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Abstract: Stylistic emulation of historical building facades, especially for complex and data-scarce
styles such as Krakow's Eclecticism, poses significant challenges for Al This study develops a
methodological framework for a deeper, typologically-informed "transcoding” of style beyond mere
visual mimicry, which is crucial for heritage preservation, urban renewal, and digital heritage. We
integrate architectural typology with Low-Rank Adaptation (LoRA) fine-tuning of a Stable Diffusion
model, specifically the FLUX architecture. The process includes typology-guided image dataset
preparation (selection and hierarchical labeling) and precise control of LoRA training parameters like
learning rate and loss value. The typologically-guided LoRA-tuned model significantly outperforms
baseline models in quantitative metrics—FID, LPIPS, and PSNR—and in expert qualitative
evaluations regarding realism and stylistic accuracy. LoRA's loss value and application weights
effectively balance creative variation and faithful style emulation.This synergy enables data-efficient,
typology-grounded stylistic emulation and highlights Al's potential as a creative partner for nuanced
reinterpretation. Nonetheless, deeper semantic understanding and robust 3D inference present
ongoing challenges for future research.

Keywords: diffusion model; low-rank adaptation model; stylistic emulation; contrastive language-
Image pretraining; urban renewal; architectural typology; typological transcoding

1. Introduction

1.1. Historical Value and Digital Transformation

In established heritage conservation charters and guidelines, the principles of 'authenticity’ and
legibility of interventions' are recognized as fundamental tenets.These principles are of paramount
importance and are widely adopted to guide practices in the specialized field of architectural heritage
preservation and historic urban regeneration. Consequently, these guiding principles generally
discourage the adoption of direct stylistic mimicry or verbatim replication in the repair and
retrofitting of historic buildings. Such an approach is typically discouraged to prevent the distortion
of historical narratives, the conflation of different historical layers, and any compromise to the
integrity of the original fabric [1-3]. Nevertheless, in complex real - world scenarios, architectural
entities often suffer severe deterioration due to various factors, putting historic urban landscapes at
significant risk of extensive degradation. Under these circumstances, an overly rigid adherence to the
aforementioned principles may, paradoxically, exacerbate the loss of historic cities and their
architectural character if the 'completeness' or 'integrity’ of the built heritage cannot be effectively
maintained or restored. In these challenging contexts, a controlled and well - informed 'stylistic
restoration' or 'emulation’ of historic building facades—coupled with the flexible adaptation and
reinterpretation of their constituent elements—can emerge as a more proactive and efficacious
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strategic approach. This is particularly pertinent during the preliminary design phases, where the
rapid evaluation of multiple design alternatives is crucial [4-9]. This approach transcends mere
mechanical reproduction. Instead, it relies on a creative 'typological transcoding' [10,11] rooted in a
profound understanding of historical architecture and rigorous typological analysis. The primary
aim is to perpetuate the stylistic characteristics and genius loci of specific historical periods. This
concept is exemplified by Viollet - le - Duc's restoration of Notre - Dame Cathedral. His work
demonstrated that, at times, restoration may necessitate a degree of 'idealized' creation. Such creation,
based on a thorough comprehension of the original style's essence, seeks to reinstate the building's
'complete state' as perceived for that particular historical era [12-14].

The scholarly investigation of 'stylistic emulation' in historic building facades extends far beyond
the mere replication of existing structures.This concept broadly encompasses the nuanced and
variously focused stylistic reinterpretation of historic facades, predicated upon a thorough
comprehension of their architectural typology. Such reinterpretation may involve, inter alia: (i) the
extraction of critical facade elements—such as composition, proportion, decorative motifs, and
material texture—for application within novel design contexts; (ii) the flexible adaptation and
recombination of historical prototypes to meet contemporary functional requirements; and (iii)
innovative 're - creation' that respects the core principles of the original style. This broader view of
'stylistic emulation' is particularly relevant during the conceptual and schematic phases of
architectural design. It facilitates the rapid generation and comparative analysis of multiple design
proposals imbued with specific historical stylistic connotations, thereby enabling more effective
design development and refinement. This approach is particularly valuable inprojects seeking to
balance historicalcontinuity with modern functional demandsamid rapid urbanization.

Furthermore, the research and application of 'stylistic emulation' for historic architecture offers
a value proposition that extends beyond the traditional domains of physical heritage conservation
and historic urban area regeneration. The advent and proliferation of digital technologies have
significantly broadened its application landscape. For instance, in the digital reconstruction of
historical and cultural exhibitions, 'stylistic emulation’ techniques facilitate the virtual recreation of
lost or severely damaged architectural settings, providing the public immersive historical
experiences. Similarly, in the development of virtual engines and game environments, architectural
style generation predicated on 'stylistic emulation’ enables the efficient construction of virtual worlds
imbued with specific historical atmospheres and a high degree of verisimilitude, substantially
enriching the content and experiential quality of digital entertainment and virtual tourism [15-20].
Consequently, the pursuit of efficient, precise, and interpretable methodologies for 'stylistic
emulation' of historic building facades not only holds tangible significance for the stewardship of the
tangible built environment but also provides critical technological support for the advancement of
emerging fields such as digital humanities and virtual heritage.

1.2. From GANS to Diffusion: Technological Foundations from a Typological Perspective

Traditionally, conventional methodologies for emulating architectural facades have
predominantly relied on aesthetic intuition and accumulated empirical knowledge. The effectiveness
of these processes was often constrained by the cognitive frameworks and technical repertoires of
individual architects, lacking robust mechanisms for efficient information processing and feedback.
This limitation manifested as insufficient dynamic adaptability and information handling
capabilities, potentially resulting in mechanistic and monolithic stylistic reproductions that struggled
to achieve fluid and meaningful stylistic innovation. However, with the advent of substantially
enhanced computational power ushering in the era of Artificial Intelligence (Al), interdisciplinary
research has increasingly integrated Al technologies into architectural practice. This convergence has
progressively addressed the inherent shortcomings of traditional workflows, thereby infusing new
potentialities into the evolution of architectural research methodologies (See Figure 1).
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Figure 1. The development process of deep learning research.Image source: drawn by the author.

The rapid advancements in deep learning technologies, particularly Generative Artificial
Intelligence (Generative Al) models such as Generative Adversarial Networks (GANs) [21] and
Diffusion Models [22], have introduced transformative potential within the architectural design
domain. Intriguingly, the developmental trajectories and core operational mechanisms of these
technologies resonate, to a certain extent, with the fundamental principles of Architectural Typology.
This resonance lies in the shared conceptual approach of learning from extensive corpuses of existing
built precedents, abstracting underlying principles, and subsequently generating novel forms and
spaces that follow specific generative rules and established typological frameworks.

Early generative models, such as those predicated on Boltzmann Machines (RBMs) [23,24] and
Convolutional Neural Network (CNN) architectures [25], exhibited considerable limitations
concerning the quality, resolution, and diversity of generated imagery. The advent of Generative
Adversarial Networks (GANs) marked a significant inflection point in this trajectory. Leveraging a
unique adversarial training mechanism involving a generator and a discriminator, GANs
demonstrated the capacity to learn and emulate the latent distributions of complex data, thereby
facilitating the synthesis of highly photorealistic images. While subsequent advancements, including
Wasserstein GANs (WGANSs) [26], BigGANs [27], DCGANSs [28], ProGANSs [29], and CycleGANs
[30], partially mitigated persistent challenges such as mode collapse and training instability, the
direct applicability of GANSs to text - to - image generation tasks remains constrained. This is
particularly evident in scenarios demanding precise control and nuanced semantic understanding,
where their inherent stochasticity and pronounced sensitivity to input conditioning impede their
straightforward deployment for the emulation of intricate architectural styles. Bachl and Ferreira
(2019) employed GANSs to learn architectural features of major cities and subsequently generate
images of non - existent buildings. However, their findings revealed that both standard GAN and
Conditional GAN (CGAN) struggled to effectively capture and reproduce the complex geometric
configurations, diverse stylistic attributes, and fine - grained details characteristic of built
environments. Consequently, these frameworks were deemed unsuitable for direct application in
such generative tasks [31].

Diffusion Models emerged alongside the evolution of GANs. These models learn data
distributions through an iterative noising-denoising' process. This approach has shown superior
performance in generating high-quality and diverse imagery. It surpasses GANSs in certain generative
capabilities [32]. Later optimizations, including Denoising Diffusion Probabilistic Models (DDPMs)
[33] and Latent Diffusion Models (LDMs) [34], further improved these models. These advancements
not only enhanced generation efficiency but also offered more adaptable frameworks for conditional
image synthesis. However, conventional Diffusion Models face challenges without explicit semantic
guidance. Their outputs can sometimes lack relevance and controllability. This limitation is especially
evident when generating images from intricate textual descriptions or specific stylistic directives.

Against this backdrop, the advent of multimodal learning models was pivotal. Particularly,
Contrastive Language - Image Pretraining (CLIP) [35] emerged as a crucial bridge, facilitating a
deeper integration between Al generative technologies and typological principles. CLIP models
undergo contrastive learning on extensive datasets of image-text pairs. This training enables them to
map both images and text into a shared embedding space. As a result, these models can comprehend
the semantic correlations between visual and textual information. Such robust semantic alignment
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capabilities are critical. They allow the models to guide the image generation process with greater
precision based on textual prompts. This is essential for tasks requiring the generation of images that
conform to specific architectural styles or typological concepts. Furthermore, technologies like
ControlNet [36] have advanced this control. By incorporating supplementary conditional inputs,
such as edge maps, pose skeletons, or depth maps, ControlNet significantly enhances the fine -
grained manipulation of image layout and structure. This, in turn, reduces the stochasticity inherent
in the generation process.

Deep learning's optimization and evolution represents a progressive approximation towards an
intrinsic encoding and decoding of visual information (See Figures 2 and 3). This encompasses
adversarial image generation with GANs, diffusion processes in Diffusion Models, and CLIP's
semantic matching capabilities. Throughout this developmental trajectory, models incrementally
learn to encode latent structural regularities within data. During the generation phase, they
effectively reconstruct images that closely emulate the data distribution of real-world examples. This
continuous endeavor to approach the essence of an image and discern its inherent generative
principles parallels the objectives of architectural typology. Architectural typology strives to abstract
immutable 'prototypes' (Types) from extensive collections of built precedents, identifying their core
organizational logic and variable constituent elements.

Indeed, a methodological similarity exists between deep learning - based image generation and
the study and application of 'Typology' in architecture. Both disciplines aim to unveil the underlying
structures and generative mechanisms of objects. Architectural typology, through the systematic
analysis of numerous built examples, distills fundamental spatial organizations, functional logics,
and formal principles. This process culminates in an understanding of the 'grammar’ governing
specific architectural types or styles. Analogously, data - driven deep learning models apprehend the
‘encoding’ of the visual world by learning statistical regularities and structural patterns from images.
In the generation phase, both fields leverage these encoded rules for decoding and re-creation.
Architects utilize typological knowledge as 'prototypes,' adapting it to specific contexts to generate
novel design variations. Similarly, Al models, guided by their learned rules, generate new images
from latent representations, demonstrating an innovative aspect akin to typological transcoding.
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Figure 2. Design Mechanisms Predicated on Architectural Typology. (Adapted from Rossi, The Architecture of
the City, which describes design mechanisms rooted in architectural typology).Image source: drawn by the

author.
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Supervision" by Radford et al.). Image source: drawn by the author.

Although technologies like CLIP and ControlNet now allow models to follow textual prompts
and structural guides with far greater fidelity, they also introduce a new challenge: how to adapt
these large-scale foundation models efficiently for domain-specific tasks.A key aspect is how to
integrate user-defined stylistic preferences or object concepts into these models. Full fine-tuning of
large-scale models to learn such specific concepts presents significant challenges. This approach is
computationally expensive, demanding substantial GPU resources and considerable time. Moreover,
it generates large model files, complicating the storage and dissemination of multiple customized
versions. To address these limitations, Low-Rank Adaptation (LoRA) technology emerged [37]
providing a solution.LoRA has since been widely adopted to fine-tune large models across various
tasks, including image generation. It complements the semantic guidance from CLIP and the
structural control offered by ControlNet. Together, these technologies form a critical toolkit within
current mainstream text-to-image generation. This toolkit enables highly controllable, high-fidelity,
and personalized image generation. Consequently, it has further propelled the application and
popularization of Al-Generated Content (AIGC) in fields such as artistic creation and design
assistance.

