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Abstract: To achieve shorter path length and lower repetition rate for robotic complete coverage path
planning, a complete-coverage path-planning algorithm based on transition probability and learning
perturbation operator (CCPP-TPLP) is proposed. Firstly, according to the adjacency information
between nodes, the distance matrix and transition probability matrix of the accessible grid are
established, and the optimal initialization path is generated by applying greedy strategy on the
transition probability matrix. Secondly, the population is divided into four subgroups, and different
degrees of learning perturbation operations are carried out on subgroups to update each path in the
population. CCPP-TPLP was tested against five algorithms in different map environments and in the
working map environment of electric tractors with height information. The results show that CCPP-
TPLP can optimize the selection of path nodes, reduce the total length and repetition rate of the path,
and significantly improve the planning efficiency and quality of complete coverage path planning.

Keywords: complete-coverage path-planning; transition probability; initialization strategy;
population hierarchy; perturbation and learning

1. Introduction

In recent years, with the rapid development of intelligent technology and the continuous
promotion of industrial wisdom upgrading, intelligent mobile robots have been widely used in more
and more fields, such as cargo handling, intelligent production, intelligent life, abnormal
environment detection, underwater operation, space exploration and so on [1].

Complete coverage path planning (CCPP) is a key research area in modern robotics, aiming to
enable mobile robots to traverse all locations in various environments efficiently. This technology is
widely used in multiple fields, such as cleaning robots, agricultural drones, equipment detection. For
cleaning robots, CCPP ensures that every area can be effectively cleaned, thus enhancing the user
experience. In agriculture, drones are required to cover crop areas for spraying and monitoring to
guarantee the healthy growth of crops. Additionally, exploration robots carrying out comprehensive
surveys in complex terrain need CCPP for efficient data collection. In these applications, the efficiency
and accuracy of path planning directly affect the realization of their functions.

CCPP aims to enable the mobile robot find a collision-free shortest path in a specific
environment, meanwhile, it should traverse the entire accessible working area to form a continuous
path that encompasses all accessible areas. Representative algorithms in CCPP include the
Boustrophedon method|2], the region decomposition method[3], the internal spiral coverage[4], the
template method[5], the intelligent optimization algorithm[6] and so on. In recent years, numerous
intelligent optimization algorithms have been extensively utilized to address the issue of CCPP,
especially by constructing a practical performance evaluation function to enhance coverage

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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efficiency. For example, Chen et al[7] proposed an adaptive position-update strategy based on detour
foraging and dynamic weights to adjust the weights according to changes in the adaptability of the
leadership roles, increasing the guiding role of the dominant individual and accelerating the overall
convergence speed of the algorithm. Qin et al[8] divided the target region into multiple balanced sub-
regions, and for narrow regions, they used geodesic distance instead of Eulerian distance in Voronoi
partitioning to reduce iterations for balanced partitioning by over one order of magnitude. They also
applied the Dijkstra algorithm to assign smaller weights to path costs when the geodesic direction
changes. Yan et al[9] used an improved fuzzy C-clustering algorithm to determine the UAV task area
and put forward an optimized particle swarm hybrid ant colony (PSOHAC) algorithm to achieves a
maximum improvement in balanced energy consumption efficiency for UAV cluster task search
planning. Muthugala et al.[10] put forward an online path planning approach based on the Glasius
Bio-inspired Neural network to enhance the energy efficiency and coverage effect of hull
maintenance robots. By introducing a comprehensive energy model and a dynamic tracking method,
this approach not only boosts the adaptability and energy efficiency in a dynamic environment but
also strengthens the global coverage capability. In literature [11] a parallel compact cuckoo search
algorithm is put forward for the three-dimensional path planning problem. The algorithm
significantly boosts the search speed by handling multiple search tasks in parallel, and the compact
search strategy narrows the search space to enhance the search accuracy. Lu et al.[12] proposed the
turn-minimizing multirobot spanning tree coverage star (TMSTC*) algorithm for the multi-robot
coverage path planning issue, presenting a path planning approach that minimizes the number of
turns. Its main novelty lies in dividing the map into "bricks" and constructing a minimum spanning
tree. The path is optimized through a greedy strategy to reduce turns, while taking the turn cost into
account for weight balancing. Liu et al.[13] came up with the improved heuristic mechanism ant
colony optimization (IHMACO), which introduces improved mechanisms in four aspects:
pheromone concentration, judgment mechanism, transfer strategy, and pheromone evaporation rate,
effectively reducing the number of turns and path length. Li et al.[14] raised a 2D adaptive cell
decomposition method, which strengthens the positive correlation between the obstacle density and
the closure of the map grid. They incorporated the consideration of obstacle distribution and grid
level into the bypass equation of the biologically informed neural networks (BINN) algorithm,
thereby enhancing the efficiency and effectiveness of the CCPP for the bulldozer. The PQ-RRT
proposed in [15] integrates the potential functions based RRT* (P-RRT*) and Quick-RRT* algorithms,
fully exploiting the advantages of both. It expands the range of parent vertices by considering the
parent of the new node's parent and employs this method in the reconnection operation, thereby
further enhancing the search efficiency and path quality of the algorithm.

Although the existing methods have addressed the CCPP issue of robots to some extent, there is
still considerable scope for improvement in terms of path length, path repetition rate, and algorithmic
efficiency. The mechanism of some algorithms is rather complex, which not only raises the
computational cost and implementation difficulty, but also causes the algorithm to encounter more
challenges as the complexity of the environment increases. Therefore, research into algorithms
featuring simple mechanisms, higher optimization efficiency, and better adaptability in different
environments of varying complexity has become an urgent requirement for current applications.

