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Abstract 

Machine  learning  is  a  powerful  approach  for  analysing  RNA  sequences,  particularly  for 

understanding  the  function and  regulation of non‐coding RNAs. A critical  step  in  this process  is 

feature extraction, which transforms biological sequences into numerical representations that allow 

computational models to capture and interpret complex biological patterns. Despite its central role, 

the field of RNA feature extraction remains broad and fragmented, with limited standardization and 

accessibility  hindering  consistent  application.  In  this  comprehensive  review,  we  address  the 

fragmentation  of  the  field  by  systematically  organizing  over  25  feature  extraction  strategies  into 

sequence‐ and structure‐based approaches. We further conduct a comparative analysis highlighting 

how the choice of feature sets impacts model performance, reinforcing the importance of integrated 

feature engineering. To facilitate practical adoption, it also provides a curated list of publicly available 

tools  and  software  packages. By  consolidating methodologies  and  resources,  this work  seeks  to 

improve reproducibility, scalability, and interpretability in machine learning‐driven RNA research. 

Keywords: RNA bioinformatics; non‐coding RNA  (ncRNA);  feature extraction; machine  learning; 

sequence representation 

 

1. Introduction 

RNA sequencing (RNA‐seq) has revolutionized transcriptomics by enabling the comprehensive 

analysis of RNA expression across various cell types, tissues, and biological conditions [1,2]. Beyond 

quantifying gene expression, RNA‐seq data support diverse applications such as  the discovery of 

novel  transcripts,  annotation  of  non‐coding  RNAs  (ncRNAs),  and  exploration  of  transcriptomic 

diversity  [1]. RNA molecules,  including messenger RNAs  (mRNAs)  and  various  classes of  non‐

coding  RNAs  such  as  microRNAs  (miRNAs),  long  non‐coding  RNAs  (lncRNAs),  small  RNAs 

(sRNAs), and circular RNAs  (circRNAs), play essential roles  in gene regulation, RNA processing, 

epigenetic control, and molecular interactions in both prokaryotic and eukaryotic organisms [3–6]. 

Determining  the  sequence  and  structural  properties  of  these  RNAs  is  therefore  critical  for 

understanding  cellular  behaviour,  genetic  regulatory  regions,  and  identifying  biomarkers  or 

therapeutic targets [2]. 

With an increasing number of RNA‐seq datasets, one of the key challenges is the transformation 

of raw sequence data  into meaningful, quantifiable  features suitable  for computational modelling 

[7,8]. Machine learning (ML) algorithms cannot interpret nucleotide sequences in their original form 

and  therefore  require  the  data  to  be  converted  into  informative  numerical  representations. This 

transformation  is  achieved  through  feature  extraction,  a  vital  preprocessing  step  that  encodes 

sequence and structural properties  into numerical  formats  that  retain  relevant biological patterns 
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while minimizing noise and redundancy [9–11]. These extracted features facilitate the development 

of predictive models based  on machine learning, which can be applied to various domain‐specific 

applications in molecular biology and biomedical research. These applications  include but are not 

limited  to: RNA  classification  (e.g.,  non‐coding  vs.  coding RNAs), RNA‐protein  and RNA‐RNA 

interaction prediction, transcript stability analysis, prediction of subcellular localization, functional 

annotation, and the design of therapeutic RNAs, including small interfering RNAs (siRNAs), RNA 

aptamers, and CRISPR guide RNAs. The quality and consistency of the extracted features are critical 

to  the  effectiveness of  these applications, as  they  influence model accuracy, generalizability, and 

interpretability [7,8] 

In  parallel with  traditional  feature  extraction methods,  deep  learning‐based  representation 

learning  approaches  have  emerged  as  a  promising  direction  in  computational  biology  [12]. 

Representation  learning  aims  to  automatically  extract  meaningful  features  directly  from  raw 

sequence data,  thereby eliminating  the need  for manual  feature design  [13]. However, despite  its 

potential, representation learning faces challenges such as its reliance on large datasets, susceptibility 

to overfitting when applied to small datasets, significant computational requirements, and function 

as black‐box models, limiting transparency in decision‐making [14–17]. For small to medium‐sized 

datasets, traditional machine learning methods such as support vector machines, random forests, and 

gradient  boosting  remain  effective  alternatives.  Although  they  require  structured  feature 

engineering, which involves additional preprocessing, this process enables a more interpretable and 

systematically controlled modelling approach [18]. 

Despite increasing interest in ML for RNA analysis, there is no consolidated overview of feature 

extraction techniques tailored to RNA sequences and structures. Existing approaches are scattered 

across  domains,  vary  in  implementation,  and  lack  standardized  documentation,  hindering 

reproducibility and accessibility, particularly for researchers with limited programming expertise. 

To address this gap, this review provides a structured, accessible overview of established feature 

extraction strategies for RNA, categorized into sequence‐based and structure‐based methods. Figure 

1  outlines  the  complete  workflow,  from  raw  RNA  sequences  through  feature  extraction  and 

integration into predictive modelling frameworks. In addition to methodological categorization, we 

compile  publicly  available  tools  and  software  packages  to  support  practical  implementation.  By 

organizing  and  contextualizing  existing  methods,  this  work  aims  to  advance  reproducibility, 

accessibility, and interpretability in ML‐driven RNA biology. 
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Figure 1. Overview of RNA feature extraction and machine learning workflow. RNA sequences are processed 

using software tools, web servers, or programming packages to extract informative numerical features. These 

features are categorized as sequence‐based or structure‐based, assembled into a feature matrix, and used to train 

machine learning models for various RNA‐related predictive tasks. 