Therefore, the evolution of deep learning models in image generation can be conceptualized as
a computational, data-driven 'typological exploration'. Models, through large-scale learning,
discover and encode the latent 'typological' regularities and generative rules of the visual world. This
discovery process often occurs 'bottom-up,' particularly via contrastive learning techniques like CLIP,
which involve continuous matching and training on extensive databases. The introduction of
technologies such as LoRA and ControlNet then enhances this automated 'typological system'. These
additions enhance its semantic understanding and capacity for external constraints. Consequently,
the system can more precisely generate instances 'on-demand' that conform to specific 'types' or
'stylistic variations'.

1.3. Phenomenological Emulation via Deep Learning

As previously discussed, deep learning technologies, particularly GANs and Diffusion Models,
have achieved significant advancements in image generation. These technologies have also
demonstrated considerable potential for interdisciplinary applications across various architectural
research domains. Furthermore, some studies have even encoded architectural constraints as
graphical structures. This approach has been applied, for instance, in the study of architectural floor
plans, scholars have employed GANs to recognize and generate architectural drawings. These
enabled the automated generation of floor plans based on typological norms [38]; networks learn and
store the typological features of floor plans [39](See Figure 4). Regarding facade style transfer, the
continuous optimization of Diffusion Models has led to their progressive application, alongside
GAN:s, in addressing complex facade design challenges. Researchers have explored various technical
approaches for specific tasks. For instance, CycleGAN has been employed for extracting historic
urban block architectural styles and integrating them with new designs [40]. Similarly, CGAN has
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been utilized for generating facades of rural and small-town buildings [41]. More recent
investigations have yielded positive outcomes. These studies compare the performance of different
models, such as GANs versus Diffusion Models, in facade style transfer. They also focus on
leveraging technologies like ControlNet and LoRA to enhance image generation accuracy and
stylistic control [42,43].
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Figure 4. Automated generation of floor plans based on typological norms(adapted from "Architectural
Drawings Recognition and Generation through Machine Learning" by Hao Zheng et al.). Image source: drawn
by the author.

This tendency to prioritize form over structure and appearance over substance is a prevalent
limitation for many current generative Al applications in architecture. Consequently, even if Al-
generated facades are visually captivating and stylistically accurate, considering them as complete
architectural proposals can be problematic. Such proposals are likely to exhibit severe deficiencies in
terms of intrinsic architectural rationality. This rationality encompasses aspects like the harmonious
proportionality of components, the logical coherence of structural systems, and the sequential
integrity of spatial narratives. These shortcomings highlight a critical bottleneck in the ongoing
evolution of Al technology. Specifically, it underscores the challenge in transitioning from purely
'data-driven’ generation to a more profound 'knowledge/principle-driven' paradigm. The core issue
lies in an insufficient grasp and adherence to the essential characteristics of the subject matter.

Within this context, architectural typology presents a critical perspective and methodology to
address such limitations. Typology's scope extends beyond formal diversity alone. It also prioritizes
uncovering the underlying structural cores that inform formal expressions, alongside the
organizational paradigms and generative logics tailored to specific requirements. This approach—
encompassing the abstraction, analysis, and deduction of ‘Types’ —has optimized Al-driven content
generation. Consequently, it enhances both the quality and conceptual depth of the resultant outputs
[37-43]. Therefore, profoundly integrating typological principles into the Al generation pipeline
holds paramount importance. This integration is particularly crucial across key stages such as
training data construction, model fine-tuning, and output evaluation. Such an approach enables Al
models to transcend superficial stylistic mimicry. More significantly, it facilitates their capacity to
learn and apply fundamental architectural principles and underlying design logics. Ultimately, this
leads to the generation of architectural proposals that are not only stylistically congruent but also
rational.

1.4. Research Objectives and Contributions

Informed by the recognized necessity of 'stylistic emulation' for historic architecture, the current
trajectory and inherent limitations of Al generative technologies, and the prospective guiding
influence of typological theory, this research aims to formulate a methodological framework. This
framework aims to integrate architectural typological principles with advanced deep learning
models—specifically Low-Rank Adaptation (LoRA) fine-tuning and Diffusion Models—to facilitate
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more efficacious and precise emulation, alongside innovative re-creation, of historic building facades.
The focus is particularly on architecturally intricate and data-scarce styles, exemplified by Krakow's
Eclecticism. The central objective of this research is to advance Al technology beyond mere visual
‘phenomenological emulation." We aim to guide its development towards a more profound 'stylistic
transcoding' and 'typological re-creation'. This evolution incorporates the intrinsic logic and
principles of architecture. Ultimately, this endeavor seeks to provide technological support of greater
practical utility and theoretical depth for historic preservation, urban regeneration, and associated
digital cultural heritage domains.

To achieve this objective, this study will focus on addressing the following key research
questions:

How can architectural typological principles be systematically integrated into training dataset
construction and the LoRA fine-tuning process for Al models, to enhance the accuracy and
controllability of stylistic emulation for historic building facades? This encompasses determining
how to perform image selection and label optimization informed by typological knowledge, as well
as how to devise LoRA fine-tuning strategies to capture the essential characteristics of specific styles.

Compared to standard Diffusion Models or generic fine-tuning approaches, how does this
typologically-guided LoRA fine-tuning technique perform in emulating historic architectural styles
with data scarcity and stylistic complexity, such as Krakow's Eclecticism? Specifically, what are its
performance characteristics in terms of realism, stylistic accuracy, and detail reproduction,as well as
what are its discernible advantages and limitations?

Does this methodology enable AI models to learn and reproduce typological features beyond
superficial visual resemblance, capturing deeper characteristics like compositional principles,
proportional relationships, and the organizational logic of key decorative motifs? How can
quantitative metrics (e.g., evaluation benchmarks from computer vision) be effectively combined
with qualitative assessments (e.g., subjective evaluations by architectural experts) to thoroughly
evaluate the efficacy of this 'deeper-level' stylistic learning?

Addressing the aforementioned research questions, the primary contributions of this paper are
multifaceted. At the theoretical level, we explore and elucidate the foundational principles and
inherent logic behind integrating architectural typological theory with Al image generation
technologies. Particular emphasis is placed on LoRA and Diffusion Models. This investigation offers
a novel theoretical perspective for Al-assisted architectural design and the digital preservation of
historical heritage. Furthermore, it underscores a paradigm shift from 'phenomenological emulation'
towards 'typological transcoding'. Methodologically, this paper proposes and validates a
comprehensive workflow. This workflow systematically integrates typological analysis into both the
training and application of LoRA models. It encompasses several key components: (i) dataset
construction guided by typological principles, including image selection and label optimization; (ii)
LoRA model fine-tuning strategies tailored for specific historical styles; and (iii) an evaluation
framework for generated outputs that synthesizes quantitative metrics with qualitative assessments.
At the practical level, using Krakow's Eclectic building facades as a specific case study, we
successfully demonstrated the efficacy of our proposed methodology. This was particularly evident
when addressing architecturally complex and data-scarce styles. Our approach not only generated
high-quality 'stylistic emulation' images but also provided an open-source LoRA model. This model
is specifically trained on a dataset of Krakow's Eclectic facades (available at
https://civitai.com/models/1576307?modelVersionld=1783732). It is intended to facilitate further
experimentation and testing by subsequent researchers. Furthermore, we explored the potential
application of this methodology in several domains. These include rapid design evaluation in
preliminary architectural design, digital reconstruction for historical and cultural exhibitions, and the
development of virtual engine and game environments. This exploration offers novel perspectives
and opens new possibilities for applying Al technology more broadly within architecture and
associated cultural heritage fields.
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2. Materials and Methods

2.1. Case-Study Selection: Krakow’s Eclectic Facades

The selection of the research subject for this study involved careful deliberation, culminating in
the choice of Eclectic building facades from the Krakow region of Poland (See Figure 5) as the
primary research specimens. This decision was guided by several factors (See Figure 6), the first of
which is the subject's relative non-mainstreamness. Unlike globally prominent and extensively
documented architectural styles such as Gothic, Baroque, or Modernism, Krakow's Eclecticism is
comparatively underrepresented within global architectural scholarship and computer vision. This
is particularly significant in the specific context of stylistic transfer applications. Such a characteristic
is advantageous for evaluating our proposed methodology's efficacy with minimal interference from
pre-existing, large-scale datasets or established analytical precedents. Furthermore, the profound
historical and cultural value of these buildings is self-evident. Serving as crucial symbols for late 19th
and early 20th-century urban modernization and cultural renaissance, these buildings embody a rich
heritage. Their study, therefore, holds dual significance for both academic research and the

preservation of cultural heritage. Finally, selecting this challenging case serves a strategic purpose:
to validate the generalizability and potential applicability of our proposed methodology. If this
framework can successfully address such a demanding 'hard case,' its broader applicability and
robustness will be strongly demonstrated. This would be particularly true when dealing with
architectural types characterized by more abundant data or clearer stylistic definitions. Such an
outcome would, in turn, augur well for its future prospects in Al-assisted architectural design and
related fields.

non-mainstreamness

Significant Historical
and Cultural Value

three major challenges

data scarcity

Krakow eclectic architecture |

‘ deconstructive complexity

The generalizability and potential application potential of the validation method

Figure 6. Considerations in the Selection of Research Subjects.

To ensure the focused nature and representativeness of the research samples, this study further
concentrated its investigation on Krakéw's Wesola District. This district served as the specific area
for on-site surveys and image acquisition (See Figure 7). The Wesola District constitutes a significant
component of the buffer zone for the Historic Centre of Krakow, a UNESCO World Heritage site
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inscribed in 1978. It covers an area of approximately 49.9 hectares. The Wesota District has
remarkably preserved the urban planning fabric of the 19th century. The Wesota District has
remarkably preserved the 19th-century urban planning fabric and retains the evolutionary trajectory
of architectural technologies from that era. The area features a high concentration of Eclectic-style
residential mansions. Many of these are listed in historical monument registers and inventories of
ancient sites. Furthermore, its geographical proximity to the historic Old Town complex of Krakow
is notable. Collectively, these factors provide this study with an abundant, concentrated, and high-
quality corpus of empirical research material.
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Figure 7. Research Plot Map. Image source: drawn by the author; Base map source: Google Maps.

2.2. Image Data Acquisition and Preprocessing

To ensure that the subsequent LoORA model can accurately learn and effectively transfer the core
typological features of Krakow's Eclectic building facades, this study adopted a rigorous and
meticulous strategy during the image data acquisition and preprocessing phase.

2.2.1. Initial Collection and Screening Criteria for Image Samples

Initially, this research gathered approximately 450 images depicting Eclectic-style residential
mansions in the Krakow region. This was achieved through a combination of on-site surveys and
multi-source web data collection. However, the quality of these initially collected images was
heterogeneous, and their stylistic representations also exhibited noticeable variations. To ensure the
quality and representativeness of the dataset for model training, the research team implemented a
rigorous screening process. This process incorporated classification and evaluation criteria grounded
in typological theory (See Figure 8). A primary principle of this screening was to ensure style
consistency. Priority was given to facade images that clearly and consistently displayed the
characteristic features of mainstream Krakow's Eclecticism. This selection aimed to mitigate
suboptimal generation outcomes potentially caused by stylistic drift. Concurrently, image clarity was
deemed essential. Selected images were required to possess high resolution and optimal illumination.
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Obscured or blurry images were excluded to ensure the model could acquire clear and complete
visual information. Thirdly, the prominence of characteristic features was another critical
consideration. Preference was given to images that clearly showcased key typological attributes of
the style, such as symmetrical tripartite facade compositions and abundant decorative elements.
Finally, achieving multi-perspective coverage was also pursued. We aimed to include diverse
viewpoints of the buildings whenever possible. This included standard elevation views and street-
level perspectives exhibiting some degree of perspectival distortion, thereby assisting the model in
comprehensively learning three-dimensional morphological characteristics.

data processing \ Object analysis and data processing methods ‘

The principles of

T
- . The main characteristics
[ Style consistency }_— of Eclectic style
Collect-
\ Image clarity ‘ ing and The difference in ceiling height
> ggfar;re‘% should be controlled within a

i reasonable range

‘ Prominent features ‘ images t g
Multi-perspective The proportion of components
coverage should be well-coordinated

Y
Nine buildings with significant characteristics of eclecticism in
terms of height, scale, and architectural features (450 images)

!

