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Abstract: Stylistic emulation of historical building facades, especially for complex and data-scarce 
styles such as Krakow's Eclecticism, poses significant challenges for AI. This study develops a 
methodological framework for a deeper, typologically-informed "transcoding" of style beyond mere 
visual mimicry, which is crucial for heritage preservation, urban renewal, and digital heritage. We 
integrate architectural typology with Low-Rank Adaptation (LoRA) fine-tuning of a Stable Diffusion 
model, specifically the FLUX architecture. The process includes typology-guided image dataset 
preparation (selection and hierarchical labeling) and precise control of LoRA training parameters like 
learning rate and loss value. The typologically-guided LoRA-tuned model significantly outperforms 
baseline models in quantitative metrics—FID, LPIPS, and PSNR—and in expert qualitative 
evaluations regarding realism and stylistic accuracy. LoRA's loss value and application weights 
effectively balance creative variation and faithful style emulation.This synergy enables data-efficient, 
typology-grounded stylistic emulation and highlights AI's potential as a creative partner for nuanced 
reinterpretation. Nonetheless, deeper semantic understanding and robust 3D inference present 
ongoing challenges for future research. 

Keywords: diffusion model; low-rank adaptation model; stylistic emulation; contrastive language-
Image pretraining; urban renewal; architectural typology; typological transcoding 
 

1. Introduction 

1.1. Historical Value and Digital Transformation 

In established heritage conservation charters and guidelines, the principles of 'authenticity' and 
'legibility of interventions' are recognized as fundamental tenets.These principles are of paramount 
importance and are widely adopted to guide practices in the specialized field of architectural heritage 
preservation and historic urban regeneration. Consequently, these guiding principles generally 
discourage the adoption of direct stylistic mimicry or verbatim replication in the repair and 
retrofitting of historic buildings. Such an approach is typically discouraged to prevent the distortion 
of historical narratives, the conflation of different historical layers, and any compromise to the 
integrity of the original fabric [1–3]. Nevertheless, in complex real - world scenarios, architectural 
entities often suffer severe deterioration due to various factors, putting historic urban landscapes at 
significant risk of extensive degradation. Under these circumstances, an overly rigid adherence to the 
aforementioned principles may, paradoxically, exacerbate the loss of historic cities and their 
architectural character if the 'completeness' or 'integrity' of the built heritage cannot be effectively 
maintained or restored. In these challenging contexts, a controlled and well - informed 'stylistic 
restoration' or 'emulation' of historic building facades—coupled with the flexible adaptation and 
reinterpretation of their constituent elements—can emerge as a more proactive and efficacious 
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strategic approach. This is particularly pertinent during the preliminary design phases, where the 
rapid evaluation of multiple design alternatives is crucial [4–9]. This approach transcends mere 
mechanical reproduction. Instead, it relies on a creative 'typological transcoding' [10,11] rooted in a 
profound understanding of historical architecture and rigorous typological analysis. The primary 
aim is to perpetuate the stylistic characteristics and genius loci of specific historical periods. This 
concept is exemplified by Viollet - le - Duc's restoration of Notre - Dame Cathedral. His work 
demonstrated that, at times, restoration may necessitate a degree of 'idealized' creation. Such creation, 
based on a thorough comprehension of the original style's essence, seeks to reinstate the building's 
'complete state' as perceived for that particular historical era [12–14]. 

The scholarly investigation of 'stylistic emulation' in historic building facades extends far beyond 
the mere replication of existing structures.This concept broadly encompasses the nuanced and 
variously focused stylistic reinterpretation of historic facades, predicated upon a thorough 
comprehension of their architectural typology. Such reinterpretation may involve, inter alia: (i) the 
extraction of critical facade elements—such as composition, proportion, decorative motifs, and 
material texture—for application within novel design contexts; (ii) the flexible adaptation and 
recombination of historical prototypes to meet contemporary functional requirements; and (iii) 
innovative 're - creation' that respects the core principles of the original style. This broader view of 
'stylistic emulation' is particularly relevant during the conceptual and schematic phases of 
architectural design. It facilitates the rapid generation and comparative analysis of multiple design 
proposals imbued with specific historical stylistic connotations, thereby enabling more effective 
design development and refinement. This approach is particularly valuable inprojects seeking to 
balance historicalcontinuity with modern functional demandsamid rapid urbanization. 

Furthermore, the research and application of 'stylistic emulation' for historic architecture offers 
a value proposition that extends beyond the traditional domains of physical heritage conservation 
and historic urban area regeneration. The advent and proliferation of digital technologies have 
significantly broadened its application landscape. For instance, in the digital reconstruction of 
historical and cultural exhibitions, 'stylistic emulation' techniques facilitate the virtual recreation of 
lost or severely damaged architectural settings, providing the public immersive historical 
experiences. Similarly, in the development of virtual engines and game environments, architectural 
style generation predicated on 'stylistic emulation' enables the efficient construction of virtual worlds 
imbued with specific historical atmospheres and a high degree of verisimilitude, substantially 
enriching the content and experiential quality of digital entertainment and virtual tourism [15–20]. 
Consequently, the pursuit of efficient, precise, and interpretable methodologies for 'stylistic 
emulation' of historic building facades not only holds tangible significance for the stewardship of the 
tangible built environment but also provides critical technological support for the advancement of 
emerging fields such as digital humanities and virtual heritage. 

1.2. From GANs to Diffusion: Technological Foundations from a Typological Perspective 

Traditionally, conventional methodologies for emulating architectural facades have 
predominantly relied on aesthetic intuition and accumulated empirical knowledge. The effectiveness 
of these processes was often constrained by the cognitive frameworks and technical repertoires of 
individual architects, lacking robust mechanisms for efficient information processing and feedback. 
This limitation manifested as insufficient dynamic adaptability and information handling 
capabilities, potentially resulting in mechanistic and monolithic stylistic reproductions that struggled 
to achieve fluid and meaningful stylistic innovation. However, with the advent of substantially 
enhanced computational power ushering in the era of Artificial Intelligence (AI), interdisciplinary 
research has increasingly integrated AI technologies into architectural practice. This convergence has 
progressively addressed the inherent shortcomings of traditional workflows, thereby infusing new 
potentialities into the evolution of architectural research methodologies (See Figure 1). 
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Figure 1. The development process of deep learning research.Image source: drawn by the author. 

The rapid advancements in deep learning technologies, particularly Generative Artificial 
Intelligence (Generative AI) models such as Generative Adversarial Networks (GANs) [21] and 
Diffusion Models [22], have introduced transformative potential within the architectural design 
domain. Intriguingly, the developmental trajectories and core operational mechanisms of these 
technologies resonate, to a certain extent, with the fundamental principles of Architectural Typology. 
This resonance lies in the shared conceptual approach of learning from extensive corpuses of existing 
built precedents, abstracting underlying principles, and subsequently generating novel forms and 
spaces that follow specific generative rules and established typological frameworks. 

Early generative models, such as those predicated on Boltzmann Machines (RBMs) [23,24] and 
Convolutional Neural Network (CNN) architectures [25], exhibited considerable limitations 
concerning the quality, resolution, and diversity of generated imagery. The advent of Generative 
Adversarial Networks (GANs) marked a significant inflection point in this trajectory. Leveraging a 
unique adversarial training mechanism involving a generator and a discriminator, GANs 
demonstrated the capacity to learn and emulate the latent distributions of complex data, thereby 
facilitating the synthesis of highly photorealistic images. While subsequent advancements, including 
Wasserstein GANs (WGANs) [26], BigGANs [27], DCGANs [28], ProGANs [29], and CycleGANs 
[30], partially mitigated persistent challenges such as mode collapse and training instability, the 
direct applicability of GANs to text - to - image generation tasks remains constrained. This is 
particularly evident in scenarios demanding precise control and nuanced semantic understanding, 
where their inherent stochasticity and pronounced sensitivity to input conditioning impede their 
straightforward deployment for the emulation of intricate architectural styles. Bachl and Ferreira 
(2019) employed GANs to learn architectural features of major cities and subsequently generate 
images of non - existent buildings. However, their findings revealed that both standard GAN and 
Conditional GAN (CGAN) struggled to effectively capture and reproduce the complex geometric 
configurations, diverse stylistic attributes, and fine - grained details characteristic of built 
environments. Consequently, these frameworks were deemed unsuitable for direct application in 
such generative tasks [31]. 

Diffusion Models emerged alongside the evolution of GANs. These models learn data 
distributions through an iterative 'noising-denoising' process. This approach has shown superior 
performance in generating high-quality and diverse imagery. It surpasses GANs in certain generative 
capabilities [32]. Later optimizations, including Denoising Diffusion Probabilistic Models (DDPMs) 
[33] and Latent Diffusion Models (LDMs) [34], further improved these models. These advancements 
not only enhanced generation efficiency but also offered more adaptable frameworks for conditional 
image synthesis. However, conventional Diffusion Models face challenges without explicit semantic 
guidance. Their outputs can sometimes lack relevance and controllability. This limitation is especially 
evident when generating images from intricate textual descriptions or specific stylistic directives. 

Against this backdrop, the advent of multimodal learning models was pivotal. Particularly, 
Contrastive Language - Image Pretraining (CLIP) [35] emerged as a crucial bridge, facilitating a 
deeper integration between AI generative technologies and typological principles. CLIP models 
undergo contrastive learning on extensive datasets of image-text pairs. This training enables them to 
map both images and text into a shared embedding space. As a result, these models can comprehend 
the semantic correlations between visual and textual information. Such robust semantic alignment 
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capabilities are critical. They allow the models to guide the image generation process with greater 
precision based on textual prompts. This is essential for tasks requiring the generation of images that 
conform to specific architectural styles or typological concepts. Furthermore, technologies like 
ControlNet [36] have advanced this control. By incorporating supplementary conditional inputs, 
such as edge maps, pose skeletons, or depth maps, ControlNet significantly enhances the fine - 
grained manipulation of image layout and structure. This, in turn, reduces the stochasticity inherent 
in the generation process. 

