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Abstract: This study aims to enhance the detection and assessment of safety hazards in small-scale reservoir 

engineering using advanced image processing and deep learning techniques. Given the critical importance of 

small reservoirs in flood management, water supply, and ecological balance, the effective monitoring of their 

structural integrity is crucial. This paper developed a fully convolutional semantic segmentation method for 

hidden danger images of small reservoirs using an encoding-decoding structure, utilizing a deep learning 

framework of convolutional neural networks (CNNs) to process and analyze high-resolution images captured 

by UAVs. The method incorporated data augmentation and adaptive learning techniques to improve model 

accuracy under diverse environmental conditions. Finally, the quantification data of hidden dangers (length, 

width, area, etc.) was obtained by converting the image pixels to the actual size. Results demonstrate significant 

improvements in detecting structural deficiencies, such as cracks and seepage areas, with increased precision 

and recall rates compared to conventional methods, and the HHSN-25 network (Hidden Hazard Segmentation 

Network with 25 layers)proposed in this paper outperforms other methods. The main evaluation indicator 

mIoU of HHSN-25 is higher than other methods, reaching 87.00%, and Unet is 85.50%, Unet++is 85.55%. The 

proposed model achieves reliable real-time performance, allowing for early warning and effective management 

of potential risks. This study contributes to the development of more efficient monitoring systems for small-

scale reservoirs, enhancing their safety and operational sustainability. 

Keywords: hidden dangers; small reservoir engineering; deep learning; semantic segmentation; 

water conservancy project 

 

1. Introduction 

Small-scale reservoirs are a critical component of water resource management and play an 

essential role in flood control, irrigation, and ecological preservation, particularly in regions 

susceptible to climatic and hydrological variability [1]. In China alone, there are over 98,000 

reservoirs, of which 95% are classified as small-scale, reflecting their pivotal importance in the 

national context. Among these, Jiangxi Province is particularly notable, with over 10,300 small-scale 

reservoirs—accounting for 11.4% of the country’s total [2]. These reservoirs significantly contribute 

to the socio-economic development of the region by mitigating floods, ensuring agricultural 
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productivity, and maintaining ecological balance. However, the safety and stability of these small-

scale reservoirs remain a significant challenge due to several factors, including inadequate design, 

incomplete hydrological and geological data, and substandard construction practices. These 

challenges render small-scale reservoirs more susceptible to failures compared to their larger 

counterparts [3,4]. The monitoring and assessment of small-scale reservoirs have traditionally relied 

on manual inspections and conventional surveillance methods. These approaches are not only labor-

intensive and time-consuming but also prone to human error, which can compromise the timely 

detection of hazards [5–7]. Consequently, there is an increasing demand for automated and accurate 

techniques that can enhance the safety management of small-scale reservoirs. One promising solution 

is the application of image processing and machine learning techniques, particularly deep learning, 

to the detection and characterization of structural defects in reservoirs [8]. 

The conventional approaches to reservoir safety monitoring, such as visual inspections, 

geotechnical instrumentation, and satellite remote sensing, have provided essential baseline data for 

hazard detection and management. However, these methods exhibit several limitations. Visual 

inspections and manual monitoring are labor-intensive, limited by human capability, and can be 

subjective and inconsistent [9]. Geotechnical instrumentation provides detailed point-based 

measurements but lacks spatial coverage and can be affected by external environmental factors [10]. 

Satellite remote sensing offers wide-area coverage but is often hindered by coarse resolution, low 

revisit frequency, and sensitivity to atmospheric conditions [11]. In recent years, several studies have 

explored the potential of machine learning techniques, such as support vector machines (SVM) and 

random forests, for detecting and classifying structural anomalies in large dams [12]. These methods, 

while promising, have not yet been extensively applied to small-scale reservoirs. The specific 

challenges of small-scale reservoirs, such as their varied construction standards, diverse 

environmental settings, and unique hydrological conditions, necessitate the development of more 

tailored and sophisticated monitoring techniques [13,14]. 

Deep learning, particularly convolutional neural networks (CNNs), has emerged as a powerful 

tool for image-based structural defect detection due to its ability to automatically learn and extract 

hierarchical features from complex datasets [15]. CNN-based methods have been successfully 

applied in various fields, including urban infrastructure monitoring [16], crack detection in concrete 

surfaces [17], and landslide mapping [18]. These studies demonstrate that deep learning models, 

especially when combined with high-resolution imagery, can provide detailed and accurate 

assessments of structural conditions. Semantic segmentation, a subfield of deep learning, has proven 

particularly effective in detecting and categorizing structural defects in various settings [19]. Unlike 

traditional image classification, which assigns a single label to an entire image, semantic 

segmentation provides pixel-wise classification, enabling precise localization and characterization of 

defects [20]. This capability is crucial for identifying and analyzing multiple types of hazards in small-

scale reservoirs, where defects may vary significantly in size, shape, and context [21]. While there 

have been significant advancements in the application of deep learning for infrastructure monitoring, 

most studies have focused on large-scale structures or urban environments. There is a noticeable gap 

in the application of these technologies to small-scale reservoirs, which are characterized by unique 

hazard patterns that differ significantly in spatial scale and temporal dynamics from those of larger 

infrastructure [22]. Furthermore, the integration of deep learning models with multi-source data, 

such as hydrological, geological, and meteorological data, for comprehensive risk assessment and 

prediction remains underexplored [23]. 