248 images of _ 150 facade
facade data from images of resi-
Filtering historical residen- dential buildings
tial buildings in in the Krakow
the Krakéw his- | uniqueness | historic district as
toric district training data

Figure 8. Image Screening Process. Image source: drawn by the author.

Following multiple rounds of screening and optimization informed by the aforementioned
typological analysis, the research team refined the initial collection of 450 images. This process
yielded 248 images that met the preliminary selection criteria. To further enhance the dataset's quality
and specificity, the team identified thirty representative buildings from these 248 images. These
selected buildings were considered most emblematic of the core typological characteristics —in terms
of volume, constituent elements, and structural form—of Eclectic residential mansions in the region.
From these thirty edifices, a final selection of 150 high-quality, highly representative images was
curated. This curated set formed the foundational dataset for training the LoRA model.

The primary objective of this rigorous data screening and optimization process was to ensure
that the model could effectively learn the most essential and archetypal typological features of
Krakow's Eclectic building facades. This meticulous preparation not only established a solid data
foundation for subsequent Al-driven stylistic emulation. It also provided a reliable repository of
stylistic prototypes to inform further innovative design explorations.

2.2.2. Typology-Based Label Generation and Keyword Optimisation

This study employed a hybrid strategy, combining automated annotation with expert correction,
to construct a semantic labeling system for architectural facade images intended for LoRA model
training. Initially, a pretrained CLIP model was utilized for the preliminary semantic annotation of
the image dataset. This process generated descriptive labels encompassing foundational information
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such as architectural type, stylistic features, and material composition. However, the labels
automatically generated by the CLIP model were often quite broad. They frequently lacked precise
descriptions of the detailed features characteristic of architectural facades.For example, during the
initial annotation of Krakow's Eclectic building facades, the CLIP model predominantly generated
generic labels. These included terms such as 'building,' 'facade,’ and 'architecture." However, it
struggled to accurately capture more specialized and fine-grained descriptions. Such descriptions are
crucial for reflecting the specific typological affiliations and hybridized stylistic characteristics of
these facades. Examples of these missed details include Neoclassical tripartite composition,' 'Gothic
Revival pointed-arch windows,"' and 'Baroque broken pediments.'

To address this limitation inherent in automated annotation, this study engaged a team of
architectural experts. Their role was to manually correct and supplement the initial labels generated
by the CLIP model. The core of this correction process involved the systematic review and refinement
of labels, guided by the intellectual framework of architectural typology.Drawing upon their
expertise in architectural typology, the expert team meticulously revised, refined, and augmented the
label content. This ensured that the labels accurately reflected the unique characteristics of the
building facades shown in the images. During this process, the experts not only rectified erroneous
or ambiguous labels generated by the CLIP model but also supplemented these with a substantial
number of missing architectural terminologies. Examples include terms such as 'sandstone plinth’,
'Corinthian order', and 'molding'. This comprehensive revision significantly enhanced the accuracy
and professional relevance of the labels, as illustrated in Figure 9 (See Figure 9).

Label categories Label content

Architectural krakow eclectic historic architecture
attributes

krakow wesola street

rectangular windows

Facade white frames
composition

ornate balconies

red door

the fagade as a whole belongs to the
classicalsegmental composition

the centre window edge belongs to
Detailed style the classical hill wall
classification

the middle belongs to the classical colours

neo-renaissance elements

the centre uses a palladian triangular
shamrockand three arch coupons

composition

relationships a row of multi-story buildings

Image perspective| looking up at the buildings

surrounded by lush greenery and trees

Impurity labels the sky is blue with some clouds

the street is lined with parked cars and bicycles

Figure 9. Image-Label Diagram. Image source: Self-drawn and self-photographed by the author.
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During the optimization of the keyword dataset, particular emphasis was placed on the
hierarchical analysis of architectural facade images. This hierarchical analytical approach is based on
fundamental principles of architectural typology. It conceptualizes the building facade as an organic
entity composed of multiple constituent levels. Progressing from macroscopic to microscopic scales,
this analysis sequentially addresses aspects such as overall architectural type, stylistic composition,
color and material palettes, compositional forms, and detailed elements. Specifically, the label
classification system developed in this study primarily encompasses the following tiers:

Architectural Attributes-Label categories: e.g., historical residences, public buildings;

Facade Composition: e.g., Krakow eclectic architecture (predominantly neo-renaissance style),
ornate balconies, Baroque-style window decoration ;

Material Attributes: e.g., red brick, beige stone, white window frames;

Facade Composition: e.g., symmetrical composition, classical segmental composition, a row of
multi-story buildings;

Detailed Style Classification: e.g., orders (column types), cornices, pediments, moldings,
spandrels (pier/window infill), corbels.

Image Perspective: e.g., front elevation, low-angle view (looking up at the buildings).

Impurity Labels : e.g., the sky is blue with some clouds, the street is lined with parked cars and
bicycles.

The application of hierarchical analysis is clearly illustrated by examining the facades of two
residential mansions: Wesota No. 8 and Wesota No. 15 (See Figure 10). Both edifices employ a tripartite
compositional structure, a common feature in Classical architecture. This structure divides the facade into
three distinct sections: the base, the main body, and the entablature (or cornice/eaves section). Regarding
the compositional elements of the main body, both buildings exhibit a clear inter-story correspondence.
Specifically, windows are vertically aligned across stories, often with identical dimensions. Fenestration
patterns become progressively more intricate from the ground-floor openings to the attic, while decorative
mouldings also grow correspondingly elaborate [44]. However, while both edifices share commonalities
in overall composition, gable ornamentation, and facade coloration that align with Classical styles, they
also exhibit a fusion of disparate stylistic influences in their localized details. For instance, the central roof
section of Wesota No. 8 displays distinct Gothic stylistic characteristics. In contrast, Wesota No. 15 features
a ground-floor entrance lintel incorporating Baroque-style broken triangular and segmental pediments.
This hierarchical analytical approach is instrumental in enabling the model to achieve a more profound
comprehension of the facade's constituent elements and stylistic attributes. Consequently, this enhances
both the accuracy and stylistic consistency of the generated images. Through iterative cycles of automated
annotation, manual expert correction, and dataset optimization, this study curated 150 high-quality
image-label pairs. These pairs formed the foundational data for the subsequent LoRA model training.

Architectural

Color Materials composition detailed elements
case study

il

Krakéw, Wesol 5 Red brick Three-part
B reeideney | Three primary | Gray-green stone|  symmetrical Archvault | Relief decoration | Walltop floral Gothic roof
8, residence colors yellowstone. | composition decoration

R ——g an

il

il

P Classical Baroque-style
belgestone segmented broken Semi-circular

arched window

Krakow, Wesola
15, residence and wood and symmetrical |  triangular floral
style decoration

Two main colors Classical gable Classical cornice

Figure 10. Taking the Facade Analysis of the Mansion as an Example. Image source: Self-drawn and self-

photographed by the author.
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This hierarchically clear and comprehensively detailed labeling system is designed with a
primary aim: to furnish Al models with richer and more structured learning information. The
intention is to enable these models to transcend rudimentary pixel-level mimicry. Ultimately, this
facilitates a more profound understanding and faithful reproduction of the stylistic essence inherent
in historic architecture.

2.3. Typological Transcoding Framework

To achieve precise 'stylistic emulation’ and innovative re-creation of Krakow's Eclectic building
facades, this study formulated a typological transcoding framework. This framework integrates Low-
Rank Adaptation (LoRA) fine-tuning techniques with a Stable Diffusion Model. The central principle
of this framework is the application of typological analysis to guide both the training and inference
processes of the Al model. The aim is to enable the model not merely to mimic visual phenomenology
but also to comprehend and reproduce the underlying logic and compositional principles inherent
in the architectural style.

2.3.1. Brief Introduction to Diffusion Models and LoRA Technology

Diffusion Models

Diffusion Models represent a potent class of deep generative models. Their operational principle
can be summarized as a bidirectional process. The initial phase is the 'forward diffusion process.’ This
involves the incremental addition of Gaussian noise to the original data (See Figure 11) until it fully
transforms into pure noise. Subsequently, the crucial 'reverse denoising process' takes place. In this
phase, the model learns to progressively remove noise, starting from pure noise, to ultimately
reconstruct a clear new sample that aligns with the original data distribution [22,33,34]; Separately,
the Stable Diffusion Model, an advanced iteration of diffusion models, operates by performing
diffusion and denoising processes within a latent space. This operation is coupled with textual
conditional guidance, often facilitated by models like CLIP [35]. Consequently, Stable Diffusion
achieves exceptional performance in text-to-image generation tasks. It is capable of producing high-
resolution, highly detailed, and semantically pertinent images. Its robust generative capabilities and
responsiveness to textual prompts make it an ideal foundational model for the stylistic transfer tasks
investigated in this study.

Noise 0 Noise 1 Noise 2 Noise 3

y

Xn

Repeat for T times

Figure 11. The operational principle of Diffusion Models, illustrating the forward noising process and the reverse
denoising process. Image source: Self-drawn and self-photographed by the author.
Low-Rank Adaptation

Although pretrained large-scale diffusion models, such as Stable Diffusion, possess robust
general-purpose generative capabilities, their direct application to specific, nuanced styles often falls
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short. For instance, when applied to styles like Krakow's Eclectic architecture, achieving desired
levels of precision and stylistic consistency can be challenging. Furthermore, full fine-tuning of these
entire large models is computationally prohibitive. It also carries a significant risk of overfitting,
particularly when training data is scarce. LoORA technology [37] offers an efficient solution to these
challenges. Its core principle involves injecting trainable, low-rank matrices alongside key layers of a
pretrained model. These key layers include the weight matrices within attention mechanisms (See
Figure 12). During fine-tuning process, only the parameters of these low-rank matrices are updated.
The main weights of the pretrained model remain frozen.

T:significantly reduce the number
of trainable parameters
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d= Indicates the dimension of input, hidden layer, or output features
r= Controls the size of the low-rank matrix, balancing model complexity and parameter count.

h= Indicates the number of parallel processing heads in Transformer, used for extracting features
from multiple perspectives.
W=Represents the linear transformation matrix from input features to output features in the model.

The LoRA mechanism achieves efficient fine-tuning by decomposing the weight matrix into two
low-rank matrices (dimensionality reduction) and then recombining them (dimensionality expansion),
reducing the number of parameters while retaining the model's adaptability.

Figure 12. LoRA System Diagram (Adapted from "LoRA: LOW-RANK ADAPTATION OF LARGE LANGUAGE
MODELS" by Edward J. Hu et al.). Image source: Self-drawn and self-photographed by the author.

2.3.2. LoRA Model Training Workflow and Key Parameter Regulation

The training workflow for the LoRA model, specifically tailored for Krakow's Eclectic
architectural style in this study, is illustrated in Figure 13 (See Figure 13). This workflow leverages
the previously optimized image-label dataset. It employs a Stable Diffusion model —with FLUX
selected as the foundational model architecture in this research—as its pretrained base.

AT ]
e Exre
| i
‘ Training samples (image set) }-—‘-{ Epach |
} LORA2 Model [—|
Base model: FLUX large model Bitch,Size
I
v
| Model mergin, ‘, }Modelnam' Model train LORA3 Model ] Loss value

save N step

Fine-tuning model: LORA
LORAN Model |—

Select the LoRA model based on the goodness of fit according to the loss value
Figure 13. LoRA Training Workflow. Image source: drawn by the author.

During the training process, the meticulous adjustment of the following key hyperparameters is
crucial for ensuring that the model effectively learns and generates high-quality, stylistically
consistent facade images:
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Learning Rate: This hyperparameter directly dictates the step size for model weight updates
during training. While an excessively high learning rate can destabilize training or cause divergence,
an overly low rate significantly prolongs training and risks entrapment in local optima. Consistent
with common LoRA fine-tuning practices and prioritizing model stability, this study explored and
set learning rates within a relatively narrow range (e.g., le-4 to le-5). This strategy aimed to
effectively capture the nuanced characteristics of the target style while ensuring stable convergence
[45].

