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Abstract

Protein language models (pLMs) have become indispensable tools in computational biology, driving
advances in variant effect prediction, functional annotation, structure prediction, and engineering.
However, their rapid expansion from millions to tens of billions of parameters introduces signif-
icant computational, accessibility, and sustainability challenges that limit practical application in
environments constrained by GPU memory, hardware availability, and energy budgets. This survey
presents the first comprehensive review of efficient pLMs, synthesizing recent advancements across
four key dimensions. We first examine (1) dataset efficiency through meta-learning-based few-shot
and scaling-law-guided data allocation; and (2) architecture efficiency via lightweight alternatives
including quantized transformers, embedding compression, and convolution-based designs. Further-
more, we review (3) training efficiency through scaling-law-informed pretraining, structure-integrated
multimodal approaches, and low-rank adaptations with diverse distillation strategies; and (4) inference
efficiency via quantization, dense-retrieval, and structure-search methods. By providing a structured
taxonomy and practical guidance, this survey enables the development of high-performance, scalable,
yet sustainable next-generation pLMs.

Keywords: protein language models; computational biology; efficient language models; large language
models; artificial intelligence; machine learning

1. Introduction

Inspired by the success of large language models (LLMs) in natural language processing
(NLP) [1,2], protein language models (pLMs) have emerged as a transformative force in computational
biology [3]. By treating Amino Acid (AA) sequences as a “language of life,” [4] pLMs apply self-
supervised learning to vast protein databases to learn the fundamental grammar of protein structure,
function, and evolution [5,6]. A comparative overview between LLMs and pLMs is shown in Figure 3,
providing intuitive context for their methodological parallels and distinctions. This paradigm shift
enables protein analysis at an unprecedented scale of hundreds of millions of sequences [7], offering a
powerful alternative to traditional experimental methods like X-ray crystallography, Nuclear Magnetic
Resonance Spectroscopy (NMR) spectroscopy, and Cryo-Electron Microscopy (Cryo-EM) which, while
foundational, are often slow and costly [8,9]. The power of pLMs lies in their ability to bridge the
enormous gap between the over 200 million known protein sequences and the fewer than 200 thou-
sand experimentally determined structures [10,11], thereby accelerating drug discovery and synthetic
biology [9]. A historical overview of key milestones in pLM development is summarized in Figure 2.

The remarkable capabilities of pLMs stem from their deep neural architectures, predominantly
transformer-based networks [1], which are trained extensively on massive protein sequence datasets [12]
to learn intrinsic biological patterns and representations. The entire pipeline of pLMs consists of dataset
construction, model architecture design, training methodologies (pre-training, fine-tuning, and distillation),
and inference strategies, each influencing both performance and efficiency [13,14]. Powered by large-scale
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computational resources, these models integrate evolutionary and structural information from massive-scale
evolutionary protein corpora into parameter spaces reaching up to tens of billions [7], thereby achieving
state-of-the-art accuracy on structure-prediction benchmarks such as CAMEO [15] and CASP14 [16], a level
not previously reached by single-sequence models.

Despite their transformative potential, the effectiveness of large-scale pLMs comes at a substantial
computational and memory cost, posing significant practical challenges. Typical large pLMs contain
billions of parameters—such as the 15B parameter ESM-2 [7]—and require extensive resources; for
instance, training models of this scale conventionally demands tens of thousands of GPU hours, trans-
lating to immense financial and environmental burdens [7,17,18]. This heavy reliance on compute limits
accessibility for resource-constrained research groups [19]. Furthermore, deploying such extensive
models in real-world scenarios, such as proteome-wide homology searches, becomes computationally
formidable, severely restricting their broader applicability and practical utility [20].

Motivated by these challenges, a growing body of research has focused explicitly on improving
the efficiency of pLMs across various stages of their lifecycle [21-23]. These efficiency-focused methods
aim to achieve competitive or even superior performance while reducing resource consumption by
orders of magnitude. Specifically, efficiency strategies in pPLMs encompass several critical categories,
the reviewed methods of which are listed in Figure 1:

~[Efﬁ<'iunf Dataset (§2) FSFP (Zhou et al., 2024),  Scaling Law (Cheng et al., 2024)

Efficient Transformer (§3.2)
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CARP (Yang et al., 2024),
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Scaling Law (Cheng et al., 2024),
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Figure 1. An overview and taxonomy of the efficient Protein Language Model methodologies discussed in this
survey. We structure our review into four primary pillars—Dataset, Architecture, Training, and Inference—and
highlight the key approaches and representative works within each category. ([21-38]).

. Dataset Efficiency: Enhancing pLM efficiency through optimizing the allocation and utiliza-
tion of datasets [21], to maximize learning from limited or expensive experimental data [22].

. Architecture Efficiency: Developing compact or lightweight architectures, such as quantized
transformer models [24] or convolutional architectures [27,28], reducing parameter counts by
up to 10x while maintaining predictive performance.

. Training Efficiency: Optimizing the training procedures, including computational resource al-
location guided by scaling laws [21], efficient fine-tuning techniques [22,30,31], and knowledge
distillation [39] approaches that transfer knowledge from larger, teacher models to compact,
efficient student models [33-36].

. Inference Efficiency: Employing techniques such as post-training quantization (PTQ) [38], dense
embedding-based retrieval [37], and alignhment-free inference strategies to accelerate search speeds
by over two orders of magnitude compared to traditional alignment methods [20].
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While recent surveys have provided broad overviews of protein language models (pLMs) and
their applications [9,40], our work particularly focuses on the efficiency dimension of pLMs across
dataset, architecture, training, and inference. We systematically review these efficiency-focused
methodologies, highlighting their core principles, underlying mechanisms, and performance impli-
cations. While recent surveys have provided broad overviews of protein language models (pLMs)
and their applications [9,40], our work particularly focuses on the efficiency dimension of pLMs
across dataset, architecture, training, and inference. We systematically review these efficiency-focused
methodologies, highlighting their core principles, underlying mechanisms, and performance impli-
cations. The remainder of this survey is organized as follows: Section 2 details dataset strategies,
Section 3 reviews architectural innovations, Section 4 discusses training methodologies, Section 5
covers inference acceleration, and Section 6 outlines future directions.
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Figure 2. The evolution history of Protein Language Models (pLMs) from 2019 to 2025. The timeline illustrates the
development and divergence of major pLM families, such as Masked pLMs and Conditional Inverse Folding pLMs,
highlighting key models like the ESM series, ProtT5, and ProGen, along with their originating research labs.
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Figure 3. A comparative overview of general Large Language Models (LLMs) and Protein Language Models
(pLMs). While both are based on the Transformer architecture, LLMs (left) typically use causal attention for
autoregressive text generation. In contrast, pLMs (right) often use masked language modeling (with full attention)
to learn sequence representations from amino acid inputs, which can then be used for downstream tasks like
structure prediction. The folding blocks denote structure-prediction components used for structure prediction,
e.g., as in ESMFold [7]; their internal architectural details are omitted here for brevity.
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Table 1. Summary of representative dataset-related methods for pLMs.

Category Method Brief Description
Empirical study on optimal
scaling-law [21] data/model allocation for pLM
Dataset training.

few-shot with meta-learning
FSFP [22] and LoRA [41] under severe
data scarcity.

