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Abstract: This study aims to enhance the detection and assessment of safety hazards in small-scale reservoir
engineering using advanced image processing and deep learning techniques. Given the critical importance of
small reservoirs in flood management, water supply, and ecological balance, the effective monitoring of their
structural integrity is crucial. This paper developed a fully convolutional semantic segmentation method for
hidden danger images of small reservoirs using an encoding-decoding structure, utilizing a deep learning
framework of convolutional neural networks (CNNs) to process and analyze high-resolution images captured
by UAVs. The method incorporated data augmentation and adaptive learning techniques to improve model
accuracy under diverse environmental conditions. Finally, the quantification data of hidden dangers (length,
width, area, etc.) was obtained by converting the image pixels to the actual size. Results demonstrate significant
improvements in detecting structural deficiencies, such as cracks and seepage areas, with increased precision
and recall rates compared to conventional methods, and the HHSN-25 network (Hidden Hazard Segmentation
Network with 25 layers)proposed in this paper outperforms other methods. The main evaluation indicator
mloU of HHSN-25 is higher than other methods, reaching 87.00%, and Unet is 85.50%, Unet++is 85.55%. The
proposed model achieves reliable real-time performance, allowing for early warning and effective management
of potential risks. This study contributes to the development of more efficient monitoring systems for small-
scale reservoirs, enhancing their safety and operational sustainability.

Keywords: hidden dangers; small reservoir engineering; deep learning; semantic segmentation;
water conservancy project

1. Introduction

Small-scale reservoirs are a critical component of water resource management and play an
essential role in flood control, irrigation, and ecological preservation, particularly in regions
susceptible to climatic and hydrological variability [1]. In China alone, there are over 98,000
reservoirs, of which 95% are classified as small-scale, reflecting their pivotal importance in the
national context. Among these, Jiangxi Province is particularly notable, with over 10,300 small-scale
reservoirs—accounting for 11.4% of the country’s total [2]. These reservoirs significantly contribute
to the socio-economic development of the region by mitigating floods, ensuring agricultural
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productivity, and maintaining ecological balance. However, the safety and stability of these small-
scale reservoirs remain a significant challenge due to several factors, including inadequate design,
incomplete hydrological and geological data, and substandard construction practices. These
challenges render small-scale reservoirs more susceptible to failures compared to their larger
counterparts [3,4]. The monitoring and assessment of small-scale reservoirs have traditionally relied
on manual inspections and conventional surveillance methods. These approaches are not only labor-
intensive and time-consuming but also prone to human error, which can compromise the timely
detection of hazards [5-7]. Consequently, there is an increasing demand for automated and accurate
techniques that can enhance the safety management of small-scale reservoirs. One promising solution
is the application of image processing and machine learning techniques, particularly deep learning,
to the detection and characterization of structural defects in reservoirs [8].

The conventional approaches to reservoir safety monitoring, such as visual inspections,
geotechnical instrumentation, and satellite remote sensing, have provided essential baseline data for
hazard detection and management. However, these methods exhibit several limitations. Visual
inspections and manual monitoring are labor-intensive, limited by human capability, and can be
subjective and inconsistent [9]. Geotechnical instrumentation provides detailed point-based
measurements but lacks spatial coverage and can be affected by external environmental factors [10].
Satellite remote sensing offers wide-area coverage but is often hindered by coarse resolution, low
revisit frequency, and sensitivity to atmospheric conditions [11]. In recent years, several studies have
explored the potential of machine learning techniques, such as support vector machines (SVM) and
random forests, for detecting and classifying structural anomalies in large dams [12]. These methods,
while promising, have not yet been extensively applied to small-scale reservoirs. The specific
challenges of small-scale reservoirs, such as their varied construction standards, diverse
environmental settings, and unique hydrological conditions, necessitate the development of more
tailored and sophisticated monitoring techniques [13,14].

Deep learning, particularly convolutional neural networks (CNNs), has emerged as a powerful
tool for image-based structural defect detection due to its ability to automatically learn and extract
hierarchical features from complex datasets [15]. CNN-based methods have been successfully
applied in various fields, including urban infrastructure monitoring [16], crack detection in concrete
surfaces [17], and landslide mapping [18]. These studies demonstrate that deep learning models,
especially when combined with high-resolution imagery, can provide detailed and accurate
assessments of structural conditions. Semantic segmentation, a subfield of deep learning, has proven
particularly effective in detecting and categorizing structural defects in various settings [19]. Unlike
traditional image classification, which assigns a single label to an entire image, semantic
segmentation provides pixel-wise classification, enabling precise localization and characterization of
defects [20]. This capability is crucial for identifying and analyzing multiple types of hazards in small-
scale reservoirs, where defects may vary significantly in size, shape, and context [21]. While there
have been significant advancements in the application of deep learning for infrastructure monitoring,
most studies have focused on large-scale structures or urban environments. There is a noticeable gap
in the application of these technologies to small-scale reservoirs, which are characterized by unique
hazard patterns that differ significantly in spatial scale and temporal dynamics from those of larger
infrastructure [22]. Furthermore, the integration of deep learning models with multi-source data,
such as hydrological, geological, and meteorological data, for comprehensive risk assessment and
prediction remains underexplored [23].

