and a fast algorithm. In Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Spain, 16-22 July 2011; pp.1491-1497. https:/ /www.ijcai.org/Proceedings/
11/Papers/251.pdf

8. Shin, K.; Kuboyama, T.; Hashimoto, T.; Shepard, D. SCWC/SLCC: Highly scalable feature selection algo-
rithms. Information 2017, 8, 159. https:/ /doi.org/10.3390/info8040159

9. Agarwal, A,; Boyle, E.; Chandran, N.; Gilboa, N.; Gupta, D.; Ishai, Y.; Kelkar, M.; Ma, Y. Secure sorting and
selection via function secret sharing. Proc. 2024 ACM SIGSAC Conf. Comput. Commun. Secur. (CCS’24), Salt
Lake City, UT, USA, Oct 14-18, 2024; ACM: New York, NY, USA, 2024; pp 3023-3030. https:/ /doi.org/10.1
145/3658644.3690359

10. Dick, T,; Gillenwater,].; Joseph, M. Better private linear regression through better private feature selection.
In Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA,
USA, Dec 2023. https://dl.acm.org/doi/10.5555/3666122.3668448

11. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM Symposium
on Theory of Computing, Bethesda, MD, USA, 31 May-2 June 2009; pp. 169-178. https://doi.org/10.1145/
1536414.1536440

12. Chillotti, I.; Gama, N.; Georgieva, M.; Izabacheéne, M. TFHE: Fast fully homomorphic encryption over the
torus. J. Cryptol. 2020, 33, 34-91. https://doi.org/10.1007 /s00145-019-09319-x

13. Chen, H.; Dai, W.; Kim, M.; Song, Y. Efficient multi-key homomorphic encryption with packed ciphertexts
with application to oblivious neural network inference. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, London, UK, 11-15 November 2019; pp. 395-412. https:
//doi.org/10.1145/3319535.33632

14. Liu, F; Ng, WK.,; Zhang, W. Encrypted SVM for outsourced data mining. In Proceedings of the 2015 IEEE
8th International Conference on Cloud Computing, New York, NY, USA, 20 August 2015; pp.1085-1092.
https://doi.org/10.1109/CLOUD.2015.158

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1007/978-94-011-3534-4
https://doi.org/10.1007/bfb0026678
http://ijcai.org/Proceedings/07/Papers/187.pdf
http://ijcai.org/Proceedings/07/Papers/187.pdf
doi:10.1016/S0004-3702(03)00079-1
doi:10.1016/S0004-3702(03)00079-1
https://doi.org/10.1007/s10844-007-0037-0
https://www.ijcai.org/Proceedings/11/Papers/251.pdf
https://www.ijcai.org/Proceedings/11/Papers/251.pdf
 https://doi.org/10.3390/info8040159
https://doi.org/10.1145/3658644.3690359
https://doi.org/10.1145/3658644.3690359
https://dl.acm.org/doi/10.5555/3666122.3668448
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1145/3319535.33632
https://doi.org/10.1145/3319535.33632
https://doi.org/10.1109/CLOUD.2015.158
https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

13 of 14

15. Qiu, G.; Huo, H.; Gui, X.; Dai, H. Privacy-preserving outsourcing scheme for SVM on vertically partitioned
data. Secur. Commun. Networks 2022, 2022, 9983463. https:/ /doi.org/10.1155/2022 /9983463

16. Saeys, Y.; Inza, I.; Larrafiaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics,
2007, 23(19), 2507-2517. doi:10.1093 /bioinformatics /btm344

17. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector
machines. Machine Learning, 2002, 46(1), 389-422. https://doi.org/10.1023/a:1012487302797

18. Breiman, L. Random forests. Machine Learning, 2001, 45(1), 5-32. https:/ /doi.org/10.1023/A:1010933404324

19. Peng, H.; Long, F; Ding, C. Feature selection based on mutual information criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,
27(8), 1226-1238. https:/ /doi.org/10.1109/tpami.2005.159

20. Liu, H,; Setiono, R. A probabilistic approach to feature selection — a filter solution. In Proceedings of the
Thirteenth International Conference on Machine Learning (ICML), Morgan Kaufmann, Bari, Italy, 1996, pp.
319-327. https:/ /api.semanticscholar.org/CorpusID:17123515

21. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 1978, 21(2), 120-126. https:/ /doi.org/10.1145/359340.359342

22. Goldwasser, S.; Micali, S. Probabilistic encryption. J. Comput. Syst. Sci. 1984, 28, 270-299.

23. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of
the International Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, 2-6 May 1999; pp. 223-238. https://doi.org/10.1016/0022-0000(84)90070-9

24. Boneh, D.; Goh, E.J.; Nissim, K. Evaluating 2-DNF formulas on ciphertexts. In Proceedings of the Theory of
Cryptography Conference, Cambridge, MA, USA, 10-12 February 2005; pp. 325-341. https://doi.org/10.1
007/978-3-540-30576-7_18

25. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachéne, M. TFHE: Fast fully homomorphic encryption library,
August 2016. Available online: https:/ /tfhe.github.io/tfhe (accessed on 28 January 2021).