2. Datasets for Efficient pLMs
2.1. Background and Challenges

The training paradigm for modern language models is fundamentally data-driven, predicated
on learning statistical and semantic regularities from vast corpora [42]. For Large Language Models
(LLMs) like BERT [2] and the GPT series [43,44], this involves processing immense textual datasets
that are rigorously deduplicated, filtered, and ultimately discretized into a finite vocabulary via
tokenization [45,46]. Transposing this paradigm to computational biology, Protein Language Models
(pLMs) operate on datasets of AA sequences drawn from large-scale biological repositories such as
UniRef [12] and expansive metagenomic collections [47]. These biological datasets undergo analogous
preprocessing, including stringent sequence identity filtering and task-specific curation, to construct a
suitable training corpus [21].

Within both NLP and computational biology, an efficiency-centric approach to dataset construction
seeks to maximize model utility and generalization performance under a constrained computational-
budget. For LLMs, this often involves curating data for optimal scale and diversity to avoid diminishing
returns on compute [48,49]. In the context of pLMs, efficiency-driven data strategies have emerged to
address distinct biological challenges. Key approaches include meta-learning frameworks for few-shot
adaptation, which are critical in scenarios where experimental labels are prohibitively expensive or
scarce [22]. Additionally, researchers have formulated empirically-derived scaling laws that govern
the co-scaling of model and data size to optimize the training trajectory within a fixed computational
envelope [21]. Such methods directly confront data-related bottlenecks, aiming to enhance model
performance within the practical constraints of bioinformatics research.

The development of these efficiency-focused strategies is motivated by several fundamental
challenges inherent to biological data utilization:

. Paucity of Labeled Data: A critical bottleneck in many real-world applications, such as pro-
tein engineering and functional genomics, is the extreme scarcity of experimentally validated
labels. Often, only a few dozen labeled protein variants are available, posing a fundamental
impediment to traditional supervised fine-tuning and demanding highly data-efficient adaptation
methods [22].

. Absence of Principled Scaling Guidelines: Given a finite computational-budget, determining
the optimal allocation between model parameter count and training data volume remains a
significant challenge. An unprincipled approach, such as aggressively scaling model size while
repeatedly cycling through a small dataset, can lead to suboptimal training dynamics, including
premature convergence, overfitting, and a failure to capitalize on the model’s architectural
capacity [21].

To surmount these obstacles, recent work has focused on developing sophisticated meta-learning
protocols and establishing a principled, theoretical foundation for balancing model and data scaling.
The subsequent section reviews these methodologies in detail, with an overview provided in Table 1.
See Figure 4 for an illustration of these efficient dataset strategies.
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Figure 4. Conceptual illustration of efficient dataset strategies. The left subfigure, ‘Improve Utilization,” represents
using methods like scaling laws for better data selection and allocation from large-scale corpora. The right
subfigure, “Adapt to Severely Scarce Data,” represents few-shot learning approaches, for example using auxiliary
tasks to extend limited datasets.

2.2. Efficient Dataset Methods

Few-Shot Learning for Protein Fitness Prediction (FSFP) [22] addresses the challenge of efficiently
fine-tuning pLMs under severe data scarcity [50], enabling fitness-prediction with only tens of experimentally
labeled mutants per target protein. The key innovation of FSFP lies not in increasing data volume, but in its
auxiliary-task construction, evolutionary-informed pseudo-labeling, and meta-learning-driven adaptation,
providing a robust solution for pLM fine-tuning in low-data scenarios.

FSFP frames fitness-prediction as a ranking task, employing a listwise-loss [51] throughout both
meta-learning and fine-tuning, which better reflects practical needs in protein engineering research
and applications [52]. FSEP consists of the following major components:

. Auxiliary Task Construction: FSFP constructs three auxiliary tasks: it first retrieves two labeled
DMS datasets [53,54] from proteins similar to the target, and additionally generates a third
pseudo-labeled dataset using GEMME [55], which leverages evolutionary information from
Multiple Sequence Alignment (MSA) [56,57].

. Meta-Learning: These auxiliary tasks are used for meta-training via MAML [58], equipping the
pLM for rapid adaptation.

. Parameter-Efficient Adaptation: To prevent overfitting under few-shot settings [59], FSFP freezes the
backbone pLM and trains LoRA [41] parameters during meta-training and when transferring to
target task; meta-learning yields a better initialization of the LoRA parameters, and the subsequent
adaptation continues to update these parameters.

Benchmarking on 87 protein datasets [60], FSFP demonstrates superior performance compared to
strong baselines. It outperforms unsupervised zero-shot inference (including ESM-1v [61], ESM-2[7],
and Saprot [62]) and significantly surpasses the state-of-the-art supervised few-shot baseline, Ridge
Regression [63]. Specifically, FSFP boosts the average spearman correlation by up to 0.1 and raises
positive hit rates in real-world engineering by 25% [22].

Scaling laws for dataset allocation in pLM training [21] have been empirically established to
maximize training efficiency under fixed compute. Similar to LLMs in NLP tasks, simply increasing
model size or compute is insufficient [42,48]; the size and diversity of training data are critical. Empirical
analysis shows that masked language models (MLMSs) [2] and causal language models (CLMs) [44,64]
follow distinct power-law relationships between model size and required data, with sublinear data
scaling [65]. Repeating small datasets across many epochs yields overfitting in MLMs [66] and
diminishing returns in CLMs.

To address these issues, the study introduces the UniMeta200B dataset [47,67], aggregating diverse
metagenomic protein sequences with strict deduplication. This improves out-of-domain perplexity and
yields more stable independent and identically distributed validation curves with reduced variance
across families.

The resulting scaling laws provide explicit formulas for allocating parameters and dataset size
under a compute constraint, enabling principled, data-centric decisions in pLMs development. For
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fitted relations and resource-allocation details, see Section 4.2. These results highlight that enhancing
dataset diversity—rather than simply expanding model size or repeating data—is essential for efficient
protein language modeling.

Takeaway in §2 for Efficiency-focused pLMs Dataset Methods

Dataset efficiency-focused strategies—such as meta-learning-based few-shot and principled
scaling laws—enable efficient pLMs training under label scarcity and compute constraints,
offering concrete solutions to key bottlenecks in efficient dataset usage for pLMs.

3. Efficient Architecture
3.1. Background and Challenges

Model architecture fundamentally determines the representational capability and computational
complexity of language models. LLMs in NLP predominantly employ transformer architectures [1],
characterized by self-attention mechanisms that effectively capture long-range-dependencies. How-
ever, the quadratic scaling of transformers in computational complexity and memory consumption
with respect to input sequence length poses significant efficiency challenges [1,48]. Alternatively,
convolutional neural networks (CNNSs) [68,69], leveraging local receptive fields, scale linearly with
sequence length and inherently incorporate positional information through sliding window operations.
These distinct architectural paradigms have informed similar developments in pLMs, where transform-
ers remain dominant due to their robust performance on capturing long-range residue interactions [5],
while CNN-based methods have emerged as efficient alternative [27].

Efficiency-focused model architectures in LLMs typically include strategies such as weight quan-
tization, embedding dimension reduction, and structural sparsity to mitigate computational over-
heads [70-72]. Analogously, recent advancements in pLM architectures have pursued quantization of
weights [24], embedding compression [26], and cross-attention [1] modules conditioned on homol-
ogous sequences [25] to integrate evolutionary information efficiently [73,74]. Convolution-based
models, with inherent linear scaling, further enhance computational efficiency, presenting competitive
alternatives for large-scale protein modeling tasks [27].