This study aims to bridge this gap by developing a novel semantic segmentation-based 

framework for small-scale reservoir safety monitoring. The proposed framework utilizes a 

combination of deep learning techniques and multi-source data fusion to achieve quantitative 

extraction of key warning indicators, such as cracks, seepage areas, and surface deformation. This 

approach integrates image data with conventional monitoring datasets to establish a robust model 

for real-time hazard evaluation and prediction, enhancing early warning capabilities and operational 

safety [24]. Our approach involves the development of a deep learning model based on semantic 

segmentation to identify and categorize various types of structural hazards in small-scale reservoirs. 
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This model leverages multi-source data, including UAV imagery, multispectral and infrared data, 

and environmental sensor data, to capture the diverse range of hazard indicators present in reservoir 

environments [25]. We utilize a U-Net architecture, a popular choice in semantic segmentation tasks, 

due to its ability to retain fine spatial details while capturing global contextual information [26]. To 

enhance the robustness and accuracy of the model, we integrate domain adaptation techniques to 

handle the variability in data quality and environmental conditions. Furthermore, we employ data 

augmentation strategies, such as random cropping, flipping, and brightness adjustment, to increase 

the diversity of the training data and improve model generalization. 

The proposed framework offers several significant contributions to the field of reservoir safety 

monitoring. First, it provides a comprehensive methodology for the automatic detection and 

classification of structural hazards in small-scale reservoirs, addressing a critical gap in current 

research. Second, by integrating multi-source data, our approach enables a more holistic assessment 

of reservoir safety, capturing a broader range of hazard indicators and providing more accurate 

predictions of potential failures. Moreover, the development of a real-time hazard evaluation and 

prediction model has practical implications for improving the operational safety of small-scale 

reservoirs. The ability to detect and respond to hazards promptly can significantly reduce the risk of 

failure, minimize damage, and ensure the continued provision of essential water services. This is 

particularly relevant in regions such as Jiangxi Province, where small-scale reservoirs play a critical 

role in supporting socio-economic development and maintaining ecological balance. By leveraging 

semantic segmentation techniques and multi-source data fusion, we aim to provide a more accurate 

and comprehensive assessment of reservoir safety, enhancing early warning capabilities and 

contributing to the sustainable management of water resources. This research not only addresses 

existing gaps in the literature but also offers a practical solution to the challenges faced by small-scale 

reservoir engineering in China and beyond. 

2. Construction of Hidden Hazards Dataset for Small Reservoir Engineering 

2.1. Causes of Hidden Hazards in Small-Scale Reservoirs 

Small-scale reservoirs, as a critical component of water resource management, have various 

causes of safety hazards. These mainly involve the following aspects: 

Design and Construction Deficiencies: Many small-scale reservoirs lack standardization in their 

initial design and construction stages, especially those built during the mid-20th century's large-scale 

construction efforts. Common issues include non-standardized design, poor-quality construction 

materials, and outdated construction techniques. These factors make the reservoirs susceptible to 

structural damage over time or under extreme weather conditions, leading to potential hazards such 

as dam cracks, seepage, and landslides. 

Material and Structural Issues: The construction of small-scale reservoirs often relies on locally 

available materials, which may not meet durability and stability standards. Additionally, the aging 

and erosion of dam structures exacerbate material deterioration, triggering hazards. For instance, 

earth and concrete dams are prone to cracks and seepage due to weathering and chemical erosion. 

Climate Change and Extreme Weather Events: Global climate change has increased the 

frequency of extreme weather events such as heavy rainfall and floods, imposing greater water 

pressure and flood risks on small-scale reservoirs. This risk is particularly pronounced in 

mountainous and hilly regions, where extreme weather can destabilize the water body, increasing 

the risk of dam collapse or piping. Common hidden hazards in small-scale reservoir engineering 

include cracks, collapse, leaching, and seepage, as shown in Figure 1. 
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Figure 1. Hidden hazards in small-scale reservoir engineering. 

2.2. Image Data Sources for Hidden Hazard Detection 

To accommodate the actual environment and hardware capabilities, sample images were 

captured using handheld devices and subsequently cropped to sizes suitable for processing. The 

CMOS image sensor is a critical factor determining the quality of the captured samples, with key 

performance indicators including the ability to restore received images, which depends on pixel array 

parameters. During image capture, the most direct parameters are sensor size, effective pixels, and 

shutter speed. The handheld device used is equipped with a 1/1.7-type Sony IMX600 image sensor 

with 40M square active pixels. Its CMOS image sensor achieves high-speed image capture through a 

column-parallel AD converter circuit and high sensitivity and low noise through a backside-

illuminated pixel structure. It utilizes an R, G, and B color mosaic filter and incorporates lens shading 

correction, with dual sensors capable of synchronous operation. The IMX600 image sensor 

parameters are detailed in Table 1. 

Table 1. IMX600 image sensor parameters. 

Name Parameters 

Image size Diagonal 9.2 millimeters (1/1.7 type) 

Total number of pixels 7392 (H) ×5744 (V) approximately 42.28M pixels 

Total number of effective pixels 7392 (H) ×5584 (V) approximately 41.27M pixels 

Total number of active pixels 7360 (H) ×5504 (V) approximately 40.51 million pixels 

Chip size 8.51mm(H)×6.22mm(V) 

Cell size 1.00μm(H)×1.00μm(V) 

Substrate material Silicon 

In order to further understand the hidden hazards, the Jiangxi Provincial Government 

conducted a survey on all small reservoirs in the province. According to the survey, among the 11 

prefecture level cities (including directly administered counties) in the province, 33 earth and stone 
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dams in 8 prefecture level cities including Nanchang, Jiujiang, Shangrao, Fuzhou, Yichun, Ji'an, 

Pingxiang, and Jingdezhen have cracks, as shown in Table 2. 