Total Training Steps: This parameter depends on the image count, total training epochs,
repetitions per image, and batch size. It directly correlates with the depth of the model's learning
from the training data. When training on complex styles such as Krakow's Eclecticism, achieving a
balance between underfitting and overfitting is paramount [46-48]. Underfitting occurs when the
model fails to adequately learn stylistic elements, whereas overfitting involves excessive
memorization of training sample details, thereby impairing generalization capabilities. Insufficient
training steps can result in generated facades lacking typical stylistic details. Conversely, An
excessive number of steps may lead the model to merely reproduce specific buildings from the
training set, limiting its flexible application in novel design contexts. Therefore, a critical aspect of
parameter tuning in this study involves judiciously planning the total training steps. This is coupled
with the subsequent selection of optimal model checkpoints based on rigorous evaluation.

Loss Value Monitoring: The loss value is a metric quantifying the discrepancy between the
model's predictions and the ground truth data. It directly reflects the model's training efficacy.
During training, a diminishing loss value typically indicates that the model's predictions are aligning
more closely with actual observations. Consequently, the monitoring and optimization of the loss
value are linked to the model's learning efficiency and the quality of the generated images. For
architectural style generation tasks, particularly in rendering the detailed nuances of Krakow's
Eclecticism, optimizing the loss value is crucial. This ensures that the model capture the fine-grained
characteristics of the architectural style, facilitating the generation of more realistic and precise design
imagery.

Systematic adjustment and experimentation with the aforementioned key parameters aimed to
identify the optimal training configuration (Table 1). This configuration was sought to enable the
LoRA model to efficiently and accurately learn the stylistic characteristics of Krakow's Eclectic
architecture. For this study, LoRA model fine-tuning was performed on the previously described
dataset of 150 image-label pairs. The FLUX architecture was used as the foundational model for this
training, which was executed on an NVIDIA RTX 4090 GPU with 24GB of VRAM. Key training
hyperparameters were configured as follows: Epochs = 20, Batch Size = 4, and Learning Rate = le-4.
The entire training process spanned 17 hours, yielding 20 LoRA models, each with a file size of 584
MB.

Table 1. FLUX-LoRA Training Parameter Table.

Model-train-type pretrained-model AE model t5xx1 model
flux-lora flux1-dev.safetensors ae.sft t5xx1 fpl6.safetensors
clip-1 timestep sampling model prediction type Loss-type
Clip-l.safetensors sigmoid raw 12
resolution save precision Epochs Batch Size
1024,1024 bfl6 20 4
GPU equipped Learning Rate unet Learning Rate Text-encoder

Learning Rate
NVIDIA RTX 4090 le-4 5e-4 le-5
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2.3.3. The Guiding Role of Typological Theory in Training and Inference Processes

Relying solely on the intrinsic learning capabilities of Al models and the adjustment of the
aforementioned technical parameters may still prove insufficient to fully overcome the limitations of
‘Phenomenological emulation'. Therefore, this study underscores the critical importance of
integrating architectural typological thought as a consistent guiding force. This integration is
emphasized throughout the entire training and inference pipeline of the LoRA model.

During the training data preparation phase, as detailed in Section 2.2, typological principles
guided both image selection and label construction. Image selection aimed to ensure stylistic
consistency and feature typicality. Label construction focused on hierarchical and structured
organization, identifying aspects such as architectural type, stylistic composition, compositional
forms, and key elements. This structured approach provided the model with learning material richer
in both structural and semantic information. Upon entering the LoRA model fine-tuning phase,
although LoRA predominantly learns visual features, high-quality, typologically-informed labels can
indirectly steer the model. These labels guide its attention towards visual patterns associated with
specific typological concepts. For instance, by emphasizing labels such as 'tripartite composition,' the
model may, during its learning process, focus more on the vertical organizational principles of the
facade.

During the inference (image generation) phase, users can guide the model's generation trajectory
through meticulously designed textual prompts. These prompts are deliberately imbued with
typological concepts. Finally, in the result evaluation and iteration phase, subjective assessments by
architectural experts are critical, complementing quantitative metrics from computer vision. These
experts evaluate the generated outputs from a typological perspective, rather than focusing solely on
superficial visual resemblance. They assess whether the results conform to the intrinsic logic,
compositional principles, and cultural connotations (or significations) of the specific (or target) style,
rather than relying solely on visual similarity. This feedback, grounded in typological knowledge,
can inform the iterative refinement of the model or adjustments to the prompts.

In this manner, the present study endeavors to construct a framework that deeply integrates Al
generation with typological theory (See Figure 14). The overarching aim is to enable Al not merely to
'render accurately' but, more crucially, to 'think correctly' in an architectural sense. Consequently,
this approach seeks to achieve a higher echelon of intelligence and creativity in both the 'stylistic
emulation' and re-creation of historic architectural styles.
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Figure 14. Research Workflow Framework. Image source: Self-drawn and self-photographed by the author.
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3. Results and Analysis

This chapter present and analyze in detail the experimental results obtained through the
methodological framework proposed in this study. Initially, we investigate how key parameters of
the LoRA model—specifically the loss value (LOSS) and application weights—influence the
generation outcomes for Krakow's Eclectic building facade styles. Subsequently, a comparative
analysis, both quantitative and qualitative, is conducted. This analysis evaluates the performance of
the proposed typologically-guided and LoRA-fine-tuned Al model against several baseline models.
These baselines include standard Stable Diffusion 3.5 and an unfine-tuned FLUX model, specifically
within the context of stylistic emulation tasks.

3.1. Influence of LoORA Model Parameters on Stylistic Generation Outcomes

Throughout the training and application phases of LoRA models, two pivotal parameters
emerge: the loss value during the training stage and the LoRA weight applied during the inference
stage. These parameters collectively exert a significant influence on both the accuracy and diversity
of the stylistic attributes in the generated images.

LoRA Loss and Weight Tuning for Style Transfer

Training a LoRA model is fundamentally a learning endeavor wherein the model's proficiency
in capturing a target historical style—Krakow's Eclecticism in this instance —typically enhances with
an increasing number of training epochs. This enhancement is generally paralleled by a steady
decline in the training loss value (LOSS), with lower LOSS values indicating a better fit of the model
to the training data. Simultaneously, during inference for image generation, the applied LoRA weight
(typically ranging from 0 to 1, though occasionally extending slightly beyond 1) dictates the degree
to which the fine-tuned stylistic features influence the base model's output.

By experimenting with LoRA model checkpoints saved at various training epochs
(corresponding to different LOSS values), in conjunction with diverse inference weight values, this
study observed several discernible patterns (See Figure 15); see also Figure Al in Appendix A).
During earlier training stages, characterized by higher LOSS values, or when lower LoRA application
weights were employed, the resultant images exhibited greater 'creativity' and 'conceptuality.’' The
Al-generated facade styles tended to manifest as a fusion. This fusion typically involved the target
historical style blended with either the inherent style of the base model or broader contemporary
design elements. This characteristic offers designers a valuable opportunity for exploring stylistic
fusion and seeking innovative expressions during the initial conceptual design phases. Conversely,
in later training stages—marked by a significant decrease and convergence of the LOSS value—or
when higher LoRA application weights are utilized, the Al-generated image outcomes demonstrate
a more precise and stable replication of the target historical style. In such cases, these outputs exhibit
a superior resemblance to authentic historical images from the training set, particularly concerning
overall composition, decorative detailing, material rendering, and lighting effects. This latter
approach is, therefore, more congruous with application scenarios that prioritize high-fidelity
reproduction.
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X-axis: LoRA model from the N-th training epoch selected
Y-axis: Weight value of the selected LoRA model
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e
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Figure 15. Diagram of LoRA Multi-Round Models with Different Weight Values. Image source: Self-drawn and
self-photographed by the author.

This dual control mechanism, comprising the LOSS value (indicative of training depth) and the
LoRA weight (reflecting the intensity of fine-tuning influence), affords designers considerable
flexibility and control throughout the stylistic emulation process. Designers can select and combine
LoRA models from different training stages, along with their respective application weights, tailored
to the evolving requirements of a project. This adaptability accommodates needs ranging from early-
stage conceptual explorations of stylistic fusion to later-phase pursuits of high-precision stylistic
expression. Consequently, Al tools can more effectively address diverse needs for both stylistic
imitation and innovation within the design workflow.

However, it is crucial to acknowledge a core deficiency in this approach, which relies purely on
understanding and applying technical parameters like LOSS values and LoRA weights. This
deficiency lies in its primary effect being confined to the visual phenomenological level of the image.
While reducing LOSS value and an increase in LoRA weight enhance the similarity of generated
images to the training data—particularly concerning texture, color, lighting, and recognizable
stylistic elements (e.g., specific column orders, window ornamentation)—this often occurs at a
superficial level. Essentially, the model learns a visual pattern-matching mechanism, aiming for a
looks like' resemblance. However, this does not guarantee that the model comprehends the
underlying architectural principles. These include the structural logic, spatial organization

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2025 d0i:10.20944/preprints202505.2497.v1

19 of 35

paradigms, or specific construction techniques embedded within these visual elements.
Consequently, even if the generated images exhibit high stylistic fidelity to the training data, they
may still contain conspicuous fallacies concerning intrinsic architectural rationality. Such fallacies
could manifest as, for instance, disproportionate component scaling, illogical structural relationships,
or incoherent spatial circulation.Under such circumstances, Al-generated images might merely
represent a rigid transplantation of 'stylistic phenomenology, rather than constituting an
architectural expression endowed with intrinsic coherence and buildability. This precisely
underscores the inherent limitations of relying solely on Al's visual mimetic capabilities. It also
highlights the imperative to integrate more profound architectural knowledge —such as typological
principles —for both guidance and evaluation.

3.2. Comparison of Generated Facade Styles

To comprehensively and objectively evaluate the performance of our proposed typologically-
guided LoRA fine-tuning methodology —specifically for stylistic transfer for Krakow's Eclectic
building facades—we adopted a dual evaluation framework. This framework comprises two main
components: (1) objective data analysis using established quantitative evaluation metrics in the field
of computer vision, and (2) subjective qualitative assessment of the model-generated images by a
panel of architectural experts. This combined approach aims to holistically validate the model's
efficacy from both data-centric and expert-informed perspectives.

3.2.1. Quantitative Metrics

For quantitative evaluation, we selected three widely adopted objective metrics from the image
generation domain. The first of these is the Fréchet Inception Distance (FID). FID assesses the
similarity between the distributions of features extracted by an Inception network from both
generated and real images. It measure the realism and diversity of the generated images. Notably, a
lower FID value signifies higher quality in the generated imagery [49]. Secondly, Learned Perceptual
Image Patch Similarity (LPIPS) was utilized. LPIPS employs deep learning models to quantify the
perceptual similarity between two images. Its outcomes align more closely with human subjective
judgments of image similarity. A lower LPIPS value indicates greater perceptual resemblance
between images [50]. Finally, Peak Signal-to-Noise Ratio (PSNR) was included. PSNR is a widely
used metric for assessing image distortion or the quality of image reconstruction. A higher PSNR
value signifies less distortion and, consequently, better image quality [51]. We conducted a
comparative analysis between our proposed model—typologically-guided and LoRA-fine-tuned
(hereafter referred to as FLUX-LoRA)—and two baseline models. These baselines were: (a) a standard
Stable Diffusion model without any fine-tuning (represented by SD3.5 in this study), and (b) the base
FLUX large model utilized without LoRA fine-tuning (hereafter FLUX). All models generated images
on an identical test set. Subsequently, the three aforementioned quantitative metrics were computed
for these generated images.

The comparative results for all metrics, as depicted in Figure 16 and 17, unequivocally
demonstrate that the FLUX-LoRA model (See Figure 16) (See Figure 17), fine-tuned using the
methodology proposed herein, exhibits a significant advantage across all selected quantitative
indicators:

FID Improvement (Lower is Better): The FLUX-LoRA model achieved an FID value of 90.48. This
represents an approximate improvement of 28.4% over the SD3.5 model's score of 126.42, and a 24.6%
improvement over the base FLUX model's score of 119.96. These results indicate that the image set
generated by FLUX-LoRA exhibits an overall feature distribution more closely aligned with that of
authentic Krakow Eclectic building facades. Consequently, the generated images are more realistic
and diverse.