The emergence of efficiency-focused model architectures in pLMs is largely driven by several
challenges in model architecture, including:

. High Computational and Memory Cost: Standard transformer-based pLMs require quadratic
time and memory with respect to sequence length, leading to prohibitive resource demands
for long proteins or large models. The use of full-precision weights and high-dimensional
embeddings further increases GPU and energy costs, particularly during large-scale training and
deployment [1,5,24,26,27].

. Redundancy and Massive Activations in Embeddings: Protein embeddings in large models are
highly compressible, indicating over-parameterization, and also exhibit massive activations in
certain channels, leading to inefficient memory use [26].

. Limited Inductive Bias and Information Integration: Existing architectures may not efficiently
leverage important biological information, such as evolutionary relationships or sequence homol-
ogy, constraining their performance and flexibility in specialized tasks [25].

The following section reviews recent architectural strategies developed to overcome these challenges.
Table 2 provides an overview of these methods, and Figure 5 illustrates representative efficient
architectural designs.
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Figure 5. Overview of efficient architecture methodologies. These strategies diverge from the standard Trans-
former (left), branching into ‘Efficient Transformer” approaches (top right) such as low-bit quantization, embedding
compression, and parameter reduction/reuse, and "CNN Alternatives’ (bottom right) which replace attention
blocks with convolutional layers to achieve linear O(n) scaling complexity.

Table 2. Summary of representative efficient model architectures for pLMs.

Category Method Brief Description

Training with ternary weights for
memory and compute efficiency.
Lightweight retrieval-augmented
model with parameter-sharing.
Compressing high-dimensional
CHEAP [26] embeddings while preserving
structure.

Train a performant pLM in 24 hours
on a single GPU.

2Bits of Protein [24]

Transformer-based RAG-ESM [25]

Cramming Challenge [23]

Using dilated-convolutions
CARP [27] (ByteNet-style) to replace attention
layers.
Implicit long convolutions for
Hyena operator [28] subquadratic scaling on long
sequences.

CNN-based

3.2. Efficient Transformer

2Bits of Protein [24] is a ternary-quantization architecture (based on [75]) which offers an efficient
solution to the computational and memory bottlenecks of large pLMs. In this approach, all linear layers
except the embedding and output head are quantized to ternary precision, with weights constrained
to {—1,0,1} by scaling and rounding each weight matrix [76-78]. Specifically, for a weight matrix W,
the quantized matrix W is defined as:

W= RoundClip (W, -1, 1) ,
v+e€

where 7 is the mean absolute value of W’s elements, and RoundClip(x, 4, b) rounds x to the nearest
integer within [a, b].

This design achieves substantial reductions in GPU memory and energy usage—prior NLP work
reports up to 3.55x lower memory and 21.7x less energy consumption compared to full-precision
models [76]. The ternary pLM preserves the standard transformer encoder architecture [1,7] and
remains trainable from scratch with stable performance [79]. On ProteinGym [80], ternary ESM2-8M
attains a mean spearman-correlation of 0.181 across 217 zero-shot tasks, competitive with efficient
baselines such as ProtGPT2 [14] and UniRep [81]. Under matched compute (24 GPU-hours, ‘crammed’
training [82]), the performance gap becomes statistically insignificant, whereas under the standard
training schedule, ESM2-8M is about 25% higher and statistically significant (p < 0.05). Thus, ternary-
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quantization provides a principled and highly efficient design for pLMs, substantially reducing
computational cost while maintaining competitive predictive performance.

Compressed Hourglass Embedding Adaptations of Proteins (CHEAP) [26] provide an architec-
tural solution for drastically reducing the dimensionality and memory footprint of pLMs embeddings,
while retaining both sequence and structure information. CHEAP employs a transformer-based
hourglass-autoencoder [83,84], which applies linear downsampling and projection to the ESMFold [7]
latent embedding. Its key innovations can be divided into:

. Continuous Compression: CHEAP enables up to 128 x channel compression and 8 x sequence
length compression through a learnable bottleneck, allowing backbone structure reconstruc-
tion with less than 1.34 A root-mean-squared distance [85] at 32x channel compression, and
maintaining sequence recovery above 99% until fewer than 8 channels remain. To address
abnormal massive activations in certain embedding channels, CHEAP introduces per-channel
normalization [86,87], further improving compressibility.

J Discrete (Iokenized) Compression: CHEAP supports discrete embeddings via finite scalar quantiza-
tion [88], which outperforms VQ-VAE [89,90] for large codebooks on latent and structure reconstruc-
tion, and it also provides a representation of protein structure obtainable from sequence alone.

These compressed embeddings enable efficient downstream applications—such as protein design,
similarity search, and functional prediction—making advanced pLM representations accessible for
resource-limited scenarios while preserving high-resolution information.

RAG-ESM [25] introduces a parameter-efficient encoder-decoder architecture that augments
pretrained ESM2 [7] with a minimal number of cross-attention layers and extensive parameter-sharing.
The encoder embeds a context (homologous) sequence using the original ESM2 model, while the
decoder reuses pretrained ESM2 layers, inserting a few cross-attention layers to transfer information
from the context embedding to the masked input sequence. Critically, self-attention and feed-forward
layers in both modules share weights, so the number of new parameters is negligible compared to the
backbone model. Formally, the total parameter count of RAG-ESM is

NragesM = N+M (M < N),

where N is the number of parameters in the pretrained ESM2 backbone, and M is the number of newly
added cross-attention parameters. Conditioning on homologs during inference allows RAG-ESM to extract
evolutionary information [91] without requiring MSAs [74,92,93] or significantly increasing model size.

Empirically, RAG-ESM models with 12M and 165M parameters achieve 48% and 43% lower
perplexity, respectively, than their ESM2-8M and ESM2-150M baselines on masked AA prediction.
Both are trained under the discrete-diffusion [94,95] using the closest homolog as context [96], with
modest compute budgets (50-120 GPU-hours). Cross-attention heads naturally learn alignment [97];
several heads reach p > 0.6, and a logistic regression trained on all 60 heads achieves an average
p = 0.76 against Needleman-Wunsch [98] alignment matrices.

This design enables efficient and scalable homology-aware pLMs that achieve state-of-the-art per-
formance among sequence-based models for homolog-conditioned generation and remain competitive
on motif scaffolding [99], while retaining flexibility.

Cramming Protein Language Model Training in 24 GPU Hours [23] introduces an efficient
transformer-based architecture specifically optimized for rapid, resource-constrained pre-training. The
corresponding pre-training setup is detailed in Section 4.2.

The core approach adapts the HuggingFace ESM2 [7] backbone by removing: (1) all query, key, and
value biases in attention blocks, (2) biases in intermediate linear layers, thereby reducing computational overhead
while retaining model capacity to maximize per-token throughput under a stringent compute budget: model
weights are initialized from scratch, and training is limited within 24 hours on a single GPU.

These architectural and implementation choices collectively allow a 67M-parameter model to
achieve competitive downstream performance—on tasks such as protein fitness landscape infer-
ence [60] and protein—protein interaction classification [100]—with models trained for over 15,000 x
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greater GPU hours. It demonstrates that by simplifying architectural details, it is feasible to obtain ex-
pressive pLMs suitable for practical research and deployment under extreme computational constraints.