Table 2. Crack hazard investigation in the province. 

 

According to the investigation, among the cracks in 33 dams, 79 cracks were investigated, as 

shown in Table 3. 

Table 3. Crack hazard investigation in reservoirs. 

 
Cracks, as the most common hidden danger, have a significant impact on the safety of 

engineering in small reservoirs. Therefore, it is necessary to use image recognition combined with 

experimental data to study the development law of cracks. Figure 2 shows the testing of cracks. 

Order Cities

Earth and rock dams in the province Earth-rock dams in this survey

Reservoir
number

Number of
dams

Adopting
concrete

anti-seepage

wall

Reservoirs
with

cracks

Divide by grade
Divided by dam

height

Large and
medium

size

Small
size

≥15m <15m

1 Nanchang 8 7 7 2 1 1 1 1

2 Jiujiang 29 14 6 7 3 4 7 0

3 Shangrao 44 25 6 7 7 0 5 2

4 Fuzhou 27 20 11 3 3 0 3 0

5 Yichun 49 41 22 1 1 0 1 0

6 Jian 47 29 10 8 5 3 6 2

7 Pingxiang 7 5 2 2 1 1 2 0

8 Jindezhen 7 7 3 3 2 1 3 0

9 Gan Zhou 47 19 7 0

10 Yingtan 11 8 6 0

11 Xinyu 7 7 2 0

Amount to 283 182 82 33 23 10 28 5

Class Crack number Propor tion (%)

Total 79

Type
Transverse crack 32 41

Longitudinal crack 47 59

Location

Before and after the seepage wall 61 77

Upstream dam slope 13 16

Downstream dam slope 3 4

Other parts or sites 2 3

Current situation

Stable 64 81

Still developing 4 5

The situation is unknown 11 14
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Figure 2. Crack hazard investigation in small-scale reservoir engineering. 

On the other hand, the leaching and seepage of small reservoirs caused by cracks or collapses 

are also worthy of the attention. The common path of reservoir dam failure is: flood → seepage 

damage → landslide → dam crest lowering → no manual rescue intervention → dam collapse, as 

shown in Figure 3. Time series correlation diagram of seepage under rainfall conditions is shown in 

Figure 4, according to the survey.  

 

Figure 3. Reservoir Accident Site Map. 

On site investigation of crack images

Experimental testing on the development of cracks

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 September 2024                   doi:10.20944/preprints202409.2034.v1

https://doi.org/10.20944/preprints202409.2034.v1


 7 

 

 

Figure 4. Time series correlation diagram of seepage under rainfall conditions and abnormal values 

at measurement points. 

Under rainfall conditions, small reservoirs are particularly vulnerable to seepage, a critical safety 

concern that can lead to structural instability and potential failure. When rainwater infiltrates the 

embankments or foundations of a reservoir, it increases the pore water pressure within the soil, 

reducing the shear strength and potentially leading to internal erosion or piping. Seepage pathways 

can develop more easily during intense or prolonged rainfall, especially in areas with poor 

compaction or material defects. In small reservoirs, which often lack the sophisticated monitoring 

systems of larger dams, seepage can remain undetected until it reaches a critical stage. Signs of 

seepage include wet spots or boils on downstream slopes, increased water turbidity, or unexpected 

drops in reservoir water levels. In the context of heavy rainfall, these signs may intensify rapidly, as 

the hydraulic gradient between the reservoir water and the downstream area increases, forcing more 

water through any existing or newly formed cracks or weak zones. 

Managing seepage under such conditions requires continuous monitoring and timely 

intervention. Utilizing advanced technologies such as UAVs and deep learning-based image analysis 

can help identify early signs of seepage, allowing for proactive maintenance and repairs. Additionally, 

employing geotechnical instruments, such as piezometers and seepage meters, can provide real-time 

data to assess the extent of seepage and guide decision-making to prevent structural failure and 

ensure the safety of the reservoir. 

2.3. Dataset Construction 

2.3.1. Data Collection 

Data was collected from multiple sources, including UAV images, sensor data, and fixed camera 

data, ensuring coverage across sufficient time and spatial ranges, particularly in areas with high 

hazard occurrences. The target for image sampling was small-scale reservoir infrastructure in Jiangxi 

Province, focusing on cracks, seepage, and collapses of varying sizes and positions, with the smallest 

hazards (cracks) appearing as a single pixel in the image. 

2.3.2. Data Preprocessing 

Collected image data underwent data augmentation methods (e.g., rotation, translation, scaling) 

to expand the dataset and enhance model generalization. The original image samples were sized at 

3648×2736 pixels, with 300 images containing hazards selected after screening. These images were 

first cropped to a size of 3648×1824 pixels for easier processing. Subsequently, the 3648×1824 images 

were horizontally cropped into 912×912 pixel images, and additional 912×912 pixel images were 
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obtained through random cropping after rotating the original images. In total, 4800 images containing 

both hazard and non-hazard areas were produced. These 912×912 images were then uniformly 

resized to 256×256 pixels. After a second round of filtering, the images were categorized into two sets: 

one containing only background and the other containing hazards. The dataset construction involved 

selecting images with hazards, resulting in a final dataset of 4000 valid samples, which will undergo 

manual annotation in the next step. 