Deep learning's optimization and evolution represents a progressive approximation towards an 
intrinsic encoding and decoding of visual information (See Figures 2 and 3). This encompasses 
adversarial image generation with GANs, diffusion processes in Diffusion Models, and CLIP's 
semantic matching capabilities. Throughout this developmental trajectory, models incrementally 
learn to encode latent structural regularities within data. During the generation phase, they 
effectively reconstruct images that closely emulate the data distribution of real-world examples. This 
continuous endeavor to approach the essence of an image and discern its inherent generative 
principles parallels the objectives of architectural typology. Architectural typology strives to abstract 
immutable 'prototypes' (Types) from extensive collections of built precedents, identifying their core 
organizational logic and variable constituent elements. 

Indeed, a methodological similarity exists between deep learning - based image generation and 
the study and application of 'Typology' in architecture. Both disciplines aim to unveil the underlying 
structures and generative mechanisms of objects. Architectural typology, through the systematic 
analysis of numerous built examples, distills fundamental spatial organizations, functional logics, 
and formal principles. This process culminates in an understanding of the 'grammar' governing 
specific architectural types or styles. Analogously, data - driven deep learning models apprehend the 
'encoding' of the visual world by learning statistical regularities and structural patterns from images. 
In the generation phase, both fields leverage these encoded rules for decoding and re-creation. 
Architects utilize typological knowledge as 'prototypes,' adapting it to specific contexts to generate 
novel design variations. Similarly, AI models, guided by their learned rules, generate new images 
from latent representations, demonstrating an innovative aspect akin to typological transcoding. 

 

Figure 2. Design Mechanisms Predicated on Architectural Typology. (Adapted from Rossi, The Architecture of 
the City, which describes design mechanisms rooted in architectural typology).Image source: drawn by the 
author. 
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Figure 3. The CLIP Mechanism (Adapted from "Learning Transferable Visual Models from Natural Language 
Supervision" by Radford et al.). Image source: drawn by the author. 

Although technologies like CLIP and ControlNet now allow models to follow textual prompts 
and structural guides with far greater fidelity, they also introduce a new challenge: how to adapt 
these large-scale foundation models efficiently for domain-specific tasks.A key aspect is how to 
integrate user-defined stylistic preferences or object concepts into these models. Full fine-tuning of 
large-scale models to learn such specific concepts presents significant challenges. This approach is 
computationally expensive, demanding substantial GPU resources and considerable time. Moreover, 
it generates large model files, complicating the storage and dissemination of multiple customized 
versions. To address these limitations, Low-Rank Adaptation (LoRA) technology emerged [37] 
providing a solution.LoRA has since been widely adopted to fine-tune large models across various 
tasks, including image generation. It complements the semantic guidance from CLIP and the 
structural control offered by ControlNet. Together, these technologies form a critical toolkit within 
current mainstream text-to-image generation. This toolkit enables highly controllable, high-fidelity, 
and personalized image generation. Consequently, it has further propelled the application and 
popularization of AI-Generated Content (AIGC) in fields such as artistic creation and design 
assistance. 

Therefore, the evolution of deep learning models in image generation can be conceptualized as 
a computational, data-driven 'typological exploration'. Models, through large-scale learning, 
discover and encode the latent 'typological' regularities and generative rules of the visual world. This 
discovery process often occurs 'bottom-up,' particularly via contrastive learning techniques like CLIP, 
which involve continuous matching and training on extensive databases. The introduction of 
technologies such as LoRA and ControlNet then enhances this automated 'typological system'. These 
additions enhance its semantic understanding and capacity for external constraints. Consequently, 
the system can more precisely generate instances 'on-demand' that conform to specific 'types' or 
'stylistic variations'. 

1.3. Phenomenological Emulation via Deep Learning 

As previously discussed, deep learning technologies, particularly GANs and Diffusion Models, 
have achieved significant advancements in image generation. These technologies have also 
demonstrated considerable potential for interdisciplinary applications across various architectural 
research domains. Furthermore, some studies have even encoded architectural constraints as 
graphical structures. This approach has been applied, for instance, in the study of architectural floor 
plans, scholars have employed GANs to recognize and generate architectural drawings. These 
enabled the automated generation of floor plans based on typological norms [38]; networks learn and 
store the typological features of floor plans [39](See Figure 4). Regarding facade style transfer, the 
continuous optimization of Diffusion Models has led to their progressive application, alongside 
GANs, in addressing complex facade design challenges. Researchers have explored various technical 
approaches for specific tasks. For instance, CycleGAN has been employed for extracting historic 
urban block architectural styles and integrating them with new designs [40]. Similarly, CGAN has 
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been utilized for generating facades of rural and small-town buildings [41]. More recent 
investigations have yielded positive outcomes. These studies compare the performance of different 
models, such as GANs versus Diffusion Models, in facade style transfer. They also focus on 
leveraging technologies like ControlNet and LoRA to enhance image generation accuracy and 
stylistic control [42,43]. 

 

Figure 4. Automated generation of floor plans based on typological norms(adapted from "Architectural 
Drawings Recognition and Generation through Machine Learning" by Hao Zheng et al.). Image source: drawn 
by the author. 

This tendency to prioritize form over structure and appearance over substance is a prevalent 
limitation for many current generative AI applications in architecture. Consequently, even if AI-
generated facades are visually captivating and stylistically accurate, considering them as complete 
architectural proposals can be problematic. Such proposals are likely to exhibit severe deficiencies in 
terms of intrinsic architectural rationality. This rationality encompasses aspects like the harmonious 
proportionality of components, the logical coherence of structural systems, and the sequential 
integrity of spatial narratives. These shortcomings highlight a critical bottleneck in the ongoing 
evolution of AI technology. Specifically, it underscores the challenge in transitioning from purely 
'data-driven' generation to a more profound 'knowledge/principle-driven' paradigm. The core issue 
lies in an insufficient grasp and adherence to the essential characteristics of the subject matter. 

Within this context, architectural typology presents a critical perspective and methodology to 
address such limitations. Typology's scope extends beyond formal diversity alone. It also prioritizes 
uncovering the underlying structural cores that inform formal expressions, alongside the 
organizational paradigms and generative logics tailored to specific requirements. This approach—
encompassing the abstraction, analysis, and deduction of ‘Types’—has optimized AI-driven content 
generation. Consequently, it enhances both the quality and conceptual depth of the resultant outputs 
[37–43]. Therefore, profoundly integrating typological principles into the AI generation pipeline 
holds paramount importance. This integration is particularly crucial across key stages such as 
training data construction, model fine-tuning, and output evaluation. Such an approach enables AI 
models to transcend superficial stylistic mimicry. More significantly, it facilitates their capacity to 
learn and apply fundamental architectural principles and underlying design logics. Ultimately, this 
leads to the generation of architectural proposals that are not only stylistically congruent but also 
rational. 

1.4. Research Objectives and Contributions 

Informed by the recognized necessity of 'stylistic emulation' for historic architecture, the current 
trajectory and inherent limitations of AI generative technologies, and the prospective guiding 
influence of typological theory, this research aims to formulate a methodological framework. This 
framework aims to integrate architectural typological principles with advanced deep learning 
models—specifically Low-Rank Adaptation (LoRA) fine-tuning and Diffusion Models—to facilitate 
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more efficacious and precise emulation, alongside innovative re-creation, of historic building facades. 
The focus is particularly on architecturally intricate and data-scarce styles, exemplified by Krakow's 
Eclecticism. The central objective of this research is to advance AI technology beyond mere visual 
'phenomenological emulation.' We aim to guide its development towards a more profound 'stylistic 
transcoding' and 'typological re-creation'. This evolution incorporates the intrinsic logic and 
principles of architecture. Ultimately, this endeavor seeks to provide technological support of greater 
practical utility and theoretical depth for historic preservation, urban regeneration, and associated 
digital cultural heritage domains. 

To achieve this objective, this study will focus on addressing the following key research 
questions: 

How can architectural typological principles be systematically integrated into training dataset 
construction and the LoRA fine-tuning process for AI models, to enhance the accuracy and 
controllability of stylistic emulation for historic building facades? This encompasses determining 
how to perform image selection and label optimization informed by typological knowledge, as well 
as how to devise LoRA fine-tuning strategies to capture the essential characteristics of specific styles. 

Compared to standard Diffusion Models or generic fine-tuning approaches, how does this 
typologically-guided LoRA fine-tuning technique perform in emulating historic architectural styles 
with data scarcity and stylistic complexity, such as Krakow's Eclecticism? Specifically, what are its 
performance characteristics in terms of realism, stylistic accuracy, and detail reproduction,as well as 
what are its discernible advantages and limitations? 

Does this methodology enable AI models to learn and reproduce typological features beyond 
superficial visual resemblance, capturing deeper characteristics like compositional principles, 
proportional relationships, and the organizational logic of key decorative motifs? How can 
quantitative metrics (e.g., evaluation benchmarks from computer vision) be effectively combined 
with qualitative assessments (e.g., subjective evaluations by architectural experts) to thoroughly 
evaluate the efficacy of this 'deeper-level' stylistic learning? 