This study aims to bridge this gap by developing a novel semantic segmentation-based
framework for small-scale reservoir safety monitoring. The proposed framework utilizes a
combination of deep learning techniques and multi-source data fusion to achieve quantitative
extraction of key warning indicators, such as cracks, seepage areas, and surface deformation. This
approach integrates image data with conventional monitoring datasets to establish a robust model
for real-time hazard evaluation and prediction, enhancing early warning capabilities and operational
safety [24]. Our approach involves the development of a deep learning model based on semantic
segmentation to identify and categorize various types of structural hazards in small-scale reservoirs.
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This model leverages multi-source data, including UAV imagery, multispectral and infrared data,
and environmental sensor data, to capture the diverse range of hazard indicators present in reservoir
environments [25]. We utilize a U-Net architecture, a popular choice in semantic segmentation tasks,
due to its ability to retain fine spatial details while capturing global contextual information [26]. To
enhance the robustness and accuracy of the model, we integrate domain adaptation techniques to
handle the variability in data quality and environmental conditions. Furthermore, we employ data
augmentation strategies, such as random cropping, flipping, and brightness adjustment, to increase
the diversity of the training data and improve model generalization.

The proposed framework offers several significant contributions to the field of reservoir safety
monitoring. First, it provides a comprehensive methodology for the automatic detection and
classification of structural hazards in small-scale reservoirs, addressing a critical gap in current
research. Second, by integrating multi-source data, our approach enables a more holistic assessment
of reservoir safety, capturing a broader range of hazard indicators and providing more accurate
predictions of potential failures. Moreover, the development of a real-time hazard evaluation and
prediction model has practical implications for improving the operational safety of small-scale
reservoirs. The ability to detect and respond to hazards promptly can significantly reduce the risk of
failure, minimize damage, and ensure the continued provision of essential water services. This is
particularly relevant in regions such as Jiangxi Province, where small-scale reservoirs play a critical
role in supporting socio-economic development and maintaining ecological balance. By leveraging
semantic segmentation techniques and multi-source data fusion, we aim to provide a more accurate
and comprehensive assessment of reservoir safety, enhancing early warning capabilities and
contributing to the sustainable management of water resources. This research not only addresses
existing gaps in the literature but also offers a practical solution to the challenges faced by small-scale
reservoir engineering in China and beyond.

2. Construction of Hidden Hazards Dataset for Small Reservoir Engineering

2.1. Causes of Hidden Hazards in Small-Scale Reservoirs

Small-scale reservoirs, as a critical component of water resource management, have various
causes of safety hazards. These mainly involve the following aspects:

Design and Construction Deficiencies: Many small-scale reservoirs lack standardization in their
initial design and construction stages, especially those built during the mid-20th century's large-scale
construction efforts. Common issues include non-standardized design, poor-quality construction
materials, and outdated construction techniques. These factors make the reservoirs susceptible to
structural damage over time or under extreme weather conditions, leading to potential hazards such
as dam cracks, seepage, and landslides.

Material and Structural Issues: The construction of small-scale reservoirs often relies on locally
available materials, which may not meet durability and stability standards. Additionally, the aging
and erosion of dam structures exacerbate material deterioration, triggering hazards. For instance,
earth and concrete dams are prone to cracks and seepage due to weathering and chemical erosion.

Climate Change and Extreme Weather Events: Global climate change has increased the
frequency of extreme weather events such as heavy rainfall and floods, imposing greater water
pressure and flood risks on small-scale reservoirs. This risk is particularly pronounced in
mountainous and hilly regions, where extreme weather can destabilize the water body, increasing
the risk of dam collapse or piping. Common hidden hazards in small-scale reservoir engineering
include cracks, collapse, leaching, and seepage, as shown in Figure 1.
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Reservoir collapse

Rainy Gully Cracks in gravity dam Cracks in earth-rock dam
Figure 1. Hidden hazards in small-scale reservoir engineering.

2.2. Image Data Sources for Hidden Hazard Detection

To accommodate the actual environment and hardware capabilities, sample images were
captured using handheld devices and subsequently cropped to sizes suitable for processing. The
CMOS image sensor is a critical factor determining the quality of the captured samples, with key
performance indicators including the ability to restore received images, which depends on pixel array
parameters. During image capture, the most direct parameters are sensor size, effective pixels, and
shutter speed. The handheld device used is equipped with a 1/1.7-type Sony IMX600 image sensor
with 40M square active pixels. Its CMOS image sensor achieves high-speed image capture through a
column-parallel AD converter circuit and high sensitivity and low noise through a backside-
illuminated pixel structure. It utilizes an R, G, and B color mosaic filter and incorporates lens shading
correction, with dual sensors capable of synchronous operation. The IMX600 image sensor
parameters are detailed in Table 1.

Table 1. IMX600 image sensor parameters.

Name Parameters
Image size Diagonal 9.2 millimeters (1/1.7 type)
Total number of pixels 7392 (H) x5744 (V) approximately 42.28M pixels

Total number of effective pixels 7392 (H) x5584 (V) approximately 41.27M pixels
Total number of active pixels 7360 (H) x5504 (V) approximately 40.51 million pixels

Chip size 8.5Imm(H)*6.22mm(V)
Cell size 1.00 1 m(H)=1.00 v m(V)
Substrate material Silicon

In order to further understand the hidden hazards, the Jiangxi Provincial Government
conducted a survey on all small reservoirs in the province. According to the survey, among the 11
prefecture level cities (including directly administered counties) in the province, 33 earth and stone
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dams in 8 prefecture level cities including Nanchang, Jiujiang, Shangrao, Fuzhou, Yichun, Ji'an,
Pingxiang, and Jingdezhen have cracks, as shown in Table 2.

Table 2. Crack hazard investigation in the province.