LPIPS Improvement (Lower is Better): The FLUX-LoRA model attained an LPIPS value of 0.5904.
This signifies an approximate improvement of 11.0% over the SD3.5 model's score of 0.6636, and a
7.0% improvement compared to the base FLUX model's score of 0.6349. These findings suggest that
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images generated by FLUX-LoRA exhibit greater similarity to real images at the human perceptual
level. This implies a higher fidelity in reproducing both fine details and overall stylistic
characteristics.

PSNR Improvement (Higher is Better): The FLUX-LoRA model registered a PSNR value of
10.1488 dB. This marks an approximate increase of 6.8% compared to the SD3.5 model's score of
9.4979 dB. Notably, the PSNR value for the base FLUX model (8.9859 dB) decreased in comparison.
This observation further corroborates the superiority of the FLUX-LoRA model in terms of pixel-level
image fidelity and the reproduction of stylistic details.

Group real_image LoRA image SD3_image FLUX image

Krakow Eclectic Historic Architecture Green Building White Trim Classical Hill Wall Architectural Details

Figure 16. Comparison of Images Generated by Different Large Models. Image source: Self-drawn and self-
photographed by the author.

FLUX model SD3.5 model FLUX-LoRA
FID value 119.96 126.42 90.48
LPIPS value 0.6349 0.6636 0.5904
PSNR value 8.9859 9.4979 10.1488

125.0
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0.6 o=

LoRA FLUX SD3.5

e— FID —e— PSNR —e— LPIPS

Lower FID and LPIPS values are better
while a higher PSNR value is better

Figure 17. Quantitative Line Chart of the Three Major Evaluation Metrics. Image source: drawn by the author.
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Collectively, the quantitative computer vision metrics unequivocally indicate that the
methodology proposed herein—which integrates typology-guided dataset construction with LoRA
fine-tuning strategies—significantly enhances the generated facade imagery. This enhancement is
evident across authenticity, perceptual quality, and stylistic similarity.

3.2.2. Qualitative Evaluation by Expert Panel

While quantitative metrics can objectively reflect image quality at a data level, a nuanced
understanding of deeper issues remains reliant on subjective human judgment, particularly from
individuals with specialized expertise. These issues include the accuracy of architectural style, the
appropriateness of elements, and conformity to design intent. Consequently, this study convened an
evaluation panel comprising 68 experts from the field of architecture. The panel members possessed
diverse backgrounds, encompassing scholars engaged in historical building preservation and
regeneration research, as well as professionals specializing in architectural design and its theoretical
foundations. The expert panel was tasked with conducting subjective assessments of Krakow's
Eclectic building facade images generated by different AI models.

During the evaluation process, experts initially observed a set of 'real images' presented in
Figure 16, which served as references. They then compared these with corresponding 'emulated
images' generated by different models (FLUX, FLUX-LoRA, and SD 3.5). Throughout this assessment,
the experts also consulted the 'semantic labels' (i.e., the textual prompts used during training) that
were employed to generate the images, providing a basis for stylistic description. They rated each
Al-generated image using a 1-5 point scale, where 5 represented the highest concordance with either
the real image or the textual prompt. This rating considered four key dimensions: firstly, Realism,
assessing whether the generated image appeared to be an authentic photograph of a building.
Secondly, Semantic Correspondence evaluated whether the image accurately reflected the
architectural style, key elements, and compositional features described in its semantic label. Thirdly,
Image Similarity considered the degree of resemblance between the generated image and its
corresponding 'real image' regarding overall style, composition, and critical details. Finally, Stylistic
Accuracy involved scrutinizing whether the image faithfully reproduced the typical characteristics
and nuanced distinctions of Krakow's Eclectic architectural style.

Based on the preliminary results from the expert scoring rubrics presented in Figures 18-20
(which correspond to comparisons between real images and those generated by the FLUX-LoRA,
FLUX, and SD3.5 models, respectively; one illustrative set of building comparison cases is detailed
herein), the following preliminary conclusions can be drawn:

The FLUX-LoRA model demonstrated superior overall performance. In evaluations of this
model (referred to as 'LoRA Faker' in the corresponding video; see quantitative results in Figure 17
and qualitative scores in Figure 18), its average scores across all four dimensions were significantly
higher than those of the other two models. For instance, it achieved an average Realism score of 4.24
and a Stylistic Accuracy score of 4.06. Its performance was particularly prominent in the critical
dimensions of Realism' and 'Stylistic Accuracy," earning high commendation from the expert
panel.Regarding the accurate capture of stylistic features, experts generally concurred that facades
generated by the FLUX-LoRA model more precisely captured and reproduced the complexity and
uniqueness inherent in Krakow's Eclectic architecture.For instance, a comparison of the first set of
images in Figure 16 reveals that the FLUX-LoRA model effectively reproduced several key features.
These included the classic tripartite composition of the facade, the proportions and ornamentation of
the windows, the rich stratification of cornice moldings, and volume. In contrast, images generated
by the SD3.5 model appeared overly simplified and generalized. The base FLUX model, while better,
was somewhat inferior in terms of detail coordination and stylistic purity.Notably, the experts also
highlighted another strength of the FLUX-LoRA model. Its generated images not only visually
emulated the target style proficiently but also demonstrated, to a certain extent, a capacity to respond
to and reorganize typological elements embedded within the input textual prompts. Such elements
included 'classical composition', 'Baroque-style ornamentation,’ and 'colossal pilaster/colonnade-like
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decoration'. This observation aligns closely with the typologically-guided strategies emphasized in
this study during dataset construction and label optimization.
A synthesis of quantitative computer vision metrics and subjective evaluations from the

architectural expert panel confirms that our proposed methodology —integrating typological analysis
with LoRA fine-tuning —has yielded encouraging results. This was observed in the task of stylistic
transfer for Krakow's Eclectic building facades. The LoRA-fine-tuned model produced images that

were more photorealistic and more aligned with the target distribution at a data level. More crucially,

from the perspective of architectural experts, its generated facades demonstrated significantly
superior performance. This superiority was evident in stylistic accuracy, elemental appropriateness,
and the comprehension and expression of specific architectural 'types', compared to baseline models

lacking targeted fine-tuning.

score indicates a better match.)

Please score the second imitation photograph according to the following four criteria. (A higher

Key Word:Krakow eclectic historic architecture, Classical segmental facade composition.
Baroque-style window decoration. Giant column-pillar detailing

real-image LoRA-image
i : average
Question Options 1 2 3 4 5 Sata
Realism: The authenticity of the generat- 8 4 20 36
ed image 0 (0%) | (11.76%) | (5.88%) |(20.41%) | (5294%) | 424
Semantic Correspondence; Whether it 16 16 36
meets the content of the keyword text 0 (0%) | 0 (0%) (23.53%) | (23.53%) | (52.94%) 429
Image Similarity: The similarity to the 4 4 12 20 28 394
original real photograph (5.88%) | (5.88%) | (17.65%) |(29.41%) | (41.18%) =
Stylistic Accuracy: Whether it aligns with 4 12 28 24
the characteristics of eclecticism 0 (0%) | (588%) | (17.65%) |(41.18%) | (35.29%) | 406
Subtotal 4 16 44 84 124
(1.47%) [(23.53%) | (16.18%) | (30.88%)| (45.59%) 413

average score: 4.13

Figure 18. Example of FLUX-LoRA Expert Evaluation Form (Case 1). Image source: Self-drawn and self-

photographed by the author.
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Please score the second imitation photograph according to the following four criteria. (A higher
score indicates a better match.)

Key Word:Krakow eclectic historic architecture, Classical segmental facade composition,
Baroque-style window decoration. Giant column-pillar detailing

real-image FLUX-image
Question Options 1 2 3 4 5 a‘;ﬁ;?ﬂe
Realism: The auter;em;gg of the generat- 0 (0%) (29_?1%) (29,2491%) i 2183%] 0 (0%) 312
Semantic Correspondence: Whether it 8 4 24 20 12

meets the content of the keyword text | (11.76%) | (5.88%) | (35.29%) | (29.41%) | (17.65%) 3.35

Image Similarity: The similarity to the 8 20 24 16 0 (0% 271
original real photograph (11.76%) |(29.41%) | (35.29%) |(23.53%) | O (0%) :
Stylistic Accuracy: Whether it aligns with 4 8 28 28
the characteristics of eclecticism (5.88%) |(11.76%) | (41.18%) |(41.18%) 0 (0%) 318
Subtotal 20 52 96 92 12

(7.35%) [(19.12%) | (35.29%) | (33.82%)| (4.41%) 3.09

average score: 3.09

Figure 19. Example of FLUX Expert Evaluation Form (Case 1). Image source: Self-drawn and self-photographed
by the author.

Please score the second imitation photograph according to the following four criteria. (A higher
score indicates a better match.)

Key Word:Krakow eclectic historic architecture, Classical segmental fagade composition.
Baroque-style window decoration. Giant column-pillar detailing

real-image SD3.5-image
Question Options 1 2 3 4 5 a:i;‘?_ge
Realism: The authenticity of the generat- 4 12 16 32 4 329
ed image (5.88%) |(17.65%) | (23.53%) |(47.06%) | (5.88%) ’
Semantic Correspondence: Whether it 8 8 28 12 12 318
meets the content of the keyword text | (11.76%) | (11.76%) | (41.18%) |(17.65%) | (17.65%) N
Image Similarity: The similarity to the 12 20 20 12 4 265
original real photograph (17.65%) |(29.41%) | (29.41%) [(17.65%) | (5.88%) .
Stylistic Accuracy: Whether it aligns with 8 12 16 28 4
the characteristics of eclecticism (11.76%) | (17.65%) | (23.53%) | (41.18%) | (5.88%) 312
32 52 80 84 24
Subtotal (11.76%) (19.12%) | (20.41%) | (30.88%)| (8.82%) | 3.06

average score: 3.06

Figure 20. Example of SD3.5 Expert Evaluation Form (Case 1). Image source: Self-drawn and self-photographed
by the author.
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4. Discussion

This chapter offers a deeper interpretation and discussion of the experimental results. Initially,
we adopt an architectural typological perspective to thoroughly analyze the intrinsic mechanisms by
which Al—particularly Diffusion Models fine-tuned with LoRA—learns and reproduces historic
architectural styles. The relationship between these mechanisms and core typological theories is also
explored. Subsequently, a comprehensive analysis is presented, evaluating the efficacy, value, and
broader contextual significance of the methodology developed in this study. Finally, we address the
current study's limitations and delineate promising avenues for future research.

4.1. Interpreting Stylistic Learning in AI Models

The core of this research lies in exploring how architectural typological principles can guide and
optimize Al models for the 'stylistic emulation' and re-creation of historic architectural styles.
Observations of Krakow's Eclectic building facade images, generated by the LoRA model at different
training stages and with varying weight settings (See Figure 14), clearly reveal a stylistic learning and
reproduction process. This process progresses from macroscopic to microscopic levels and from
overall to localized features. Notably, this developmental trajectory exhibits significant parallels with
the analytical and comprehension methods employed in architectural typology for understanding
building 'types' (See Figure 21).

The darker the color, the greater the style similarity
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Figure 21. Typological Style Transfer Comparison Diagram.

4.1.1. Progressive Learning in LoRA Models

The learning trajectory of LoORA models, particularly when acquiring specific architectural styles
such as Krakow's Eclecticism, is not instantaneous. Instead, it is a process of gradual deepening and
hierarchical progression. This progression is often concomitant with variations in technical
parameters, such as decreasing loss values resulting from an increased number of training epochs, or
an elevation in LoRA weights applied during inference. Specifically, this process can be generally
categorized into several stages. During the initial stage, the model first captures the macroscopic
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features of the target style. These include aspects such as the overall building volume, approximate
proportional relationships, and the primary compositional outlines of the facade. At this stage,
generated images may begin to formally approximate the target. However, they typically exhibit
indistinct details and rather generalized material and color palettes. This phase can be interpreted as
the model establishing an initial 'first impression' or a foundational 'skeletal understanding' of the
style. Progressing to the intermediate stage, with deepened training or increased LoRA weights, the
model begins to learn and reproduce the principal compositional elements and chromo-material
characteristics of the facade with greater precision. For instance, it becomes more adept at discerning
different materialities (e.g., brickwork, stone, stucco) and starts to emulate the distinctive color
schemes and lighting effects inherent to the target style. Concurrently, a more accurate articulation
of primary facade compositional elements—such as tripartite divisions, fenestration patterns, and
entablature treatments—becomes evident.In the later stage, characterized by comprehensive training
or the application of higher LoRA weights, the model shifts its focus to learning finer decorative
elements and the nuanced relationships between components. This includes the accurate
reproduction of details such as period-specific orders (column types), window ornamentation,
moldings, and sculptural details. Moreover, it captures the intrinsic logic governing the proportional,
combinatorial, and spatial relationships among these elements. At this juncture, the generated images
not only achieve high visual fidelity but also, to a certain extent, embody the 'compositional
principles' of the target style.