In response to the aforementioned problems, this paper proposes a complete-coverage path-
planning algorithm based on transition probability and learning perturbation operator (CCPP-TPLP)
to achieve efficient optimization within a concise algorithm framework. In the initialization stage of
the algorithm, a greedy initialization strategy based on transition probability is proposed to generate
high-quality initial solutions. The creation process of each solution takes both the adjacent properties
of the grid and the requirement of the shortest path distance into account, ensuring that each initial
solution is approximate optimal and laying a solid foundation for the subsequent optimization of the
algorithm. A learning perturbation operator is proposed for algorithm iteration, thereby enhancing
the diversity of the population and the convergence speed. Simulation results show that compared
with five representative optimization algorithms, CCPP-TPLP achieves the best effect of complete
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coverage path planning under various obstacle densities and map scales. In the CCPP problem of an
electric tractor in complex agricultural terrain, the complete coverage optimal path with the lowest
energy consumption, shortest path length, and lowest repetition rate can be acquired by CCPP-TPLP.

This paper is structured as follows: Section 1 presents the problem description of CCPP; Section
2 introduces the related distance calculation method; Section 3 describes the complete coverage path
planning method based on transfer probability and learning perturbation operator; Section 4
validates the effectiveness of the proposed algorithm in this paper through the ablation experiments,
algorithmic comparison experiments, and algorithmic simulation experiments in 3D maps of
motorized tractors; and Section 5 concludes with the summary and discussion.

2. Description of the Problem

CCPP pertains to obtaining the shortest path that traverses all areas except for obstacles within
a closed region. The commonly employed map construction methods include the grid method[16],
topological method[17] and geometric method[18]. Among them, grid maps possess duality and can
represent the occupancy of obstacles in the workspace, thus being widely utilized in robot path
planning. In this paper, the grid method is employed to quantize the robot's working environment
into several grids. The obstacles are represented by regular and complete grids, and two state values
of 0 and 1 are used to represent the open space grid and the obstacle grid respectively.

In the grid map, the size of the grid is set to the size of the robot's own coverage area. It is
assumed that once the robot passes through the center of the grid, the grid is regarded as having been
covered. The grid map consists of rows and columns. The row and column coordinates
corresponding to the i—th grid are denoted by (x,,y,), where i represents the sequence number

of the grid. Then the transformation relationship between i and grid coordinates is presented in Eq
@D
i=(y,-D)N+x, (1)

where N represents the number of grids contained in a column of the map. Let E={1,2,---,K}, and
T, denote the sets of subsets formed by picking s elements from the set E with replacement, which
s=1,2,--K.If the set C=EUT,, then the number of elements in C is K+s, and the total number
of complete permutations for all elements in C is (K +s)!. Let o, be a complete permutation of

allelementsin C.Itisknownthat we[lL2,--,(K+s)!]. X, representsa pathformed by connecting

o’u

the grids in o, sequentially. Then, the mathematical model of the CCPP problem can be expressed
as shown in Eq (2).

minF(XU“ ) )

where, F(X,, ) denotes the path length of the path X, . It can be seen that the smaller s is, the lower

the duplication rate of nodes in the path is.

3. Basic Theory

At present, the frequently employed distance calculation methods in the CCPP problem
comprise Euclidean algorithm[19], Manhattan distance algorithm[20] nearest neighbor
algorithm[21], Dijkstra algorithm[22], Floyd algorithm[23], and so forth. Among them, Euclidean
algorithm and nearest neighbor algorithm are employed to calculate the straight-line distance
between two points, regardless of the existence of obstacles. However, they do not give thought to
the existence of obstacles. Manhattan distance algorithm merely reflects on the actual total moving
distance from one point to another in the horizontal and vertical directions, without considering
diagonal movement and the presence of obstacles. Dijkstra algorithm is used to count the shortest
path from a single initial node to all other nodes, but its computational efficiency will decrease
significantly in grid maps with a large number of nodes, and may lead to falling into local optimum
in complex maps. Floyd algorithm can calculate the shortest distance between each node and is
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capable of handling obstacles. Therefore, in this paper, Floyd algorithm is utilized to compute the
shortest distance between grids.

Floyd algorithm is a classic algorithm for addressing the shortest path problem in weighted
networks, and its core lies in an idea of gradual approximation. By gradually incorporating
intermediate nodes between any two nodes, the initial direct path distance between the two nodes is
gradually extending to the path distance connected by multiple intermediate nodes, and the shortest
path is chosen and retained throughout the process, so as to obtain the shortest distance between the
two nodes. The basic steps are as follows:

(1) Initialize the distance matrix D
The distance matrix D=[d, ], is constructed, where K is the number of nodes in the
graph, and d,, denotes the distance from grid i to grid ;. If there is a direct edge connection

between i and j, 4,

L]

represents the weight of the edge. If there is no weight value, then 4, ; =1
. If there is no direct edge connecting i and j,then d,, = .Specifically, if i=j, then d,,=0.

(2) Update the distance matrix D
For each pair of grids i and j, and for each potential intermediate grid &, let & iterates
from 1 to K toupdate the shortest distance between grids i and ;. When the shortest distance

between i and ; can be attained via the intermediate node &, then d,; is updated, and the

update formula is Eq (3).

d,,=min{d, ;.d  +d, } i,jk=12,,K 3)

ij?
After the traversal and iteration of all nodes, the distance matrix D is updated, and 4, ;

represents the shortest path from node i tonode ;.

4. CCPP Method Based on Transition Probability and Learning Perturbation
Operator

4.1. Greedy Initialization Strategy Based on Transition Probability

In the path planning problem, if the population is randomly initialized, that is, a complete
coverage path is randomly generated, the length of the initial path may be long, and too many nodes
are visited repeatedly. Utilizing such a path as the initial one to participate in the subsequent iteration
will significantly reduce the search efficiency of the algorithm. If the length of the initial path is short,
the quality of the initial population can be improved. To this end, this paper proposes a greedy
initialization strategy based on transition probability. At first, the map is transformed into a grid map.
Then for all accessible grids, the shortest distance between any two grids is calculated by Floyd
algorithm. Finally, during the path initialization process, the subsequent access grids are selected one
by one from the starting grid. The grids closer to the current grid have higher probability of being
selected, thereby obtaining a short initial path.