Addressing the aforementioned research questions, the primary contributions of this paper are 
multifaceted. At the theoretical level, we explore and elucidate the foundational principles and 
inherent logic behind integrating architectural typological theory with AI image generation 
technologies. Particular emphasis is placed on LoRA and Diffusion Models. This investigation offers 
a novel theoretical perspective for AI-assisted architectural design and the digital preservation of 
historical heritage. Furthermore, it underscores a paradigm shift from 'phenomenological emulation' 
towards 'typological transcoding'. Methodologically, this paper proposes and validates a 
comprehensive workflow. This workflow systematically integrates typological analysis into both the 
training and application of LoRA models. It encompasses several key components: (i) dataset 
construction guided by typological principles, including image selection and label optimization; (ii) 
LoRA model fine-tuning strategies tailored for specific historical styles; and (iii) an evaluation 
framework for generated outputs that synthesizes quantitative metrics with qualitative assessments. 
At the practical level, using Krakow's Eclectic building facades as a specific case study, we 
successfully demonstrated the efficacy of our proposed methodology. This was particularly evident 
when addressing architecturally complex and data-scarce styles. Our approach not only generated 
high-quality 'stylistic emulation' images but also provided an open-source LoRA model. This model 
is specifically trained on a dataset of Krakow's Eclectic facades (available at 
https://civitai.com/models/1576307?modelVersionId=1783732). It is intended to facilitate further 
experimentation and testing by subsequent researchers. Furthermore, we explored the potential 
application of this methodology in several domains. These include rapid design evaluation in 
preliminary architectural design, digital reconstruction for historical and cultural exhibitions, and the 
development of virtual engine and game environments. This exploration offers novel perspectives 
and opens new possibilities for applying AI technology more broadly within architecture and 
associated cultural heritage fields. 
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2. Materials and Methods 

2.1. Case-Study Selection: Krakow’s Eclectic Facades 

The selection of the research subject for this study involved careful deliberation, culminating in 
the choice of Eclectic building facades from the Krakow region of Poland （See Figure 5) as the 
primary research specimens. This decision was guided by several factors （See Figure 6), the first of 
which is the subject's relative non-mainstreamness. Unlike globally prominent and extensively 
documented architectural styles such as Gothic, Baroque, or Modernism, Krakow's Eclecticism is 
comparatively underrepresented within global architectural scholarship and computer vision. This 
is particularly significant in the specific context of stylistic transfer applications. Such a characteristic 
is advantageous for evaluating our proposed methodology's efficacy with minimal interference from 
pre-existing, large-scale datasets or established analytical precedents. Furthermore, the profound 
historical and cultural value of these buildings is self-evident. Serving as crucial symbols for late 19th 
and early 20th-century urban modernization and cultural renaissance, these buildings embody a rich 
heritage. Their study, therefore, holds dual significance for both academic research and the 
preservation of cultural heritage. Finally, selecting this challenging case serves a strategic purpose: 
to validate the generalizability and potential applicability of our proposed methodology. If this 
framework can successfully address such a demanding 'hard case,' its broader applicability and 
robustness will be strongly demonstrated. This would be particularly true when dealing with 
architectural types characterized by more abundant data or clearer stylistic definitions. Such an 
outcome would, in turn, augur well for its future prospects in AI-assisted architectural design and 
related fields. 

 
Figure 5. The Eclectic Facade of the Building on Wesola Street in Krakow. Image source: Photo by the author. 

 

Figure 6. Considerations in the Selection of Research Subjects. 

To ensure the focused nature and representativeness of the research samples, this study further 
concentrated its investigation on Kraków's Wesoła District. This district served as the specific area 
for on-site surveys and image acquisition (See Figure 7). The Wesoła District constitutes a significant 
component of the buffer zone for the Historic Centre of Krakow, a UNESCO World Heritage site 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2025 doi:10.20944/preprints202505.2497.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/


 9 of 35 

 

inscribed in 1978. It covers an area of approximately 49.9 hectares. The Wesoła District has 
remarkably preserved the urban planning fabric of the 19th century. The Wesoła District has 
remarkably preserved the 19th-century urban planning fabric and retains the evolutionary trajectory 
of architectural technologies from that era. The area features a high concentration of Eclectic-style 
residential mansions. Many of these are listed in historical monument registers and inventories of 
ancient sites. Furthermore, its geographical proximity to the historic Old Town complex of Krakow 
is notable. Collectively, these factors provide this study with an abundant, concentrated, and high-
quality corpus of empirical research material. 

 

Figure 7. Research Plot Map. Image source: drawn by the author; Base map source: Google Maps. 

2.2. Image Data Acquisition and Preprocessing 

To ensure that the subsequent LoRA model can accurately learn and effectively transfer the core 
typological features of Krakow's Eclectic building facades, this study adopted a rigorous and 
meticulous strategy during the image data acquisition and preprocessing phase. 

2.2.1. Initial Collection and Screening Criteria for Image Samples 

Initially, this research gathered approximately 450 images depicting Eclectic-style residential 
mansions in the Krakow region. This was achieved through a combination of on-site surveys and 
multi-source web data collection. However, the quality of these initially collected images was 
heterogeneous, and their stylistic representations also exhibited noticeable variations. To ensure the 
quality and representativeness of the dataset for model training, the research team implemented a 
rigorous screening process. This process incorporated classification and evaluation criteria grounded 
in typological theory (See Figure 8). A primary principle of this screening was to ensure style 
consistency. Priority was given to facade images that clearly and consistently displayed the 
characteristic features of mainstream Krakow's Eclecticism. This selection aimed to mitigate 
suboptimal generation outcomes potentially caused by stylistic drift. Concurrently, image clarity was 
deemed essential. Selected images were required to possess high resolution and optimal illumination. 
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Obscured or blurry images were excluded to ensure the model could acquire clear and complete 
visual information. Thirdly, the prominence of characteristic features was another critical 
consideration. Preference was given to images that clearly showcased key typological attributes of 
the style, such as symmetrical tripartite facade compositions and abundant decorative elements. 
Finally, achieving multi-perspective coverage was also pursued. We aimed to include diverse 
viewpoints of the buildings whenever possible. This included standard elevation views and street-
level perspectives exhibiting some degree of perspectival distortion, thereby assisting the model in 
comprehensively learning three-dimensional morphological characteristics. 

 

Figure 8. Image Screening Process. Image source: drawn by the author. 

Following multiple rounds of screening and optimization informed by the aforementioned 
typological analysis, the research team refined the initial collection of 450 images. This process 
yielded 248 images that met the preliminary selection criteria. To further enhance the dataset's quality 
and specificity, the team identified thirty representative buildings from these 248 images. These 
selected buildings were considered most emblematic of the core typological characteristics—in terms 
of volume, constituent elements, and structural form—of Eclectic residential mansions in the region. 
From these thirty edifices, a final selection of 150 high-quality, highly representative images was 
curated. This curated set formed the foundational dataset for training the LoRA model. 

The primary objective of this rigorous data screening and optimization process was to ensure 
that the model could effectively learn the most essential and archetypal typological features of 
Krakow's Eclectic building facades. This meticulous preparation not only established a solid data 
foundation for subsequent AI-driven stylistic emulation. It also provided a reliable repository of 
stylistic prototypes to inform further innovative design explorations. 

2.2.2. Typology-Based Label Generation and Keyword Optimisation 

This study employed a hybrid strategy, combining automated annotation with expert correction, 
to construct a semantic labeling system for architectural facade images intended for LoRA model 
training. Initially, a pretrained CLIP model was utilized for the preliminary semantic annotation of 
the image dataset. This process generated descriptive labels encompassing foundational information 
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such as architectural type, stylistic features, and material composition. However, the labels 
automatically generated by the CLIP model were often quite broad. They frequently lacked precise 
descriptions of the detailed features characteristic of architectural facades.For example, during the 
initial annotation of Krakow's Eclectic building facades, the CLIP model predominantly generated 
generic labels. These included terms such as 'building,' 'facade,' and 'architecture.' However, it 
struggled to accurately capture more specialized and fine-grained descriptions. Such descriptions are 
crucial for reflecting the specific typological affiliations and hybridized stylistic characteristics of 
these facades. Examples of these missed details include 'Neoclassical tripartite composition,' 'Gothic 
Revival pointed-arch windows,' and 'Baroque broken pediments.' 

To address this limitation inherent in automated annotation, this study engaged a team of 
architectural experts. Their role was to manually correct and supplement the initial labels generated 
by the CLIP model. The core of this correction process involved the systematic review and refinement 
of labels, guided by the intellectual framework of architectural typology.Drawing upon their 
expertise in architectural typology, the expert team meticulously revised, refined, and augmented the 
label content. This ensured that the labels accurately reflected the unique characteristics of the 
building facades shown in the images. During this process, the experts not only rectified erroneous 
or ambiguous labels generated by the CLIP model but also supplemented these with a substantial 
number of missing architectural terminologies. Examples include terms such as 'sandstone plinth', 
'Corinthian order', and 'molding'. This comprehensive revision significantly enhanced the accuracy 
and professional relevance of the labels, as illustrated in Figure 9 (See Figure 9). 

 

Figure 9. Image-Label Diagram. Image source: Self-drawn and self-photographed by the author. 
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During the optimization of the keyword dataset, particular emphasis was placed on the 
hierarchical analysis of architectural facade images. This hierarchical analytical approach is based on 
fundamental principles of architectural typology. It conceptualizes the building facade as an organic 
entity composed of multiple constituent levels. Progressing from macroscopic to microscopic scales, 
this analysis sequentially addresses aspects such as overall architectural type, stylistic composition, 
color and material palettes, compositional forms, and detailed elements. Specifically, the label 
classification system developed in this study primarily encompasses the following tiers: 

Architectural Attributes-Label categories: e.g., historical residences, public buildings; 
Facade Composition: e.g., Krakow eclectic architecture (predominantly neo-renaissance style), 

ornate balconies, Baroque-style window decoration ; 
Material Attributes: e.g., red brick, beige stone, white window frames; 
Facade Composition: e.g., symmetrical composition, classical segmental composition, a row of 

multi-story buildings; 
Detailed Style Classification: e.g., orders (column types), cornices, pediments, moldings, 

spandrels (pier/window infill), corbels. 
Image Perspective: e.g., front elevation, low-angle view (looking up at the buildings). 
Impurity Labels : e.g., the sky is blue with some clouds, the street is lined with parked cars and 

bicycles. 
The application of hierarchical analysis is clearly illustrated by examining the facades of two 

residential mansions: Wesoła No. 8 and Wesoła No. 15 (See Figure 10). Both edifices employ a tripartite 
compositional structure, a common feature in Classical architecture. This structure divides the facade into 
three distinct sections: the base, the main body, and the entablature (or cornice/eaves section). Regarding 
the compositional elements of the main body, both buildings exhibit a clear inter-story correspondence. 
Specifically, windows are vertically aligned across stories, often with identical dimensions. Fenestration 
patterns become progressively more intricate from the ground-floor openings to the attic, while decorative 
mouldings also grow correspondingly elaborate [44]. However, while both edifices share commonalities 
in overall composition, gable ornamentation, and facade coloration that align with Classical styles, they 
also exhibit a fusion of disparate stylistic influences in their localized details. For instance, the central roof 
section of Wesoła No. 8 displays distinct Gothic stylistic characteristics. In contrast, Wesoła No. 15 features 
a ground-floor entrance lintel incorporating Baroque-style broken triangular and segmental pediments. 
This hierarchical analytical approach is instrumental in enabling the model to achieve a more profound 
comprehension of the facade's constituent elements and stylistic attributes. Consequently, this enhances 
both the accuracy and stylistic consistency of the generated images. Through iterative cycles of automated 
annotation, manual expert correction, and dataset optimization, this study curated 150 high-quality 
image-label pairs. These pairs formed the foundational data for the subsequent LoRA model training. 