Earth and rock dams in the province Earth-rock dams in this survey
Order|  Cities |Reservoirl Number of ﬁgr?rrz)rté?g Reservoirs ivide by grade DIVI?]ee(:gt;]{ -
size

1 |Nanchang 8 7 7 2 1 1 1 1
2 | Jiujiang | 29 14 6 7 3 4 7 0
3 |Shangrao| 44 25 6 7 7 0 5 2
4 Fuzhou 27 20 11 3 3 0 3 0
5 Yichun 49 41 22 1 1 0 1 0
6 Jian 47 29 10 8 5 3 6 2
7 |Pingxiang 7 5 2 2 1 1 2 0
8 |Jindezhen| 7 7 3 3 2 1 3 0
9 |GanZzhou| 47 19 7 0
10 | Yingtan 11 8 6 0
11 Xinyu 7 7 2 0

Amount to 283 182 82 33 23 10 28 5

According to the investigation, among the cracks in 33 dams, 79 cracks were investigated, as
shown in Table 3.

Table 3. Crack hazard investigation in reservoirs.

Class Crack number Proportion (%)
Total 79
Transverse crack 32 41
Type
Longitudinal crack 47 59
Before and after the seepage wall 61 77
) Upstream dam slope 13 16
Location
Downstream dam slope 3 4
Other parts or sites 2 3
Stable 64 81
Current situation Still developing 4 5
The situation is unknown 11 14

Cracks, as the most common hidden danger, have a significant impact on the safety of
engineering in small reservoirs. Therefore, it is necessary to use image recognition combined with
experimental data to study the development law of cracks. Figure 2 shows the testing of cracks.
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Figure 2. Crack hazard investigation in small-scale reservoir engineering.

On the other hand, the leaching and seepage of small reservoirs caused by cracks or collapses
are also worthy of the attention. The common path of reservoir dam failure is: flood — seepage
damage — landslide — dam crest lowering — no manual rescue intervention — dam collapse, as
shown in Figure 3. Time series correlation diagram of seepage under rainfall conditions is shown in
Figure 4, according to the survey.

Figure 3. Reservoir Accident Site Map.
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Figure 4. Time series correlation diagram of seepage under rainfall conditions and abnormal values
at measurement points.

Under rainfall conditions, small reservoirs are particularly vulnerable to seepage, a critical safety
concern that can lead to structural instability and potential failure. When rainwater infiltrates the
embankments or foundations of a reservoir, it increases the pore water pressure within the soil,
reducing the shear strength and potentially leading to internal erosion or piping. Seepage pathways
can develop more easily during intense or prolonged rainfall, especially in areas with poor
compaction or material defects. In small reservoirs, which often lack the sophisticated monitoring
systems of larger dams, seepage can remain undetected until it reaches a critical stage. Signs of
seepage include wet spots or boils on downstream slopes, increased water turbidity, or unexpected
drops in reservoir water levels. In the context of heavy rainfall, these signs may intensify rapidly, as
the hydraulic gradient between the reservoir water and the downstream area increases, forcing more
water through any existing or newly formed cracks or weak zones.

Managing seepage under such conditions requires continuous monitoring and timely
intervention. Utilizing advanced technologies such as UAVs and deep learning-based image analysis
can help identify early signs of seepage, allowing for proactive maintenance and repairs. Additionally,
employing geotechnical instruments, such as piezometers and seepage meters, can provide real-time
data to assess the extent of seepage and guide decision-making to prevent structural failure and
ensure the safety of the reservoir.

2.3. Dataset Construction

2.3.1. Data Collection

Data was collected from multiple sources, including UAV images, sensor data, and fixed camera
data, ensuring coverage across sufficient time and spatial ranges, particularly in areas with high
hazard occurrences. The target for image sampling was small-scale reservoir infrastructure in Jiangxi
Province, focusing on cracks, seepage, and collapses of varying sizes and positions, with the smallest
hazards (cracks) appearing as a single pixel in the image.

2.3.2. Data Preprocessing

Collected image data underwent data augmentation methods (e.g., rotation, translation, scaling)
to expand the dataset and enhance model generalization. The original image samples were sized at
3648x2736 pixels, with 300 images containing hazards selected after screening. These images were
first cropped to a size of 3648x1824 pixels for easier processing. Subsequently, the 3648x1824 images
were horizontally cropped into 912x912 pixel images, and additional 912x912 pixel images were
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obtained through random cropping after rotating the original images. In total, 4800 images containing
both hazard and non-hazard areas were produced. These 912x912 images were then uniformly
resized to 256x256 pixels. After a second round of filtering, the images were categorized into two sets:
one containing only background and the other containing hazards. The dataset construction involved
selecting images with hazards, resulting in a final dataset of 4000 valid samples, which will undergo
manual annotation in the next step.

2.3.3. Manual Annotation

Based on the image data, hazards such as cracks, collapses, and seepage were labeled, including
their locations and severity. The open-source Labellmg tool was used for manual annotation, offering
several annotation modes: classification, bounding box, segmentation, and brush-based
segmentation. Given the significant differences among hazards, such as the fine and narrow cracks,
a brush mode was used to color crack areas while leaving non-crack areas uncolored. Conversely, for
larger areas like collapse zones, a bounding box mode was employed. The tool outputs labels in 32-
bit RGB image format, with unannotated areas not displayed. Post-processing is needed to convert
these labels for model input. Annotation is the most time-consuming step in dataset creation. Unlike
common object detection tasks that require only drawing a rectangular bounding box around the
object, semantic segmentation annotation for images requires marking the entire object area. This is
particularly challenging for crack images, where cracks are thin and small, necessitating careful
adjustment of brush width and frequent erasure of excess annotations. An example of the original
crack image and the output label style from the Labellmg tool is shown in Figure 5. The annotated
image is a 24-bit RGB three-channel image, with crack areas marked in red [255,0,0] and the
background in transparent pixels [0,0,0]. The resulting 32-bit label image is not optimal for computer
processing. Given that the pixel data in this study falls into two categories, the 32-bit label images
will be converted to 8-bit images for easier data reading in subsequent processing.