2. Foundations of RNA Feature Extraction 

2.1. Sequence‐Based Features 

Feature  extraction  from  RNA  sequences  is  a  critical  step  in machine  learning  based  RNA 

analysis,  transforming raw nucleotide strings  into structured quantitative representations suitable 

for predictive modelling. A wide  range of  feature  extraction  techniques have been developed  to 

encode  RNA  sequences,  spanning  from  simple  frequency‐based  representations  to  advanced 

network‐theoretic  approaches  [19], many of which  are  implemented  in open‐source  toolkits  [20]. 

Broadly,  sequence‐derived  features  can  be  categorised  into  the  following  groups:  nucleotide 

composition‐based  features, numerical mapping and  signal  transformation methods, Fourier and 

Chaos‐based  features,  entropy  and  information‐theoretic  measures,  autocorrelation‐based 

descriptors, pseudo nucleotide  compositions,  and  similarity  or  instance‐based  features  [19]. This 

categorization reflects an increasing level of computational and biological sophistication, progressing 

from  the  capture  of  local  nucleotide  patterns  to  the  modelling  of  long‐range  dependencies, 

physicochemical properties, and structural complexities embedded within RNA sequences. 

2.1.1. Nucleic Acid Composition 

These  methods  capture  short  range  or  local  sequence  order  by  counting  the  occurrence 

frequencies of adjacent or non‐contiguous residues include: 

One‐hot  encoding: One  hot  encoding  is  a widely  adopted  feature  extraction  technique  that 

represents  each  nucleotide  in  the RNA  sequence  as  a  unique  binary  vector. An RNA  sequence 

composed of the four bases A, U, C, and G can be represented by a 4‐dimensional vector for each 

base.  For  example, A  is  represented  as  [1,0,0,0], U  as  [0,1,0,0], C  as  [0,0,1,0],  and G  as  [0,0,0,1]. 

Therefore, an RNA sequence of length L can be expressed as a 4 × L dimensional binary matrix in 

which each column corresponds to a sequence position and each row represents a specific nucleotide 

[21]. 

K‐mer composition: The k‐mer feature counts the frequency of distinct nucleotide subsequences 

of length k within the RNA sequence. This is achieved by sliding a window of length k along the 

sequence and counting how often each possible k‐mer appears. The process considers all contiguous 

subsequences of size k from position 1 to position (L − k + 1). The frequency (𝒇𝒄𝒔) is calculated as: 

𝑓௖௦ ൌ
ሺ
಴ೖ

ర಼షೖ
ሻ

௅ି௞ାଵ
  Eq. 1 

where  𝐶௞  is the count of a specific k‐mer,  𝐿  is sequence length, 𝐾  is the maximum  𝑘  value, and  4 
denotes the four nucleotide types [22]. K‐mer features have been widely applied in the analysis of 

RNA sequence properties, including classification of coding and non‐coding RNAs, identification of 

structural motifs, and functional annotation tasks [23–25]. 

Enhanced Nucleic Acid Composition (ENAC): Local nucleic acid composition can be calculated 

using  the  Enhanced Nucleic  Acid  Composition  encoding, which  applies  a  fixed  length  sliding 

window that moves sequentially from the 5′ to the 3′ end of the nucleotide sequence. This method is 

generally applied  to nucleotide sequences of equal  length. The sliding window size and sequence 

length  determine  the  ENAC  encoding  dimension,  calculated  as  ሺ𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒍𝒆𝒏𝒈𝒕𝒉 െ
 𝒘𝒊𝒏𝒅𝒐𝒘 𝒔𝒊𝒛𝒆 ൅  𝟏ሻ  ൈ  𝟒. The ENAC encoding is defined as follows [26]: 

𝐸 ൌ ሺ𝑏ଵ, 𝑏ଶ, … , 𝑏௡ሻ ,  Eq. 2 

𝑏ሺ𝑖ሻ ൌ
ேሺ೔ሻ
ே
  Eq. 3 
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𝑖 ∈ ሼ𝐴,𝐶,𝐺,𝑇/𝑈ሽ 

where  𝑏ሺ𝑖ሻ  represents the frequency of nucleotide  𝑖 within a given window (𝑁) of the sequence and 
𝑁ሺ௜ሻ  is the count of nucleotide  𝑖 within that window. 

Reverse complement k‐mer: The reverse complement k‐mer (k‐RevcKmer) is a variation of the 

standard k‐mer feature used in RNA sequence analysis. In this approach, both the original k‐mers in 

the  sequence  and  their  reverse  complements  are  considered  during  feature  extraction.  First,  all 

possible k‐mers are generated  from  the RNA sequence. Any k‐mer  that  is  identical  to  its  reverse 

complement  is removed  to avoid redundancy. The remaining k‐mers are then used to construct a 

feature vector, with each feature representing the frequency of a specific k‐mer in the sequence. This 

method  reduces  the  dimensionality  of  the  k‐mer  space  while  retaining  information  from 

complementary strand orientations [27]. 