26. Rao, V; Long, Y.; Eldardiry, H.; Rane, S.; Rossi, R.A.; Torres, F. Secure two-party feature selection. arXiv 2019.
https:/ /api.semanticscholar.org/CorpuslD:57375741

27. Li, X.; Dowsley, R.; Cock, M.D. Privacy-preserving feature selection with secure multiparty computation.
In Proceedings of the 38th International Conference on Machine Learning, Online, 18-24 July 2021; pp.
6326-6336. https:/ /proceedings.mlr.press/v139/1i21e/li21e.pdf

28. Akavia, A.; Galili, B.; Shaul, H.; Weiss, M.; Yakhini, Z. Privacy preserving feature selection for sparse linear
regression. IACR Cryptology ePrint Archive, 2023, 2023, 1354. https:/ /doi.org/10.56553 / popets-2024-0017

29. Wang, L.; Guo, H.; Wu, W.; Zhou, L. Efficient and privacy-preserving feature selection based on multiparty
computation. IEEE Transactions on Information Forensics and Security, 2025, 20, 3505-3518. http:/ /dx.doi.org/
10.1109/TIFS.2025.3546843

30. Ono, S,; Takata, J.; Kataoka, M.; I, T.; Shin, K.; Sakamoto, H. Privacy-preserving feature selection with fully
homomorphic encryption. Algorithms 2022, 15, 229. https:/ /doi.org/10.3390/a1010000

31. Garey, M.R,; Johnson, D.S. Computers and intractability: a guide to the theory of NP-completeness; Series of
Books in the Mathematical Sciences, 1st ed.; W. H. Freeman and Company: New York, 1979; p.221-222.
https:/ /doi.org/10.1137 /1024022

32. Bonnoron, G.; Fontaine, C.; Gogniat, G.; Herbert, V.; Lapotre, V.; Migliore, V.; Roux-Langlois, A. Some-
what/Fully homomorphic encryption: implementation progresses and challenges. In Codes, Cryptology and
Information Security; E1 Hajji, S., Nitaj, A., Souidi, E. M., Eds.; Springer International Publishing: Cham, 2017;
pp 68-82. https:/ /doi.org/10.1007 /978-3-319-55589-8_5

33. Batcher, K.E. Sorting networks and their applications. In Proceedings of the American Federation of
Information Processing Societies Spring Joint Computing Conference, Atlantic City, NJ, USA, 30 April-2
May 1968; pp. 307-314. https://doi.org/10.1145/1468075.1468121

34. Hamada, K.; Chida, K.; Ikarashi, D.; Takahashi, K. Oblivious radix sort: an efficient sorting algorithm for
practical secure multi-party computation. IACR Cryptol. ePrint Arch. 2014 121. https:/ /eprint.iacr.org/2014
/121

35. Ajtai, M.; Szemerédi, E.; Koml6s, J. An O(nlog n) sorting network. In Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, Boston, MA, USA, 25-27 April 1983; pp.1-9. http://dx.doi.org/10.1
145/800061.808726

36. Bost, R.; Popa, R.A.; Tu, S.; Goldwasser, S. Machine learning classification over encrypted data. In Proceed-
ings of the 22nd Annual Network and Distributed System Security Symposium, San Diego, CA, USA, 2015.
https:/ /eprint.iacr.org/2014/331.pdf

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1155/2022/9983463
doi: 10.1093/bioinformatics/btm344
https://doi.org/10.1023/a:1012487302797
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/tpami.2005.159
https://api.semanticscholar.org/CorpusID:17123515
https://doi.org/10.1145/359340.359342
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-30576-7_18
https://tfhe.github.io/tfhe
https://api.semanticscholar.org/CorpusID:57375741
https://proceedings.mlr.press/v139/li21e/li21e.pdf
https://doi.org/10.56553/popets-2024-0017
http://dx.doi.org/10.1109/TIFS.2025.3546843
http://dx.doi.org/10.1109/TIFS.2025.3546843
https://doi.org/10.3390/a1010000
https://doi.org/10.1137/1024022
https://doi.org/10.1007/978-3-319-55589-8_5
https://doi.org/10.1145/1468075.1468121
https://eprint.iacr.org/2014/121
https://eprint.iacr.org/2014/121
http://dx.doi.org/10.1145/800061.808726
http://dx.doi.org/10.1145/800061.808726
https://eprint.iacr.org/2014/331.pdf
https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 doi:10.20944/preprints202505.1442.v1

14 of 14

37. Paul,]; Tan, BH.M,; Veeravalli, B.; Aung, KM.M. Non-interactive decision trees and applications with
multi-bit TFHE. Algorithms 2022, 15, 333. https:/ /doi.org/10.3390/a15090333

38. Alabdulkarim, A.; Al-Rodhaan, M.; Ma, T.; Tian, Y. PPSDT. A novel privacy-preserving single decision tree
algorithm for clinical decision-support systems using IoT devices. Sensors 2019, 19, 142. https:/ /doi.org/10
.3390/519010142