Original image |

Label Image

Figure 5. Labellmg tool outputs labels.

The processed dataset was divided into training, validation, and test sets to ensure model
training, validation, and testing on different data, enhancing model reliability and stability.

3. Deep Learning Based Semantic Segmentation Model for Hidden Hazards Images

3.1. Network Architecture for Hazard Segmentation

The proposed high-performance semantic segmentation method for detecting hazards in images
of small-scale reservoirs is illustrated in Figure 6. The network comprises three main components: an
encoder, a decoder, and a classifier. The overall structure consists of 12 encoding layers, 12 decoding
layers, and 1 classification layer, making a total of 25 layers, which we have named HHSN-25 (Hidden
Hazard Segmentation Network with 25 layers). The encoder structure is built from convolutional


https://doi.org/10.20944/preprints202409.2034.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 September 2024

blocks (Conv) and residual blocks (Block). The Conv block comprises a 2D convolution (Conv2d),
Batch Normalization (BN), and a GELU activation function, while the Block contains two ODConv
units. Each ODConv unit is made up of an omni-dimensional dynamic convolution (ODConv2d), BN,
and GELU activation. The primary role of the encoder is to reduce feature dimensions and increase
network depth, thereby expanding the receptive field to capture more hazard-related features.

The decoder consists of transposed convolutional blocks (TConv) and Blocks. The TConv block
includes a 2D transposed convolution (ConvTranspose2d), BN, and GELU activation function. The
main purpose of the decoder is to recover the original image dimensions while further extracting
hazard features, merging multi-dimensional features from various stages of the encoder for pixel-
level classification. The classification layer is a 2D convolutional layer that transforms the dimensions
along the channel direction to match the number of classes, with a SoftMax function used to predict
the probability of each pixel belonging to a specific class. In the HHSN-25 structure, parameters for
each sub-module are specified as module name, output channels, kernel size, stride.
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Figure 6. Hidden Hazard Segmentation Network with 25 layers.

3.1.1. Feature Dimension Transformation in the Hazard Segmentation Network

The transformation of feature dimensions in a typical deep learning network involves two
aspects: changes in feature map size and feature map count. Regarding feature map size, convolution
and transposed convolution operations are primarily responsible for altering dimensions. The
convolution and transposed convolution processes for 2D images are shown in Figure 7.

(a) Convolution (b) Deconvolution

Figure 7. Convolution and deconvolution.
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Figure 7(a) demonstrates the process where a feature map of size 4x4 is convolved with a kernel
size of 3, stride of 1, and no padding, resulting in a 2x2 feature map. Here, the stride represents the
number of pixels the kernel moves at each step, and padding refers to adding blank pixels around
the edges to accommodate the desired size. Figure 7(b) illustrates the reverse, where a 2x2 feature
map is transformed via transposed convolution with a kernel size of 2, stride of 1, and padding of 1
to produce a 4x4 feature map. The input-output relationship for convolution and transposed
convolution is given by specific equations:

= K2R g (1)
S
. 0+2p-k
0tconv = S(I _1)_2p+k+[ ] (2)

where 0o and oronn - represent the output size, and i is the input size, k is the kernel size, s is the stride,
and p is the padding. The second aspect of dimension transformation concerns the change in the
number of channels. Increasing the number of channels while downsampling along spatial
dimensions is crucial for network performance, as it enhances the diversity of high-level features. In
HHSN-25, the encoder increases the number of channels as the feature map dimensions decrease,
while the decoder decreases the number of channels as the feature map dimensions are restored. This
design adheres to the feature pyramid principle, optimizing memory use.

3.1.2. Basic Feature Extraction Structure of the Hazard Segmentation Network

Increasing the network depth helps expand the receptive field and extract higher-level features.
Since the introduction of ResNet, skip connections have become the dominant structure in deep
learning, such as in ConvNeXt, which improves network performance by using skip connections and
increasing kernel size. The basic feature extraction structure (Block) in HHSN-25 adopts the skip
connection concept from ResNet, integrating omni-dimensional dynamic convolution and
experimentally verified optimal kernel sizes.

The ResNet structure consists of two convolutions with a kernel size of 3. The first convolution
is followed by BN and a ReLU activation function; the second is followed by BN, with the skip
connection then linked to a ReLU activation function, keeping the feature map size unchanged
throughout. In ConvNeXt, the input first passes through a depthwise convolution with a kernel size
of 7 and Layer Normalization (LN), followed by a pointwise convolution with a kernel size of 1 to
increase the channel count fourfold, activated by GELU. A final pointwise convolution restores the
channel count before the skip connection. The Block in our study applies two omni-dimensional
dynamic convolutions with kernel sizes of 3 and 5, followed by skip connections, each convolution
operation incorporating BN and GELU activation. The omni-dimensional dynamic convolution
introduces a multi-dimensional attention mechanism, employing a parallel strategy to learn different
attentions across four dimensions in kernel space. The basic structure of the omni-dimensional
dynamic convolution used in this study is depicted in Figure 8.
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Figure 8. Basic Structure of Full Dimensional Dynamic Convolution.