Mismatch Profile: The mismatch profile approach is an extension of traditional k‐mer counting 

that allows up to m mismatches within each k‐mer, where m < k. For example, if m = 1 and k = 3, the 

notation  (3, 1)  refers  to a 3‐length subsequence with at most one mismatch. Considering a 3‐mer 

“AAC” with one allowed mismatch, the count would include not only “AAC” itself, but also variants 

such  as  “AAG,”  “AAA,” “AAU,”  “GAC,”  “CAC,” and  “UAC”  that appear  in  the  sequence. The 

mismatch profile of a sequence x can be expressed as: 

𝑓௞,௠
௠௜௦ሺ𝑥ሻ ൌ ቀ∑ 𝐶ଵ,௝ ,∑ 𝐶ଶ,௝ , … ,௠

௝ୀ଴
௠
௝ୀ଴ ∑ 𝐶ସೖ,௝

௠
௝ୀ଴ ቁ  Eq. 4 

Here,  𝐶௜௝  indicates the frequency of the  𝑖‐th k‐mer variant in sequence  𝑥 with  𝑗 mismatches, 

where  𝑖  ranges  from 1  to  4௞   and  𝑗  from 0  to 𝑚. By  incorporating both  exact matches and near 

matches,  the  mismatch  profile  captures  a  broader  spectrum  of  sequence  patterns,  potentially 

revealing biologically significant variations that standard k‐mer counts may miss [28,29]. 

xxKGAP Encoding: The xxKGAP composition is a key approach employed in PyFeat package 

[7], considering kgaps in RNA sub‐sequences. A sliding window is utilized to count the occurrences 

of discontinuous bases with g gaps (𝑪𝒈), and the frequency (𝒇𝒅𝒔) is calculated as: 

𝑓ௗ௦ ൌ ሺ𝐶௚ 4ீାଶି௚ሻ⁄ ሺ𝐿 െ 𝑔 െ 1ሻ⁄   Eq. 5 

where  𝐺  represents the maximum value of  𝑔  [22]. For example, the sequence can be encoded into 

X_X  frequencies  for  mMKGap  features  with  a  kgap  of  1,  producing  16‐dimensional  features 

(4 ൈ 1 ൈ 4). If kgap = 2, the sequence can be characterised by 32 features (4 ൈ 2 ൈ 4). For dMKGap, the 

total number of features is calculated as  4ଶ ൈ 𝑛 ൈ 4  [20]. This representation allows the capture of 

dependencies between nonadjacent nucleotides, which can reflect structural or functional patterns in 

RNA sequences. 

GC content: GC content indicates the proportion of guanine and cytosine nucleotides within an 

RNA  sequence. This metric  is  often  employed  to differentiate protein‐coding  regions  from  non‐

coding sequences. Generally, non‐coding elements such as 5′ untranslated regions (UTRs) and introns 

have  a  lower percentage of GC bases  compared  to protein‐coding  sequences. The GC  content  is 

calculated as follows [30]: 

𝐺𝐶 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ൌ ேሺீሻାேሺ஼ሻ

௅೟
  Eq. 6 

where  𝑁ሺ𝐶ሻ  and  𝑁ሺ𝐺ሻ  refer  to  the numbers of G  and C nucleotides  respectively,  and  𝐿௧   is  the 
overall transcript length. 

Accumulated  nucleotide  frequency: The  accumulated  nucleotide  frequency  (ANF)  encoding 

system represents the density and distribution of each nucleotide within a sequence [26]. To capture 

the nucleotide frequency and the distribution of each nucleotide in the RNA sequence, the density 

(𝒅𝒊) of any nucleotide (𝑺𝒊) at position  𝒊  in the RNA sequence is defined using the following formula 

[31], 
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𝑑௜ ൌ
ଵ

|ௌ೔|
∑ 𝑓൫𝑠௝൯,௟
௝ୀଵ   Eq. 7 

𝑓ሺ𝑞ሻ ൌ ൜
1 𝑖𝑓 𝑠௝ ൌ 𝑞

0 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
  Eq. 8 

Here,  𝑙  represents the length of the sequence,  |𝑆௜|  denotes the length of the  𝑖  ‐th prefix string 
ሼ𝑠ଵ, 𝑠ଶ, … 𝑠௜ሽ  within  the  sequence,  and  𝑞 ∈  ሼ𝐴,𝐶,𝐺 𝑜𝑟 𝑈ሽ .  For  the  example  sequence 

“UCGUUCAUGG”,  the density of  each nucleotide  is as  follows: For  ‘U’,  the density  is 1  (1/1) at 

position 1, 0.5 (2/4) at position 4, 0.6 (3/5) at position 5, and 0.5 (4/8) at position 8. For ‘C’, the density 

is 0.5 (1/2) and 0.33 (2/6) at positions 2 and 6, respectively. The density of ‘A’ is 0.14 (1/7) at position 

7. Finally, the density of ‘G’ is 0.33 (1/3) at position 3, 0.22 (2/9) at position 9, and 0.3 (3/10) at position 

10 [31]. 

AUGC Ratio: The AU/GC ratio is a simple compositional feature that generates a single scalar 

value  for  each  RNA  sequence.  It measures  the  relative  abundance  of  adenine  and  uracil  bases 

compared to guanine and cytosine bases. The ratio is calculated as [32]. 

𝐴𝑈
𝐺𝐶ൗ 𝑅𝑎𝑡𝑖𝑜 ൌ

∑஺ା ∑௎

∑ீା ∑஼
  Eq. 9 

GC  Skew:  GC  skew,  calculated  as  ሺ𝐺 െ 𝐶 ሺ𝐺 ൅ 𝐶ሻ⁄ ,  measures  strand‐specific  nucleotide 

asymmetry and is commonly used to determine replication origin and terminus in bacterial genomes 

[33,34]. Although originally developed as a genome level measure, GC skew can also be applied to 

RNA  sequences  to  provide  additional  compositional  information  that  may  be  relevant  for 

distinguishing functional classes or structural properties [32,35]. 