 

Figure 10. Taking the Facade Analysis of the Mansion as an Example. Image source: Self-drawn and self-
photographed by the author. 
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This hierarchically clear and comprehensively detailed labeling system is designed with a 
primary aim: to furnish AI models with richer and more structured learning information. The 
intention is to enable these models to transcend rudimentary pixel-level mimicry. Ultimately, this 
facilitates a more profound understanding and faithful reproduction of the stylistic essence inherent 
in historic architecture. 

2.3. Typological Transcoding Framework 

To achieve precise 'stylistic emulation' and innovative re-creation of Krakow's Eclectic building 
facades, this study formulated a typological transcoding framework. This framework integrates Low-
Rank Adaptation (LoRA) fine-tuning techniques with a Stable Diffusion Model. The central principle 
of this framework is the application of typological analysis to guide both the training and inference 
processes of the AI model. The aim is to enable the model not merely to mimic visual phenomenology 
but also to comprehend and reproduce the underlying logic and compositional principles inherent 
in the architectural style. 

2.3.1. Brief Introduction to Diffusion Models and LoRA Technology 

Diffusion Models 

Diffusion Models represent a potent class of deep generative models. Their operational principle 
can be summarized as a bidirectional process. The initial phase is the 'forward diffusion process.' This 
involves the incremental addition of Gaussian noise to the original data (See Figure 11) until it fully 
transforms into pure noise. Subsequently, the crucial 'reverse denoising process' takes place. In this 
phase, the model learns to progressively remove noise, starting from pure noise, to ultimately 
reconstruct a clear new sample that aligns with the original data distribution [22,33,34]; Separately, 
the Stable Diffusion Model, an advanced iteration of diffusion models, operates by performing 
diffusion and denoising processes within a latent space. This operation is coupled with textual 
conditional guidance, often facilitated by models like CLIP [35]. Consequently, Stable Diffusion 
achieves exceptional performance in text-to-image generation tasks. It is capable of producing high-
resolution, highly detailed, and semantically pertinent images. Its robust generative capabilities and 
responsiveness to textual prompts make it an ideal foundational model for the stylistic transfer tasks 
investigated in this study. 

 
Figure 11. The operational principle of Diffusion Models, illustrating the forward noising process and the reverse 
denoising process. Image source: Self-drawn and self-photographed by the author. 

Low-Rank Adaptation 

Although pretrained large-scale diffusion models, such as Stable Diffusion, possess robust 
general-purpose generative capabilities, their direct application to specific, nuanced styles often falls 
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short. For instance, when applied to styles like Krakow's Eclectic architecture, achieving desired 
levels of precision and stylistic consistency can be challenging. Furthermore, full fine-tuning of these 
entire large models is computationally prohibitive. It also carries a significant risk of overfitting, 
particularly when training data is scarce. LoRA technology [37] offers an efficient solution to these 
challenges. Its core principle involves injecting trainable, low-rank matrices alongside key layers of a 
pretrained model. These key layers include the weight matrices within attention mechanisms (See 
Figure 12). During fine-tuning process, only the parameters of these low-rank matrices are updated. 
The main weights of the pretrained model remain frozen. 

 

Figure 12. LoRA System Diagram (Adapted from "LoRA: LOW-RANK ADAPTATION OF LARGE LANGUAGE 
MODELS" by Edward J. Hu et al.). Image source: Self-drawn and self-photographed by the author. 

2.3.2. LoRA Model Training Workflow and Key Parameter Regulation 

The training workflow for the LoRA model, specifically tailored for Krakow's Eclectic 
architectural style in this study, is illustrated in Figure 13 (See Figure 13). This workflow leverages 
the previously optimized image-label dataset. It employs a Stable Diffusion model—with FLUX 
selected as the foundational model architecture in this research—as its pretrained base. 

 

Figure 13. LoRA Training Workflow. Image source: drawn by the author. 

During the training process, the meticulous adjustment of the following key hyperparameters is 
crucial for ensuring that the model effectively learns and generates high-quality, stylistically 
consistent facade images: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2025 doi:10.20944/preprints202505.2497.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/


 15 of 35 

 

Learning Rate: This hyperparameter directly dictates the step size for model weight updates 
during training. While an excessively high learning rate can destabilize training or cause divergence, 
an overly low rate significantly prolongs training and risks entrapment in local optima. Consistent 
with common LoRA fine-tuning practices and prioritizing model stability, this study explored and 
set learning rates within a relatively narrow range (e.g., 1e-4 to 1e-5). This strategy aimed to 
effectively capture the nuanced characteristics of the target style while ensuring stable convergence 
[45]. 

Total Training Steps: This parameter depends on the image count, total training epochs, 
repetitions per image, and batch size. It directly correlates with the depth of the model's learning 
from the training data. When training on complex styles such as Krakow's Eclecticism, achieving a 
balance between underfitting and overfitting is paramount [46–48]. Underfitting occurs when the 
model fails to adequately learn stylistic elements, whereas overfitting involves excessive 
memorization of training sample details, thereby impairing generalization capabilities. Insufficient 
training steps can result in generated facades lacking typical stylistic details. Conversely, An 
excessive number of steps may lead the model to merely reproduce specific buildings from the 
training set, limiting its flexible application in novel design contexts. Therefore, a critical aspect of 
parameter tuning in this study involves judiciously planning the total training steps. This is coupled 
with the subsequent selection of optimal model checkpoints based on rigorous evaluation. 

Loss Value Monitoring: The loss value is a metric quantifying the discrepancy between the 
model's predictions and the ground truth data. It directly reflects the model's training efficacy. 
During training, a diminishing loss value typically indicates that the model's predictions are aligning 
more closely with actual observations. Consequently, the monitoring and optimization of the loss 
value are linked to the model's learning efficiency and the quality of the generated images. For 
architectural style generation tasks, particularly in rendering the detailed nuances of Krakow's 
Eclecticism, optimizing the loss value is crucial. This ensures that the model capture the fine-grained 
characteristics of the architectural style, facilitating the generation of more realistic and precise design 
imagery. 

Systematic adjustment and experimentation with the aforementioned key parameters aimed to 
identify the optimal training configuration (Table 1). This configuration was sought to enable the 
LoRA model to efficiently and accurately learn the stylistic characteristics of Krakow's Eclectic 
architecture. For this study, LoRA model fine-tuning was performed on the previously described 
dataset of 150 image-label pairs. The FLUX architecture was used as the foundational model for this 
training, which was executed on an NVIDIA RTX 4090 GPU with 24GB of VRAM. Key training 
hyperparameters were configured as follows: Epochs = 20, Batch Size = 4, and Learning Rate = 1e-4. 
The entire training process spanned 17 hours, yielding 20 LoRA models, each with a file size of 584 
MB. 

Table 1. FLUX-LoRA Training Parameter Table. 

Model-train-type pretrained-model AE model t5xxl model 
flux-lora flux1-dev.safetensors ae.sft t5xxl fp16.safetensors 

clip-l timestep sampling model prediction type Loss-type 
Clip-l.safetensors sigmoid raw I2 

resolution save precision Epochs Batch Size 
1024,1024 bf16 20 4 

GPU equipped Learning Rate unet Learning Rate 
Text-encoder 
Learning Rate 

NVIDIA RTX 4090 1e-4 5e-4 1e-5 
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2.3.3. The Guiding Role of Typological Theory in Training and Inference Processes 

Relying solely on the intrinsic learning capabilities of AI models and the adjustment of the 
aforementioned technical parameters may still prove insufficient to fully overcome the limitations of 
'phenomenological emulation'. Therefore, this study underscores the critical importance of 
integrating architectural typological thought as a consistent guiding force. This integration is 
emphasized throughout the entire training and inference pipeline of the LoRA model. 

During the training data preparation phase, as detailed in Section 2.2, typological principles 
guided both image selection and label construction. Image selection aimed to ensure stylistic 
consistency and feature typicality. Label construction focused on hierarchical and structured 
organization, identifying aspects such as architectural type, stylistic composition, compositional 
forms, and key elements. This structured approach provided the model with learning material richer 
in both structural and semantic information. Upon entering the LoRA model fine-tuning phase, 
although LoRA predominantly learns visual features, high-quality, typologically-informed labels can 
indirectly steer the model. These labels guide its attention towards visual patterns associated with 
specific typological concepts. For instance, by emphasizing labels such as 'tripartite composition,' the 
model may, during its learning process, focus more on the vertical organizational principles of the 
facade. 

During the inference (image generation) phase, users can guide the model's generation trajectory 
through meticulously designed textual prompts. These prompts are deliberately imbued with 
typological concepts. Finally, in the result evaluation and iteration phase, subjective assessments by 
architectural experts are critical, complementing quantitative metrics from computer vision. These 
experts evaluate the generated outputs from a typological perspective, rather than focusing solely on 
superficial visual resemblance. They assess whether the results conform to the intrinsic logic, 
compositional principles, and cultural connotations (or significations) of the specific (or target) style, 
rather than relying solely on visual similarity. This feedback, grounded in typological knowledge, 
can inform the iterative refinement of the model or adjustments to the prompts. 

In this manner, the present study endeavors to construct a framework that deeply integrates AI 
generation with typological theory (See Figure 14). The overarching aim is to enable AI not merely to 
'render accurately' but, more crucially, to 'think correctly' in an architectural sense. Consequently, 
this approach seeks to achieve a higher echelon of intelligence and creativity in both the 'stylistic 
emulation' and re-creation of historic architectural styles. 