3.3. Convolutional Layer Based Methods

Convolutional Autoencoding Representations of Proteins (CARP) [27] demonstrates that convolu-
tional architectures can match or exceed transformer-based pLMs [5,7] in both predictive power and com-
putational efficiency. CARP replaces transformer self-attention with ByteNet-style [68] dilated convolutional
blocks [101,102], exponentially expanding the receptive-field while ensuring linear scaling in computation and
memory with sequence length. Formally, the computational complexity per layer is:

O(L?) for transformer self-attention
O(L) for convolution in CARP

where L is the input sequence length.

CARP-640M (640M parameters) achieves a masked language modeling loss of 2.02, close to
ESM-1b’s [5] 1.96, and attains higher average zero-shot mutation effect prediction (Spearman 0.49
vs. 0.46) on 41 datasets. Unlike ESM-1b, CARP processes sequences up to 4,096 residues without
memory overflow and maintains stable loss and runtime for longer sequences. These results support
convolutional architectures as efficient, scalable, and competitive alternatives to transformers for large
protein sequence modeling.

ProtHyena [28] introduces the Hyena operator [103] as an efficient alternative to self-attention
and standard convolution in pLMs. The per-layer computational complexity is:

O(L?) Transformer self-attention
O(L) Standard CNN
O(Llog,L) The Hyena operator

where L is the input sequence length.

Compared to transformer models whose self-attention layers require quadratic complexity, the Hyena
operator enables substantially improved scalability; compared to standard CNNs, whose long-range modeling
is limited by kernel size, Hyena leverages implicit long convolutions [104] and element-wise gating [105,106]
to efficiently capture both local and global dependencies. The core block applies:

y=xn-(hn*(xn-1-(hn_1%---x1- (% 0))))

where N is block depth, h; are long convolution filters, v is the input projection, and - denotes gating.

This enables ProtHyena to process sequences up to a million residues and achieve accuracy
competitive with or better than larger transformer-based pLMs, such as ESM-1b [5], ESM-2 [7], and
ProteinBERT [107], using about 10% of their parameters and up to 60x speedup.

Takeaway in §3 for Efficiency-focused pLMs Model Architectures

Recent architectural advances—including quantization, embedding compression, cross-
attention with homology conditioning, convolutional alternatives, and the design of transformer
architectures optimized for rapid “cramming” pre-training—directly address key computa-
tional and representational bottlenecks in pLMs, enabling efficient and scalable model design
without sacrificing predictive power.

4. Efficient Training
4.1. Background and Challenges

Training LLMs generally follows two stages: pre-training and post-training. During pre-training,
models are trained on large unlabeled corpora to learn general representations [2,43]. post-training
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then adapts these models to downstream objectives (including, for example, supervised fine-tuning
(SFT) [49] and reinforcement learning (RL)-based tuning such as RLHF [108] or GRPO [109]). In
this paper, we mainly focus on fine-tuning [110] within post-training. In parallel, distillation transfers
knowledge from high-capacity teachers to compact students for efficiency [39,111,112].

Training pLMs adopt a conceptually similar pipeline to LLMs but with several domain-specific
characteristics: (1) Pre-training: pLMs are trained on large corpora of unlabeled protein sequences at the
amino-acid level to learn general biological representations [3,5,6,81]. (2) Post-training: pLMs are further
adapted on task-specific datasets for specialized bioinformatics objectives [113], for example, function
prediction [30,114]. (3) Distillation: knowledge is transferred from large teacher models to smaller
students for efficient deployment, which closely mirrors the approach used in LLMs [34,36,112,115].

Given these characteristics, improving computational and data efficiency has become a key objective in
pLMs training. Efficiency-focused pLMs training therefore focuses on the following bottlenecks:

. Challenges in Pre-training:

- Lack of Resource Allocation Guidelines: It is challenging to optimally balance model
size and training dataset size under fixed compute, with suboptimal allocation leading to
overfitting [116] or diminished returns [21].

- Limited Structural Integration: Most pre-training pipelines rely solely on sequence data,
whereas structural information remains underutilized, which may ultimately limit both the
efficiency and generalization capabilities of the models [29].

. Challenges in Fine-tuning:

- Lack of Comprehensive Empirical Studies: Compared to NLP [117], systematic evalua-
tions of parameter-efficient fine-tuning (PEFT) [41,118-120]methods for pLMs across diverse
tasks has been limited, leaving practical guidelines unclear [30].

-  High Computational Demands: Full-model fine-tuning of large pLMs requires substan-
tial memory and compute, limiting accessibility and scalability, especially under limited
hardware situations [30,31].

- Low Data Efficiency: Adapting models to new tasks with limited labeled data can be
inefficient, as conventional fine-tuning is prone to overfitting and resource waste [22].

. Challenges in Distillation:

-  Teacher-student Discrepancy: Differences in size, architecture, or modality (e.g., sequence,
structure, function) between teacher and student models can hinder efficient knowledge
transfer and limit student performance [33,34,121].

- Knowledge Transfer Bottlenecks: Distilling large teacher models or integrating multi-
modal knowledge (e.g., structure, function) into compact students can reduce predictive
power or require extensive tuning [34-36].

Following sections review methods addressing challenges through efficient pre-training, fine-tuning, and
distillation.

4.2. Efficient Pre-Training Methods

To orient the discussion, Figure 6 summarizes the efficient pre-training methods reviewed in this section.

Improve Utilization Refined Pipeline
Q Q
& V")

i=J
£
£
g
2
&
=
£
s
€
&

Better resource allocation (e.g. model size, data)

Figure 6. Conceptual illustration of efficient pretraining strategies: Improve Utilization — optimizing resource
allocation such as model size and data scaling; Refined Pipeline — developing more streamlined and effective
training pipeline designs; Diverse Datasets — incorporating more varied datasets, including multimodal data, to
enhance generalization and robustness.
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Table 3. Summary of representative training-stage efficiency methods for pLMs.

Category

Method

Brief Description

Pre-training

Scaling Law [21]
Structure Integration [29]

Cramming Challenge [23]

Empirical study on pLMs optimal
data/model allocation.

Joint sequence-structure
pre-training (e.g., ProstT5).

Train a performant pLM in 24
hours on a single GPU.

Fine-tuning

A study of PEFT Methods [30]
QLORA [31]
SES-Adapter [32]

FSFP [22]

LoRA for parameter-efficient
tuning.

4-bit quantization + LoRA for
efficient fine-tuning.
Structure-aware adapters for
cross-modal representation.

few-shot with meta-learning and
LoRA.

Distillation

Cross-distillation in
AlphaFold3 [33]

ProtGO [34]
VespaG [35]

MTDP [36]

Distillation from a single large
teacher-model.

Transferring functional and
structural knowledge.

Distillation via evolutionary expert
supervision.

Aggregating knowledge from

d0i:10.20944/preprints202512.2131.v1

multiple teacher models.

Scaling law-guided pre-training for pLMs [21] empirically establishes optimal resource alloca-
tion between model size and data for transformer-based pLMs. On a large dataset of 939M protein
sequences, over 300 models were trained to reveal that both masked (MLM) and causal (CLM) objec-
tives follow distinct power-law scaling similar to Kaplan et al. [42] and Hestness et al. [65]. For a 10x
increase in compute, optimal MLM size increases 6 x with 1.7 x more data, while CLM size grows 4 x
with 3x more data. The fitted scaling relations for MLMs are:

Nng =6.19 x 10-8¢C0776 MLMs’ model parameters

DCPt  — 202 x 106C0-230

MIM = MLMs’ training tokens

and for CLMs are:

Ngﬂvl =1.26 x 10730578 CLMs’ model parameters

Dgfl’fM — 1.23 x 1020422 CLMs' training tokens

where C represents the total pre-training FLOPs, N is the number of forward-activated non-embedding
parameters, and D represents the number of training tokens.