The specific implementation procedures of the greedy initialization strategy based on transition
probability are as follows.

(1) State matrix and adjacency matrix

The map is converted into a grid map, and it is assumed that the processed map contains N * M
grids, as depicted in Figure 1(a), where the black grids represent obstacles and the white grids
represent accessible grids. The state matrix M, of the map is constructed based on whether there

is obstacle in the grid, as shown in Figure 1(b).
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@) ‘ (b)

Figure 1. Grid map and its state matrix. (a) Schematic of the map rasterization. (b)State matrix.

M, [n][m] represents the element located in row » and column m of the state matrix M
n=12---N, m=12---M . The state matrix M, is constructed by Eq (4).

sta 7

0, the accessible grid

1, the obstacle grid 4)

Msta [n][m]= {

Based on the state matrix M, , the adjacency matrix M, of the accessible grids is further

that is, there are X

sta 7
constructed. Suppose that there are K elements with a value of 0 in M,
accessible grids. The adjacency matrix M, with size of KxK needs to be established, where the
element located in row i and column ; of M, is denoted as M, [i][j](i=12---K, j=12---K)
and represents the adjacent relationship between grid i and grid ;. Suppose that the position
indexes of grid i and grid ; in the state matrix M, are (n,m,) and (n;,m,) respectively, the
Manhattan distance between grid i and grid ; is calculated by Eq (5) to determine their adjacent

relationship, then the adjacency matrix M, is constructed.

1, ‘ni—nj‘+‘mi—mj‘:l
M 4 [1][71=10;

oo, ‘ni—nj‘+‘mi—mj‘>1

ni_nf‘-i-‘mi_mj‘:o ®)

(2) Distance matrix and transition probability matrix
For all accessible grids, the adjacency matrix M, and Floyd algorithm are employed to

calculate the shortest distance between any two grids and obtain the distance matrix D, as shown in

Eq (6).
d1,1 dl,z d1,1<
O ©
dK,l dK,Z dK,K

Here, d,, represents the shortest distance between grid i and grid ;. Based on the distance

matrix D, the transition probability matrix P is defined as presented in Eq (7).

b P o Pk
po| i P T P %
Pxy Pxo 7 Prx

where p, represents the probability of transfer from grid i to grid ;, which is calculated in

accordance with Eq (8).

b= d_/l (8)
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where A is defined as a greedy factor. The smaller d,; is, the larger p,; is, and the higher the

probability that grid ;j will be selected when the next transfer grid is chosen from grid i .

(3) Population initialization of greedy strategy

Since there are K  accessible grids, the individual of creating population is
X =[x,,x,,"-,X,, ], which represents a path covering all accessible grids, and its arbitrary
dimension variable x, e[l, K] is the sequence number of accessible grids. x is the sequence

number of specified starting grid. To complete the individual initialization, set the degree of
greediness «, and generate the random number rand,.If rand <e,, grid j* isselected as x, in

accordance with Eq (9).

j*=arg£naxpx]‘j,j=1,2,...,K )
Otherwise, the cumulative sum probability of eachrow in P is computed, and a accessible grid

is chosen as x, through the roulette - wheel selection method.
According to the aforesaid method, the subsequent grid numbers are determined in turn to
complete the initialization of the individual. Populations are created based on the population size
and the dimensions of decision variables. For each individual initialization, random number rand,

is generated. If rand,<e,, an individual is generated based on the starting point and transition

probability matrix P, using the above-mentioned greedy strategy. Otherwise, each decision variable
is randomly generated to construct a random individual. By setting the degree of greediness «,, the

algorithm can strike a balance between the greedy strategy and the random strategy. If «, is low,

the algorithm is more inclined towards the greedy strategy, which is conducive to finding high-
quality solutions rapidly. While ¢, is high, the algorithm prefers random selection, which is

conducive to increasing the diversity of the population and avoiding premature convergence.

Through the greedy initialization strategy based on transition probability, a high-quality initial
population can be constructed simply and effectively. The creation process of each individual takes
into account the adjacent characteristics of grids and the requirement that the path length must be
the shortest, ensuring that each individual is an approximately optimal solution.

4.2. The Operation of Learning and Perturbation

To update the population, this paper proposes a learning perturbation operator to enhance the
diversity and convergence of the population and assist the algorithm in escaping the local optimum.
The objective function of CCPP is the shortest path length, and the main factor influencing the path
length is the selected sequence of accessible grids. When the selection order of the accessible grids
varies, it will result in obvious differences in the path length. The individuals are classified into
different subgroups based on their fitness. Subsequently, different degrees of learning or
perturbation strategies are employed for individuals in different subgroups to alter the sequence of
the accessible grid, thereby influencing the fitness value of each individual. The specific
implementation procedures are as follows.

(1) Hierarchical division of the population

The individuals within the population are managed in a hierarchical manner based on their
fitness values. This hierarchy can assist the algorithm in exploring the solution space more effectively,
enhance the search efficiency, and facilitate the maintenance of population diversity. In this paper,
the individuals within the population are sorted based on the fitness value from small to large, and
the individual possessing the best fitness value is classified into the first subgroup, namely,
POR ={X
and POP, . The proportion of the hierarchy can be set according to the need. Different update

sest } - The remaining individuals are categorized into three subgroups, namely POP,, POP,

strategies will be employed for individuals in different subgroups. Figure 2 presents a schematic
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illustration of the hierarchical division of the population, with different colors signifying different
subgroups.

Popullation

— N

Figure 2. Schematic illustration of population hierarchy division.

(2) Perturbation operation

Perturbation operation includes strong perturbation and weak perturbation. The aim of strong
perturbation is to cause individuals to undergo significant random changes, thereby encouraging
them to escape from the local optimal state as much as possible and explore a new solution space.
While the weak perturbation is intended to decelerate the convergence process of the individual to
the current optimum, thereby expecting to discover new and better solutions.