 

Figure 14. Research Workflow Framework. Image source: Self-drawn and self-photographed by the author. 
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3. Results and Analysis 

This chapter present and analyze in detail the experimental results obtained through the 
methodological framework proposed in this study. Initially, we investigate how key parameters of 
the LoRA model—specifically the loss value (LOSS) and application weights—influence the 
generation outcomes for Krakow's Eclectic building facade styles. Subsequently, a comparative 
analysis, both quantitative and qualitative, is conducted. This analysis evaluates the performance of 
the proposed typologically-guided and LoRA-fine-tuned AI model against several baseline models. 
These baselines include standard Stable Diffusion 3.5 and an unfine-tuned FLUX model, specifically 
within the context of stylistic emulation tasks. 

3.1. Influence of LoRA Model Parameters on Stylistic Generation Outcomes 

Throughout the training and application phases of LoRA models, two pivotal parameters 
emerge: the loss value during the training stage and the LoRA weight applied during the inference 
stage. These parameters collectively exert a significant influence on both the accuracy and diversity 
of the stylistic attributes in the generated images. 

LoRA Loss and Weight Tuning for Style Transfer 

Training a LoRA model is fundamentally a learning endeavor wherein the model's proficiency 
in capturing a target historical style—Krakow's Eclecticism in this instance—typically enhances with 
an increasing number of training epochs. This enhancement is generally paralleled by a steady 
decline in the training loss value (LOSS), with lower LOSS values indicating a better fit of the model 
to the training data. Simultaneously, during inference for image generation, the applied LoRA weight 
(typically ranging from 0 to 1, though occasionally extending slightly beyond 1) dictates the degree 
to which the fine-tuned stylistic features influence the base model's output. 

By experimenting with LoRA model checkpoints saved at various training epochs 
(corresponding to different LOSS values), in conjunction with diverse inference weight values, this 
study observed several discernible patterns (See Figure 15); see also Figure A1 in Appendix A). 
During earlier training stages, characterized by higher LOSS values, or when lower LoRA application 
weights were employed, the resultant images exhibited greater 'creativity' and 'conceptuality.' The 
AI-generated facade styles tended to manifest as a fusion. This fusion typically involved the target 
historical style blended with either the inherent style of the base model or broader contemporary 
design elements. This characteristic offers designers a valuable opportunity for exploring stylistic 
fusion and seeking innovative expressions during the initial conceptual design phases. Conversely, 
in later training stages—marked by a significant decrease and convergence of the LOSS value—or 
when higher LoRA application weights are utilized, the AI-generated image outcomes demonstrate 
a more precise and stable replication of the target historical style. In such cases, these outputs exhibit 
a superior resemblance to authentic historical images from the training set, particularly concerning 
overall composition, decorative detailing, material rendering, and lighting effects. This latter 
approach is, therefore, more congruous with application scenarios that prioritize high-fidelity 
reproduction. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2025 doi:10.20944/preprints202505.2497.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/


 18 of 35 

 

 

Figure 15. Diagram of LoRA Multi-Round Models with Different Weight Values. Image source: Self-drawn and 
self-photographed by the author. 

This dual control mechanism, comprising the LOSS value (indicative of training depth) and the 
LoRA weight (reflecting the intensity of fine-tuning influence), affords designers considerable 
flexibility and control throughout the stylistic emulation process. Designers can select and combine 
LoRA models from different training stages, along with their respective application weights, tailored 
to the evolving requirements of a project. This adaptability accommodates needs ranging from early-
stage conceptual explorations of stylistic fusion to later-phase pursuits of high-precision stylistic 
expression. Consequently, AI tools can more effectively address diverse needs for both stylistic 
imitation and innovation within the design workflow. 

However, it is crucial to acknowledge a core deficiency in this approach, which relies purely on 
understanding and applying technical parameters like LOSS values and LoRA weights. This 
deficiency lies in its primary effect being confined to the visual phenomenological level of the image. 
While reducing LOSS value and an increase in LoRA weight enhance the similarity of generated 
images to the training data—particularly concerning texture, color, lighting, and recognizable 
stylistic elements (e.g., specific column orders, window ornamentation)—this often occurs at a 
superficial level. Essentially, the model learns a visual pattern-matching mechanism, aiming for a 
'looks like' resemblance. However, this does not guarantee that the model comprehends the 
underlying architectural principles. These include the structural logic, spatial organization 
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paradigms, or specific construction techniques embedded within these visual elements. 
Consequently, even if the generated images exhibit high stylistic fidelity to the training data, they 
may still contain conspicuous fallacies concerning intrinsic architectural rationality. Such fallacies 
could manifest as, for instance, disproportionate component scaling, illogical structural relationships, 
or incoherent spatial circulation.Under such circumstances, AI-generated images might merely 
represent a rigid transplantation of 'stylistic phenomenology,' rather than constituting an 
architectural expression endowed with intrinsic coherence and buildability. This precisely 
underscores the inherent limitations of relying solely on AI's visual mimetic capabilities. It also 
highlights the imperative to integrate more profound architectural knowledge—such as typological 
principles—for both guidance and evaluation. 

3.2. Comparison of Generated Facade Styles 

To comprehensively and objectively evaluate the performance of our proposed typologically-
guided LoRA fine-tuning methodology—specifically for stylistic transfer for Krakow's Eclectic 
building facades—we adopted a dual evaluation framework. This framework comprises two main 
components: (1) objective data analysis using established quantitative evaluation metrics in the field 
of computer vision, and (2) subjective qualitative assessment of the model-generated images by a 
panel of architectural experts. This combined approach aims to holistically validate the model's 
efficacy from both data-centric and expert-informed perspectives. 

3.2.1. Quantitative Metrics 

For quantitative evaluation, we selected three widely adopted objective metrics from the image 
generation domain. The first of these is the Fréchet Inception Distance (FID). FID assesses the 
similarity between the distributions of features extracted by an Inception network from both 
generated and real images. It measure the realism and diversity of the generated images. Notably, a 
lower FID value signifies higher quality in the generated imagery [49]. Secondly, Learned Perceptual 
Image Patch Similarity (LPIPS) was utilized. LPIPS employs deep learning models to quantify the 
perceptual similarity between two images. Its outcomes align more closely with human subjective 
judgments of image similarity. A lower LPIPS value indicates greater perceptual resemblance 
between images [50]. Finally, Peak Signal-to-Noise Ratio (PSNR) was included. PSNR is a widely 
used metric for assessing image distortion or the quality of image reconstruction. A higher PSNR 
value signifies less distortion and, consequently, better image quality [51]. We conducted a 
comparative analysis between our proposed model—typologically-guided and LoRA-fine-tuned 
(hereafter referred to as FLUX-LoRA)—and two baseline models. These baselines were: (a) a standard 
Stable Diffusion model without any fine-tuning (represented by SD3.5 in this study), and (b) the base 
FLUX large model utilized without LoRA fine-tuning (hereafter FLUX). All models generated images 
on an identical test set. Subsequently, the three aforementioned quantitative metrics were computed 
for these generated images. 

The comparative results for all metrics, as depicted in Figure 16 and 17, unequivocally 
demonstrate that the FLUX-LoRA model (See Figure 16) (See Figure 17), fine-tuned using the 
methodology proposed herein, exhibits a significant advantage across all selected quantitative 
indicators: 

FID Improvement (Lower is Better): The FLUX-LoRA model achieved an FID value of 90.48. This 
represents an approximate improvement of 28.4% over the SD3.5 model's score of 126.42, and a 24.6% 
improvement over the base FLUX model's score of 119.96. These results indicate that the image set 
generated by FLUX-LoRA exhibits an overall feature distribution more closely aligned with that of 
authentic Krakow Eclectic building facades. Consequently, the generated images are more realistic 
and diverse. 

LPIPS Improvement (Lower is Better): The FLUX-LoRA model attained an LPIPS value of 0.5904. 
This signifies an approximate improvement of 11.0% over the SD3.5 model's score of 0.6636, and a 
7.0% improvement compared to the base FLUX model's score of 0.6349. These findings suggest that 
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images generated by FLUX-LoRA exhibit greater similarity to real images at the human perceptual 
level. This implies a higher fidelity in reproducing both fine details and overall stylistic 
characteristics. 

PSNR Improvement (Higher is Better): The FLUX-LoRA model registered a PSNR value of 
10.1488 dB. This marks an approximate increase of 6.8% compared to the SD3.5 model's score of 
9.4979 dB. Notably, the PSNR value for the base FLUX model (8.9859 dB) decreased in comparison. 
This observation further corroborates the superiority of the FLUX-LoRA model in terms of pixel-level 
image fidelity and the reproduction of stylistic details. 

 

Figure 16. Comparison of Images Generated by Different Large Models. Image source: Self-drawn and self-
photographed by the author. 

 
Figure 17. Quantitative Line Chart of the Three Major Evaluation Metrics. Image source: drawn by the author. 
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Collectively, the quantitative computer vision metrics unequivocally indicate that the 
methodology proposed herein—which integrates typology-guided dataset construction with LoRA 
fine-tuning strategies—significantly enhances the generated facade imagery. This enhancement is 
evident across authenticity, perceptual quality, and stylistic similarity. 

3.2.2. Qualitative Evaluation by Expert Panel 

While quantitative metrics can objectively reflect image quality at a data level, a nuanced 
understanding of deeper issues remains reliant on subjective human judgment, particularly from 
individuals with specialized expertise. These issues include the accuracy of architectural style, the 
appropriateness of elements, and conformity to design intent. Consequently, this study convened an 
evaluation panel comprising 68 experts from the field of architecture. The panel members possessed 
diverse backgrounds, encompassing scholars engaged in historical building preservation and 
regeneration research, as well as professionals specializing in architectural design and its theoretical 
foundations. The expert panel was tasked with conducting subjective assessments of Krakow's 
Eclectic building facade images generated by different AI models. 

During the evaluation process, experts initially observed a set of 'real images' presented in 
Figure 16, which served as references. They then compared these with corresponding 'emulated 
images' generated by different models (FLUX, FLUX-LoRA, and SD 3.5). Throughout this assessment, 
the experts also consulted the 'semantic labels' (i.e., the textual prompts used during training) that 
were employed to generate the images, providing a basis for stylistic description. They rated each 
AI-generated image using a 1-5 point scale, where 5 represented the highest concordance with either 
the real image or the textual prompt. This rating considered four key dimensions: firstly, Realism, 
assessing whether the generated image appeared to be an authentic photograph of a building. 
Secondly, Semantic Correspondence evaluated whether the image accurately reflected the 
architectural style, key elements, and compositional features described in its semantic label. Thirdly, 
Image Similarity considered the degree of resemblance between the generated image and its 
corresponding 'real image' regarding overall style, composition, and critical details. Finally, Stylistic 
Accuracy involved scrutinizing whether the image faithfully reproduced the typical characteristics 
and nuanced distinctions of Krakow's Eclectic architectural style. 