2.1.2. Autocorrelation Descriptors 

These  approaches  look  for  correlations  between  two  di‐  or  trinucleotides  based  on  their 

physicochemical properties for RNA sequence analysis. Unlike simple compositional features, which 

only  quantify  nucleotide  frequencies,  autocorrelation  descriptors  preserve  sequence‐order 

information and can reveal periodic or long‐range dependencies, making them useful for complex 

sequence  analysis  tasks.  Two  widely  used  approaches  are  autocovariance,  which  measures 

correlations of the same physicochemical property across nucleotide groups at a defined distance, 

and  cross‐covariance, which assesses  correlations between different physicochemical  indices  [36]. 

According  to  the  approaches  applied  in  several  studies  for RNA,  the  autocorrelation module  is 

divided  into several categories based on different properties and correlation  types. These  include 

dinucleotide‐based  autocorrelation  (DAC),  dinucleotide‐based  Moran  autocorrelation  (DMAC), 

dinucleotide‐based Geary autocorrelation  (DGAC), and normalised Moreau‐Broto autocorrelation 

(NMBAC). Similarly, for cross‐correlation and auto‐cross‐correlation modules, two methods exist for 

RNA:  dinucleotide‐based  cross‐correlation  (DCC)  and  dinucleotide‐based  auto‐cross‐correlation 

(DACC) [37,38]. 

2.1.3. Pseudo Nucleotide Composition 

The  third  category  of  sequence‐derived  features  includes  pseudo  k‐tuple  nucleotide 

composition  (PseKNC)  methods,  which  are  designed  to  capture  both  global  and  long‐range 

sequence‐order information, as well as physicochemical properties of nucleotides. Due to their strong 

performance across various predictive tasks, several versatile web servers and software tools have 

been  developed  to  generate  pseudo  nucleotide  composition  features  [39–41].  A  comprehensive 

overview of pseudo nucleotide composition approaches can be found in a recent review [42]. Within 

this category, pseudo dinucleotide composition (PseDNC) encoding is one of the most widely used 

methods in RNA sequence analysis. PseDNC takes into account not only the sequential arrangement 

of  nucleotides  but  also  the  physicochemical  properties  of  dinucleotide  pairs  within  the  RNA 

molecule,  resulting  in  a  numerical  feature  set  for  each  analysed  sequence.  The  total  number  of 

PseDNC  features  is  given  by  16+λ.  The  initial  16  features  are  derived  from  pairs  of  adjacent 
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dinucleotides. The remaining λ features are calculated based on dinucleotide pairs that are separated 

by different distances along  the sequence. λ denotes  the greatest possible separation between any 

two dinucleotides  considered  in  the analysis  [43]. Several publicly available packages have been 

developed to extract PseDNC features such as Pse‐in‐One 2.0 [44], repRNA [45], and UltraPse [46]. 

2.1.4. Numerical Mapping Features 

Real,  integer,  and  complex  number  mappings:  In  sequence  analysis,  numerical  mapping 

methods  such  as  integer,  complex,  and  real  number  representations  are widely used  to  convert 

symbolic nucleotide sequences into numerical form suitable for computational analysis [19]. Integer 

mapping assigns simple whole numbers to nucleotides, for example A = 0, C = 1, G = 2, and T/U = 3 

[47]. Complex number mapping places nucleotides as points in the complex plane, such as A = 1 + i, 

T/U = 1 − i, C = −1 − i, and G = −1 + i [48]. Real number mapping, on the other hand, uses continuous 

real values such as A = −1.5, T/U = 1.5, C = 0.5, and G = −0.5. This representation has the useful property 

that complementary sequences can be derived by reversing the sequence order and changing the sign 

of each value [49]. 
EIIP: EIIP encoding transforms RNA sequences into numerical feature vectors by assigning each 

nucleotide a specific electron‐ion interaction Pseudopotentials (EIIP) value: A = 0.1260, C = 0.1340, G 

= 0.0806, and U = 0.1335 [50]. To represent trinucleotide composition, this method constructs a 64‐

dimensional  feature  vector  in which  each  element  corresponds  to  a  specific  trinucleotide.  For  a 

trinucleotide sequence 𝒎𝒏𝒐, the EIIP value is calculated as: 
𝑬𝑰𝑰𝑷𝒎𝒏𝒐 ൌ 𝑬𝑰𝑰𝑷𝒎 ൅ 𝑬𝑰𝑰𝑷𝒏 ൅ 𝑬𝑰𝑰𝑷𝒐  Eq. 10 

where m, n, o ∈  {A, C, G, U} and  𝑓௠௡௢  is  the  frequency of  that trinucleotide  in  the sequence. The 
resulting vector is: 

𝐷 ൌ ሾ𝐸𝐼𝐼𝑃஺஺஺ ൈ 𝑓஺஺஺,𝐸𝐼𝐼𝑃஺஺஼ ൈ 𝑓஺஺஼ ,𝐸𝐼𝐼𝑃஺஺஺ ൈ 𝑓஺஺஺, … . . ,𝐸𝐼𝐼𝑃௎௎௎ ൈ 𝑓௎௎௎ሿ  Eq. 11 
Z‐Curve:  The  Z‐curve  theory,  originally  developed  for DNA  sequence  analysis,  is  a  three‐

dimensional  representation of a  sequence’s base distribution  [51]. This method  can be  effectively 

adapted  for RNA  sequence  analysis due  to  its distinct  geometrical properties  and  the  similarity 

between RNA and DNA nucleotide structures, with the primary difference being the substitution of 

uracil (U) for thymine (T) [11,52,53]. The Z curve is formed by a series of nodes, P0, P1,...PN, where N 

is the sequence length and each node has coordinates 𝑿𝒏,    𝒀𝒏,  𝒁𝒏  defined as: 