This convolution utilizes a SE-style attention module with multiple heads to compute various
types of attention. For input data, global average pooling, fully connected layers, and ReLU activation
functions reduce it to a one-dimensional feature vector, which is then processed by four fully
connected heads to produce different attention values. The four attention dimensions focus on
position, channel, filter, and kernel, capturing richer contextual information. The omni-dimensional
dynamic convolution utilizes a new multi-dimensional attention mechanism, calculating four types
of attention across all four dimensions in parallel within the kernel space:

y = (avw. Qafl Qacl Qasl QVV:L +- 'awn Gafn @acn @asn OWn) *X (3)

where, aw1 represents the attention scalar of the convolutional kernel, as1;, a« and as represents the
three newly introduced attention points, which are calculated along the spatial dimension, input
channel dimension, and output channel dimension of the convolutional kernel. Orepresents the
multiplication operation along different dimensions of the kernel space.

3.2. Loss Function and Improvements for the Hazard Segmentation Network

Among various deep learning-based image semantic segmentation methods, Cross Entropy (CE)
is the most commonly used function for loss calculation, analyzing each pixel separately and
comparing predicted values for each pixel class with the ground truth. This approach assigns the
same weight to every pixel during loss calculation, which may not be ideal for segmentation tasks
involving imbalanced pixel distributions. The CE loss function expression is as follows:

M
CE,, =—_ Y. log(p,) @)
c=1

where M represents the number of categories, and y. is a one hot vector with element values of only
0 and 1, and p. represents the probability that the predicted sample belongs to class c. When there are
only two categories, the Binary Cross Entropy (BCE) loss function can be expressed as:

BCE, = —i[yc log(p,) +@-Y,)log(1- p,)] 6)

c=1l

where, p. represents model input and y. represents real labels. The Binary Cross Entropy with Logits
(BCEL) loss function is a loss function that combines a Sigmoid layer and BCE loss into a single
category. Shrivastava et al. [20] proposed an algorithm for online hard example mining (Ohem) to
address the issue of imbalanced positive and negative samples. The OhemCE loss function first
calculates the cross entropy loss, then selects difficult samples based on the loss, and finally applies
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higher weights to them in subsequent training. The Intersection over Union (IoU) loss function is
commonly used in object detection, which reflects the ratio of the intersection and union of annotated
and predicted values. It is also commonly used for loss calculation in image semantic segmentation.
The loss expression of IoU is as follows:

_AmB
AUB

loU,, =1 ©)

Focal Loss (FL) is commonly used to deal with class imbalance. It determines the weight of class
related losses based on the difficulty of distinguishing class samples, that is, applying smaller weights
to easily distinguishable samples and larger weights to difficult to distinguish samples. The FL

expression is as follows:

M
Focal,, =—>_(1—p,)" Y. log p, 7)

c=

FL adds a weighting coefficient (1— p,)” before the standard CE function. The Dice loss function

is named after the Dice coefficient, which is a metric used to evaluate the similarity between two samples
and can effectively represent their similarity. The Dice loss function is expressed as follows:

1o |ANB]|

D.
ICeLOSS |A| + |B|

®)
where, A represents the pixel labels of the actual segmented image, and B represents the pixel class
prediction of the segmented image by the model. Considering the disproportionate nature of hazard

pixels and background pixels in crack images, this chapter uses FL combined with Dice coefficient
for loss calculation, which is expressed as follows:

M
Loss=1-> (1-p,) Y. log p, - elre

9
pur U+¢ )

where, I represents the intersection of correctly identified pixels, U represents the union of prediction
and label, and ¢ is the smoothing coefficient.

4. Results

4.1. Experimental Environment and Evaluation Indicators

All models in this topic are trained and verified on the Windowsl1 operating system. The
hardware configuration is AMD Ryzen 7 series 5800H processor, equipped with 16GB running
memory, and the display card is NVIDIA RTX3060 mobile terminal platform equipped with 6GB
display memory. The deep learning framework is the pytorch, CUDA 11.6 environment.
Furthermore, due to memory limitations, the number of multiple threads and the size of batch
processing were set to 4, and different sets of hyperparameters were analyzed during training to
select the best validation model configuration. Each dataset was split into 80% (3200 images) for
training, 10% (400 images) for validation, and 10% (400 images) for testing. All image input sizes used
in the experiment were set to 256x256.

The easiest way to do this is to calculate how many pixels are being correctly segmented, but
this is not enough. The essence of crack image segmentation is to evaluate each pixel using a classifier,
so the result of a pixel consists of two kinds: correct and wrong. Since the hidden danger data set is a
data set with unbalanced category pixels, if the average accuracy is simply used as the evaluation
index, the accuracy of the hidden danger pixels will be covered by the accuracy of the background
pixels, and the results will not be well observed. In this experiment, the average intersection ratio
(mean Intersection over Union, mIoU) was used as the main performance evaluation index, and the
precision rate (P), recall rate (R), F1, Accuracy, Mean Pixel Accuracy (mPA) score were also considered
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[15]. These indicators are mainly obtained from the confusion matrix, which can be expressed by the true
case TP, true negative case TN, false positive case FP, and false negative case FN.

4.2. Comparison of the Experimental Results

4.2.1. Basic Feature Extraction Structure Block

For small hidden danger pixels (such as cracks), theoretically only a small window is needed to
identify their features, and the existing hidden danger image segmentation methods are mostly
improved based on the current mainstream methods, among which a large number of methods to
expand the feeling field may be too radical. Convolutional neural network mainly by expanding the
convolution kernel and deepening network depth expand feeling field, in order to study the
appropriate structure, the basic feature extraction structure Block using the performance of the kernel
experiment, then studied the introduction of the full dimensional dynamic convolution model, will
also proposed the Block structure compared with the performance of several other mainstream
network module. The effect of different convolution kernel sizes in Block on the network is shown in
Figure 9, where k values in turn represent the convolution kernel sizes of the two convolutional layers
in Block. From the experiment, we can first see that the effect of using full-dimensional dynamic
convolution(ODConv) is better than that of ordinary convolution. Second, the effect is better when
the k values are taken successively at 3 and 5. In addition, the actual mIoU gap in the three sets of
experiments using full-dimensional dynamic convolution is less obvious than the ordinary
convolution, which further proves that the attention of different dimensions improves the network
performance.