Based on the preliminary results from the expert scoring rubrics presented in Figures 18–20 
(which correspond to comparisons between real images and those generated by the FLUX-LoRA, 
FLUX, and SD3.5 models, respectively; one illustrative set of building comparison cases is detailed 
herein), the following preliminary conclusions can be drawn： 

The FLUX-LoRA model demonstrated superior overall performance. In evaluations of this 
model (referred to as 'LoRA Faker' in the corresponding video; see quantitative results in Figure 17 
and qualitative scores in Figure 18), its average scores across all four dimensions were significantly 
higher than those of the other two models. For instance, it achieved an average Realism score of 4.24 
and a Stylistic Accuracy score of 4.06. Its performance was particularly prominent in the critical 
dimensions of 'Realism' and 'Stylistic Accuracy,' earning high commendation from the expert 
panel.Regarding the accurate capture of stylistic features, experts generally concurred that facades 
generated by the FLUX-LoRA model more precisely captured and reproduced the complexity and 
uniqueness inherent in Krakow's Eclectic architecture.For instance, a comparison of the first set of 
images in Figure 16 reveals that the FLUX-LoRA model effectively reproduced several key features. 
These included the classic tripartite composition of the facade, the proportions and ornamentation of 
the windows, the rich stratification of cornice moldings, and volume. In contrast, images generated 
by the SD3.5 model appeared overly simplified and generalized. The base FLUX model, while better, 
was somewhat inferior in terms of detail coordination and stylistic purity.Notably, the experts also 
highlighted another strength of the FLUX-LoRA model. Its generated images not only visually 
emulated the target style proficiently but also demonstrated, to a certain extent, a capacity to respond 
to and reorganize typological elements embedded within the input textual prompts. Such elements 
included 'classical composition', 'Baroque-style ornamentation,' and 'colossal pilaster/colonnade-like 
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decoration'. This observation aligns closely with the typologically-guided strategies emphasized in 
this study during dataset construction and label optimization. 

A synthesis of quantitative computer vision metrics and subjective evaluations from the 
architectural expert panel confirms that our proposed methodology—integrating typological analysis 
with LoRA fine-tuning—has yielded encouraging results. This was observed in the task of stylistic 
transfer for Krakow's Eclectic building facades. The LoRA-fine-tuned model produced images that 
were more photorealistic and more aligned with the target distribution at a data level. More crucially, 
from the perspective of architectural experts, its generated facades demonstrated significantly 
superior performance. This superiority was evident in stylistic accuracy, elemental appropriateness, 
and the comprehension and expression of specific architectural 'types', compared to baseline models 
lacking targeted fine-tuning. 

 
Figure 18. Example of FLUX-LoRA Expert Evaluation Form (Case 1). Image source: Self-drawn and self-
photographed by the author. 
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Figure 19. Example of FLUX Expert Evaluation Form (Case 1). Image source: Self-drawn and self-photographed 
by the author. 

 

Figure 20. Example of SD3.5 Expert Evaluation Form (Case 1). Image source: Self-drawn and self-photographed 
by the author. 
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4. Discussion 

This chapter offers a deeper interpretation and discussion of the experimental results. Initially, 
we adopt an architectural typological perspective to thoroughly analyze the intrinsic mechanisms by 
which AI—particularly Diffusion Models fine-tuned with LoRA—learns and reproduces historic 
architectural styles. The relationship between these mechanisms and core typological theories is also 
explored. Subsequently, a comprehensive analysis is presented, evaluating the efficacy, value, and 
broader contextual significance of the methodology developed in this study. Finally, we address the 
current study's limitations and delineate promising avenues for future research. 

4.1. Interpreting Stylistic Learning in AI Models 

The core of this research lies in exploring how architectural typological principles can guide and 
optimize AI models for the 'stylistic emulation' and re-creation of historic architectural styles. 
Observations of Krakow's Eclectic building facade images, generated by the LoRA model at different 
training stages and with varying weight settings (See Figure 14), clearly reveal a stylistic learning and 
reproduction process. This process progresses from macroscopic to microscopic levels and from 
overall to localized features. Notably, this developmental trajectory exhibits significant parallels with 
the analytical and comprehension methods employed in architectural typology for understanding 
building 'types' (See Figure 21). 

 

Figure 21. Typological Style Transfer Comparison Diagram. 

4.1.1. Progressive Learning in LoRA Models 

The learning trajectory of LoRA models, particularly when acquiring specific architectural styles 
such as Krakow's Eclecticism, is not instantaneous. Instead, it is a process of gradual deepening and 
hierarchical progression. This progression is often concomitant with variations in technical 
parameters, such as decreasing loss values resulting from an increased number of training epochs, or 
an elevation in LoRA weights applied during inference. Specifically, this process can be generally 
categorized into several stages. During the initial stage, the model first captures the macroscopic 
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features of the target style. These include aspects such as the overall building volume, approximate 
proportional relationships, and the primary compositional outlines of the facade. At this stage, 
generated images may begin to formally approximate the target. However, they typically exhibit 
indistinct details and rather generalized material and color palettes. This phase can be interpreted as 
the model establishing an initial 'first impression' or a foundational 'skeletal understanding' of the 
style. Progressing to the intermediate stage, with deepened training or increased LoRA weights, the 
model begins to learn and reproduce the principal compositional elements and chromo-material 
characteristics of the facade with greater precision. For instance, it becomes more adept at discerning 
different materialities (e.g., brickwork, stone, stucco) and starts to emulate the distinctive color 
schemes and lighting effects inherent to the target style. Concurrently, a more accurate articulation 
of primary facade compositional elements—such as tripartite divisions, fenestration patterns, and 
entablature treatments—becomes evident.In the later stage, characterized by comprehensive training 
or the application of higher LoRA weights, the model shifts its focus to learning finer decorative 
elements and the nuanced relationships between components. This includes the accurate 
reproduction of details such as period-specific orders (column types), window ornamentation, 
moldings, and sculptural details. Moreover, it captures the intrinsic logic governing the proportional, 
combinatorial, and spatial relationships among these elements. At this juncture, the generated images 
not only achieve high visual fidelity but also, to a certain extent, embody the 'compositional 
principles' of the target style. 

This learning and reproduction trajectory, progressing from macroscopic to microscopic scales 
and from holistic to localized features, bears a striking resemblance to the cognitive process by which 
architects comprehend an architectural type or style. Architects typically first apprehend the overall 
form and spatial organization of buildings. Subsequently, they delve progressively deeper into 
materials, construction methods, and decorative detailing. 

4.1.2. Correlation with Architectural Typological Theory 

The stylistic learning and reproduction process exhibited by LoRA models shares profound 
intrinsic connections with core theories in architectural typology. This is particularly evident when 
considering the concepts of 'Type' and 'Urban Fabric' as articulated by Aldo Rossi in his seminal 
work, The Architecture of the City [11]. 

Abstraction and Reproduction of 'Type': Rossi conceptualized 'type' in architecture not as a 
static, immutable form, but as a profound organizational structure and generative logic that 
transcends specific formal manifestations. He argued that 'type' adapts to diverse socio-cultural 
contexts through the continuous 'transcoding' and 're-creation' of forms and elements over historical 
trajectories. This adaptation progressively shapes buildings with unique styles and local character. 
Similarly, LoRA models, by processing extensive image datasets, effectively attempt to abstract 'type' 
characteristics— latent organizational principles and constituent elements—of a specific style from 
its visual phenomenology. When generating new images, these models then engage in 'reproduction' 
and 'variation' of these learned 'type' features. The typology-guided dataset construction and label 
optimization employed in this study are specifically designed to assist AI models in more effectively 
identifying and learning this deeper 'type' information. 

Acquisition and Application of 'Architectural Language': Rossi perceived architecture as a 
'language,' possessing its own 'vocabulary' (architectural elements), 'grammar' (compositional rules), 
and 'context' (cultural background). The LoRA model's process of learning a specific style can be seen 
as acquiring a particular 'architectural visual language.' In the initial stages, it might only grasp a 
vague 'intonation' and 'outline.' During the intermediate phase, it begins to master the principal 
'vocabulary' and 'syntactic structures.' By the later stages, it can more fluently utilize this 'language' 
to 'narrate stories' (i.e., generate photorealistic facade images) that conform to the specific style. The 
hierarchical processing of image labels in this study—progressing from overall type to detailed 
elements—helps the AI model in more systematically learning this 'architectural language'. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2025 doi:10.20944/preprints202505.2497.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/


 26 of 35 

 

Place-making and Affective Dimensions: Typological theory also emphasizes that architecture 
transcends mere physical existence; it serves as a vessel for culture, memory, and history, possessing 
strong local character and profound affective dimensions [52]. By learning lighting, materiality, and 
specific decorative elements, LoRA models, also engage with the capacity to evoke particular place-
atmospheres and affective experiences. Although AI currently achieves this primarily through visual 
imitation, enhancements in the 'realism' and 'stylistic accuracy' of its generated outputs undeniably 
amplify the viewer's emotional resonance with specific historical places. 

From a typological perspective, the LoRA-based stylistic transfer process in this study 
transcends mere visual replication. It can be more accurately understood as a computational process 
involving the learning, abstraction, transcoding, and reproduction of specific architectural 'types.' 
This typological lens offers valuable insights for a deeper comprehension of AI's generative 
mechanisms. Furthermore, it provides beneficial implications for future advancements, such as 
enabling AI to genuinely understand and apply the fundamental principles of architecture. 

4.2. Methodological Efficacy and Value 

The methodology proposed in this study, which integrates architectural typology-guided LoRA 
fine-tuning, has demonstrated significant efficacy in addressing the complexities of Krakow's 
Eclecticism—a style characterized by both intricacy and data scarcity. Furthermore, this approach 
possesses multifaceted applicative value. 