For POF,, because of its optimal fitness value, it has a strong guiding effect on the entire
population. To prevent the population from falling into the local optimum, the order of the accessible
grid of the individual in POP, is randomly adjusted to cause a significant change in its fitness value,
which is defined as the strong perturbation operation. Take Figure 3 as an example. Suppose that the
current individual is X, and the accessible grid index to be operated is & . Firstly, random number
rand, within the range of [1, K] is generated. Then the accessible grid indexed by rand, in X
and the accessible indexed by k& are swapped to complete the strong perturbation operation and
obtain a new individual X, . As depicted in Figure 3, the calculation of the fitness value of X
encompasses the shortest distance between grid 8 and grid 15, between grid 15 and grid 12, between
grid 14 and grid 7, as well as between grid 7 and grid 10. However, for the perturbed individual X,
, the above-mentioned four distances have transformed into the shortest distance between grid 8 and
grid 7, between grid 7 and grid 12, between grid 14 and grid 15, and between grid 15 and grid 10. It
can be observed that the strong perturbation operation alters the order of the accessible grids in the
original individual to the greatest extent, and it will affect the shortest path among the four grids,
thus having the greatest impact on the individual’s fitness value.

k rands
The current individual X 1 5 6 8 . 12114 7 |10 | 4

The new individual 1 5 6 8 721 121 14 . 10 | 4
Xnew

Figure 3. Strong perturbation operation.

For POP,, which is the farthest from the current optimum, in order to slow down its

convergence towards the current optimum and thereby have the opportunity to discover new and
more optimal solutions, it is operated with weak perturbation. Take Figure 4 as an example. Suppose
that the current individual is X, and the accessible grid index to be operated is % . Generate a
random number rand, between [I, K], all the accessible grids between the position of the index
rand, in X and the position of the index k are reordered in reverse order to complete the weak

perturbation operation, so as to obtain anew individual X, . InFigure4, the fitness value calculation
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of X encompasses the shortest distances between grid 8 and grid 15, as well as between grid 7 and
grid 10. However, for X, , the above two distances turn into the shortest distance between grid 8

new /

and grid 7, and between grid 15 and grid 10. It can be observed that the change in the order of the
accessible grid in the original individual resulting from the weak perturbation operation is less
significant than that from the strong perturbation operation, for it only leads to the alteration of two
distances. Therefore, the impact on the individual fitness value is minor.

k rands

The current individual X 15618 . 2147 (10 4

The new individual 11516 8|7 -. 10| 4
Xnew

Figure 4. Weak perturbation operation.

(3) Learning operation

Learning operation includes learning from the optimal individual and learning from the random
individual. For POP,, to better maintain excellent genes, it should learn from the best individual

X,. - However, for POP,, to slow down its convergence to the current optimum, it is made to learn

from random individuals within the population. Learning is accomplished through gene fragment
learning, the specific learning operation is depicted in Figure 5. Suppose that the current individual is

X, the individual being learned is X the index of the accessible grid to be operated in X is

learned /

k , whose grid sequence number is x,.In X locate index ¢, whose grid sequence number is

learned /

also x,, select the grid sequence number x,,.,., .., whose index is c¢+1 in X,..., and then
return to the X to find the index £, , whose grid sequence numberis x,,,., .., in X.Finally,

all the accessible grids in X between the position of the index £, and the position of the index

earn

k arereordered inreverse order, suchthat x, and x, ~ become adjacentaccessible gridsin X,

. It can be observed that through the learning operation, the individual can acquire part of the gene

fragment from the learning object. If the learning objectis X, ,, the learned gene fragment might be

best 7
an outstanding gene combination. And if the learning object is a random individual, the diversity of
the individual can be enhanced.

¢ c+l
The individual being learned |5 4’ g 1 ’ 7 4 ‘ 5 -i
Xlearned
kleurn k

The current individual X | 1 5 ‘ 6 8 . 1210 7 . 4
The new individual | s ’ g - 71wl B
Xnew

Figure 5. Learning operation.
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4.3. Steps of the Algorithm

The implementation steps of the complete-coverage path-planning algorithm based on
transition probability and learning perturbation operator are as follows.
Step 1: Define the iteration number 7=1, the maximum iteration number ¢

max /.

the population
size Num, the degree of greediness ¢,, and the greedy factor A.Obtain the map information, set
the starting and ending points of the path, and calculate the state matrix M, of the map by means
of Eq (4). The adjacency matrix M, and distance matrix D of the map are respectively calculated

by Egs (5) and (6). The transition probability matrix D for each accessible grid transferring to other
accessible grids is computed by Eq (7).

Step 2: Create an individual X, and utilize the specified starting grid number as the first
element of X, ie. x . Generate the random number rand,.If rand,<c,, then employ the greedy

initialization strategy based on transition probability to generate the individual and proceed to Step
3. Otherwise, the individual X is randomly generated and proceed to Step 4.
Step 3: Generate the random number rand,. If rand, <a,, the next node in X is generated

according to the transition probability matrix P and Eq (9). Otherwise, the cumulative sum
probability of each row of P is calculated, and an accessible grid is selected as the next node in X
by using the roulette - wheel selection method.

Step 4: Determine whether the individual X encompasses all accessible grids. If yes, go to Step
5. Otherwise, execute Step 3.

Step 5: Repair population to guarantee that the starting grids and end grids of all individuals
meet the path requirements. If the population size reaches Num, Step 6 will be executed. If not, Step
2 will be executed and new individuals will be generated.

Step6:1f 1>t , go to Step 9. Otherwise, go to Step 7.

Step 7: Arrange the fitness of all individuals in descending order and divide the population into

max

four subgroups according to this order. Different learning or perturbation operations are carried out
for individuals in different subgroups to generate a new population.

Step 8: Repair each individual within the population to guarantee that the starting grids and
end grids of all individuals meet the path requirements. Increase the number of iterations ¢ by one
and return to Step 6.