𝑥௡ ൌ ሺ𝐴௡ ൅ 𝐺௡ሻ െ ሺ𝐶௡ ൅ 𝑈௡ሻ  Eq. 12 

𝑦௡ ൌ ሺ𝐴௡ ൅ 𝐶௡ሻ െ ሺ𝐺௡ ൅ 𝑈௡ሻ  Eq. 13 

𝑧௡ ൌ ሺ𝐴௡ ൅ 𝑈௡ሻ െ ሺ𝐶௡ ൅ 𝐺௡ሻ  Eq. 14 

𝑛 ൌ 0, 1, 2, … ,𝑁 

where  𝐴௡,  𝐺௡,  𝐶௡,  𝑈௡  denote the cumulative counts of each nucleotide from the first position up to 

position n in the sequence. 

Nucleotides are classified into six categories based on their properties: purine (R = A, G) versus 

pyrimidine (Y = C, U), amino (M = A, C) versus keto (K = G, U), and hydrogen bond strength, strong 

(S = G, C) versus weak (W = A, U). The x‐component of the Z‐curve represents the distribution of 

purines and pyrimidines, the y‐component corresponds to amino and keto distribution, and the z‐

component reflects the distribution of strong and weak hydrogen bonds in the nucleotide sequence 

[54]. As  a  result,  three numerical  features  can  be  generated  from  the Z‐curve  representation  for 

downstream analysis. 

2.1.5. Codon Usage and Coding Potential Features 

Fickett Score: The Fickett score is a feature extraction method designed to differentiate coding 

from non‐coding RNAs by integrating nucleotide composition with codon usage bias. It evaluates 
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four position values and four content values for each sequence followed by a weighted summation. 

The position values capture the preference of each nucleotide (A, C, G, U) for specific positions within 

codons, offering insights into positional biases within the transcript. For each nucleotide, its position 

value within the RNA transcript is determined using the following formula: 

𝐴ଵ ൌ 𝑁ሺ𝑏𝑎𝑠𝑒 𝐴 𝑖𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 0,3,6, … ሻ  Eq. 15 
𝐴ଶ ൌ 𝑁ሺ𝑏𝑎𝑠𝑒 𝐴 𝑖𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 1,4,7, … ሻ  Eq. 16 
𝐴ଷ ൌ 𝑁ሺ𝑏𝑎𝑠𝑒 𝐴 𝑖𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 2,5,8, … ሻ  Eq. 17 

𝐴௣௢௦ ൌ
ெ௔௫ ሺ஺భ,஺మ,஺యሻ

ெ௜௡ ሺ஺భ,஺మ,஺యሻାଵ
  Eq. 18 

Here,  𝑁ሺሻ  represents the total count of nucleotides under the specified condition. The values 
for  𝑈௣௢௦,  𝐺௣௢௦,  𝐶௣௢௦  are derived in the same way as  𝐴௣௢௦. The overall content‐based metrics for each 

nucleotide in the transcript are then computed as follows: 

𝐴௖௢௡௧௘௡௧ ൌ
ேሺ௕௔௦௘ ஺ ௜௡ ௔௡ ோே஺ ௧௥௔௡௦௖௥௜௣௧ሻ

௅೟
  Eq. 19 

The calculation methods for  𝑈௖௢௡௧௘௡௧,  𝐺௖௢௡௧௘௡௧, and  𝐶௖௢௡௧௘௡௧ are identical. Ultimately, a lookup 

table is employed to transform the four positional attributes and four compositional attributes into 

probabilities indicative of coding potential. The Fickett score  is then derived by multiplying these 

eight  probability  values  (p)  by  their  respective weighting  factors  (w).  These weights  reflect  the 

effectiveness of each positional or compositional feature in distinguishing between coding and non‐

coding sequences [30,55]. 

𝐹𝑖𝑐𝑘𝑒𝑡𝑡 𝑠𝑐𝑜𝑟𝑒 ൌ ∑ 𝑝௜𝑤௜
଼
௜ୀଵ   Eq. 20 

Relative Codon Bias (RCB): Relative codon bias serves as a metric to quantify the non‐uniform 

usage of codon triplets within the open reading frames (ORFs) of an RNA transcript. It measures how 

much the observed codon usage deviates from what would be expected based on the independent 

nucleotide composition at each codon position. To derive the RCB value for an ORF, the product of 

the individual usage biases for all its codon triplets is computed. The codon usage bias  𝒅𝒙𝒚𝒛  for a 
specific triplet  ሺ𝒙,𝒚, 𝒛ሻ  is determined as follows: 