4.2.1. Handling Complex, Data-Scarce Styles 

Krakow's Eclectic architectural style is inherently characterized by a high degree of complexity. 
It combines formal languages and decorative elements from diverse historical periods, further 
shaped by regional cultural influences that have fostered unique micro-variations. Concurrently, 
high-quality, structured image datasets for such non-mainstream styles are comparatively scarce. 
These two factors collectively present formidable challenges to AI models concerning both learning 
and stylistic transfer. 

Experimental results, as detailed in Sections 3.1 and 3.2, indicate that the methodology proposed 
in this study can effectively address these challenges. Firstly, even with a relatively limited training 
dataset, the FLUX-LoRA model—guided by typology and fine-tuned with LoRA—generated facade 
images superior to those from baseline models (i.e., standard Stable Diffusion and the unfine-tuned 
FLUX). This superiority was evident in visual realism, stylistic accuracy, and richness. This 
demonstrates the method's robust learning capability and style reproduction capacity when handling 
complex, data-scarce styles. Secondly, expert evaluation findings further corroborated these results. 
Images generated by the FLUX-LoRA model not only resembled authentic Krakow's Eclectic 
architecture. They also demonstrated an ability, to some extent, to respond to typological concepts 
embedded within textual prompts, thereby producing new variants with a degree of inherent 
rationality. This suggests that the method transcends simple overfitting, instead learning intrinsic 
stylistic regularities and possessing a degree of generalization potential. 

4.2.2. The Role of Typological Guidance in Enhancing Generation Quality and Interpretability 

A pivotal innovation of this research lies in the systematic integration of architectural typological 
principles throughout the entire AI model training and application pipeline. This guidance is crucial 
for enhancing both the quality of generated images and the interpretability of model behavior. On 
one hand, typology-driven image screening and label optimization provide AI models with more 
precise and structurally coherent learning materials.This not only enables the model to move 
beyondmere surface texture and color imitation but alsodirects it to focus on more 
profoundcompositional principles, proportionalrelationships, and the organizational logic 
ofarchitectural elements, thus enhancing the overall generation quality.As expert evaluations 
indicated, typologically-guided models performed superiorly in terms of 'Semantic Correspondence' 
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and 'Stylistic Accuracy'. On the other hand, typology offers a theoretical framework for 
understanding and analyzing the AI model's stylistic learning process. As discussed in Section 4.1, 
the LoRA model's learning trajectory can be likened to an architect's process of understanding and 
deducing 'types.' This comparison not only helps to clarify the AI’s 'perceptive' and 'learning' 
mechanisms but also offers valuable insights for optimizing the model and refining the generation 
process. Consequently, the 'black box' nature of AI becomes, to some extent, more 'transparent,' 
thereby enhancing its trustworthiness and controllability as a design assistance tool. 

4.2.3. Potential Enhancements to Traditional 'Stylistic Emulation' Practices 

Traditional practices for emulating historic architectural styles—whether executed through 
manual drafting or early computer-aided design—have historically relied on the individual 
designer's expertise, technical skill, and depth of understanding regarding historical 
precedents.These processes are often time-consuming, labor-intensive, and yield inconsistent results. 
Consequently, ensuring stylistic accuracy and consistency has remained a persistent challenge. 

The typology-guided AI 'stylistic emulation' methodology proposed in this study offers several 
improvements to traditional practices. For instance, once an AI model is effectively trained, it can 
rapidly generate a multitude of facade proposals adhering to specific stylistic requirements. This high 
efficiency is invaluable for multi-alternative comparisons and rapid iterations during preliminary 
design phases. Furthermore, because AI learning is predicated on unified datasets and explicit 
guidance, the stylistic consistency of its outputs may surpass that of traditional methods, which often 
rely purely on individual subjective judgment. 

Moreover, systematic typological guidance enables AI models to acquire a more comprehensive 
and profound understanding of stylistic knowledge than might be achievable by some individual 
designers using traditional methods. This is particularly pertinent for non-mainstream styles or those 
with limited extant documentation. AI can distill subtle features and statistical regularities from 
extensive image corpuses that might be imperceptible to the human eye. Consequently, this 
capability could elevate the finesse and nuanced fidelity of stylistic reproduction to new echelons. 

Although this research primarily focuses on 'stylistic emulation,' AI models guided by typology 
also unlock new potentialities for stylistic 're-creation' and innovative design. Through an abstracted 
comprehension of 'types' and a flexible 'transcoding' of elements, AI can assist designers. It aids in 
exploring novel stylistic expressions that are contemporary yet respectful of historical context. This 
capability allows a progression beyond mere replication, facilitating a genuine 'adaptation of 
historical precedents for contemporary use'. 

In summary, the methodology proposed in this research, which combines architectural 
typology-guided LoRA fine-tuning, has demonstrated its efficacy in handling complex, data-scarce 
styles. More significantly, it provides a framework with greater theoretical depth and practical value 
for understanding and applying AI in architectural stylistic emulation and innovative design. This 
contribution not only improves the quality and interpretability of AI-generated imagery but also 
introduces new potentialities and insights for traditional architectural design practices. 

4.3. Limitations of the Study 

Despite the positive advancements achieved by the proposed methodology—which integrates 
architectural typology-guided LoRA fine-tuning for the 'stylistic emulation' and re-creation of 
Krakow's Eclectic building facades—it is imperative to acknowledge its limitations. These limitations 
not only reflect prevalent challenges in the current application of AI technology within architectural 
design but also highlight specific areas requiring further research efforts in the future. 

4.3.1. Predominant Focus on 2D Facades and Significant Challenges in 3D Modeling 

The core focus of this research has been on stylistic transfer for two-dimensional (2D) 
architectural facades. While the generating of high-quality 2D facades holds significant value for 
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schematic representation and preliminary conceptual design, architecture is fundamentally a three-
dimensional (3D) spatial entity. Extending the findings from 2D facade research to the automated 
generation of 3D architectural models remains a formidable challenge, primarily manifested in 
several aspects.Firstly, inferring or generating 3D geometry from 2D images requires addressing 
inter-view consistency and the complex topological and spatial adjacency relationships among 
architectural components.Current AI models often face difficulties in ensuring the accuracy and 
rationality of generated geometries when transitioning from 2D to 3D.[36,53–57]. Secondly, compared 
to abundance of 2D image data, high-quality 3D architectural model datasets with detailed semantic 
annotations are considerably scarcer. This scarcity limits the depth and scope of AI model learning 
within the 3D domain. Thirdly, the generation and processing of 3D models typically require greater 
computational resources than their 2D counterparts, thereby imposing higher requirements on model 
training and inference efficiency. 

Therefore, while the methodology of this study might offer some insights for the stylistic 
treatment of three-dimensional (3D) models—for instance, by attempting to combine stylized facades 
from multiple viewpoints—significant hurdles remain. Achieving truly AI-driven, intelligent 
generation of 3D architecture that accurately conforms to specific styles remains a long-term research 
challenge 

4.3.2. Limitations in AI's Understanding of Deep Structural Logic and Functional Organization 

As previously noted, even at the 2D facade level, current predominantly data-driven AI 
generative models exhibit significant deficiencies.These deficiencies lie in their lack of a limited 
understanding of architectural structural logic, functional requirements, and spatial organization 
principles.A key issue is the dichotomy between 'phenomenology' and 'ontology': AI models excel at 
learning and replicating visual 'phenomena' (e.g., stylistic elements, material textures). However, 
their comprehension of the underlying 'ontology' (e.g., load-bearing structures, spatial organization, 
formal order) behind these phenomena often remains superficial or entirely absent. This, can lead to 
a disconnect between function and form. While AI models may generate forms conforming to a 
specific style, they might struggle to simultaneously ensure these forms meet concrete functional 
needs and spatial usability logic. Furthermore, the inherent 'black box' nature of AI models, 
particularly deep neural networks, renders their decision-making processes and generative logic 
difficult to fully interpret. This opacity raises concerns among designers regarding the intrinsic 
rationality of the generated outputs, especially when critical issues such as structural safety and 
functional efficiency are involved. Therefore, enabling AI models to transcend mere visual imitation 
and genuinely comprehend and apply core architectural principles—encompassing structure, 
function, space, and context—constitutes a critical bottleneck for their deeper application in the 
architectural design domain. 

4.3.3. Deficiencies in the Profound Transcoding of Specific Regional Cultural Connotations 

Architectural style is not merely an representation of form and technology; it also serves as a 
crucial vessel for specific regional cultures, historical traditions, and societal values. The 
distinctiveness of Krakow's Eclectic architecture, for example, stems from its deep reflection of the 
historical and cultural context of late 19th and early 20th-century Poland, particularly in the Krakow 
region. However, AI faces considerable challenges in understanding the cultural context and 
emotional connotations inherent in architectural styles. For example, while AI models can learn the 
visual morphology of specific decorative elements, they struggle to understand the potential cultural 
symbolism, representative values, or historical narratives these elements might embody. This 
nuanced understanding is difficult to derive solely from image data. 

Simultaneously, authentic architectural style is intrinsically linked to its 'Genius Loci' (spirit of 
place). This atmosphere and unique character, shaped by a confluence of historical, cultural, 
environmental, and human activity factors, remains challenging for AI models to reproduce. Their 
capacity to replicate such subtle place-making qualities and cultural identity is currently deficient. 
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Furthermore, when 'emulating' or 'transcoding' a historical style into a new design context, the 
process transcends mere formal transplantation. It requires careful consideration of the style's 
adaptability and significance within the new cultural context. AI models, when performing such 
culturally sensitive 'transcoding' operations, currently lack the requisite cultural 
discernment.Therefore, a key issue for AI-assisted historic preservation and design is how to enable 
AI models to achieve a more profound understanding and respectful treatment of specific regional 
cultural connotations and the 'Genius Loci' during stylistic transfer and re-creation. Avoiding cultural 
misinterpretations or superficial formal pastiche in these processes remains a significant challenge 
requiring diligent investigation. 

In summary, while this study has achieved certain advancements in utilizing AI for the 'stylistic 
emulation' of specific historic architectural styles, its limitations also unveil more profound 
challenges inherent in applying AI within the architectural design domain. Future research must 
diligently pursue enhancements in AI's capabilities. These include, but are not limited to, its 
geometric comprehension, structural and functional cognition, and its capacity for cultural 
connotation transcoding. 