2.3.3. Manual Annotation 

Based on the image data, hazards such as cracks, collapses, and seepage were labeled, including 

their locations and severity. The open-source LabelImg tool was used for manual annotation, offering 

several annotation modes: classification, bounding box, segmentation, and brush-based 

segmentation. Given the significant differences among hazards, such as the fine and narrow cracks, 

a brush mode was used to color crack areas while leaving non-crack areas uncolored. Conversely, for 

larger areas like collapse zones, a bounding box mode was employed. The tool outputs labels in 32-

bit RGB image format, with unannotated areas not displayed. Post-processing is needed to convert 

these labels for model input. Annotation is the most time-consuming step in dataset creation. Unlike 

common object detection tasks that require only drawing a rectangular bounding box around the 

object, semantic segmentation annotation for images requires marking the entire object area. This is 

particularly challenging for crack images, where cracks are thin and small, necessitating careful 

adjustment of brush width and frequent erasure of excess annotations. An example of the original 

crack image and the output label style from the LabelImg tool is shown in Figure 5. The annotated 

image is a 24-bit RGB three-channel image, with crack areas marked in red [255,0,0] and the 

background in transparent pixels [0,0,0]. The resulting 32-bit label image is not optimal for computer 

processing. Given that the pixel data in this study falls into two categories, the 32-bit label images 

will be converted to 8-bit images for easier data reading in subsequent processing. 

 

Figure 5. LabelImg tool outputs labels. 

The processed dataset was divided into training, validation, and test sets to ensure model 

training, validation, and testing on different data, enhancing model reliability and stability. 

3. Deep Learning Based Semantic Segmentation Model for Hidden Hazards Images 

3.1. Network Architecture for Hazard Segmentation  

The proposed high-performance semantic segmentation method for detecting hazards in images 

of small-scale reservoirs is illustrated in Figure 6. The network comprises three main components: an 

encoder, a decoder, and a classifier. The overall structure consists of 12 encoding layers, 12 decoding 

layers, and 1 classification layer, making a total of 25 layers, which we have named HHSN-25 (Hidden 

Hazard Segmentation Network with 25 layers). The encoder structure is built from convolutional 
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blocks (Conv) and residual blocks (Block). The Conv block comprises a 2D convolution (Conv2d), 

Batch Normalization (BN), and a GELU activation function, while the Block contains two ODConv 

units. Each ODConv unit is made up of an omni-dimensional dynamic convolution (ODConv2d), BN, 

and GELU activation. The primary role of the encoder is to reduce feature dimensions and increase 

network depth, thereby expanding the receptive field to capture more hazard-related features. 

The decoder consists of transposed convolutional blocks (TConv) and Blocks. The TConv block 

includes a 2D transposed convolution (ConvTranspose2d), BN, and GELU activation function. The 

main purpose of the decoder is to recover the original image dimensions while further extracting 

hazard features, merging multi-dimensional features from various stages of the encoder for pixel-

level classification. The classification layer is a 2D convolutional layer that transforms the dimensions 

along the channel direction to match the number of classes, with a SoftMax function used to predict 

the probability of each pixel belonging to a specific class. In the HHSN-25 structure, parameters for 

each sub-module are specified as module name, output channels, kernel size, stride. 

 

Figure 6. Hidden Hazard Segmentation Network with 25 layers. 

3.1.1. Feature Dimension Transformation in the Hazard Segmentation Network 

The transformation of feature dimensions in a typical deep learning network involves two 

aspects: changes in feature map size and feature map count. Regarding feature map size, convolution 

and transposed convolution operations are primarily responsible for altering dimensions. The 

convolution and transposed convolution processes for 2D images are shown in Figure 7.  

 

(a) Convolution                                         (b) Deconvolution 

Figure 7. Convolution and deconvolution. 
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Figure 7(a) demonstrates the process where a feature map of size 4×4 is convolved with a kernel 

size of 3, stride of 1, and no padding, resulting in a 2×2 feature map. Here, the stride represents the 

number of pixels the kernel moves at each step, and padding refers to adding blank pixels around 

the edges to accommodate the desired size. Figure 7(b) illustrates the reverse, where a 2×2 feature 

map is transformed via transposed convolution with a kernel size of 2, stride of 1, and padding of 1 

to produce a 4×4 feature map. The input-output relationship for convolution and transposed 

convolution is given by specific equations: 

1
2

+
+−

=
s

pki
oconv  (1) 

]
2

[2)1(
s

kpo
kpisotconv

−+
++−−=  (2) 

where oconv and otconv  represent the output size, and i is the input size, k is the kernel size, s is the stride, 

and p is the padding. The second aspect of dimension transformation concerns the change in the 

number of channels. Increasing the number of channels while downsampling along spatial 

dimensions is crucial for network performance, as it enhances the diversity of high-level features. In 

HHSN-25, the encoder increases the number of channels as the feature map dimensions decrease, 

while the decoder decreases the number of channels as the feature map dimensions are restored. This 

design adheres to the feature pyramid principle, optimizing memory use. 

3.1.2. Basic Feature Extraction Structure of the Hazard Segmentation Network 

Increasing the network depth helps expand the receptive field and extract higher-level features. 

Since the introduction of ResNet, skip connections have become the dominant structure in deep 

learning, such as in ConvNeXt, which improves network performance by using skip connections and 

increasing kernel size. The basic feature extraction structure (Block) in HHSN-25 adopts the skip 

connection concept from ResNet, integrating omni-dimensional dynamic convolution and 

experimentally verified optimal kernel sizes. 