Step 9: Output the optimal solution X,,, of the population.

best

5. Simulation Experiments and Analysis

In this section, the experimental setup is initially presented, including the experimental
environment, the selected comparison algorithm, the settings of algorithm parameters, and the
evaluation metrics. Then, the greedy initialization strategy based on the transition probability and
the learning perturbation operator are verified independently. Finally, the algorithm is compared
with representative optimization algorithms such as ant colony optimization(ACO)[24], grey wolf
optimizer(GWO)[25], student psychology based optimization(SPBO)[26], discrete just another yet
another(DJAYA)[27], and discrete tree seed algorithm(DTSA)[28] under different environment to
verify their optimization effect on CCPP problem. In addition, to verify the algorithm's capacity in
solving practical issues, the CCPP problem of an electric tractor is addressed, and the solution
outcomes of each algorithm are compared and analyzed.

5.1. Experimental Setting

(1) Experimental environment

All experiments in this paper are performed on a PC with AMD Ryzen 7 5800H with Radeon
Graphics, 3.20 GHz CPU, 16GB RAM, and Windows 11 MATLAB R2021b.
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(2) Comparing algorithm parameter settings

The parameter settings of the five algorithms selected in the comparative experiment are shown
in Table 1.

(3) Evaluation indicators

The performance of the algorithm is evaluated by means of four indicators: coverage rate,
coverage repeat rate, path length, and convergence iteration.
a. Coverage rate

The coverage rate depicts the percentage of the area covered by the path. Since the entire map
includes accessible area and obstacle area, the algorithm aims to achieve complete coverage of the
accessible grid. The entire accessible area, the area covered by the path, and the obstacle area are
and §

obstacle 7

respectively denoted as S, S

pth? and the coverage rate ( Cr ) is defined by Eq (10).

Cr= Span 100%
I"—S_—X 0 (10)

obstacle

b. Coverage repeat rate

The coverage repeat rate is the ratio of the area repeatedly covered in the path to the area of the
accessible region. The definition formula of the regional repetition rate Crr is given in Eq (11).

S
Crr =—2—x100% (11)

 Pobstacle

c. Path length
The path length is also the objective function defined in Section 1.
d. Convergence iteration

Convergence iteration refers to the number of iterations when the algorithm converges.

Table 1. Parameter settings of the comparison algorithms.

Algorithm Parameter setting

The pheromone heuristic factor « is 1, the distance
ACO heuristic factor f is 5, the pheromone heuristic factor is 0.1,
and the pheromone enhancement factor is 100

GWO The convergence factor a decreases linearly from 2 to 0

SPBO The ratio of population distribution is 1:1:1:1
ST1=0.5, ST2=0.5, the probability of swap

transformation swap=0.2, the probability of shift

DJAVA transformation shift=0.5, the probability of symmetry
transformation symmetry= 0.3
ST1=0.5, ST2=0.5, the probability of swap
DTSA transformation swap=0.2, the probability of shift

transformation shift=0.5, the probability of symmetry
transformation symmetry= 0.3
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5.2. Validation and Analysis of the Ablation Experiments

5.2.1. Verification of the Greedy Initialization Strategy Based on Transition Probability

In order to verify the effectiveness of the greedy initialization strategy based on transition
probability, the random initialization strategy and the initialization strategy of ACO are selected for
comparison experiments. Set up a 20m * 20m two-dimensional map with 42 grids serving as obstacles
for the experiment. The initialization paths are respectively generated by the random initialization
strategy, the initialization strategy of ACO, and the greedy initialization strategy based on transition
probability. The population size is set at 50, and each strategy is independently repeated 30 times for
the experiment. In each experiment, the length of the shortest path in the initial population generated
by each strategy is recorded. The 30 path results for each strategy are averaged to obtain the results
in Table 2. The optimal paths generated by the three strategies are respectively plotted in Figure 6,
where the green circle indicates the starting grid, the red circle represents the ending grid, the red
arrow indicates the moving direction, the white grid represents the accessible grid, the yellow grid
represents the repeated passing grids, and the black grid represents the obstacle grid. From Figure 6
and Table 2, the following conclusions can be drawn:

(1) As can be seen from Figure 6 that the paths generated by the random initialization strategy
and the initialization strategy of ACO contain numerous repeated passing grids, while the paths
obtained by the greedy initialization strategy based on transition probability have relatively few
repeated passing grids. This is because the random initialization strategy fails to take into account
the relationship between grids, and the path constructed by it has strong randomness.. Although
ACO employs pheromone to guide the search process, in the initialization phase, the pheromone
concentration on all paths is initialized to the same value, leading to a lack of guidance in the initial
search. The greedy initialization strategy based on transition probability presented in this paper takes
into account both the adjacent properties of grids and the requirement of the shortest path distance
when selecting accessible grids, ensuring that the generated path length is shorter.

(2) It is observable from Table 2 that the initial paths of the three strategies can achieve 100%
coverage. Among them, the greedy initialization strategy based on transition probability performs
best in terms of path length and Crr, and can obtain initial paths with higher quality. Moreover, the
standard deviation of the 30 paths obtained by this strategy is the smallest, indicating that this
strategy demonstrates higher stability and reliability in multiple experiments.

In summary, through the comparative analysis of the three initialization strategies, the greedy
initialization strategy based on transition probability demonstrates superior performance in terms of
path length and Crr . This strategy effectively utilizes the distance and adjacency information
between grids, significantly optimizes the selection of grids, reduces the repetition of paths, and
thereby enhances the efficiency and quality of initial path planning.
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Figure 6. Initial paths generated by the three strategies. (a) Random initialization strategy. (b) Initialization

strategy of ACO. (c) Greedy initialization strategy based on transition probability.

Table 2. Results of initial paths of the three strategies.