87.50
37.00 |
86.50 |
86.00 |
85.50 | +
85.00 [ +

84.50
84.00
83.50

mloU(%)

k=13 I=3.5 k=5.7
—+4— Conv 85.00 86.50 85.50
ODConv 86.80 87.10 86.60

Figure 9. Comparison of different convolution kernel sizes in Block.

The performance of ResNet, MobileNetV3 and ConvNet feature extracted structures ResBlock,
MobileBlock, ConvNeXt and Block in HHSN-25 is shown in Figure 10. It can be seen that ConvNeXt
structure has the lowest performance in the crack image segmentation task, while the performance
of Block phase is significantly improved compared with other structures.
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Figure 10. Comparison of the different Block structures.

4.2.2. Comparison of Changes in Different Network Widths in Decoding Structures

The pyramid structure is a pattern of network width that has been proven to be suitable in
convolutional neural networks through research. In actual network construction, feature maps are
usually upsampled and downsampled for dimensionality reduction, and the number of channels
decreases and doubles accordingly. In HHSN-25, if the number of feature image channels recovered
during the decoding process corresponds to the encoding structure, some hidden features may be
lost during this process, but the additional feature channels will increase the computational resource
consumption of the network. Therefore, it is necessary to study the variation law of features in the
channel dimension during the decoding stage. As shown in Figure 11, the comparison of the changes
in four different network widths is presented, which is reflected by the number of feature channels
during each dimensionality increase. The horizontal axis represents the number of feature channels
output after four dimensionality increase operations during the decoding process. The experimental
results showed that the network performance was optimal when the number of channels was 128, 96,
64, and 40, respectively. In this feature fusion strategy, the number of channels was doubled before
and after each dimensionality upgrade, while the results with the number of channels 64, 32, 16, and
8 were significantly lower than the other three results. The reason for this is that excessive reduction
in the number of channels during dimensionality upgrade resulted in fewer hidden feature
information being included in the fewer channels.

87.60

87.40 | ~87.50",

86.80 86.80

128.,128,64,64 128.96,64.40 128.64,32.16 64,32,16,8

Figure 11. Comparison of changes in different network widths.
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4.2.3. The Influence of Different Loss Functions on the Experimental Results

The performance comparison of HHSN-25 network using different loss functions is shown in Figure
12. It can be seen that due to the improved loss function focusing on the similarity of different samples,
the attention to different samples is different. Using the improved loss function in this project for loss
calculation yields the best results, significantly higher than the results of other loss functions.

88.50
88.00 | A
#8.00

87.50 |

87.00 |

mloU(%)

86350 A

86.00

85.50 L L L

Figure 12. Comparison of network performance calculated using different loss functions.

4.2.4. The Performance Comparison of Different Segmentation Methods

To verify the effectiveness of the HHSN-25 network proposed in this chapter, its experimental
results were compared with those of other segmentation methods, as shown in Figure 13. It can be
seen that in the graphical data of the main evaluation indicator mloU, HHSN-25 is significantly
higher than other methods, reaching 87.00%, FCN is 85.00%, SegNet is 85.00%, Deeplabv3+is 80.50%,
Unet is 85.50%, Unet++is 85.55%, Swin-Unet is 82.00%, and PSPNet is 84.50%. In addition, among the
other commonly used evaluation indicators in Figure 13, HHSN-25 outperforms other methods.

T T T T T

T I
100\ O Accuracy O Fl-score O mPA O mloU .

Value (%)
|
]

FCN  SegNet Deeplabv3+ Unet  Unet++ Swin-Unet PSPNet HHSN-25

Figure 13. Comparison of the performance of the different methods.
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Meanwhile, from Figure 13, it can be seen that there is almost no difference in the accuracy index
of these methods. This is because the number of hidden pixels is much less than that of background
pixels. When calculating them together, the large base of background pixels will weaken the
expression ability of this index for hidden pixels. This also explains why Accuracy was not used as
the main evaluation index in this project. When calculating the F1 score and mPA index, the
indicators of hidden and background pixels are first calculated separately, and then the average value
is taken. Therefore, it can better reflect the overall classification effect of background pixels and
hidden pixels, and is also within the reference range for evaluating the performance of the network.

4.2.5. Other Experimental Results

The loss function can be used to better describe the difference between the predicted value and
the true value of the model, and the smaller the loss value, the better the performance of the model.
During the training process of the model, the loss value decreases with the increase of training rounds
until convergence, at which point the model usually achieves good results. The convergence of the
loss function during the experiment is affected by factors such as data, network, and environment.
As shown in Figure 14, the loss value of HHSN-25 during training shows the trend of change with
the number of training rounds. It can be seen that the loss value has hardly changed by the time it
reaches 50 rounds of training, which also explains the reason for choosing 50 rounds of training in
this experiment. If the number of training rounds is too small, the model may not converge, resulting
in poor performance and cannot be used as a basis for comparing the final experimental results. If
there are too many training rounds, on the one hand, it will consume more time, and on the other
hand, the network performance improvement will not be significant, and it may cause overfitting.

— Training Loss — Validation Loss

0.6 -

0.5F

0.4

03

Loss Value

0.2

0.1}

0 10 20 30 40 50
Training rounds

Figure 14. HHSN-25 train-validation loss trends.