The ResNet structure consists of two convolutions with a kernel size of 3. The first convolution 

is followed by BN and a ReLU activation function; the second is followed by BN, with the skip 

connection then linked to a ReLU activation function, keeping the feature map size unchanged 

throughout. In ConvNeXt, the input first passes through a depthwise convolution with a kernel size 

of 7 and Layer Normalization (LN), followed by a pointwise convolution with a kernel size of 1 to 

increase the channel count fourfold, activated by GELU. A final pointwise convolution restores the 

channel count before the skip connection. The Block in our study applies two omni-dimensional 

dynamic convolutions with kernel sizes of 3 and 5, followed by skip connections, each convolution 

operation incorporating BN and GELU activation. The omni-dimensional dynamic convolution 

introduces a multi-dimensional attention mechanism, employing a parallel strategy to learn different 

attentions across four dimensions in kernel space. The basic structure of the omni-dimensional 

dynamic convolution used in this study is depicted in Figure 8.  
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Figure 8. Basic Structure of Full Dimensional Dynamic Convolution. 

This convolution utilizes a SE-style attention module with multiple heads to compute various 

types of attention. For input data, global average pooling, fully connected layers, and ReLU activation 

functions reduce it to a one-dimensional feature vector, which is then processed by four fully 

connected heads to produce different attention values. The four attention dimensions focus on 

position, channel, filter, and kernel, capturing richer contextual information. The omni-dimensional 

dynamic convolution utilizes a new multi-dimensional attention mechanism, calculating four types 

of attention across all four dimensions in parallel within the kernel space: 

xWWy nsncnfnwnscfw += )⊙⊙⊙⊙⊙⊙⊙⊙( 11111    (3) 

where, αw1 represents the attention scalar of the convolutional kernel, αs1, αc1 and αf1 represents the 

three newly introduced attention points, which are calculated along the spatial dimension, input 

channel dimension, and output channel dimension of the convolutional kernel. ⊙represents the 

multiplication operation along different dimensions of the kernel space. 

3.2. Loss Function and Improvements for the Hazard Segmentation Network 

Among various deep learning-based image semantic segmentation methods, Cross Entropy (CE) 

is the most commonly used function for loss calculation, analyzing each pixel separately and 

comparing predicted values for each pixel class with the ground truth. This approach assigns the 

same weight to every pixel during loss calculation, which may not be ideal for segmentation tasks 

involving imbalanced pixel distributions. The CE loss function expression is as follows: 


=

−=
M

c

ccLoss pyCE
1

)log(  (4) 

where M represents the number of categories, and yc is a one hot vector with element values of only 

0 and 1, and pc represents the probability that the predicted sample belongs to class c. When there are 

only two categories, the Binary Cross Entropy (BCE) loss function can be expressed as: 

)]1log()1()log([
1

cc

N

c

ccLoss pypyBCE −−+−= 
=

 (5) 

where, pc represents model input and yc represents real labels. The Binary Cross Entropy with Logits 

(BCEL) loss function is a loss function that combines a Sigmoid layer and BCE loss into a single 

category. Shrivastava et al. [20] proposed an algorithm for online hard example mining (Ohem) to 

address the issue of imbalanced positive and negative samples. The OhemCE loss function first 

calculates the cross entropy loss, then selects difficult samples based on the loss, and finally applies 
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higher weights to them in subsequent training. The Intersection over Union (IoU) loss function is 

commonly used in object detection, which reflects the ratio of the intersection and union of annotated 

and predicted values. It is also commonly used for loss calculation in image semantic segmentation. 

The loss expression of IoU is as follows: 

BA

BA
IoULoss




−=1  (6) 

Focal Loss (FL) is commonly used to deal with class imbalance. It determines the weight of class 

related losses based on the difficulty of distinguishing class samples, that is, applying smaller weights 

to easily distinguishable samples and larger weights to difficult to distinguish samples. The FL 

expression is as follows: 


=

−−=
M

c

cccLoss pypFocal
1

log)1(   (7) 

FL adds a weighting coefficient )1( cp−  before the standard CE function. The Dice loss function 

is named after the Dice coefficient, which is a metric used to evaluate the similarity between two samples 

and can effectively represent their similarity. The Dice loss function is expressed as follows: 

BA

BA
DiceLoss

+


−= 21  (8) 

where, A represents the pixel labels of the actual segmented image, and B represents the pixel class 

prediction of the segmented image by the model. Considering the disproportionate nature of hazard 

pixels and background pixels in crack images, this chapter uses FL combined with Dice coefficient 

for loss calculation, which is expressed as follows: 





+

+
−−−= 

= U

I
pypLoss

M

c

ccc

2
log)1(1

1

 (9) 

where, I represents the intersection of correctly identified pixels, U represents the union of prediction 

and label, and ε is the smoothing coefficient. 

4. Results 

4.1. Experimental Environment and Evaluation Indicators 

All models in this topic are trained and verified on the Windows11 operating system. The 

hardware configuration is AMD Ryzen 7 series 5800H processor, equipped with 16GB running 

memory, and the display card is NVIDIA RTX3060 mobile terminal platform equipped with 6GB 

display memory. The deep learning framework is the pytorch, CUDA 11.6 environment. 

Furthermore, due to memory limitations, the number of multiple threads and the size of batch 

processing were set to 4, and different sets of hyperparameters were analyzed during training to 

select the best validation model configuration. Each dataset was split into 80% (3200 images) for 

training, 10% (400 images) for validation, and 10% (400 images) for testing. All image input sizes used 

in the experiment were set to 256×256. 