𝑑௫௬௭ ൌ
௙ሺ௫,௬,௭ሻି௙భሺ௫ሻ௙మሺ௬ሻ௙యሺ௭ሻ

௙భሺ௫ሻ௙మሺ௬ሻ௙యሺ௭ሻ
  Eq. 21 

𝑓ሺ𝑥, 𝑦, 𝑧ሻ ൌ ேሺ௫,௬,௭ሻ

௅೎೚೏೚೙
  Eq. 22 

𝑓ଵሺ𝑥ሻ ൌ
ேሺ௕௔௦௘ ௫ ௜௡ ௣௢௦௜௧௜௢௡ ଴ ௢௙ ௘௔௖௛ ௖௢ௗ௢௡ሻ

௅೎೚೏೚೙
  Eq. 23 

Here, 𝑁ሺ𝑥,𝑦, 𝑧ሻ  is the count of  the codon triplet  ሺ𝑥,𝑦, 𝑧ሻ  found  in  the ORF, and  𝐿௖௢ௗ௢௡  is  the 
ORF  length  in codons. The calculations  for  𝑓ଶሺ𝑦ሻ  and  𝑓ଷሺ𝑧ሻ  at  the second and  third positions are 
analogous to the calculation of  𝑓ଵሺ𝑥ሻ  at the first nucleotide position. Subsequently, the complete RCB 

value for the RNA transcript’s ORF is computed as shown below [30,56]: 

𝑅𝐶𝐵 ൌ ሺ∏ ሺ1 ൅ 𝑑௫௬௭௜௅೎೚೏೚೙
௜ୀଵ ሻሻ

ଵ
௅ൗ െ 1  Eq. 24 

ORF Related Features (Max ORF length, Max ORF coverage, Average ORF length, Average 
ORF coverage): An open reading frame (ORF) is a segment within an RNA transcript that has the 

potential  to encode a protein. Analyses of ORF  characteristics are  commonly used  to distinguish 

protein‐coding  transcripts  from  long  non‐coding  RNAs  (lncRNAs),  although  these  features  are 

generally less effective for differentiating among various lncRNA subtypes [57]. To capture protein‐
coding information more comprehensively, analyses may extend beyond the conventional definition 

of an ORF as the region between a start codon and a stop codon. Alternative definitions include ORFs 

that begin with a start codon and extend to the transcript’s end, or segments that span from any non‐

stop codon to a stop codon. An integrated approach can also select the longer sequence between these 
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start‐codon‐focused  and  stop‐codon‐focused  variants.  For  each ORF  type,  the maximum  length 

across all three reading frames can be determined and extracted as the max ORF. 

In addition to their absolute  length, the max ORF coverage can be computed by dividing the 

max  ORF  length  by  the  total  transcript  length.  Furthermore,  for  conventionally  defined  ORFs 

(bounded by start and stop codons), both the average ORF length and the average ORF coverage are 

determined. These features provide informative measures of coding potential and have been widely 

applied in computational transcript classification [30]. 

2.1.6. Signal Transformation Features (Fourier‐Based) 

This  category  encompasses  feature  extraction  techniques  that  convert  RNA  sequences  into 

numerical  signals  and  then  apply  methods  from  genomic  signal  processing  (GSP)  to  derive 

informative  features. Among  these,  the  Fourier  Transform  (FT)  is  one  of  the most widely  used 

approaches  in biological sequence analysis  [10,58,59]. A detailed mathematical  formulation of  the 

Fourier‐based approach for nucleotide sequences is provided in [10]. 

2.1.7. Chaos Game‐Based Features 

Chaos Game Representation (CGR) is a method that visually encodes RNA sequences as two‐

dimensional  fractal  patterns  derived  from  nucleotide  composition.  For  machine  learning 

applications, CGR can be quantified using Frequency Chaos Game Representation (FCGR), in which 

the fractal image is divided into a grid and the frequencies of subsequences falling into each grid cell 

are counted. This process generates a numerical matrix that can be flattened into a fixed‐length vector, 

providing  an  alignment‐free  feature  representation  for  RNA  sequence  analysis.  The  detailed 

methodology and applications of CGR and FCGR are described in [60]. 

2.1.8. Entropy and Information‐Theoretic Features 

Several studies have applied concepts from information theory to extract meaningful features 

from biological sequences, with Shannon entropy (SE) being one of the most widely used measures 

[61,62]. SE quantifies the uncertainty or diversity in the distribution of nucleotides or k‐mers within 

a sequence, providing insights into its complexity. In addition to SE, Tsallis entropy (TE) [63,64] has 

been successfully employed as an alternative or complementary descriptor in sequence analysis. TE 

generalizes the concept of entropy by introducing a parameter that can adjust the sensitivity of the 

measure to rare or frequent events. Both SE and TE capture important statistical properties of RNA 

sequences  and  can  be  applied  at  different  k‐mer  levels  to  highlight  sequence  variability  and 

compositional bias [30]. 

2.2. Structural Feature Extraction 

Understanding  the structural configuration of an RNA molecule  is an essential  first stage  in 

uncovering its functional mechanisms [65]. Among structural characteristics, the secondary structure 

is particularly critical in diverse biological processes and is often more conserved than the primary 

sequence [66]. The set of base pairs formed through hydrogen bonding between nucleotides defines 

the  RNA  secondary  structure.  The  main  challenge  in  secondary  structure  prediction  lies  in 

determining which nucleotides are paired with each other in a given sequence [67]. Thermodynamic 

principles  can  be  used  to  predict  the  secondary  structure  of  an  RNA  sequence  [68].  These 

thermodynamics‐based  methods  employ  nearest‐neighbour  parameters  to  estimate  structural 

stability, which  is quantified by  the change  in  folding  free energy  [69–71]. Structure prediction  is 

commonly achieved by determining the conformation with the lowest free energy [65]. Minimum 

free  energy  (MFE)  acts  as  a  fundamental  structural  indicator,  reflecting  the  stability of  the RNA 

structure  [66].  The  assumption  is  that  a  lower  free  energy  implies  greater  stability  of  the  RNA 

secondary  structure  [30]. Alternative prediction  strategies  include  sampling  from  the Boltzmann 
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ensemble to identify a representative centroid structure [72] or selecting the structure with the highest 

sum of base‐pairing probabilities, known as the maximum expected accuracy (MEA) structure [73]. 