In addition, due to the different loss functions of each method during training, even if their
values are scaled to the same range, they cannot be used as a basis for comparison due to the different
calculation methods. Figure 14 is only used as a training network, and the main means of measuring
the performance of these methods is still to compare the quality of mIoU values, reflecting the final
segmentation effect.
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5. Discussion and Application

Based on the HDSN-19 image semantic segmentation method framework, extract hidden hazard
image features and quantify them:

Crack length and width

Find the boundary of the target object in the segmentation result (edge detection); Use the
bounding box or fitting ellipse to fit the target object and obtain its length and width.

Use the height and width of the bounding box to represent the length and width of the target object.

Leaching area, leakage area, and collapse area

Calculate the number of pixels within the target object area (the area of the segmentation region).

Convert pixel area to actual area (given the spatial resolution of the image, i.e. the actual physical
size corresponding to each pixel).

Area=number of pixels in the segmented area multiplied by the actual area per pixel.

5.1. Integration of Hidden Hazard Feature Extraction Algorithm

The trained image hidden feature extraction algorithm has been integrated into edge devices
and carried out demonstration applications. During actual operation, the collected images need to be
clear enough to identify small structural changes such as cracks or leaks. The camera equipment needs to
be able to capture the target area video clearly within a certain distance, with a distance of less than 50
meters. As such, a high-definition (higher than 1080p resolution) camera has been used to ensure rich
details in the image. This ensures that the data collected under different environmental conditions is of
sufficient quality, so that the model can accurately detect and identify engineering hazards.

Through the edge computing architecture, this algorithm realizes real-time monitoring and
analysis, and reduces the total time from data acquisition to hidden danger detection and alarm from
the original average of 5 minutes to 40 seconds (reduced by about 86%). The high-performance
embedded processor NVIDIA Jetson AGX Xavier and software configuration (TensorFlow, PyTorch)
are specially designed for edge computing, so that it has efficient processing capacity and low energy
consumption, and is suitable for real-time data processing and analysis. In addition, the edge
computing architecture enables data processing to be completed locally, reducing dependence on the
cloud, improving response speed and privacy protection. Comparing the adaptive detection model
developed in this project with the mainstream method "Edge Al and Machine Learning", Table 4 can
be obtained. The results indicate that the differences between the two are mainly reflected in the data
processing and resource requirements during model training and inference computation. The deep
learning method of the detection model developed in this project does not rely on manually
annotated data, thus reducing the need for annotated data when training on edge devices. After the
model training is completed and integrated, the inference calculation process is relatively fast and
the computation time is relatively short. In addition, the multimodal data fusion and adaptive deep
learning model have improved the anti-interference ability of the research and development model
in complex environments, enabling it to dynamically adjust and adapt to sudden changes in the
environment, and play an advantage in scenarios where data annotation is difficult. The training
process of Edge Al and Machine Learning is usually completed in the cloud. When reasoning on edge
devices, due to the use of pre trained models and optimization techniques, the performance in dealing
with sudden changes in environments (such as night, rain, and fog) is weak and the adaptability is poor.
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Table 4. Comparison the adaptive detection model developed in this project with the mainstream
method "Edge Al and Machine Learning".
Comparative indicators Adaptive detection model Edge AI and Machine Learning
Data acquisition and processing 40s 5min
Model calculation time 10s 25s
Recall 95% 85%
F1 score 93% 80%
Average intersection ratio 94% 82%

High stability (sensors with
electromagnetic interference
Stability resistance; multiple sensors
complement each other to provide
redundant information)

Medium stability (grounding
protection system;
set backup computing units and
Sensors)

High frequency data sampling and By utilizing advanced signal

multimodal data fusion enhance processing techniques and
anti-interference ability in complex filtering algorithms, noise and
environments; interference caused by

Robustness
Adaptive deep learning models  environmental changes can be

enable them to dynamically adjust effectively filtered out, but it
and adapt to sudden changes in cannot cope with sudden
the environment. environmental changes.

5.2. Algorithm Promotion and Practical Application

To sum up, the project not only significantly improves the accuracy and recall rate of hidden
danger detection of small reservoir projects, but also greatly shortens the detection and response time
and significantly improves the safety and operation efficiency of reservoirs by integrating edge
computing hardware and software configuration, optimizing response speed and adopting advanced
multi-source data fusion and image segmentation adaptive models. At the same time, the image
hidden danger feature extraction algorithm has been widely applied in multiple typical reservoirs,
including 25 small reservoirs in Jiangxi Province, including Chookeng Reservoir, Jutang Tuanjie
Reservoir, Xiashitang Reservoir, Gaokeng Reservoir, Dongzhan Reservoir, Linjiang Zoujia Reservoir,
Zhangshu City Daqiao Dam, Yangqiao Tientang Reservoir, Lianhua County Reservoir, Changlan
Maging Dam, Xixi Reservoir, Xiaoshankou Reservoir, Mengtang Reservoir, etc. The application effect
of a typical reservoir is shown in the following figure.
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Name: Chookeng Reservoir
Hidden Hazard: Leaching

Hazard area: 1.5m’

Name: Chookeng Reservoir
Hidden Hazard: Leaching

Hazard area: 1.2m’

Name: Jutang Reservoir
Hidden Hazard: Leaching

Hazard area: 0.44m’

Name:Xiashitang Reservoir
Hidden Hazard: Leaching

Hazard area: 1.02m’

Figure 15. Identification of Leaching and Extraction of Quantitative Indicator.
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Name: Bridge Embankment
Hidden Hazard: Cracks
Maximum width: 4.8cm