Repeating data leads to overfitting for MLMs and diminishing returns for CLMs [122], which
is mitigated by introducing a diverse, deduplicated dataset (UniMeta200B). Transfer learning—pre-
training with CLM and then fine-tuning with MLM—reduces the compute needed for optimal MLMs
by up to 7.7x. Large-scale validations confirm that these scaling laws yield models with better
generalization and downstream performance under fixed compute budgets, particularly in practical,
resource-constrained environments.

ProstT5 [29] is a T5-based model [49] that integrates structure information [123] into pLM pre-
training to boost efficiency and versatility. ProstT5 unifies protein sequence (Amino Acid, AA) and
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structural (Three-Dimensional Interaction (token) (3Di) token) modalities within a single encoder-

decoder architecture. Its key innovations in the pretraining stage can be divided into:

. Multimodal Pre-training: By encoding 3D structures from AlphaFoldDB [124] as 3Di-token sequences,
and expanding the vocabulary with 3Di tokens, ProstT5 applies span-based denoising objectives to
both AA and 3Di sequences, teaching the model new structural tokens while avoiding catastrophic
forgetting of sequence information.

. Bi-directional Translation Objectives: ProstT5 is trained to translate between AA and 3Di representa-
tions using direction tags (<fold2AA>, <AA2fold>), enabling both “folding” (AA—3Di) and “inverse
folding” (3Di— AA), thus robustly linking sequence and structure information.

This bilingual setup allows ProstT5-predicted 3Di strings to be used for structure-level similarity
search (e.g., with Foldseek [125]), achieving remote homology detection [126] sensitivity nearly match-
ing experimental structures, but with a speedup of over three orders of magnitude (e.g., 43 seconds vs.
48 hours for full proteome annotation) [57,125]. Embedding-based annotation transfer further shows
improved CATH fold classification [127] accuracy over ProtT5 [6] and ESM-1b [5], and secondary
structure prediction with ProstT5 matches or exceeds prior state-of-the-art. In inverse folding [63,99],
ProstT5 generates diverse sequences with predicted structures closely matching targets, demonstrating
both enhanced efficiency and versatility.

Overall, integrating structure into pLM pretraining via bilingual modeling delivers substantial
gains in inference speed and structural generalization, advancing protein design and large-scale
annotation capabilities.

Cramming Protein Language Model Training in 24 GPU Hours [23] proposes a pre-training
paradigm specifically tailored for rapid and resource-constrained scenarios. In this framework, a
transformer-based pLM is trained from scratch under a strict 24 GPU-hour budget, with no use of
pre-trained models at any stage. The pre-training pipeline consists of several key components:

. Random initialization: All model weights are initialized randomly.

. On-the-fly masked language modeling: Masked language modeling is performed directly on
UniRef50 [12] splits, with all data processing (e.g., tokenization, filtering, sorting) occurring
on-the-fly during training, and no offline pre-processing.

. Large effective batch size: Training employs a batch size of 128, sequence length of 512, and
gradients are accumulated over 16 steps for an effective batch of 2048 sequences.

] Critical hyperparameter tuning: The optimizer is AdamW [128] with carefully tuned parameters.
The learning rate schedule is central: the optimal regime employs a fast warmup [129,130] to
a peak learning rate of 1 x 10~3 over 1,000 steps, followed by a slow linear decay [131] to near
zero over the remaining steps, with training capped at 50,000 updates.

These pre-training choices allow the resulting 67M-parameter model to match or approach the downstream
performance of much larger models such as ESM2-3B [7]—trained for over 15,000 x more GPU hours—on
tasks including protein fitness landscape inference and PPI classification. The architectural design supporting
these results is detailed in Section 3.2. This work demonstrates that, through systematic pre-training design
and hyperparameter tuning [132,133], performant pLMs can be obtained at a fraction of the conventional
computational cost, enabling broader accessibility for rapid biological modeling.

Takeaway in §4.2 for Efficiency-focused pLM Pre-Training

Scaling law-guided resource allocation, the integration of structural information, and the
development of rapid "cramming" pre-training protocols have substantially improved the
efficiency and versatility of pLMs pre-training, providing practical solutions for balancing
compute, data, and biological knowledge—even under stringent resource constraints—in

large-scale protein modeling.
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4.3. Efficient Fine-Tuning Methods

Fine-tuning in pLMs involves adapting a pre-trained model to specific downstream biological
tasks using relatively small amounts of labeled protein data [30]. This step is inherently efficiency-
focused, enabling rapid model adaptation without extensive retraining. Advanced PEFT techniques,
such as LoRA [134] and structure-aware adapters [32], further minimize computational and memory
demands while maintaining high performance. Subsequent subsections review these PEFT methods
and associated efficiency gains.

To summarize the discussion, Figure 7 provides an overview of the key techniques covered for
efficient fine-tuning.

Full Fine-Tuning Efficient Fine-Tuning
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Figure 7. A comparison of Full Fine-Tuning (left) with several mainstream parameter Parameter-Efficient Fine-Tuning
(PEFT) methods (right) for pLMs. In full fine-tuning, all model parameters are trainable. PEFT methods keep the backbone
parameters frozen (blue) and introduce a small number of new trainable parameters (pink). Examples shown include
LoRA, which adds low-rank adaptation matrices; Q-LoRA, which combines LoRA with quantization; IA3, which trains
scaling vectors; and Prefix Tuning, which adds trainable prefixes to key and value vectors.

A study of Parameter-efficient fine-tuning (PEFT) methods systematically compared full-model
fine-tuning with several PEFT approaches—including LoRA [41], DoRA [135], IA3 [136], and prefix
tuning [137]—across diverse pLMs and protein prediction tasks [30]. Its main findings include:

. Efficiency and accuracy: By freezing most model weights and only updating a small fraction (e.g., 0.25% for
LoRA), PEFT methods, such as LoRA, achieved nearly equivalent accuracy to full fine-tuning.
. Training speedup and memory savings: For larger models, LoRA offered up to a 4.5x training speedup

with comparable GPU memory requirements, and required saving only adapter weights, further
improving efficiency.

. Compatibility and resource efficiency: LoRA, DoRA, and similar methods are compatible with mixed precision,
gradient accumulation, and CPU-offloading, enabling fine-tuning even on 8GB or 16GB GPUs.
. Method comparison: Among PEFT methods, LoRA was generally most compute-efficient for large

pLMs, with DoRA sometimes up to 30% slower, and all PEFT methods yielded average prediction
gains of 61.3% compared to using static embeddings.
PEFT—especially LoORA—provides a practical solution for adapting large pLMs in resource-constrained
environments, with all tested PEFT methods demonstrating substantial improvements over static,
pre-trained embeddings.
Quantization with LoRA (QLoRA) [31] combines 4-bit quantization with LoRA to enable highly
efficient fine-tuning of pLMs while maintaining strong performance [138]. By quantizing most model
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weights to 4 bits and updating only a small set of adapter parameters, QLoRA substantially reduces
memory and computation costs.

Clancy et al. [31] systematically evaluated QLoRA across multiple pLMs, including ESM-2 [7],
ESM C [139], ProtBERT [107], ProtT5-half [6], and Ankh-base [140], and diverse tasks, including Green
Fluorescent Protein (GFP) fluorescence [141], protease stability [142], and protein secondary structure
prediction [16,143,144]. Experiments show that QLoRA achieves an average GPU memory reduction
of 46.7%, with generative models such as ProtGPT2 and ProLLaMA reaching up to 76.4% reduction.