This learning and reproduction trajectory, progressing from macroscopic to microscopic scales
and from holistic to localized features, bears a striking resemblance to the cognitive process by which
architects comprehend an architectural type or style. Architects typically first apprehend the overall
form and spatial organization of buildings. Subsequently, they delve progressively deeper into
materials, construction methods, and decorative detailing.

4.1.2. Correlation with Architectural Typological Theory

The stylistic learning and reproduction process exhibited by LoRA models shares profound
intrinsic connections with core theories in architectural typology. This is particularly evident when
considering the concepts of 'Type' and 'Urban Fabric' as articulated by Aldo Rossi in his seminal
work, The Architecture of the City [11].

Abstraction and Reproduction of Type': Rossi conceptualized 'type' in architecture not as a
staticc immutable form, but as a profound organizational structure and generative logic that
transcends specific formal manifestations. He argued that 'type' adapts to diverse socio-cultural
contexts through the continuous 'transcoding' and 're-creation’ of forms and elements over historical
trajectories. This adaptation progressively shapes buildings with unique styles and local character.
Similarly, LoORA models, by processing extensive image datasets, effectively attempt to abstract 'type'
characteristics— latent organizational principles and constituent elements—of a specific style from
its visual phenomenology. When generating new images, these models then engage in 'reproduction’
and 'variation' of these learned 'type' features. The typology-guided dataset construction and label
optimization employed in this study are specifically designed to assist Al models in more effectively
identifying and learning this deeper 'type' information.

Acquisition and Application of 'Architectural Language”: Rossi perceived architecture as a
language,' possessing its own 'vocabulary' (architectural elements), 'grammar’ (compositional rules),
and 'context’ (cultural background). The LoRA model's process of learning a specific style can be seen
as acquiring a particular 'architectural visual language.' In the initial stages, it might only grasp a
vague 'intonation’ and 'outline." During the intermediate phase, it begins to master the principal
'vocabulary' and 'syntactic structures.' By the later stages, it can more fluently utilize this 'language'
to 'narrate stories' (i.e., generate photorealistic facade images) that conform to the specific style. The
hierarchical processing of image labels in this study —progressing from overall type to detailed
elements—helps the Al model in more systematically learning this 'architectural language'.
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Place-making and Affective Dimensions: Typological theory also emphasizes that architecture
transcends mere physical existence; it serves as a vessel for culture, memory, and history, possessing
strong local character and profound affective dimensions [52]. By learning lighting, materiality, and
specific decorative elements, LoORA models, also engage with the capacity to evoke particular place-
atmospheres and affective experiences. Although Al currently achieves this primarily through visual
imitation, enhancements in the 'realism' and 'stylistic accuracy' of its generated outputs undeniably
amplify the viewer's emotional resonance with specific historical places.

From a typological perspective, the LoRA-based stylistic transfer process in this study
transcends mere visual replication. It can be more accurately understood as a computational process
involving the learning, abstraction, transcoding, and reproduction of specific architectural 'types.'
This typological lens offers valuable insights for a deeper comprehension of Al's generative
mechanisms. Furthermore, it provides beneficial implications for future advancements, such as
enabling Al to genuinely understand and apply the fundamental principles of architecture.

4.2. Methodological Efficacy and Value

The methodology proposed in this study, which integrates architectural typology-guided LoRA
fine-tuning, has demonstrated significant efficacy in addressing the complexities of Krakow's
Eclecticism —a style characterized by both intricacy and data scarcity. Furthermore, this approach
possesses multifaceted applicative value.

4.2.1. Handling Complex, Data-Scarce Styles

Krakow's Eclectic architectural style is inherently characterized by a high degree of complexity.
It combines formal languages and decorative elements from diverse historical periods, further
shaped by regional cultural influences that have fostered unique micro-variations. Concurrently,
high-quality, structured image datasets for such non-mainstream styles are comparatively scarce.
These two factors collectively present formidable challenges to Al models concerning both learning
and stylistic transfer.

Experimental results, as detailed in Sections 3.1 and 3.2, indicate that the methodology proposed
in this study can effectively address these challenges. Firstly, even with a relatively limited training
dataset, the FLUX-LoRA model—guided by typology and fine-tuned with LoRA —generated facade
images superior to those from baseline models (i.e., standard Stable Diffusion and the unfine-tuned
FLUX). This superiority was evident in visual realism, stylistic accuracy, and richness. This
demonstrates the method's robust learning capability and style reproduction capacity when handling
complex, data-scarce styles. Secondly, expert evaluation findings further corroborated these results.
Images generated by the FLUX-LoRA model not only resembled authentic Krakow's Eclectic
architecture. They also demonstrated an ability, to some extent, to respond to typological concepts
embedded within textual prompts, thereby producing new variants with a degree of inherent
rationality. This suggests that the method transcends simple overfitting, instead learning intrinsic
stylistic regularities and possessing a degree of generalization potential.

4.2.2. The Role of Typological Guidance in Enhancing Generation Quality and Interpretability

A pivotal innovation of this research lies in the systematic integration of architectural typological
principles throughout the entire Al model training and application pipeline. This guidance is crucial
for enhancing both the quality of generated images and the interpretability of model behavior. On
one hand, typology-driven image screening and label optimization provide AI models with more
precise and structurally coherent learning materials.This not only enables the model to move
beyondmere surface texture and color imitation but alsodirects it to focus on more
profoundcompositional principles, proportionalrelationships, and the organizational logic
ofarchitectural elements, thus enhancing the overall generation quality.As expert evaluations
indicated, typologically-guided models performed superiorly in terms of 'Semantic Correspondence'

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2025 d0i:10.20944/preprints202505.2 1

27 of 35

and 'Stylistic Accuracy'. On the other hand, typology offers a theoretical framework for
understanding and analyzing the Al model's stylistic learning process. As discussed in Section 4.1,
the LoRA model's learning trajectory can be likened to an architect's process of understanding and
deducing 'types." This comparison not only helps to clarify the Al's 'perceptive’ and 'learning'
mechanisms but also offers valuable insights for optimizing the model and refining the generation
process. Consequently, the 'black box' nature of Al becomes, to some extent, more 'transparent,’
thereby enhancing its trustworthiness and controllability as a design assistance tool.

4.2.3. Potential Enhancements to Traditional 'Stylistic Emulation' Practices

Traditional practices for emulating historic architectural styles—whether executed through
manual drafting or early computer-aided design—have historically relied on the individual
designer's expertise, technical skill, and depth of understanding regarding historical
precedents.These processes are often time-consuming, labor-intensive, and yield inconsistent results.
Consequently, ensuring stylistic accuracy and consistency has remained a persistent challenge.

The typology-guided Al 'stylistic emulation' methodology proposed in this study offers several
improvements to traditional practices. For instance, once an Al model is effectively trained, it can
rapidly generate a multitude of facade proposals adhering to specific stylistic requirements. This high
efficiency is invaluable for multi-alternative comparisons and rapid iterations during preliminary
design phases. Furthermore, because Al learning is predicated on unified datasets and explicit
guidance, the stylistic consistency of its outputs may surpass that of traditional methods, which often
rely purely on individual subjective judgment.

Moreover, systematic typological guidance enables Al models to acquire a more comprehensive
and profound understanding of stylistic knowledge than might be achievable by some individual
designers using traditional methods. This is particularly pertinent for non-mainstream styles or those
with limited extant documentation. Al can distill subtle features and statistical regularities from
extensive image corpuses that might be imperceptible to the human eye. Consequently, this
capability could elevate the finesse and nuanced fidelity of stylistic reproduction to new echelons.

Although this research primarily focuses on 'stylistic emulation," AI models guided by typology
also unlock new potentialities for stylistic 're-creation’' and innovative design. Through an abstracted
comprehension of 'types' and a flexible 'transcoding’ of elements, Al can assist designers. It aids in
exploring novel stylistic expressions that are contemporary yet respectful of historical context. This
capability allows a progression beyond mere replication, facilitating a genuine 'adaptation of
historical precedents for contemporary use'.

In summary, the methodology proposed in this research, which combines architectural
typology-guided LoRA fine-tuning, has demonstrated its efficacy in handling complex, data-scarce
styles. More significantly, it provides a framework with greater theoretical depth and practical value
for understanding and applying Al in architectural stylistic emulation and innovative design. This
contribution not only improves the quality and interpretability of Al-generated imagery but also
introduces new potentialities and insights for traditional architectural design practices.

4.3. Limitations of the Study

Despite the positive advancements achieved by the proposed methodology —which integrates
architectural typology-guided LoRA fine-tuning for the 'stylistic emulation' and re-creation of
Krakow's Eclectic building facades —it is imperative to acknowledge its limitations. These limitations
not only reflect prevalent challenges in the current application of Al technology within architectural
design but also highlight specific areas requiring further research efforts in the future.

4.3.1. Predominant Focus on 2D Facades and Significant Challenges in 3D Modeling

The core focus of this research has been on stylistic transfer for two-dimensional (2D)
architectural facades. While the generating of high-quality 2D facades holds significant value for
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schematic representation and preliminary conceptual design, architecture is fundamentally a three-
dimensional (3D) spatial entity. Extending the findings from 2D facade research to the automated
generation of 3D architectural models remains a formidable challenge, primarily manifested in
several aspects.Firstly, inferring or generating 3D geometry from 2D images requires addressing
inter-view consistency and the complex topological and spatial adjacency relationships among
architectural components.Current AI models often face difficulties in ensuring the accuracy and
rationality of generated geometries when transitioning from 2D to 3D.[36,53-57]. Secondly, compared
to abundance of 2D image data, high-quality 3D architectural model datasets with detailed semantic
annotations are considerably scarcer. This scarcity limits the depth and scope of AI model learning
within the 3D domain. Thirdly, the generation and processing of 3D models typically require greater
computational resources than their 2D counterparts, thereby imposing higher requirements on model
training and inference efficiency.

Therefore, while the methodology of this study might offer some insights for the stylistic
treatment of three-dimensional (3D) models—for instance, by attempting to combine stylized facades
from multiple viewpoints—significant hurdles remain. Achieving truly Al-driven, intelligent
generation of 3D architecture that accurately conforms to specific styles remains a long-term research
challenge

4.3.2. Limitations in AI's Understanding of Deep Structural Logic and Functional Organization

As previously noted, even at the 2D facade level, current predominantly data-driven Al
generative models exhibit significant deficiencies.These deficiencies lie in their lack of a limited
understanding of architectural structural logic, functional requirements, and spatial organization
principles.A key issue is the dichotomy between 'phenomenology’ and 'ontology': Al models excel at
learning and replicating visual 'phenomena’ (e.g., stylistic elements, material textures). However,
their comprehension of the underlying 'ontology' (e.g., load-bearing structures, spatial organization,
formal order) behind these phenomena often remains superficial or entirely absent. This, can lead to
a disconnect between function and form. While AI models may generate forms conforming to a
specific style, they might struggle to simultaneously ensure these forms meet concrete functional
needs and spatial usability logic. Furthermore, the inherent 'black box' nature of AI models,
particularly deep neural networks, renders their decision-making processes and generative logic
difficult to fully interpret. This opacity raises concerns among designers regarding the intrinsic
rationality of the generated outputs, especially when critical issues such as structural safety and
functional efficiency are involved. Therefore, enabling Al models to transcend mere visual imitation
and genuinely comprehend and apply core architectural principles—encompassing structure,
function, space, and context—constitutes a critical bottleneck for their deeper application in the
architectural design domain.