The easiest way to do this is to calculate how many pixels are being correctly segmented, but 

this is not enough. The essence of crack image segmentation is to evaluate each pixel using a classifier, 

so the result of a pixel consists of two kinds: correct and wrong. Since the hidden danger data set is a 

data set with unbalanced category pixels, if the average accuracy is simply used as the evaluation 

index, the accuracy of the hidden danger pixels will be covered by the accuracy of the background 

pixels, and the results will not be well observed. In this experiment, the average intersection ratio 

(mean Intersection over Union, mIoU) was used as the main performance evaluation index, and the 

precision rate (P), recall rate (R), F1, Accuracy, Mean Pixel Accuracy (mPA) score were also considered 
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[15]. These indicators are mainly obtained from the confusion matrix, which can be expressed by the true 

case TP, true negative case TN, false positive case FP, and false negative case FN. 

4.2. Comparison of the Experimental Results 

4.2.1. Basic Feature Extraction Structure Block 

For small hidden danger pixels (such as cracks), theoretically only a small window is needed to 

identify their features, and the existing hidden danger image segmentation methods are mostly 

improved based on the current mainstream methods, among which a large number of methods to 

expand the feeling field may be too radical. Convolutional neural network mainly by expanding the 

convolution kernel and deepening network depth expand feeling field, in order to study the 

appropriate structure, the basic feature extraction structure Block using the performance of the kernel 

experiment, then studied the introduction of the full dimensional dynamic convolution model, will 

also proposed the Block structure compared with the performance of several other mainstream 

network module. The effect of different convolution kernel sizes in Block on the network is shown in 

Figure 9, where k values in turn represent the convolution kernel sizes of the two convolutional layers 

in Block. From the experiment, we can first see that the effect of using full-dimensional dynamic 

convolution(ODConv) is better than that of ordinary convolution. Second, the effect is better when 

the k values are taken successively at 3 and 5. In addition, the actual mIoU gap in the three sets of 

experiments using full-dimensional dynamic convolution is less obvious than the ordinary 

convolution, which further proves that the attention of different dimensions improves the network 

performance. 

 

Figure 9. Comparison of different convolution kernel sizes in Block. 

The performance of ResNet, MobileNetV3 and ConvNet feature extracted structures ResBlock, 

MobileBlock, ConvNeXt and Block in HHSN-25 is shown in Figure 10. It can be seen that ConvNeXt 

structure has the lowest performance in the crack image segmentation task, while the performance 

of Block phase is significantly improved compared with other structures. 
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Figure 10. Comparison of the different Block structures. 

4.2.2. Comparison of Changes in Different Network Widths in Decoding Structures 

The pyramid structure is a pattern of network width that has been proven to be suitable in 

convolutional neural networks through research. In actual network construction, feature maps are 

usually upsampled and downsampled for dimensionality reduction, and the number of channels 

decreases and doubles accordingly. In HHSN-25, if the number of feature image channels recovered 

during the decoding process corresponds to the encoding structure, some hidden features may be 

lost during this process, but the additional feature channels will increase the computational resource 

consumption of the network. Therefore, it is necessary to study the variation law of features in the 

channel dimension during the decoding stage. As shown in Figure 11, the comparison of the changes 

in four different network widths is presented, which is reflected by the number of feature channels 

during each dimensionality increase. The horizontal axis represents the number of feature channels 

output after four dimensionality increase operations during the decoding process. The experimental 

results showed that the network performance was optimal when the number of channels was 128, 96, 

64, and 40, respectively. In this feature fusion strategy, the number of channels was doubled before 

and after each dimensionality upgrade, while the results with the number of channels 64, 32, 16, and 

8 were significantly lower than the other three results. The reason for this is that excessive reduction 

in the number of channels during dimensionality upgrade resulted in fewer hidden feature 

information being included in the fewer channels. 

 

Figure 11. Comparison of changes in different network widths. 
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4.2.3. The Influence of Different Loss Functions on the Experimental Results 

The performance comparison of HHSN-25 network using different loss functions is shown in Figure 

12. It can be seen that due to the improved loss function focusing on the similarity of different samples, 

the attention to different samples is different. Using the improved loss function in this project for loss 

calculation yields the best results, significantly higher than the results of other loss functions. 

 

Figure 12. Comparison of network performance calculated using different loss functions. 

4.2.4. The Performance Comparison of Different Segmentation Methods 

To verify the effectiveness of the HHSN-25 network proposed in this chapter, its experimental 

results were compared with those of other segmentation methods, as shown in Figure 13. It can be 

seen that in the graphical data of the main evaluation indicator mIoU, HHSN-25 is significantly 

higher than other methods, reaching 87.00%, FCN is 85.00%, SegNet is 85.00%, Deeplabv3+is 80.50%, 

Unet is 85.50%, Unet++is 85.55%, Swin-Unet is 82.00%, and PSPNet is 84.50%. In addition, among the 

other commonly used evaluation indicators in Figure 13, HHSN-25 outperforms other methods. 

 

Figure 13. Comparison of the performance of the different methods. 
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Meanwhile, from Figure 13, it can be seen that there is almost no difference in the accuracy index 

of these methods. This is because the number of hidden pixels is much less than that of background 

pixels. When calculating them together, the large base of background pixels will weaken the 

expression ability of this index for hidden pixels. This also explains why Accuracy was not used as 

the main evaluation index in this project. When calculating the F1 score and mPA index, the 

indicators of hidden and background pixels are first calculated separately, and then the average value 

is taken. Therefore, it can better reflect the overall classification effect of background pixels and 

hidden pixels, and is also within the reference range for evaluating the performance of the network. 