Performance remains largely preserved: for ESM C 600M, fluorescence prediction SpearmanR is
0.850 for QLoRA versus 0.863 for full precision, and secondary structure accuracy remains identical at
0.870. In generative tasks, 4-bit quantization yields negligible differences in predicted protein quality,
with metrics such as Foldseek pass rate, local distance difference test, and predicted local distance
difference test showing no significant decline.

Overall, QLoRA lowers hardware barriers for fine-tuning and inference of large pLMs, making
efficient protein modeling feasible on modest computing infrastructure.

Few-Shot Learning for Protein Fitness Prediction (FSFP) [22] builds on the dataset construction
and meta-learning strategies described in Section 2.2, and focuses on PEFT for robust fitness prediction
with minimal labeled data.

After meta-training on auxiliary tasks constructed from related proteins and MSA-based pseudo-
labels, FSEP fine-tunes only a small subset of parameters (e.g., via LORA with rank = 16) to mitigate
overfitting. Fitness prediction is formalized as a ranking problem, with ListMLE loss [145] used to
optimize the ordering of variants. On 87 deep mutational scanning datasets, FSFP outperforms both
zero-shot and regression-based baselines, improves spearman-correlation by up to 0.1 with just 20
labeled mutants, and demonstrates strong extrapolation to unseen mutations. Wet-lab validation
further highlights its efficiency and real-world utility.

SES-Adapter [32] is a structure-aware, PEFT framework for pLMs, integrating sequence and
structural information via cross-modal multi-head attention. In SES-Adapter, the pLM backbone is
frozen, and only the adapter module is trained. Structural features representations are serialized via,
such as, FoldSeek [125] or DSSP [146], into embeddings and serve as queries (Q), while pLM sequence
embeddings serve as keys and values (K, V). Uniquely, both Q and K are first embedded with rotary
position embedding (RoPE). For an embedding vector x € R% at position p, RoPE performs a rotation
on each coordinate pair (2i,2i+1):

(RoPE(x, p) ) ] _ [cos@m —sin@,,/i] [ X2 ] iZ0 d

(ROPE(x, p))2is1 sinf,;  cosp; | |x211

where 0, is a position-dependent rotation angle varying with p and the dimension index i.

This fusion enables SES-Adapter to consistently outperform vanilla pLMs and prior tuning strate-
gies: on nine diverse benchmarks, it yields up to 11% (avg. 3%) accuracy improvement, convergence
acceleration up to 1034% (avg. 362%), and maintains robustness to structural noise (performance
variation <0.6% across different structure predictors). SES-Adapter thus offers an efficient, scalable,
and model-agnostic solution for fine-tuning pLMs in protein research.

Takeaway in §4.3 for Efficiency-focused pLMs Fine-Tuning

Recent advances in PEFT—such as LoRA, QLoRA, meta-learning, and structure-aware
adapters—enable large pLMs to be effectively adapted with limited computational resources
and small labeled datasets. These approaches address key bottlenecks in scalability and accessi-
bility, and provide practical solutions for efficient, robust downstream adaptation in diverse
biological tasks.
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4.4. Efficient Training via Distillation

knowledge distillation [39] in pLMs is a widely adopted model compression technique that
transfers knowledge from larger, high-capacity teacher models to smaller, efficient student models. It
typically involves guiding student models to mimic teacher outputs, intermediate representations, or
other informative signals[147]. Distillation inherently emphasizes efficiency, enabling deployment of
lightweight models that substantially reduce computational and memory requirements [148,149] while
retaining predictive capabilities comparable to larger models [150,151]. Recent literature highlights
diverse distillation strategies—including single-teacher [33], expert-guided [35], cross-modal [34], and
multi-teacher adaptive methods [36]—consistently demonstrating significant efficiency improvements.

Cross-distillation of AlphaFold 3 [33] is a strategy for mitigating hallucinations and improving
data efficiency in diffusion-based protein structure prediction [152]. Its core methodological steps are:
] Teacher-augmented training data: The training set is augmented by including high-confidence

structures predicted by AlphaFold-Multimer v2.3 [153,154], in addition to experimental
structures. Teacher-model predictions act as additional supervisory targets during train-
ing [155,156].

] Joint supervision with ground-truth and teacher outputs: AlphaFold 3 is explicitly optimized to
align its outputs not only with experimental ground-truth structures, but also with reliable
teacher-generated structures. This enables the model to learn more physically realistic disorder
regions, as teacher-generated structures tend to represent unstructured segments as extended
loops, reducing hallucinated compact order in intrinsically disordered regions.

On the CAID 2 benchmark [16], cross-distillation led to better alignment between predicted
confidence (predicted local distance difference test) and actual disorder, effectively suppressing gen-
erative artifacts. By increasing both the diversity and quantity of usable training data, intra-chain
metrics reach 97% of their maximum within the first 20,000 training steps, reflecting rapid and efficient
learning. Overall, cross-distillation exemplifies how leveraging both ground-truth and high-quality
model-generated supervision can simultaneously reduce hallucinations and accelerate robust protein
structure learning in next-generation diffusion-based models.

ProtGO [34] is a multimodal protein representation learning framework that distills functional
knowledge from a teacher to a student network via distribution alignment in latent space. The teacher
leverages sequence, structure, and Gene Ontology (GO) (GO) [157,158] function annotations, while
the student uses only sequence and structure, making it practical for annotation-scarce scenarios.
Instead of aligning individual embeddings, ProtGO minimizes the KL-divergence [159] between the
batch-level Gaussian-distributed graph embeddings of teacher and student:

Lig = KL[ps(zs) | pr(z1)]

where zg and z7 are graph-level embeddings of the teacher and student models, and pg(-), pr(-)
denote their estimated batch-wise distributions (Gaussian with mean and variance computed over
each batch). The overall loss for training the student is:

L= Lstudent + ,BLkd

where Ly dent IS the cross entropy loss for downstream classification and § is a trade-off hyperparameter.
This strategy enables the student to inherit rich functional information, achieving state-of-the-art
results: e.g., 60.5% accuracy for fold classification (3.8 points higher than prior methods), 89.4% for
enzyme reaction prediction, and top Fyuy values on GO term and Enzyme Commission (EC) number
prediction [160]. Ablation studies confirm the distillation module is critical for performance (fold
accuracy drops from 60.5% to 57.8% when removed). ProtGO thus demonstrates the efficiency and
effectiveness of distribution-based multimodal distillation for robust protein representation learning.
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Expert-guided distillation in VespaG [35] offers an efficient strategy for protein variant effect
prediction by training a lightweight neural network (student) to imitate an evolutionary expert model
(teacher). Here, the teacher is GEMME [55]—a MSA (MSA)-based method that generates mutational
effect scores—while the student is VespaG, a feed-forward neural network with a single hidden layer.
VespaG takes embeddings from a pretrained pLM (ESM-2 [7]) as input and learns to predict GEMME’s
variant effect scores for each possible mutation. The student is trained by minimizing the mean squared
error between its predictions § and the GEMME scores y*:

z

1

L:N‘ @i —vi)?