Maximum length: 3.8m

Name: Bridge Embankment
Hidden Hazard: Cracks
Maximum width: 5.10cm

Maximum length: 3.68m

Name: Tientang Reservoir
Hidden Hazard: Cracks
Maximum width: 2.12cm

Maximum length: 16.45m

Name: Tientang Reservoir
Hidden Hazard: Cracks
Maximum width: 2.48cm

Maximum length: 13.55m

Name: Lianhua Reservoir
Hidden Hidden: Cracks
Maximum width: 1.58cm

Maximum length: 1.88m

Figure 16. Identification of Cracks and Extraction of Quantitative Indicator.
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Name: Gaokeng Reservoir
» Hidden Hazard: Leakage
Hazard Area: 0.2 m’

Name: Dongzhan Reservoir
» Hidden Hazard: Leakage
Hazard Area: 10 m’

Name: Dongzhan Reservoir
Hidden Hazard: Leakage

Hazard Area: 5 m’

Name: Zoujia Reservoir
» Hidden Hazard: Leakage
Hazard Area: 3.25 m’

¥

Figure 17. Identification of Leakage and Extraction of Quantitative Indicator.

Name: Changlan Maqing
» Hidden Hazard: Collapse
Hazard Area: 5.15m°

» Name: Xixi Reservoir
Hidden Hazard: Collapse
Hazard Area: 2.52m’

Name: Xiaoshankou
Hidden Hazard: Collapse
Hazard Area: 0.32m’

Name: Mengtang
» Hidden Hazard: Collapse
Hazard Area:8.95m’

&

Figure 18. Identification of Collapse and Extraction of Quantitative Indicator.

On the basis of existing research, further exploration and expansion of the application scope of
this project will bring more potential improvement space and innovative value to the safety
monitoring and management of water conservancy engineering. Firstly, the existing technological
framework can be extended to larger scale water conservancy facilities such as reservoirs, rivers, and
gates, especially in areas with complex geographical locations and variable climate conditions. By
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increasing the adaptability to diverse data sources, the robustness and universality of the model can
be improved in different environments and conditions. To further improve system performance,
future research can optimize in the following areas:

Introducing deep learning and transfer learning techniques: Combining existing multi-source
data fusion and adaptive image segmentation models, introducing deep learning frameworks,
especially convolutional neural networks (CNN) and structured data processing methods based on
graph neural networks (GNN), to improve the depth and accuracy of feature extraction. Meanwhile,
transfer learning techniques can optimize existing models, reduce reliance on large-scale annotated
data, and accelerate model deployment and application.

Enhance real-time data processing capability: Although edge computing has significantly
improved data processing speed, it can further combine 5G technology and distributed computing
methods to enhance the real-time data transmission and processing capability of the system, ensure
that a large amount of data can be acquired and processed in time when emergencies occur, and
improve the timeliness and accuracy of decision responses.

Developing multimodal data fusion methods: Currently, multi-source data fusion mainly
focuses on the integration of visual image data and sensor data. In the future, more types of sensors
(such as acoustics, radar, optics, etc.) can be introduced, combined with multimodal data sources
such as meteorological data and historical disaster records, to construct a more comprehensive
hazard monitoring model. Through multimodal information fusion, potential risk factors in complex
environments can be better understood, and the ability to identify and warn of hidden dangers in
small reservoirs can be improved.

Improved data management and analysis capabilities: In terms of data management, future
research can develop and apply more efficient data storage, retrieval, and analysis tools to meet the
storage and analysis needs of large-scale, multi type data. By utilizing data lake and data warehouse
technology, data from different sources can be integrated into a unified analysis platform, and more
valuable hidden danger information and patterns can be extracted from it with the help of artificial
intelligence and machine learning algorithms.

Intelligent management and decision support: Through further algorithm optimization and
data mining, this system can not only be used for detection and warning, but also provide intelligent
management suggestions and decision support for reservoir managers. For example, by combining
historical data and real-time monitoring data, the model can generate dynamic risk assessment
reports, provide emergency response plans for different levels of hidden dangers, and help decision-
makers manage the safe operation of reservoirs more scientifically.

6. Conclusions

This study demonstrates the effectiveness of an advanced image processing framework for
detecting and assessing safety hazards in small-scale reservoirs using deep learning techniques. By
employing a fully convolutional semantic segmentation method with an encoding-decoding
structure, the proposed model effectively utilizes convolutional neural networks (CNNs) to enhance
detection accuracy and response efficiency. The pyramid structure, validated as optimal for CNN,
was carefully implemented to balance feature extraction and computational resource usage.
Experimental results showed that the best network performance was achieved with a specific channel
configuration, highlighting the importance of carefully managing channel dimensions during the
decoding stage to preserve hidden features without excessive computational costs.

Furthermore, the HHSN-25 network demonstrated superior performance over existing
segmentation methods, such as FCN, SegNet, and Deeplabv3+, with a mean Intersection over Union
(mlIoU) reaching 87.00%. The study also integrated an improved loss function focusing on the
similarity of different samples, which proved to be the most effective in enhancing the model’s
performance. The chosen evaluation metrics, particularly the F1 score and mPA index, provided a
comprehensive assessment of both hidden and background pixel classification, further validating the
superiority of the proposed approach.
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The convergence analysis of the loss function also highlighted the optimal training rounds
required to achieve a balance between model performance and computational efficiency, avoiding
issues of underfitting or overfitting. These findings underscore the potential of the proposed
approach to provide accurate and real-time hazard detection, significantly contributing to the safety
and sustainability of small-scale reservoirs.

Overall, the proposed framework successfully integrates advanced neural network architectures
and data processing strategies to offer a robust solution for reservoir monitoring, with potential
applications in other areas of water resource management and infrastructure safety. Future work
could focus on further refining the model by integrating additional data sources and exploring its
adaptability to diverse environmental conditions.
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