4.2.5. Other Experimental Results 

The loss function can be used to better describe the difference between the predicted value and 

the true value of the model, and the smaller the loss value, the better the performance of the model. 

During the training process of the model, the loss value decreases with the increase of training rounds 

until convergence, at which point the model usually achieves good results. The convergence of the 

loss function during the experiment is affected by factors such as data, network, and environment. 

As shown in Figure 14, the loss value of HHSN-25 during training shows the trend of change with 

the number of training rounds. It can be seen that the loss value has hardly changed by the time it 

reaches 50 rounds of training, which also explains the reason for choosing 50 rounds of training in 

this experiment. If the number of training rounds is too small, the model may not converge, resulting 

in poor performance and cannot be used as a basis for comparing the final experimental results. If 

there are too many training rounds, on the one hand, it will consume more time, and on the other 

hand, the network performance improvement will not be significant, and it may cause overfitting. 

 

Figure 14. HHSN-25 train-validation loss trends. 

In addition, due to the different loss functions of each method during training, even if their 

values are scaled to the same range, they cannot be used as a basis for comparison due to the different 

calculation methods. Figure 14 is only used as a training network, and the main means of measuring 

the performance of these methods is still to compare the quality of mIoU values, reflecting the final 

segmentation effect. 
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5. Discussion and Application 

Based on the HDSN-19 image semantic segmentation method framework, extract hidden hazard 

image features and quantify them: 

Crack length and width 

Find the boundary of the target object in the segmentation result (edge detection); Use the 

bounding box or fitting ellipse to fit the target object and obtain its length and width. 

Use the height and width of the bounding box to represent the length and width of the target object. 

Leaching area, leakage area, and collapse area 

Calculate the number of pixels within the target object area (the area of the segmentation region). 

Convert pixel area to actual area (given the spatial resolution of the image, i.e. the actual physical 

size corresponding to each pixel). 

Area=number of pixels in the segmented area multiplied by the actual area per pixel. 

5.1. Integration of Hidden Hazard Feature Extraction Algorithm 

The trained image hidden feature extraction algorithm has been integrated into edge devices 

and carried out demonstration applications. During actual operation, the collected images need to be 

clear enough to identify small structural changes such as cracks or leaks. The camera equipment needs to 

be able to capture the target area video clearly within a certain distance, with a distance of less than 50 

meters. As such, a high-definition (higher than 1080p resolution) camera has been used to ensure rich 

details in the image. This ensures that the data collected under different environmental conditions is of 

sufficient quality, so that the model can accurately detect and identify engineering hazards. 

Through the edge computing architecture, this algorithm realizes real-time monitoring and 

analysis, and reduces the total time from data acquisition to hidden danger detection and alarm from 

the original average of 5 minutes to 40 seconds (reduced by about 86%). The high-performance 

embedded processor NVIDIA Jetson AGX Xavier and software configuration (TensorFlow, PyTorch) 

are specially designed for edge computing, so that it has efficient processing capacity and low energy 

consumption, and is suitable for real-time data processing and analysis. In addition, the edge 

computing architecture enables data processing to be completed locally, reducing dependence on the 

cloud, improving response speed and privacy protection. Comparing the adaptive detection model 

developed in this project with the mainstream method "Edge AI and Machine Learning", Table 4 can 

be obtained. The results indicate that the differences between the two are mainly reflected in the data 

processing and resource requirements during model training and inference computation. The deep 

learning method of the detection model developed in this project does not rely on manually 

annotated data, thus reducing the need for annotated data when training on edge devices. After the 

model training is completed and integrated, the inference calculation process is relatively fast and 

the computation time is relatively short. In addition, the multimodal data fusion and adaptive deep 

learning model have improved the anti-interference ability of the research and development model 

in complex environments, enabling it to dynamically adjust and adapt to sudden changes in the 

environment, and play an advantage in scenarios where data annotation is difficult. The training 

process of Edge AI and Machine Learning is usually completed in the cloud. When reasoning on edge 

devices, due to the use of pre trained models and optimization techniques, the performance in dealing 

with sudden changes in environments (such as night, rain, and fog) is weak and the adaptability is poor. 
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Table 4. Comparison the adaptive detection model developed in this project with the mainstream 

method "Edge AI and Machine Learning". 

Comparative indicators Adaptive detection model Edge AI and Machine Learning 

Data acquisition and processing  40s 5min 

Model calculation time 10s 25s 

Recall  95% 85% 

F1 score 93% 80% 

Average intersection ratio 94% 82% 

Stability 

High stability (sensors with 

electromagnetic interference 

resistance; multiple sensors 

complement each other to provide 

redundant information)  

Medium stability (grounding 

protection system; 

set backup computing units and 

sensors) 

Robustness 

High frequency data sampling and 

multimodal data fusion enhance 

anti-interference ability in complex 

environments;  

Adaptive deep learning models 

enable them to dynamically adjust 

and adapt to sudden changes in 

the environment.  

By utilizing advanced signal 

processing techniques and 

filtering algorithms, noise and 

interference caused by 

environmental changes can be 

effectively filtered out, but it 

cannot cope with sudden 

environmental changes. 