Crr Path length
Strategy Cr
Mean Std. Mean  Std.
Random initialization strategy 100%  47.54% 0.036 4606.70 54.935
Initialization strategy of ACO 100%  37.57% 0.023 529.50 14.795
Greedy initialization strategy based on transition 100%  9.99% 0008 418.60 7.950

probability

5.2.2. Validation of the Learning Perturbation Operation

In order to validate the effectiveness of the learning perturbation operation, ACO and SPBO
algorithms are chosen for comparative experiments. Set up a 20m * 20m two-dimensional map with
42 grids serving as obstacles for the experiment. The initial population is generated by the ACO
algorithm, and the population size is 50. For the same initial population, ACO, SPBO, and learning
perturbation operation strategy are respectively employed to update the population, and the number
of update iterations is 100 as the same. Each strategy is independently repeated 20 times for the
experiment. In each experiment, the length of the shortest path in the population updated by each
strategy is recorded. The 20 path results for each strategy are averaged to obtain the results in Table
3. The optimal paths obtained by the three strategies are plotted in Figure 7 respectively.

Figure 7 and Table 3 display that the proposed learning perturbation operation has more
advantages for population renewal. For the same initial population, through the update of the
learning perturbation operation, the population with lowest Crr and path length can be obtained,
and the standard deviation results of the above two indicators are the smallest, indicating that the
stability of this strategy is also better.

Table 3. Statistical results of population updated by the three strategies.

Crr Path length
Strategy Cr
Mean Std. Mean Std.
ACO 100% 22.99% 0.017 451.20 4.467
SPBO 100% 22.04% 0.021 441.80 7.194

Learning perturbation operation 100% 10.60% 0.011 395.30 4.219
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Figure 7. Optimal paths obtained by the three strategies. (a)The update strategy of ACO. (b)The update strategy
of SPBO. (c)The update strategy of learning perturbation.

5.2.3. Impact of Parameters on Algorithm Performance

In order to verify the impact of the greedy factor 4 and the degree of greediness «, on the

performance of the CCPP-TPLP algorithm, set up a 20m * 20m two-dimensional map with 42 grids
serving as obstacles for the experiment. The population size is 50, and the number of iterations is 600.
Each experiment of parameter value is independently repeated 10 times. The results of the optimal
path found by the CCPP-TPLP algorithm under different parameter values are recorded and the 10
path results obtained under each parameter value are averaged to obtain the results in Table 4 and

Table 5.
Table 4. The experimental results of different greedy factor 4 when ¢, =1.

1 Cr Crr Path length
Mean Std. Mean Std.
0.1 100% 4.30% 0.015 372.40 5.317
0.5 100% 4.39% 0.012 372.80 4.341
1 100% 4.42% 0.007 372.20 2.743
2 100% 3.85% 0.013 371.40 4.812
5 100% 3.29% 0.006 368.80 2.348
10 100% 3.91% 0.011 371.20 4.341
20 100% 3.77% 0.011 370.60 2.503
50 100% 3.88% 0.012 371.00 4.028

As shown in Table 4, when the value of the greedy factor A4 gradually rises from 0.1 to 5, Crr
and path length decrease, so the optimization performance of the CCPP-TPLP algorithm improves.
Nevertheless, if the value of 1 exceeds 5 and continues to increase, the algorithm may fall into local
optimality and miss the global optimal solution. When the value of 1 is 5, the algorithm performs
best in terms of Crr and path length, and has the best stability. Therefore, the value of the greedy
factor A is set to 5 in the subsequent experiments.
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Table 5. The experimental results of different degree of greediness «, when S =5.
Crr Path length

a, Cr
Mean Std. Mean Std.
0.5 100% 7.21% 0.017 383.20 5.750
0.6 100% 6.56% 0.015 381.40 5.502
0.7 100% 6.68% 0.016 381.00 5.598
0.8 100% 5.31% 0.009 376.00 3.399
0.9 100% 4.41% 0.013 372.80 4.733
1 100% 3.30% 0.006 368.80 2.348

The results presented in Table 5 indicate that as the greediness degree «, increases, both Crr
and the path length decrease, so the optimization performance of the algorithm improves. When «,

is1,both Crr and the path length reach their minimum values, indicating that the optimal path can
be found under the highest of degree of greediness and the optimization performance is the most
stable. Therefore, the value of ¢, is set to 1 in the subsequent experiments.

5.2.4. Impact of Population Hierarchical Division Ratio on Algorithm Performance

In order to verify the impact of the population hierarchical division ratio on CCPP-TPLP's
performance, set up a 20m*20m two-dimensional map with 42 grids serving as obstacles for the
experiment, and the population size is 50 and the number of iterations is 600. The population is
divided into four subgroups, among which the first subgroup POPF, is the optimal individual and is
a single individual. Thus, the influence of the division ratios of the other three subgroups on the
performance of the algorithm is mainly examined. The population is divided by adopting different
division ratios respectively, and the experiment is independently repeated 10 times for each division
ratio. The results of the optimal path found by the CCPP-TPLP algorithm under different division
ratios are recorded and the 10 path results obtained under each division ratio are averaged to obtain
the results in Table 6.

Table 6. Experimental results under different division ratios.

Crr Path length
Division Ratio Cr
Mean Std. Mean Std.
0.5:1.5:3 100% 2.63% 0.009 366.20 3.327
1:1:1 100% 2.46% 0.007 365.80 2.394
1:2:1 100% 2.51% 0.007 366.00 2.494
1:2:2 100% 1.84% 0.006 363.60 2.271
2:1:1 100% 1.62% 0.008 372.80 4.341
2:1:2 100% 1.62% 0.009 362.80 3.327
2:2:1 100% 1.50% 0.008 362.40 2.836
2.5:1.5:1 100% 2.49% 0.012 366.00 4.320