4.3.3. Deficiencies in the Profound Transcoding of Specific Regional Cultural Connotations

Architectural style is not merely an representation of form and technology; it also serves as a
crucial vessel for specific regional cultures, historical traditions, and societal values. The
distinctiveness of Krakow's Eclectic architecture, for example, stems from its deep reflection of the
historical and cultural context of late 19th and early 20th-century Poland, particularly in the Krakow
region. However, Al faces considerable challenges in understanding the cultural context and
emotional connotations inherent in architectural styles. For example, while Al models can learn the
visual morphology of specific decorative elements, they struggle to understand the potential cultural
symbolism, representative values, or historical narratives these elements might embody. This
nuanced understanding is difficult to derive solely from image data.

Simultaneously, authentic architectural style is intrinsically linked to its 'Genius Loci' (spirit of
place). This atmosphere and unique character, shaped by a confluence of historical, cultural,
environmental, and human activity factors, remains challenging for AI models to reproduce. Their
capacity to replicate such subtle place-making qualities and cultural identity is currently deficient.
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Furthermore, when 'emulating' or 'transcoding' a historical style into a new design context, the
process transcends mere formal transplantation. It requires careful consideration of the style's
adaptability and significance within the new cultural context. AI models, when performing such
culturally sensitive 'transcoding' operations, currently lack the requisite cultural
discernment.Therefore, a key issue for Al-assisted historic preservation and design is how to enable
Al models to achieve a more profound understanding and respectful treatment of specific regional
cultural connotations and the 'Genius Loci' during stylistic transfer and re-creation. Avoiding cultural
misinterpretations or superficial formal pastiche in these processes remains a significant challenge
requiring diligent investigation.

In summary, while this study has achieved certain advancements in utilizing Al for the 'stylistic
emulation' of specific historic architectural styles, its limitations also unveil more profound
challenges inherent in applying Al within the architectural design domain. Future research must
diligently pursue enhancements in Al's capabilities. These include, but are not limited to, its
geometric comprehension, structural and functional cognition, and its capacity for cultural
connotation transcoding.

4.4. Future Prospects and Research Directions

Recognizing the limitations of the current study also illuminates future research trajectories
laden with both opportunities and challenges. The methodology proposed herein, integrating
typologically-guided Al for stylistic emulation, represents merely an initial step. To fully harness the
potential of Al technology in architectural design and historical heritage preservation, future
investigations can explore several key areas.

4.4.1. Advancing Towards Intelligent Architectural Generation: Integrating Deeper Typological
Knowledge

The current study primarily employs typology as a framework for a posteriori analysis and as a
guideline for pre-processing data screening and label optimization. However, the full potential of
typology extends far beyond these applications. Future work should focus on more profoundly and
proactively integrating typological knowledge into the intrinsic learning and generative processes of
Al models themselves. Explorations in this direction could encompass several avenues. Firstly,
developing typology-aware loss functions designed to penalize generated outputs that violate
fundamental architectural principles or specific typological rules. This might involve incorporating
constraints based on structural rationality, spatial adjacency relationships, or functional zoning logic.
Secondly, constructing more comprehensive multimodal training datasets is crucial. These datasets
should not only comprise visual information but also incorporate extensive structured data.
Examples include architectural floor plans, sections, 3D models, structural system diagrams,
functional zoning plans, construction material and methodology specifications, and even pertinent
historical and cultural contextual descriptions, all to facilitate a multidimensional understanding of
architectural 'types' by Al models. Thirdly, designing novel neural network architectures capable of
capturing architectural hierarchical relationships would enable a better comprehension and
management of the inherent layered structures in architectural design. Lastly, advancing
interpretable Al (XAI) methods in conjunction with typological theory is vital. This involves creating
more effective analytical and explanatory Al approaches to reveal the 'reasoning’ processes of Al
models during stylistic learning and generation, thereby enhancing designers' trust and
comprehension of Al tools. The ultimate objective is to propel Al's evolution from a mere stylistic
‘'emulator’' to an 'intelligent generator' and 'collaborative partner' capable of understanding and
adhering to fundamental architectural design principles. This requires Al systems that can produce
not only aesthetically convincing proposals but also ensure their intrinsic rationality across multiple
dimensions, including structure, function, and contextual adaptability.
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4.4.2. Extension to Three-Dimensional Architectural Modeling and Urban Design

As previously noted, transitioning from 2D facade generation to the comprehensive generation
of 3D architectural models represents a significant leap. Future research must address several critical
challenges in this domain. The first challenge pertains to 3D geometry generation and consistency
assurance. This involves developing more robust Al algorithms capable of producing 3D
architectural models that adhere to topological logic and geometric constraints. These models should
be derivable from various inputs, including 2D images, textual descriptions, or other sources like
sketches and massing models, while ensuring inter-view consistency.

Secondly, enhancing parameterization and editability is crucial. The aim here is to improve the
degree of parameterization and user-adjustability in Al-generated 3D models. This would empower
designers to conveniently modify, adjust, and optimize preliminary Al-generated proposals, rather
than treating them as immutable 'black box' outputs.Thirdly, exploring urban-scale applications is
necessary. This involves attempts to extend typology-guided Al generation methodologies from the
individual building level to urban design and precinct planning. For instance, research could
investigate how Al can generate new building ensembles that conform to the specific character and
spatial fabric of historic urban districts, or assist in the design of urban renewal schemes.

These research endeavors hold the potential to substantially broaden the scope and depth of Al
applications throughout the entire architectural design workflow.

4.4.3. Application Potential in Virtual Reality, Digital Cultural Heritage, and Related Fields

The capability of the methodology proposed in this study for generating stylized imagery
presents extensive application prospects in domains such as virtual reality (VR), augmented reality
(AR), and digital cultural heritage. For instance, Al-generated historical buildings and scenes, with a
high degree of stylistic authenticity, can be utilized to construct immersive VR/AR environments.
These environments are suitable for historical and cultural education, virtual museum exhibitions,
and digital tourism, enabling the public to engage with and experience cultural heritage in a more
vivid and interactive manner. For historical edifices that have been lost or severely damaged, Al
offers a means for stylized digital reconstruction. By integrating Al with limited historical data, such
as old photographs, textual descriptions, or surviving structural fragments—these structures can be
‘revived' in the virtual realm. In the digital entertainment industry, Al can rapidly generate high-
quality game environments and cinematic backgrounds tailored to specific historical periods and
regional styles. This capability significantly enhances content production efficiency and the visual
realism in digital experiences. Furthermore, in the architectural design process, Al can be employed
to swiftly transform design proposals of varying styles into photorealistic virtual scenes. These scenes
can then be used for immersive experiences and evaluations by designers, clients, and the public.
Such applications are poised to further promote the profound integration of Al technology with
cultural heritage preservation, the digital creative industries, and architectural design practices,
thereby engendering new value and possibilities.

In conclusion, while challenges persist, the future of Al generative technologies guided by
typology within the architectural domain is replete with promise. Through continuous technological
innovation and interdisciplinary theoretical integration, Al is poised to evolve into an increasingly
potent and intelligent partner for architects. This partnership will span design creation, heritage
preservation, and cultural perpetuation, collectively contributing to the shaping of an enhanced and
culturally enriched built environment for humanity.

5. Conclusions

This research investigates the potential of integrating architectural typological principles with
advanced deep learning technologies—notably LoRA fine-tuning and Diffusion Models—for the
'stylistic emulation’ and re-creation of historic building facades. Utilizing Krakow's Eclecticism, an
architecturally complex and data-scarce style from Poland, as a specific case study, this study
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systematically formulated and validated a comprehensive methodological framework. This
framework encompasses the entire pipeline from data preparation and model training through to
results evaluation (Figure 22). The research findings demonstrate a significant enhancement in the
quality, stylistic accuracy, and logical coherence of generated images when architectural typological
principles are incorporated into AI model workflows. This incorporation focuses on training data
construction (through image screening and label optimization) and inference application (via prompt
guidance). Compared to Al models relying solely on data-driven approaches, typology-guided
methods better capture and reproduction of the essential characteristics of target styles. For specific
historical styles, LoRA fine-tuning technology exhibits considerable advantages, particularly in
addressing data scarcity and achieving high-fidelity stylistic transfer. The training loss value (LOSS)
and inference application weights emerge as pivotal parameters for controlling the stylistic
propensity of the generated outputs. Adjusting these parameters facilitates a flexible transition,
ranging from 'creative' stylistic fusion to 'faithful' replication. Notwithstanding these advancements,
while the methodology proposed herein has moved Al from "‘phenomenological emulation' towards
'typological transcoding', significant limitations persist. Al's comprehension of deep structural logic,
functional organization, and cultural connotations remains deficient. Moreover, the current
methodology primarily operates on 2D facades; the progression towards intelligent 3D architectural
generation continues to present substantial challenges.

Al Model
Learning and Generation

Krakéw Eclectic
Architectural Style

Interpreting the Style Learning
Process of Al Models from a
Typological Perspective
Challenges from a Three
-Dimensional Perspective

Robustness and Generalization Potential P

LoRA Fine-Tuning

The Possibility of Improving |
Efficiency and Innovation ‘
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Figure 22. Framework Diagram of Summary and Outlook. Image source: drawn by the author.

This study has effectively addressed the key research questions posited in the introduction. It
systematically explored methodologies for integrating typological principles into AI model training
and application. Through empirical investigation, it validated their efficacy in handling complex,
data-scarce architectural styles. Typology-guided LoRA fine-tuning has indeed enabled AI models to
more proficiently learn and reproduce the facade characteristics of historic architectural styles,
moving beyond the mere visual phenomenology of initial 'stylistic emulation." A preliminary
evaluation of stylistic learning was also conducted by combining quantitative and qualitative
assessments. This research has preliminarily achieved the objective: to explore an Al methodological
framework capable of more effectively performing 'stylistic emulation’ and facilitating re-creation of
historic architectural styles.
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The significance of this research goes beyond providing an effective technological pathway for
the digital reproduction of Krakow's Eclectic architectural style; it also lies in its broader implications
for diverse fields:

Theoretical Significance: This research offers a tangible case study and a conceptual framework
for the interdisciplinary integration of architectural typology and artificial intelligence—two
ostensibly disparate fields. It unveils the potential of typological principles to enhance both the
performance and interpretability of Al generative models. Furthermore, it furnishes a theoretical
foundation for the future development of AI models possessing a more profound 'understanding' of
architecture.

Methodological Value: The comprehensive workflow proposed —encompassing typologically-
informed data preparation, model fine-tuning, and multi-dimensional results evaluation—holds
referential and generalizable value. This is particularly pertinent for other researchers or practitioners
seeking to leverage Al technology in addressing digitalization challenges in similarly complex styles
or historical built environments.

Practical Application Potential: The technological outcomes of this research are directly
applicable to the digital preservation and revitalization projects of relevant historical buildings in the
Krakow region. Its methodological concepts and technical pathways also extend to a broader
spectrum of application scenarios. These include: (i)In historical building preservation and urban
regeneration: Providing more efficient design support for the restoration of damaged buildings and
for ensuring stylistic coherence within historic urban districts. (ii) In architectural design assistance:
Offering architects rapidly generated, stylistically diverse conceptual proposals during preliminary
design phases to aid in design decision-making. (iii) In digital humanities and cultural heritage
dissemination: Supplying high-quality visual assets for the digital reconstruction of historical and
cultural exhibitions, the construction of virtual museums, and the development of game and
cinematic environments.

In conclusion, this research, by amalgamating the foundations of architectural typology with
cutting-edge artificial intelligence technologies, has unveiled new potentialities for the digital
treatment of historic architectural styles. While challenges persist, we are confident that with the
ongoing evolution of Al technology and continued in-depth interdisciplinary research, Al will
assume an increasingly pivotal role. This role will span future architectural design, heritage
preservation, and cultural perpetuation, thereby transitioning Al from a mere stylistic 'emulator’ into
a genuinely intelligent 'creative partner.'

6. Patents

Author Contributions: Writing—original draft, Z.C.; writing—review and editing, C.X.; methodol- ogy, N.Z,;
supervision, C.X. and Z.X.; formal analysis, S.H. and L.J. All authors have read and agreed to the published

version of the manuscript.