5.2. Algorithm Promotion and Practical Application 

To sum up, the project not only significantly improves the accuracy and recall rate of hidden 

danger detection of small reservoir projects, but also greatly shortens the detection and response time 

and significantly improves the safety and operation efficiency of reservoirs by integrating edge 

computing hardware and software configuration, optimizing response speed and adopting advanced 

multi-source data fusion and image segmentation adaptive models. At the same time, the image 

hidden danger feature extraction algorithm has been widely applied in multiple typical reservoirs, 

including 25 small reservoirs in Jiangxi Province, including Chookeng Reservoir, Jutang Tuanjie 

Reservoir, Xiashitang Reservoir, Gaokeng Reservoir, Dongzhan Reservoir, Linjiang Zoujia Reservoir, 

Zhangshu City Daqiao Dam, Yangqiao Tientang Reservoir, Lianhua County Reservoir, Changlan 

Maqing Dam, Xixi Reservoir, Xiaoshankou Reservoir, Mengtang Reservoir, etc. The application effect 

of a typical reservoir is shown in the following figure. 
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Figure 15. Identification of Leaching and Extraction of Quantitative Indicator. 

 

Figure 16. Identification of Cracks and Extraction of Quantitative Indicator. 
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Figure 17. Identification of Leakage and Extraction of Quantitative Indicator. 

 

Figure 18. Identification of Collapse and Extraction of Quantitative Indicator. 

On the basis of existing research, further exploration and expansion of the application scope of 

this project will bring more potential improvement space and innovative value to the safety 

monitoring and management of water conservancy engineering. Firstly, the existing technological 

framework can be extended to larger scale water conservancy facilities such as reservoirs, rivers, and 

gates, especially in areas with complex geographical locations and variable climate conditions. By 
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increasing the adaptability to diverse data sources, the robustness and universality of the model can 

be improved in different environments and conditions. To further improve system performance, 

future research can optimize in the following areas: 

Introducing deep learning and transfer learning techniques: Combining existing multi-source 

data fusion and adaptive image segmentation models, introducing deep learning frameworks, 

especially convolutional neural networks (CNN) and structured data processing methods based on 

graph neural networks (GNN), to improve the depth and accuracy of feature extraction. Meanwhile, 

transfer learning techniques can optimize existing models, reduce reliance on large-scale annotated 

data, and accelerate model deployment and application. 

Enhance real-time data processing capability: Although edge computing has significantly 

improved data processing speed, it can further combine 5G technology and distributed computing 

methods to enhance the real-time data transmission and processing capability of the system, ensure 

that a large amount of data can be acquired and processed in time when emergencies occur, and 

improve the timeliness and accuracy of decision responses. 

Developing multimodal data fusion methods: Currently, multi-source data fusion mainly 

focuses on the integration of visual image data and sensor data. In the future, more types of sensors 

(such as acoustics, radar, optics, etc.) can be introduced, combined with multimodal data sources 

such as meteorological data and historical disaster records, to construct a more comprehensive 

hazard monitoring model. Through multimodal information fusion, potential risk factors in complex 

environments can be better understood, and the ability to identify and warn of hidden dangers in 

small reservoirs can be improved. 

Improved data management and analysis capabilities: In terms of data management, future 

research can develop and apply more efficient data storage, retrieval, and analysis tools to meet the 

storage and analysis needs of large-scale, multi type data. By utilizing data lake and data warehouse 

technology, data from different sources can be integrated into a unified analysis platform, and more 

valuable hidden danger information and patterns can be extracted from it with the help of artificial 

intelligence and machine learning algorithms. 

Intelligent management and decision support: Through further algorithm optimization and 

data mining, this system can not only be used for detection and warning, but also provide intelligent 

management suggestions and decision support for reservoir managers. For example, by combining 

historical data and real-time monitoring data, the model can generate dynamic risk assessment 

reports, provide emergency response plans for different levels of hidden dangers, and help decision-

makers manage the safe operation of reservoirs more scientifically. 

6. Conclusions 

This study demonstrates the effectiveness of an advanced image processing framework for 

detecting and assessing safety hazards in small-scale reservoirs using deep learning techniques. By 

employing a fully convolutional semantic segmentation method with an encoding-decoding 

structure, the proposed model effectively utilizes convolutional neural networks (CNNs) to enhance 

detection accuracy and response efficiency. The pyramid structure, validated as optimal for CNNs, 

was carefully implemented to balance feature extraction and computational resource usage. 

Experimental results showed that the best network performance was achieved with a specific channel 

configuration, highlighting the importance of carefully managing channel dimensions during the 

decoding stage to preserve hidden features without excessive computational costs. 

Furthermore, the HHSN-25 network demonstrated superior performance over existing 

segmentation methods, such as FCN, SegNet, and Deeplabv3+, with a mean Intersection over Union 

(mIoU) reaching 87.00%. The study also integrated an improved loss function focusing on the 

similarity of different samples, which proved to be the most effective in enhancing the model’s 

performance. The chosen evaluation metrics, particularly the F1 score and mPA index, provided a 

comprehensive assessment of both hidden and background pixel classification, further validating the 

superiority of the proposed approach. 
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The convergence analysis of the loss function also highlighted the optimal training rounds 

required to achieve a balance between model performance and computational efficiency, avoiding 

issues of underfitting or overfitting. These findings underscore the potential of the proposed 

approach to provide accurate and real-time hazard detection, significantly contributing to the safety 

and sustainability of small-scale reservoirs. 

Overall, the proposed framework successfully integrates advanced neural network architectures 

and data processing strategies to offer a robust solution for reservoir monitoring, with potential 

applications in other areas of water resource management and infrastructure safety. Future work 

could focus on further refining the model by integrating additional data sources and exploring its 

adaptability to diverse environmental conditions. 
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