Il
—_

This distillation approach removes the need for log-odds calculations and MSAs at inference time, en-
abling VespaG to rapidly predict mutational landscapes across entire proteomes on standard hardware.
On the ProteinGym [80] benchmark (over 3 million variants), VespaG achieves a mean spearman-
correlation of 0.48 & 0.02, matching state-of-the-art methods and sometimes surpassing its expert
teacher in certain protein families. Importantly, VespaG is over three orders of magnitude faster than
MSA-based methods. This demonstrates that expert-guided distillation with pLM embeddings yields
robust, scalable, and practical variant effect predictors.

Multi-teacher distillation in MTDP [36] enables efficient and high-fidelity embedding by aggregating
knowledge from multiple large pre-trained models, specifically ESM2-33 and ProtT5-XL-UniRef50.MTDP
student, a T5-based model with ~20M parameters, is trained via an adaptive teacher selection mechanism
that dynamically assigns the most suitable guidance to each sample using RL strategy [161]. The training
objective jointly minimizes a masked language modeling loss (Lyv) and a distillation loss (L) defined
by the KL divergence between student and teacher output distributions:

L = aLyim + (1 — &) Lpjgsin, & = 0.2

where,

|4

N
Lvimv = — Y Y I(yi = j) log p(x; = j)
i=1j=1

N
Lpistin = Y KL(pr(x;) || ps(xi))
i

where N is sequence length, V is vocabulary size, y;/ x; are the true/predicted amino acids at position
i, I(-) is the indicator function, pr(x;)/ps(x;) are the teacher/student output probabilities, and KL
denotes KL divergence. At each step, selected teacher T for each sample is chosen via a RL-based
scheduling mechanism [161].

Compared to its teachers (650M and 120M parameters), the MTDP student is dramatically more
efficient, achieving £1.5% accuracy of large models on tasks like function and subcellular localization
prediction, and requiring ~70% less encoding time for 10,000 protein sequences. Ablation studies
confirm multi-teacher distillation outperforms single-teacher setups. MTDP can be deployed on
modest GPU hardware, providing a scalable, resource-efficient solution for large-scale, real-time
protein informatics applications.

Takeaway in §4.4 for pLMs Distillation

Recent progress in distillation—including expert-guided, cross-modal, and multi-teacher strate-
gies—enables efficient pLMs with reduced memory and computational requirements. These
approaches address knowledge transfer and model compression challenges, making large-scale
protein analysis and deployment more practical while preserving strong predictive perfor-
mance.
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5. Efficient Inference
5.1. Background and Challenges

Inference in language models refers to the process of generating outputs, such as predictions or
embeddings, based on trained models given new input data. Autoregressive models (e.g. GPT se-
ries [44]) generate text by predicting subsequent tokens, while masked language models (e.g. BERT [2])
infer masked tokens or produce contextual embeddings for various tasks. This inference typically
involves passing inputs through multiple transformer layers to capture contextual relationships and
generate meaningful, task-relevant representations.

Analogously, pLMs infer structural, functional, or evolutionary properties from protein sequences. Given
a protein sequence, pLM inference generates embeddings that encode rich biological information, facilitating
downstream tasks like homolog detection, structure prediction, and functional annotation [5].

Efficiency-focused inference methods in LLMs encompass techniques such as quantization [162,
163] and embedding-based dense retrieval, aiming to reduce computational costs and memory usage
while preserving model performance [164,165]. Similarly, efficient inference in pLMs integrates analo-
gous strategies, including PTQ [38], embedding-based retrieval via dual-encoder architectures [20],
and structure-informed similarity scoring [37]. An overview of these efficient inference strategies is
provided in Figure 8.
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Figure 8. Strategies for improving inference efficiency: Post-Training Quantization (PTQ) — reduces numerical
precision to compress model size and accelerate inference; Improve Downstream Performance — applies pLMs to
enhance downstream task performance and practical applicability.

The emergence of efficiency-focused inference methods in pLMs is largely motivated by several

challenges related to inference process, including:

. Resource Constraints: The inference process of large pLMs require substantial computation
and memory, hindering deployment in resource-limited settings [38].

. Inference Latency: Traditional alignment-based and MSA methods are inherently slow and
cannot efficiently scale to large databases, which is critical for many practical applications,
such as proteome-wide homology search [20,37].

] Limited Sensitivity: Sequence-based retrieval may miss remote homologs and deeper struc-
tural relationships [20,37].

The following section reviews methods that address these issues, with an overview provided in Table 4.

Table 4. Summary of representative inference-stage efficiency methods for pLMs.

Category Method Brief Description

PLMSearch [37] igigggteirsgéz ilﬁ)gr;olog,\ search using

PTQ for reducing inference memory and
compute.

Transforms protein homology detection from
pairwise alignment into vector retrieval.

Inference
PTQ4Protein [38]

DHR [20]
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5.2. Efficient Inference

PTQ4Protein [38] enables efficient inference of large pLMs such as ESMFold [7] by applying
PTQ [79] to both weights and activations. Baseline experiments show that standard 8-bit uniform quan-
tization [162] substantially reduces memory usage (4 x) but leads to significant accuracy loss—mainly
due to the asymmetric and wide activation distributions before LayerNorm layers. To address this,
PTQ4Protein employs piecewise linear quantization for activations, splitting the value range [r;, 7] at
breakpoints p; and p,, and quantizing each region separately:

uni(ry;b =1, py, pu, p1) 1 € [p1, pul
= uni(rz;b - 1/ Y1, Pi, 7’[) Ty € [1’1, Pl)
uni(rs; b — 1, pu, ru, pu) 13 € (Pusul

~

where [r}, r,] denotes the full activation range, p; and p,, are the central breakpoints, b is the total bit
width, and uni(-) denotes uniform quantization within each segment. Each r1, 1, r3 represents the
activation value in the central and two tail regions, respectively.

Experiments demonstrate that PTQ4Protein achieves nearly lossless accuracy: for 8-bit quanti-
zation, TM-score [166] drops by only 0.36% (CASP14) [16] and 0.08% (CAMEO) [167], with memory
usage reduced to 25% of baseline. Even at 6 bits, accuracy loss remains below 0.5%. Ablation studies
show ESM-2 [7] is particularly robust, and the visual fidelity of predicted structures is preserved.
Overall, PTQ4Protein provides a practical solution for deploying large pLMs on resource-limited
hardware with minimal accuracy degradation.

PLMSearch [37] is an efficient inference framework for large-scale remote homology search that
leverages pLM embeddings and structure-informed similarity prediction. Its pipeline consists of:

1. PfamClan-based pre-filtering: PfamClan [168] assigns proteins to evolutionarily related superfami-
lies (clans); this stage retains only protein pairs sharing the same clan, ensuring high recall while
greatly reducing the candidate search space.

2. SS-predictor: A bilinear neural network is trained to predict structural similarity (TM-score [169])
between protein pairs based on pLM embeddings; it integrates predicted TM-scores with cosine
similarity, capturing global and local sequence features for remote homolog detection.

3. PLMAlign: For top-scoring pairs, per-residue alignment is performed using pLM embeddings to
refine hit precision and enhance biological relevance.

A key efficiency innovation is the precomputation and caching of all target protein embeddings,
enabling scalable, million-level searches via a single forward pass through the SS-predictor. By
restricting downstream alignment to high-confidence pre-filtered pairs, PLMSearch dramatically
reduces computation while maintaining high sensitivity. On standard benchmarks, PLMSearch
achieves orders-of-magnitude faster search and higher sensitivity than conventional structure or
sequence-based methods. These results establish PLMSearch as a scalable, structure-aware solution for
accurate and ultra-fast remote protein homology inference.