A widely used tool for RNA secondary structure prediction is RNAfold, part of the ViennaRNA 

Package, which applies MFE calculations to identify the most probable configurations [74]. RNAfold 

decomposes  RNA  secondary  structures  into  elements  such  as  interior  loops,  hairpin  loops, 

multiloops, bulge loops, and stacking pairs, with each contributing to the total free energy. The total 

free energy of RNA’s secondary structure is determined by summing the free energy values of its 

constituent substructures. The most stable predicted structure is generated for each RNA transcript 

and used for downstream feature extraction [74]. A comprehensive list of available RNA secondary 

structure prediction tools is available at [75]. 

In a study conducted by Kang et al. [22], RNA secondary structures were predicted using the 

RNAfold package, which represents structural features using a system of brackets ( “(“ or “)” = paired 

nucleotide)  and  dots  (  “.”  =  unpaired).  These  approaches  can  extract  both  continuous  and 

discontinuous structural patterns. However, unlike sequence‐based analyses that consider the four 

nucleotide  types,  structural  analysis  is  constrained  to  two  symbol  types  (brackets  and  dots), 

necessitating adjustments in calculation parameters. Accordingly, several structural features can be 
derived  from  the  dot‐bracket  notations  produced  by  these  tools,  as  described  in  the  following 

paragraphs. 

2.2.1. Paired Ratio 

This  is  a metric  based  on  the  secondary  structure  of  an  RNA  transcript,  representing  the 

proportion of nucleotides  involved  in Watson‐Crick base pairing  compared  to  those  that  remain 

unpaired. This ratio is used to assess structural stability; RNA molecules with a higher percentage of 

paired nucleotides have more stable secondary structures [30]. The formula is as follows: 

𝑃𝑎𝑖𝑟𝑒𝑑 𝑅𝑎𝑡𝑖𝑜 ൌ
ேሺ௉௔௜௥௘ௗ ே௨௖௟௘௨௧௜ௗ௘ ஻௔௦௘௦ሻ

௅೟
  Eq. 25 

2.2.2. Triplet 

This method  integrates  both  sequence  and  structure  information  and  has  shown  superior 

performance in tasks such as microRNA identification [45,76]. Using dot/bracket notation, there are 

8 (23) possible structural configurations for a set of three adjacent nucleotides: ‘(((‘, ‘((.’, ‘(..’, ‘(.(‘, ‘.((‘, 

‘.(.’,  ‘..(‘,  and  ‘...’. By  focusing  on  the middle  nucleotide within  each  group  of  three,  32 possible 

structure‐sequence  combinations  (4 × 8)  can be obtained, denoted as  fA  (‘(((‘),  fG  (‘(((‘), etc. These 

combinations  define  the  triplet  structure‐sequence  elements,  which  integrate  both  nucleotide 

sequence and corresponding structural information, allowing for comprehensive analysis [21,45]. 

2.2.3. Pseudo‐Structure Status Composition (PseSSC) & Pseudo‐Distance Structure Status Pair 

Composition (PseDPC) 

Liu et al. proposed PseSSC and PseDPC methods for capturing the compositional and sequential 

information of RNA sequences by efficiently representing RNA secondary structures like stem loops. 

These  approaches  approximate  the  sequential  information  of  RNA  sequences  employing  a 

correlation  function  based  on  secondary  structure  status,  considering  both  the distance  between 

structural  status pairs and  the minimum  free energy  [77]. Details can be  found  in  the  referenced 

sources [78,79]. 

2.2.4. Number of Distinct Loop Structures 

This metric counts different loop types in the secondary structure, including interior loops (N(I)), 

hairpin  loops  (N(H)),  bulge  loops  (N(B)),  and multibranch  loops  (N(M))  [30].  The  typical  loop 

structures are illustrated in Figure 2. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 August 2025 doi:10.20944/preprints202508.1739.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1739.v1
http://creativecommons.org/licenses/by/4.0/


  10  of  18 

 

 

Figure 2. Example of an RNA secondary structure illustrating various types of structural elements. (Created in 

BioRender.com). 

2.2.5. Coverage of Different Loop Structures 

For each loop type, coverage is computed as the number of loops divided by the transcript length 

[30]. 

𝐶ሺ𝐻ሻ ൌ
ேሺுሻ

௅೟
  Eq. 26 

𝐶ሺ𝐼ሻ ൌ
ேሺூሻ

௅೟
  Eq. 27  𝐶ሺ𝐵ሻ ൌ

ேሺ஻ሻ

௅೟
  Eq. 28 

𝐶ሺ𝑀ሻ ൌ
ேሺெሻ

௅೟
  Eq. 29 

2.2.6. GC Content of Paired Nucleotides 

This  attribute  is  calculated  as  the  proportion  of  guanine‐cytosine  (G‐C)  base  pairs  in  the 

secondary structure of an RNA  transcript. G‐C bonds are stronger and more stable  than adenine‐

thymine/uracil (A‐T/U) bonds, so a higher GC content in paired nucleotides typically reflects a more 

stable secondary structure for the RNA transcript [30]. 