It can be observed from Table 6 that the population hierarchical division ratio has a minor
influence on the path length. When the division ratio is 2:2:1, Crr is the lowest and the path length
is also the lowest. In the subsequent experiments, the population hierarchical division ratio of the
three subgroups is set as 2:2:1.
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5.3. Comparative Experimental Results and Analysis of CCPP-TPLP
5.3.1. Map Environment
Table 7. Parameters of four map environments.
tity of di t
Map environment Map size Proportion of accessible Area Quantity of discrete
obstacles
Environment I 20m*20m 89.50% 3
Environment II 30m*30m 90.00% 7
Environment III 36m*36m 87.50% 11
Environment IV 40m*40m 81.56% 29

To comprehensively assess the performance of the CCPP-TPLP in diverse environments, four
grid maps with different sizes and complexities are devised, whose complexity is characterized by
three aspects: the map size, the proportion of accessible area, and the number of discrete obstacles.
The proportion of accessible area represents the ratio of the number of accessible grids to the total
number of grids in the entire map. The quantity of discrete obstacles represents the number of
independent obstacles shown on the map. The specific parameters of the map environment are
presented in Table 7, and the schematic diagrams of the maps are shown in Figure 8.
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Figure 8. The schematic diagrams of four maps. (a)Environment I. (b)Environment II. (c)Environment IIIL

(d)Environment IV.

5.3.2. Experimental Results and Analysis

In order to validate the performance of the CCPP-TPLP algorithm proposed in this paper in path
planning, the CCPP-TPLP algorithm along with ACO, GWO, SPBO, DJAYA, and DTSA algorithms
are respectively tested in four grid maps. The population size is 50, and the number of iterations is
600. Each experiment of different algorithms is independently repeated 10 times. Figure 9-Figure 12,
respectively present the optimal path obtained by each algorithm in environment I, environment I,
environment III, and environment IV. The convergence curves of each algorithm in the four map
environments are shown in Figure 13.

From Figure 9-Figure 12 and Table 8, the following conclusions can be drawn:
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(1) The CCPP-TPLP algorithm demonstrates significant advantages in the two indicators of Crr
and path length. Specifically, in comparison with other algorithms, Crr of the CCPP-TPLP
algorithm is reduced by 1.14% ~16.26% and the path length is reduced by 1.18% ~15.75% in
environment I. In environmentII, Crr of the CCPP-TPLP algorithm is decreased by 3.25%~22.99%,
and the path length is reduced by 3.16%~20.29%. In environment III, Crr of the CCPP-TPLP
algorithm is reduced by 3.75%~24.86%, and the path length is decreased by 4.68%~22.91%. In
environment IV, Crr of the CCPP-TPLP algorithm is decreased by 4.35%~23.07%, and the path
length is reduced by 4.54% ~ 22.23%. As the complexity of the environment increases, the
performance advantages of the CCPP-TPLP algorithm become more evident.

(2) As shown in Figure 13, both the convergence speed and convergence accuracy of the CCPP-
TPLP algorithm are superior to those of the other five comparison algorithms.
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Figure 9. Optimal path obtained by each algorithm in environment I. (a) Optimal path of ACO. (b) Optimal path of
GWO. (c) Optimal path of SPBO (d) Optimal path of DJAYA. (e) Optimal path of DTSA. (f) Optimal path of CCPP-
TPLP.
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Figure 12. Optimal path obtained by each algorithm in environment IV. (a) Optimal path of ACO. (b) Optimal
path of GWO. (c) Optimal path of SPBO. (d) Optimal path of DJAYA. (e) Optimal path of DTSA. (f) Optimal path

of CCPP-TPLP.

Table 8. Experimental results of each algorithm in four map environments.
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Map . Crr Path length Co-nvergence
Environment Algorithm cr fteration
Mean Std. Mean Std. Mean
ACO 100%  19.05%  0.032  435.60 12.322 433.40
GWO 100%  3.93%  0.014 371.40 5.064 494.40
Environment I SPBO 100%  8.10%  0.016  386.00 5.586 567.00
DJAYA 100% 11.98% 0.025  391.20 12.218 457.40
DTSA 100%  6.96%  0.021  371.80 4.050 398.90
CCPP-TPLP 100%  2.79%  0.007  367.00 2.366 312.30
ACO 100% 25.90%  0.028 1044.60 19.323 280.90
GWO 100%  6.16%  0.011  859.80 10.042 543.80
Environment I SPBO 100% 11.85% 0.012  906.00 10.284 572.80
DJAYA 100% 11.56% 0.018  896.50 18.368 495.60
DTSA 100%  8.75%  0.021  882.60 17.640 507.80
CCPP-TPLP  100% 2.91% 0.005 832.60 4115 457.50
ACO 100% 28.29%  0.008 1505.80 11.980 275.70
GWO 100%  7.18%  0.015 1217.80 19.966 559.00
Environment SPBO 100% 11.85%  0.012  906.00 10.284 568.80
1II DJAYA 100% 11.56% 0.018  896.50 18.368 472.10
DTSA 100%  8.75%  0.021  882.60 17.640 500.90
CCPP-TPLP 100%  2.91%  0.005  832.60 4115 456.60
ACO 100%  28.74%  0.012 1710.60  9.800 503.50
GWO 100%  10.02%  0.060 1393.46  16.400 580.20
Environment SPBO 100% 16.91% 0.010 1479.40 13.500 592.10
v DJAYA 100%  13.56% 0.016 144750 21.246 434.60
DTSA 100%  11.82%  0.008  1403.90 19.445 550.20
CCPP-TPLP 100%  5.67%  0.005 1330.20 7.083 510.90
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Figure 13. Convergence curves of each algorithm in four map environments. (a) Environment I. (b) Environment
II. (c) Environment III. (d) Environment IV.

5.4. CCPP Problem of Electric Tractor

Literature [29] takes the three-dimensional path space as the research object, uses the grid
method to store the height information of the three-dimensional path, and combines the rectangular
coordinate method and the sequence number method to construct the 2.5-dimensional working
environment model of agricultural electric tractor. The composite fitness function is constructed by
weighting the flat driving path length and the total height difference. For this model, the CCPP-TPLP
algorithm and the five algorithms, i.e. ACO, GWO, SPBO, DJAYA, and DTSA, are respectively
employed for optimization.