Dense Homolog Retriever (DHR) [20] is an structure-aware inference framework for large-scale
protein homolog detection, integrating pLMs with deep dense retrieval. Its workflow consists of:

1. Dual-encoder architecture: Both query and candidate sequences are embedded into dense vectors
using a pair of ESM-initialized encoders, allowing alignment-free similarity calculation.

2. Contrastive learning: The dual-encoders are trained to embed homologous pairs close together
and nonhomologous pairs far apart, enabling effective discrimination via dot-product scoring.

3. Scalable dense retrieval: All database embeddings are precomputed and cached, allowing rapid, large-scale
retrieval of homologs through efficient vector similarity search [170,171] on standard hardware.

As an MSA prefilter, DHR accelerates MSA (with JackHMMER [172]) by up to 93-fold, increases
MSA diversity (log Meff [173]), and improves AlphaFold2 [174] structure prediction—boosting TM-
score [169] by up to 0.03 and lowering root-mean-squared distance [85] by 0.15 A on hard targets.
DHR also maintains robust performance on massive datasets such as BFD [175] or [47] MGnify (over
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500 million sequences) [57], demonstrating its practicality for structure-aware, scalable, and accurate
protein inference at unprecedented speed.

Takeaway in §5 for pLMs Efficiency-focused Infernece

Recent methods—including advanced quantization, embedding-based retrieval, and structure-
informed similarity prediction—enable pLMs to achieve efficient, scalable inference with lower
computational cost and memory usage, while maintaining or improving predictive performance
for large-scale biological applications.

6. Future Directions
Quantum Algorithms for Protein Structure Prediction

A central challenge in classical, physics-driven approaches to protein folding (like molecular
dynamics (MD)) is their immense computational complexity. These methods simulate the intricate
energy landscape of a protein, a task that scales poorly on classical hardware. This has motivated
the exploration of quantum algorithms, which are naturally suited for simulating complex physical
systems. An overview of quantum—classical learning pipeline is provided in Figure 9.
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Figure 9. Conceptual illustration of a hybrid quantum-—classical learning framework. Input data X are first

processed through classical preprocessing steps such as tokenization and embedding, and subsequently encoded
into a parameterized quantum circuit via a data-dependent unitary U(X). The quantum circuit consists of
trainable single-qubit rotation gates and entangling operations, and is executed on a quantum processing unit
(QPU), where measurements produce output probability distributions. These measurement outcomes are used to
evaluate a classical objective function C(6, x), whose feedback is computed on classical hardware (CPU/GPU) to
iteratively update the circuit parameters . This variational optimization loop illustrates a potential direction for
integrating quantum computing with machine learning pipelines in future work.

The core physical principle of protein folding is that a protein chain will configure itself into its most
stable, lowest-energy state. In physics, the total energy of a system is described by a mathematical operator
known as a Hamiltonian. Therefore, a protein’s most stable 3D structure can be reframed as finding the lowest
possible enerqy value of this Hamiltonian. This lowest-energy solution is known as the ground state.

Quantum Protein Structure Prediction (QPSP) attempts to solve this problem by first simplifying
it [176-179]. The vast, continuous space of all possible protein folds is too complex to model directly.
Instead, the protein is “discretized” by placing its residues onto the points of a 3D grid, or lattice.
Common choices include cubic lattice [180-182] and tetrahedral lattice, which build upon earlier 2D
models [183-185].

With the problem now on a lattice, the Hamiltonian is assembled from terms that encode the
structural energy: terms that capture the interactions between nearby residue and terms that act
as constraints to enforce a structurally valid chain. Finding the ground state of this lattice-based
Hamiltonian becomes an optimization task for a quantum computer. Research in this emerging
field is focused on improving the realism of these models—progressing from 2D to 3D lattices—and
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developing more efficient encoding (e.g., turn-based rather than coordinate-based) to reduce the
number of qubits required.

A fundamental limitation remains: native protein structures are not confined to a discrete lattice.
This mismatch limits the fidelity of such models. Consequently, the accuracy of any lattice-based
prediction is ultimately constrained by the resolution of the lattice, thereby necessitating models with
higher degrees of freedom to yield more realistic fits [186].

Hybrid quantum-—classical Transformers as a path toward quantum PLMs.

A more immediate and pragmatic future direction lies in creating hybrid quantum-classical models.
Instead of attempting to replace the entire classical pipeline, this approach seeks to identify com-
putationally expensive sub-components of existing models (like PLMs) and "enhance" them with a
quantum subroutine.

The self-attention mechanism is a prime target. At its core, the attention score is a similarity
measure—typically a simple dot product—between a Query (Q) vector and a Key (K) vector. This score
determines how much influence one token has on another. Recent work on hybrid transformers [187]
proposes the replacement of this classical dot product.

In this hybrid model, the Q and K vectors are used to prepare quantum states. A quantum circuit
then measures the fidelity (or overlap) between these two states, and this measurement becomes the
new attention score. This is not just a faster way to compute a dot product; it is a fundamentally different,
quantum-native similarity metric.

This pathway is promising for several reasons. As a new similarity metric, this quantum-derived
similarity is a specialized nonlinear function that may be able to capture complex relationships between
token embeddings that a simple dot product misses, potentially improving model generalization in
the low-data regimes common to protein engineering. It also offers theoretical efficiency: while the
primary benefit may be representative power, this quantum subroutine also offers a theoretical cost
reduction for the scoring portion, from O(n?d) to O(n*logd), where n is the sequence length and d the
embedding dimension. Furthermore, it has NISQ-era (Noisy Intermediate-Scale Quantum) feasibility, as
the model remains "mostly classical,” retaining standard tokenization, embedding, and feed-forward
blocks. Crucially, the quantum subroutine only requires a qubit count that scales as log 4, making its
parameter-efficiency a viable candidate for NISQ hardware. Finally, it represents a practical prototyping
path that can be prototyped today. Using frameworks like CUDA-Q [188,189], the quantum circuit can
be simulated on classical CPU/GPU hardware and integrated directly into a standard model’s training
loop, which allows for rapid, end-to-end validation of the concept.

Positive results from such simulations would position hybrid attention as a credible and practical
first step toward future, quantum-enhanced PLMs for protein modeling.

7. Conclusions

In this survey, we systematically reviewed advancements in efficient pLMs across four dimensions:
dataset optimization, model architecture, training strategies, and inference. We highlighted a spectrum
of techniques—f{rom meta-learning and scaling law-guided design to PEFT, knowledge distillation,
and quantization—that collectively address the formidable computational demands of modern pLMs.
These approaches enable substantial cost reductions, democratize accessibility, and lay the groundwork
for scalable, practical deployment in computational biology.

Despite this substantial progress, significant challenges remain. While efficient pLMs achieve
competitive results on standard benchmarks, a performance gap often emerges in complex tasks
such as de novo structure prediction or out-of-distribution generalization. The optimal strategies
for downstream adaptation, such as fine-tuning protocols and representation pooling in extreme
resource-limited settings, also remain underexplored. Future research must not only extend these
efficiency paradigms to more diverse biological tasks but also systematically benchmark adaptation
strategies and develop even more scalable solutions through advances in optimization, quantization,
and architectural innovation.
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We anticipate that continued innovation in these areas, coupled with broader community engagement,
will be essential for unlocking the full potential of efficient pLMs and accelerating biological discovery.
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