Acknowledgments: We are grateful for the invaluable guidance from our supervisors, the diligent efforts of our
team members, and the generous support from external experts.We thank Prof. Zhang Nan for his critical
suggestions on the research's significance and his guidance in refining the conceptual framework, enhancing its
theoretical depth. We also thank Prof. Xu Chaoran for providing essential funding and equipment, and for his
insightful advice on the manuscript's overall structure.Within the team, Zequn Chen proposed the core research
idea and led key technical experiments. Zhiyu Xu assisted with collecting and analyzing experimental materials.
Songjiang Han created the main analytical figures and synthesized the Al literature. Lishan Jiang polished the
manuscript's language, assisted with material analysis, and proofread the final version.Special thanks are due
to Prof. Anna Porebska (Kracow University of Technology) for providing valuable supplementary materials,
including historical data and site photographs, which supported our research.We thank all supervisors,

colleagues, and experts for their contributions.

Conflicts of Interest: The authors declare no conflicts of interest.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2025 d0i:10.20944/preprints202505.2497.v1

33 of 35

References

1. Petzet, M.; Ziesemer, ]., eds. International Charters for Conservation and Restoration / Chartes ...; Monuments
& Sites 1; ICOMOS, Paris, France; Lipp GmbH: Munich, Germany, 2004; ISBN 3 - 87490 - 676 - 0.

2. Jokilehto, J. A History of Architectural Conservation, 2nd ed.; Routledge: London, UK, 2017; ISBN 978 - 1 - 138
- 63999 - 7.

3. Boccardi, G. Authenticity in the heritage context: A reflection beyond the Nara Document. The Historic
Environment: Policy & Practice . 2019, 10, 4-18. https://doi.org/10.1080/17567505.2018.1531647.

4. He, M,; Qi, ]. Study on the theory of Rafael Moneo architectural typology. IOP Conference Series: Materials
Science and Engineering.2019, 592, 012105. https://doi.org/10.1088/1757 - 899X/592/1/012105.

5. Plevoets, B.; Van Cleempoel, K. Adaptive Reuse of the Built Heritage: Concepts and Cases of an Emerging
Discipline; Routledge: London, UK, 2019; 256 pp.; ISBN 978 - 1 - 138 - 06276 - 4.

6. Plevoets, B.; Van Cleempoel, K. Adaptive reuse as a strategy towards conservation of cultural heritage: A
literature review. WIT  Transactions on  The Built Environment. 2011, 118, 155-164.
https://doi.org/10.2495/STR110131.

7. Tang, Q. LiangH.; Li, J.; et al. Innovative design method for Lingnan region veranda architectural heritage
(Qi - Lou) fagades based on  computer vision.  Buildings 2025, 15,  368.
https://doi.org/10.3390/buildings15030368.

8. Yuan, F; Xu, X,; Wang, Y. Toward the era of generative - Al - augmented design. Archit. |. (China) 2023,
659, 14-20. (In Chinese).

9.  Yang, J; Tan, M,; Chen, X; et al. Exploration of theories and technical mechanisms for smart city planning.
J. Southeast Univ. (Nat. Sci. Ed.) 2024, 54, 1066-1079. (In Chinese).

10. Csiszar, 1. The method of types. IEEE Transactions on Information Theory 1998, 44, 2505-2523.
https://doi.org/10.1109/18.720551.

11.  Rossi, A. The Architecture of the City; MIT Press: Cambridge, MA, USA, 1984.

12.  Viollet - le - Dug, E. - E. Dictionnaire raisonné de ’architecture francaise du Xle au XVlIe siecle, Vol. 1; B.
Bance: Paris, France, 1854.

13.  Bressani, M. Architecture and the Historical Imagination: Eugene - Emmanuel Viollet - le - Duc, 1814-1879;
Routledge: London, UK, 2016.

14. Bressani, M. Notes on Viollet - le - Duc’s philosophy of history: Dialectics and technology. The Journal of the
Society of Architectural Historians. 1989, 48, 327-350.

15.  Bonini, E. Building virtual cultural heritage environments: The embodied mind at the core of the learning
processes.International  journal —of digital culture and electronic  tourism. 2008, 1, 113-125.
https://doi.org/10.1504/IJDCET.2008.021402.

16. Zhong, H.; Wang, L.; Zhang, H. The application of virtual reality technology in the digital preservation of
cultural heritage. Computer  Science and Information  Systems. 2021, 18, 535 - 551.
https://doi.org/10.2298/CSIS200208009Z

17.  Selmanovi¢, E.; Rizvic, S.; Harvey, C.; et al. Improving accessibility to intangible cultural heritage
preservation using virtual reality. Journal on Computing and Cultural Heritage (JOCCH). 2020, 13, 13.
https://doi.org/10.1145/3377143

18. Barceld, J.A.; Forte, M.; Sanders, D.H., Eds. Virtual Reality in Archaeology; BAR Int. Ser. 843; Archaeopress:
Oxford, UK, 2000; ISBN 978 - 1841710471.

19. Santana Quintero, M.; Georgopoulos, A.; Stylianidis, E.; Lerma Garcia, ].L.; Remondino, F. CIPA’s mission:
Digitally documenting cultural heritage. APT Bulletin: The Journal of Preservation Technology. 2017, 48, 51 -
54.

20. Poyck, G. Procedural City Generation with Combined Architectures for Real - Time Visualization; Master’s
Thesis, Clemson University, Clemson, SC, USA, May 2023.

21. Goodfellow, I; Pouget - Abadie, J.; Mirza, M.; et al. Generative adversarial nets. Advances in neural
information processing systems . 2014, 27, 2672 - 2680.

22. Sohl - Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep unsupervised learning using
nonequilibrium thermodynamics. International conference on machine learning. pmlr; Lille, France, 6 - 11 July
2015; pp. 2256 - 2265. arXiv:1503.03585.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2025 d0i:10.20944/preprints202505.2497.v1

34 of 35

23. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,
313, 504 - 507. https://doi.org/10.1126/science.1127647.

24. Hinton, G.E. A fast learning algorithm for deep belief nets. Neural computation. 2006, 18, 1527 - 1554.
https://doi.org/10.1162/neco.2006.18.7.1527.

25. Krizhevsky, A.; Sutskever, I; Hinton, G.E. ImageNet classification with deep convolutional neural
networks. Advances in neural information processing systems. 2012, 25, 1097 - 1105.

26. Gulrajani, I; Ahmed, F.; Arjovsky, M.; et al. Improved training of Wasserstein GANs. Advances in neural
information processing systems. 2017, 30, 5767 - 5777. https://doi.org/10.48550/arXiv.1704.00028.

27. Brock, A.; Donahue, J.; Simonyan, K. Large - scale GAN training for high - fidelity natural image synthesis.
arXiv:1809.11096 (preprint).

28. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv:1511.06434 (preprint).

29. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of GANs for improved quality, stability, and
variation. arXiv:1710.10196 (preprint).

30. Zhu, J.Y,; Park, T,; Isola, P.; Efros, A.A. Unpaired image - to - image translation using cycle - consistent
adversarial networks. Proceedings of the IEEE international conference on computer vision; Venice, Italy, 22 - 29
Oct 2017; pp. 2223 - 2232.

31. Bachl, M.; Ferreira, D.C. City - GAN: Learning architectural styles using a custom conditional GAN
architecture. arXiv:1907.05280 (preprint).

32. Dhariwal, P.; Nichol, A. Diffusion models beat GANs on image synthesis. Advances in neural information
processing systems. 2021, 34, 8780 - 8794.

33. Ho,].;Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Advances in neural information processing
systems. 2020, 33, 6840 - 6851.

34. Rombach, R.; Blattmann, A.; Lorenz, D.; et al. High - resolution image synthesis with latent diffusion
models. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; New Orleans, LA,
USA, 19 - 24 Jun 2022; pp. 10684 - 10695.

35. Radford, A.,; Kim, J.JW.; Hallacy, C.; et al. Learning transferable visual models from natural language
supervision. International conference on machine learning. PmLR, 18 - 24 Jul 2021; pp. 8748 - 8763.

36. Zhang, L.; Rao, A,; Agrawala, M.; et al. Adding conditional control to text - to - image diffusion models.
Proceedings of the IEEE/CVF international conference on computer vision; Paris, France, 2 - 6 Oct 2023; pp. 3836
- 3847.

37. Hu, EJ.; Shen, Y.; Wallis, P.; et al. LoRA: Low - rank adaptation of large language models. In Proc. 10th
ICLR; Kigali, Rwanda, 25 - 29 Apr 2022.

38. Huang, W.; Zheng, H. Architectural drawings recognition and generation through machine learning.
Proceedings of the 38th annual conference of the association for computer aided design in architecture; Mexico City,
Mexico, 17 - 20 Oct 2018; pp. 616 - 625.

39. Nauata, N.; Chang, K.H.; Cheng, C.Y; et al. House - GAN: Relational generative adversarial networks for
graph - constrained house layout generation. Computer Vision—ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings; Glasgow, UK, 23 - 28 Aug 2020; pp. 162 - 177.

40. Sun, C,; Zhou, Y.; Han, Y. Automatic generation of architecture fagade for historical urban renovation using
generative  adversarial = network. Building ~ and  Environment. 2022, 212, 108781.
https://doi.org/10.1016/j.buildenv.2022.108781

41. Zhang, L.; Huang, Y.; Li, Z; et al. CGAN - assisted renovation of the styles and features of street facades—
A case study of the Wuyi area in Fujian, China. Sustainability 2022, 14, 16575.
https://doi.org/10.3390/su142416575

42. Xu, S.; Zhang, J.; Li, Y. Knowledge - driven and diffusion model - based methods for generating historical
building fagades: A case study of traditional Minnan residences in China. Information 2024, 15, 344.
https://doi.org/10.3390/info15060344

43. Zhang, J.; Huang, Y.; Li, Z.; et al. Development of a method for commercial style transfer of historical
architectural fagades based on stable diffusion models. Journal of Imaging 2024, 10, 165.
https://doi.org/10.3390/jimaging10070165

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2025 d0i:10.20944/preprints202505.2497.v1

35 of 35

44. Xu, Z.; Wang, L. Reshaping classicism —An Abnormal Landscape of Paestum and the rise of Neoclassicism.
World Architure. 2023, 3, 110 - 115. (in Chinese).

45. Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; et al. Parameter - efficient transfer learning for NLP. International
conference on machine learning. PMLR; Long Beach, CA, USA, 9 - 15 Jun 2019; pp. 2790 - 2799.

46. Dietterich, T.G. Overfitting and underfitting in machine learning. ACM computing surveys (CSUR)-1995
Workshop on Overfitting; Seattle, WA, USA, 5 - 9 Aug 1995; pp. 114 - 122.

47. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient - based learning applied to document recognition.
Proceedings of the IEEE 1998, 86, 2278 - 2324. https://doi.org/10.1109/5.726791.

48. Goodfellow, I; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; ISBN 978 -
0262035613.

49. Heusel, M.; Ramsauer, H.; Unterthiner, T.; et al. GANSs trained by a two time - scale update rule converge
to a local Nash equilibrium. Advances in neural information processing systems. 2017, 30, 6626 - 6637.

50. Zhang, R.;Isola, P.; Efros, A.A.; et al. The unreasonable effectiveness of deep features as a perceptual metric.
Proceedings of the IEEE conference on computer vision and pattern recognition.; Salt Lake City, UT, USA, 18 - 23
Jun 2018; pp. 586 - 595.

51. Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. 2010 20th international conference on pattern
recognition. IEEE; Istanbul, Turkey, 23 - 26 Aug 2010; pp. 2366 - 2369. https://doi.org/10.1109/ICPR.2010.579

52. Akbar, P.N.G; Edelenbos, J. Positioning place - making as a social process: A systematic literature review.
Cogent Social Sciences. 2021, 7, 1905920. https://doi.org/10.1080/23311886.2021.1905920.

53. Zhang, R.; Guo, Z; Wei, Z,; et al. PointCLIP: Point cloud understanding by CLIP. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition; New Orleans, LA, USA, 19-24 Jun 2022; pp.
5790 - 5800. https://doi.org/10.1109/CVPR52688.2022.00579

54. Wu, S, et al. Direct3D: Scalable image - to - 3D generation via 3D latent diffusion transformer.
arXiv:2405.14832 (preprint).

55.  Tochilkin, D.; et al. TriPoSR: Fast 3D object reconstruction from a single image. arXiv:2403.02151 (preprint).

56. Xiang, J.; et al. Structured 3D latents for scalable and versatile 3D generation. arXiv:2412.01506 (preprint).

57. Liu, J.; et al. A comprehensive survey on 3D content generation. arXiv:2402.01166 (preprint).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/