5.4.1. Settings of Height Information in the Map

Any point on the tractor’s operation path can be expressed as discrete coordinates (x,,y,,z,),
where z, contains height information. In the rasterized two-dimensional plane model of the tractor
working environment, height information z, is set for each grid and stored in a corresponding two-

dimensional matrix. The tractor working environment generated in literature [29] is adopted, as
shown in Figure 14.
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Figure 14. Height information of the map.

5.4.2. Fitness Function

The fitness function fully considers the energy consumption constraint, which is mainly related
to the flat driving path length, the number of turns, and the total total elevation difference. The details
are as follows

The relationship between the length of the flat driving path length s and energy consumption
component @, is characterized as Eq (12),

o, = Fcosas (12)

Among them, the definitions of each variable are presented in Eqs (13), (14) and (15)

K
5= =5 + (-0 (13)
i=1
F =umgcosa (14)
a=arctan%(i=l,2,-~]<) (15)

where m represents the mass of the tractor, g indicates the gravitational acceleration, «
signifies the slope, 4 expresses the friction coefficient, 4 denotes the height value of the grid i,

and d symbolizes the coordinate distance between two adjacent grids.
The relationship between the total height difference and the energy consumption component
w, is defined as Eq (16).

K
@, =mgsiny_|h —h_|| (16)
i=1

During the turning process of the tractor, the turning time can be used to indicate the turning
consumption of the tractor, and the turning time is directly proportional to the number of turns.
Therefore, the tractor’s turning energy consumption can be indicated by the number of turns. The
relationship between the the number of turns 7, and the energy consumption component @, can

be expressed by Eq (17).
@, =0T, 17)

Among them, Q isthe energy consumed in one turn , which is calculated by Eqgs (18) and (19).
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o=Ul, (18)
rd
t,=—

= 19)

where # represents the time of one turn, U indicates the voltage of the tractor, /, indicates the

current consumed by the tractor in one turn, and v represents the speed of the tractor during
turning.
In summary, the total energy consumption of tractor driving can be expressed as Eq (20).

W=a+o,+o, (20)
On this basis, the fitness function of the optimization model can be gained by Eq (21).

f(X)= 1 (21)

0,0 + 0,0, + 0,0,

Among them, @, + @, + @, =1, it can be observed that the greater the value of the fitness function is,

the lower the total energy consumption of the tractor will be.

5.4.3. Experimental Results and Analysis

In the experiment, the population size is 50 and the number of iterations is 600, m=0.5kg ,

u=025 135) g=98m/s" d=lm v=08m/s U=462V 1, =04Ih 3 @=05 =025 =025 5,
Each experiment of different algorithms is independently repeated 20 times. The tractor is capable of
traveling only in the four directions: forward, backward, left, and right. The results of 20 repeated

independent experiments are statistically presented in Table 9, and the optimal paths obtained by
each algorithm are shown in Figure 15.

Table 9. Experimental results of each algorithm in the tractor operation environment map.

Algorithm or Crr Path length Fitness value
Mean Std. Mean Std. Mean Std.
ACO 100% 17.65% 0.029 302.50 6.771 3.777*103 7.225%10°
GWO 100% 5.79% 0.013 267.70 3.389 3.951*10-3 7.323*105
SPBO 100% 7.18% 0.015 273.80 3.833 3.876*103 6.854*10-
DJAYA 100% 21.44% 0.049 288.30 10.183 4.070%103 1.986*105
DTSA 100% 15.22% 0.031 293.90 8.813 4.135*103 8.124*10°

CCPP-TPLP 100% 4.74% 0.009 265.90 2.382 4.155*10- 3.091*10
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Figure 15. Optimal path obtained by each algorithm in the tractor working map. (a) Optimal path of ACO. (b)

Optimal path of GWO. (c) Optimal path of SPBO. (d) Optimal path of DJAYA. (e) Optimal path of DTSA. (f)
Optimal path of CCPP-TPLP.

It can be seen from Table 9 and Figure 15. that the CCPP-TPLP algorithm proposed in this paper
has achieved the best results in terms of Crr, path length and fitness value. Particularly in terms of
Crr, the CCPP-TPLP algorithm is significantly lower than other algorithms, only 4.74%, which is
reduced by 1.05%~12.91% compared with other algorithms. The experimental results indicate that
the CCPP-TPLP algorithm can acquire the optimal complete coverage path with the lowest energy
consumption, the shortest flat driving path length, and the lowest Crr in the CCPP problems of
electric tractors.

6. Summary and discussion

In this paper, a complete-coverage path-planning algorithm based on transition probability and
learning perturbation operator (CCPP-TPLP) is proposed. Its innovation is demonstrated in two
aspects: One is the greedy initialization strategy based on transition probability, and the other is the
learning perturbation operation for achieving population update. The shortest distance between each
pair of accessible grids in the map is computed, and the grid closer to the current grid is selected as
the next path node by employing the greedy strategy, thereby generating higher-quality initial path.
On the basis of fitness value ranking, the individuals are classified into different subgroups, and
different learning or perturbation operations are adopted for different subgroup to accomplish the
update of population. Through ablation experiments, it is confirmed that the greedy initialization
strategy based on transition probability enhances the efficiency and quality of initial path planning
in terms of path length and Crr . Through the update of learning perturbation operation, a
population with a lower Crr and shorter path length can be obtained. Compare with five
representative algorithms, CCPP-TPLP demonstrates obvious advantages in the path planning in
various map environments. Tests are carried out on the multi-objective weighted CCPP problem of
electric tractor, and the findings indicate that CCPP-TPLP could obtain the optimal complete
coverage path with the lowest energy consumption, the shortest path length, and the lowest
repetition rate. A future research direction lies in exploring the potential of the proposed
algorithm in multi-robot cooperative path planning issues, with the aim of achieving parallel
computing in a multi-map environment to simultaneously find the optimal path for multiple
robots.
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