39. Ma,].; Naas, S.-A.; Sigg, S.; Lyu, X. Privacy-preserving federated learning based on multi-key homomorphic
encryption. arXiv preprint 2021, arXiv:2104.06824. https://doi.org/10.1002/int.22818

40. Cheon,].H.; Kim, A.; Kim, M.; Song, Y. Efficient multi-key homomorphic encryption with packed ciphertexts
for secure neural network inference. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, Association for Computing Machinery: New York, NY, USA, 2019; pp. 395-412.
https://doi.org/10.1145/3319535.3363207

41. Cheon,].H.; Choe, H; Kim, S.; Yeo, Y. Reusable dynamic multi-party homomorphic encryption. In Proceed-
ings of the ACM CCS 2025, Seoul, Republic of Korea. 2025. https:/ /eprint.iacr.org/2025/581

42. Namazi, M.; Farahpoor, M.; Ayday, E.; Pérez-Gonzélez, F. Privacy-preserving framework for genomic
computations via multi-key homomorphic encryption. Bioinformatics 2025, 41 (3), btae754. https://doi.org/
10.1093 /bioinformatics /btae754

43. Yuan,].; Liu, W.; Shi, J.; Li, Q. Approximate homomorphic encryption based privacy-preserving machine
learning: a survey. Artif. Intell. Rev. 2025, 58, 82. https://doi.org/10.1007/s10462-024-11076-8

44. Naresh, V.S,; Reddi, S. Exploring the future of privacy-preserving heart disease prediction: a fully homomor-
phic encryption-driven logistic regression approach. J. Big Data 2025, 12, 52. https:/ /doi.org/10.1186/s40537
-025-01098-6

45. Babu, KM.; Syed, M.; Shaik, S.; Thalari, S.; Macha, U.; Chatakondu, A. Fully homomorphic encryption
framework for privacy preserving in healthcare through decentralized machine learning. In Challenges
in Information, Communication and Computing Technology, Sharmila, V., Ed.; CRC Press: London, UK, 2025;
Volume 2, pp 812-819. https://doi.org/10.1201/9781003559092-140

46. Kolhar, M.; Aldossary, S.M. Privacy-preserving convolutional Bi-LSTM network for robust analysis of
encrypted time-series medical images. Al 2023, 4, 706-720. https:/ /doi.org/10.3390/ai4030037

47. Xiao, X.; Wu, T,; Chen, Y.; Fan, X. Privacy-preserved approximate classification based on homomorphic
encryption. Math. Comput. Appl. 2019, 24, 92. https:/ /doi.org/10.3390 /mca24040092

48. Firdaus, M.; Larasati, H. T.; Hyune-Rhee, K. Blockchain-based federated learning with homomorphic
encryption for privacy-preserving healthcare data sharing. Internet Things 2025, 31, 101579. https:/ /doi.org/
10.1016/j.i0t.2025.101579

49. Zhang, C,; Zhang, X,; Yang, X.; Liu, B.; Zhang, Y.; Zhou, R. Poisoning attacks resilient privacy-preserving
federated learning scheme based on lightweight homomorphic encryption. Inf. Fusion 2025, 121, 103131.
https://doi.org/10.1016/j.inffus.2025.103131

50. Zhao, Y.; Liu, Y,; Tang, Q.; Peng, X.; Tan, X. Secure and flexible privacy-preserving federated learning
based on multi-key fully homomorphic encryption. Electronics 2023, 13 (22), 4478. https:/ /doi.org/10.3390/
electronics13224478

51. Walskaar, I.; Tran, M.C.; Catak, FO. A practical implementation of medical privacy-preserving federated
learning using multi-key homomorphic encryption and flower framework. Cryptography 2023, 7 (4), 48.
https://doi.org/10.3390/ cryptography7040048

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.3390/a15090333
https://doi.org/10.3390/s19010142
https://doi.org/10.3390/s19010142
https://doi.org/10.1002/int.22818
https://doi.org/10.1145/3319535.3363207
https://eprint.iacr.org/2025/581
https://doi.org/10.1093/bioinformatics/btae754
https://doi.org/10.1093/bioinformatics/btae754
https://doi.org/10.1007/s10462-024-11076-8
https://doi.org/10.1186/s40537-025-01098-6
https://doi.org/10.1186/s40537-025-01098-6
https://doi.org/10.1201/9781003559092-140
https://doi.org/10.3390/ai4030037
https://doi.org/10.3390/mca24040092
https://doi.org/10.1016/j.iot.2025.101579
https://doi.org/10.1016/j.iot.2025.101579
https://doi.org/10.1016/j.inffus.2025.103131
https://doi.org/10.3390/electronics13224478
https://doi.org/10.3390/electronics13224478
https://doi.org/10.3390/cryptography7040048
https://doi.org/10.20944/preprints202505.1442.v1
http://creativecommons.org/licenses/by/4.0/