4.4. Future Prospects and Research Directions 

Recognizing the limitations of the current study also illuminates future research trajectories 
laden with both opportunities and challenges. The methodology proposed herein, integrating 
typologically-guided AI for stylistic emulation, represents merely an initial step. To fully harness the 
potential of AI technology in architectural design and historical heritage preservation, future 
investigations can explore several key areas. 

4.4.1. Advancing Towards Intelligent Architectural Generation: Integrating Deeper Typological 
Knowledge 

The current study primarily employs typology as a framework for a posteriori analysis and as a 
guideline for pre-processing data screening and label optimization. However, the full potential of 
typology extends far beyond these applications. Future work should focus on more profoundly and 
proactively integrating typological knowledge into the intrinsic learning and generative processes of 
AI models themselves. Explorations in this direction could encompass several avenues. Firstly, 
developing typology-aware loss functions designed to penalize generated outputs that violate 
fundamental architectural principles or specific typological rules. This might involve incorporating 
constraints based on structural rationality, spatial adjacency relationships, or functional zoning logic. 
Secondly, constructing more comprehensive multimodal training datasets is crucial. These datasets 
should not only comprise visual information but also incorporate extensive structured data. 
Examples include architectural floor plans, sections, 3D models, structural system diagrams, 
functional zoning plans, construction material and methodology specifications, and even pertinent 
historical and cultural contextual descriptions, all to facilitate a multidimensional understanding of 
architectural 'types' by AI models. Thirdly, designing novel neural network architectures capable of 
capturing architectural hierarchical relationships would enable a better comprehension and 
management of the inherent layered structures in architectural design. Lastly, advancing 
interpretable AI (XAI) methods in conjunction with typological theory is vital. This involves creating 
more effective analytical and explanatory AI approaches to reveal the 'reasoning' processes of AI 
models during stylistic learning and generation, thereby enhancing designers' trust and 
comprehension of AI tools. The ultimate objective is to propel AI's evolution from a mere stylistic 
'emulator' to an 'intelligent generator' and 'collaborative partner' capable of understanding and 
adhering to fundamental architectural design principles. This requires AI systems that can produce 
not only aesthetically convincing proposals but also ensure their intrinsic rationality across multiple 
dimensions, including structure, function, and contextual adaptability. 
  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2025 doi:10.20944/preprints202505.2497.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2497.v1
http://creativecommons.org/licenses/by/4.0/


 30 of 35 

 

4.4.2. Extension to Three-Dimensional Architectural Modeling and Urban Design 

As previously noted, transitioning from 2D facade generation to the comprehensive generation 
of 3D architectural models represents a significant leap. Future research must address several critical 
challenges in this domain. The first challenge pertains to 3D geometry generation and consistency 
assurance. This involves developing more robust AI algorithms capable of producing 3D 
architectural models that adhere to topological logic and geometric constraints. These models should 
be derivable from various inputs, including 2D images, textual descriptions, or other sources like 
sketches and massing models, while ensuring inter-view consistency. 

Secondly, enhancing parameterization and editability is crucial. The aim here is to improve the 
degree of parameterization and user-adjustability in AI-generated 3D models. This would empower 
designers to conveniently modify, adjust, and optimize preliminary AI-generated proposals, rather 
than treating them as immutable 'black box' outputs.Thirdly, exploring urban-scale applications is 
necessary. This involves attempts to extend typology-guided AI generation methodologies from the 
individual building level to urban design and precinct planning. For instance, research could 
investigate how AI can generate new building ensembles that conform to the specific character and 
spatial fabric of historic urban districts, or assist in the design of urban renewal schemes. 

These research endeavors hold the potential to substantially broaden the scope and depth of AI 
applications throughout the entire architectural design workflow. 

4.4.3. Application Potential in Virtual Reality, Digital Cultural Heritage, and Related Fields 

The capability of the methodology proposed in this study for generating stylized imagery 
presents extensive application prospects in domains such as virtual reality (VR), augmented reality 
(AR), and digital cultural heritage. For instance, AI-generated historical buildings and scenes, with a 
high degree of stylistic authenticity, can be utilized to construct immersive VR/AR environments. 
These environments are suitable for historical and cultural education, virtual museum exhibitions, 
and digital tourism, enabling the public to engage with and experience cultural heritage in a more 
vivid and interactive manner. For historical edifices that have been lost or severely damaged, AI 
offers a means for stylized digital reconstruction. By integrating AI with limited historical data, such 
as old photographs, textual descriptions, or surviving structural fragments—these structures can be 
'revived' in the virtual realm. In the digital entertainment industry, AI can rapidly generate high-
quality game environments and cinematic backgrounds tailored to specific historical periods and 
regional styles. This capability significantly enhances content production efficiency and the visual 
realism in digital experiences. Furthermore, in the architectural design process, AI can be employed 
to swiftly transform design proposals of varying styles into photorealistic virtual scenes. These scenes 
can then be used for immersive experiences and evaluations by designers, clients, and the public. 
Such applications are poised to further promote the profound integration of AI technology with 
cultural heritage preservation, the digital creative industries, and architectural design practices, 
thereby engendering new value and possibilities. 

In conclusion, while challenges persist, the future of AI generative technologies guided by 
typology within the architectural domain is replete with promise. Through continuous technological 
innovation and interdisciplinary theoretical integration, AI is poised to evolve into an increasingly 
potent and intelligent partner for architects. This partnership will span design creation, heritage 
preservation, and cultural perpetuation, collectively contributing to the shaping of an enhanced and 
culturally enriched built environment for humanity. 

5. Conclusions 

This research investigates the potential of integrating architectural typological principles with 
advanced deep learning technologies—notably LoRA fine-tuning and Diffusion Models—for the 
'stylistic emulation' and re-creation of historic building facades. Utilizing Krakow's Eclecticism, an 
architecturally complex and data-scarce style from Poland, as a specific case study, this study 
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systematically formulated and validated a comprehensive methodological framework. This 
framework encompasses the entire pipeline from data preparation and model training through to 
results evaluation (Figure 22). The research findings demonstrate a significant enhancement in the 
quality, stylistic accuracy, and logical coherence of generated images when architectural typological 
principles are incorporated into AI model workflows. This incorporation focuses on training data 
construction (through image screening and label optimization) and inference application (via prompt 
guidance). Compared to AI models relying solely on data-driven approaches, typology-guided 
methods better capture and reproduction of the essential characteristics of target styles. For specific 
historical styles, LoRA fine-tuning technology exhibits considerable advantages, particularly in 
addressing data scarcity and achieving high-fidelity stylistic transfer. The training loss value (LOSS) 
and inference application weights emerge as pivotal parameters for controlling the stylistic 
propensity of the generated outputs. Adjusting these parameters facilitates a flexible transition, 
ranging from 'creative' stylistic fusion to 'faithful' replication. Notwithstanding these advancements, 
while the methodology proposed herein has moved AI from 'phenomenological emulation' towards 
'typological transcoding', significant limitations persist. AI's comprehension of deep structural logic, 
functional organization, and cultural connotations remains deficient. Moreover, the current 
methodology primarily operates on 2D facades; the progression towards intelligent 3D architectural 
generation continues to present substantial challenges. 

 
Figure 22. Framework Diagram of Summary and Outlook. Image source: drawn by the author. 

This study has effectively addressed the key research questions posited in the introduction. It 
systematically explored methodologies for integrating typological principles into AI model training 
and application. Through empirical investigation, it validated their efficacy in handling complex, 
data-scarce architectural styles. Typology-guided LoRA fine-tuning has indeed enabled AI models to 
more proficiently learn and reproduce the facade characteristics of historic architectural styles, 
moving beyond the mere visual phenomenology of initial 'stylistic emulation.' A preliminary 
evaluation of stylistic learning was also conducted by combining quantitative and qualitative 
assessments. This research has preliminarily achieved the objective: to explore an AI methodological 
framework capable of more effectively performing 'stylistic emulation' and facilitating re-creation of 
historic architectural styles. 
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The significance of this research goes beyond providing an effective technological pathway for 
the digital reproduction of Krakow's Eclectic architectural style; it also lies in its broader implications 
for diverse fields: 

Theoretical Significance: This research offers a tangible case study and a conceptual framework 
for the interdisciplinary integration of architectural typology and artificial intelligence—two 
ostensibly disparate fields. It unveils the potential of typological principles to enhance both the 
performance and interpretability of AI generative models. Furthermore, it furnishes a theoretical 
foundation for the future development of AI models possessing a more profound 'understanding' of 
architecture. 

Methodological Value: The comprehensive workflow proposed—encompassing typologically-
informed data preparation, model fine-tuning, and multi-dimensional results evaluation—holds 
referential and generalizable value. This is particularly pertinent for other researchers or practitioners 
seeking to leverage AI technology in addressing digitalization challenges in similarly complex styles 
or historical built environments. 

Practical Application Potential: The technological outcomes of this research are directly 
applicable to the digital preservation and revitalization projects of relevant historical buildings in the 
Krakow region. Its methodological concepts and technical pathways also extend to a broader 
spectrum of application scenarios. These include: (i)In historical building preservation and urban 
regeneration: Providing more efficient design support for the restoration of damaged buildings and 
for ensuring stylistic coherence within historic urban districts. (ii) In architectural design assistance: 
Offering architects rapidly generated, stylistically diverse conceptual proposals during preliminary 
design phases to aid in design decision-making. (iii) In digital humanities and cultural heritage 
dissemination: Supplying high-quality visual assets for the digital reconstruction of historical and 
cultural exhibitions, the construction of virtual museums, and the development of game and 
cinematic environments. 

In conclusion, this research, by amalgamating the foundations of architectural typology with 
cutting-edge artificial intelligence technologies, has unveiled new potentialities for the digital 
treatment of historic architectural styles. While challenges persist, we are confident that with the 
ongoing evolution of AI technology and continued in-depth interdisciplinary research, AI will 
assume an increasingly pivotal role. This role will span future architectural design, heritage 
preservation, and cultural perpetuation, thereby transitioning AI from a mere stylistic 'emulator' into 
a genuinely intelligent 'creative partner.' 
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