𝐺𝐶 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑝𝑎𝑖𝑟𝑒𝑑 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠 ൌ ேሺ௉௔௜௥௘ௗ ீሻ ା ேሺ௉௔௜௥௘ௗ ஼ሻ

ே ሺ௣௔௜௥௘ௗ ௡௨௖௟௘௢௧௜ௗ௘௦ሻ
  Eq. 30 

3. Comparative Impact of Feature Set Choice on Model Performance 

The predictive performance of machine learning models in RNA analysis is strongly influenced 

by  the composition of  the  input  feature set  [9,79]. While  the choice of algorithm plays a role,  the 

diversity and  informativeness of  the  features are  equally  critical  in determining model accuracy. 

Evidence  from  four  independent studies [81–84], each employing different combinations of RNA‐

derived features for various RNA classification tasks, highlights this effect (Figure 3). Across these 

examples, a  consistent pattern  is observed: models  trained on  integrated  feature  sets,  combining 

multiple descriptor types, often outperform those relying on a single feature category. This reinforces 

the view that strategic feature engineering is not a preliminary or optional step but a core element in 

building  reliable  predictive models  in  RNA  biology.  Consequently,  the  careful  composition  of 

complementary  feature  types  can  yield  substantial  performance  gains,  often  independent  of  the 

specific model architecture employed. 
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Figure  3.  Performance  comparison  across  different  feature  sets  and  machine  learning  models  in  four 

independent RNA‐related studies. A) Area Under the Receiver Operating Characteristic (AUROC) curve for an 

AdaBoost model predicting bacterial small RNAs. Performance  is evaluated for 15  individual feature groups 

(G1–G15)* and their combinations, demonstrating that combined feature sets generally yield higher predictive 

power [81]. B) Accuracy of a Support Vector Machine (SVM) model predicting disease‐related lncRNAs, where 

the integration of multiple feature groups improves performance [82]. C) AUROC values from a Random Forest 

model predicting lncRNA localization, comparing the effectiveness of four descriptor categories [83]. D) AUROC 

values for a Random Forest model predicting bacterial small RNAs, illustrating differences in predictive ability 

across five distinct sequence encoding strategies [84].*The 15 individual feature groups (G1–G15) in panel A are, 

respectively:  Biological  features;  1‐mer  to  5‐mer  frequencies;  1‐mer  to  5‐mer  reverse  complement  k‐mer 

(RCkmer) frequencies; PCPseDNC, parallel correlation pseudo‐dinucleotide composition; PCPseTNC, parallel 

correlation pseudo‐trinucleotide composition; SCPseDNC, series correlation pseudo‐dinucleotide composition; 

SCPseTNC, series correlation pseudo‐trinucleotide composition. 

4. Feature Extraction Tools 

Over the years, a variety of computational tools have been developed to facilitate the extraction 

of RNA sequence and structure features. These tools implement a broad spectrum of methodologies, 

enabling  the  derivation  of  descriptors  such  as  k‐mer  frequencies,  physicochemical  properties, 

structural stability metrics, entropy‐based measures, and other specialized attributes discussed  in 

previous sections. Table 1 presents a summary of widely used tools in the literature, outlining their 

primary  functionalities and  feature categories. The availability of  these resources has significantly 

streamlined  the process of generating high‐dimensional,  informative  feature sets  for downstream 

machine learning applications in RNA biology. 
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Table  1.  Publicly  available  tools  for  extracting  sequence‐based  and  structure‐based  features  from  RNA 

sequences. 

Tool/Package Name  Access Type  Type of Feature Categories Published Year Ref 

RepRNA  Web server 

Oligonucleotide 

composition; pseudo‐

nucleotide composition; 

structure composition 

2016  [45]

PseKNC  Web server 

Pseudo‐dinucleotide 

composition (PseDNC); 

pseudo‐trinucleotide 

composition (PseTNC) 

2014  [39]

PseKNC‐General  Web server 

K‐tuple nucleotide 

composition; 

autocorrelation descriptors; 

pseudo‐nucleotide 

composition 

2015  [40]

BioTriangle  Web server 

Nucleic acid composition; 

autocorrelation descriptors; 

pseudo‐nucleotide 

composition 

2016  [85]

BioSeq‐Analysis2.0  Web server 

Residue‐level composition; 

sequence‐level 

physicochemical and 

structural descriptors 

2019  [86]

BioSeq‐Analysis 
Standalone program & web 

server 

Nucleic acid composition; 

autocorrelation descriptors; 

pseudo‐nucleotide 

composition; predicted 

structure composition 

2019  [36]

Nfeature  R/Python package & web server

Nucleic acid composition; 

distance distribution of 

nucleotides; nucleotide 

repeat index; pseudo‐

composition; entropy 

2021  [37]

iLearn  Python toolkit 

Nucleic acid composition; 

binary encoding; position‐

specific trinucleotide 

tendencies; autocorrelation; 

pseudo‐composition 

2019  [87]

iLearnPlus  R/Python package & web server

Nucleic acid composition; 

residue composition; 

position‐specific 

trinucleotide tendencies; 

autocorrelation; 

physicochemical; mutual 

information; similarity‐

based; pseudo‐composition 

2021  [38]

ftrCOOL  R/Python package 

Nucleic acid composition; 

substitution matrices; k‐

nearest‐neighbor RNA; 

local position‐specific k‐

frequency; maxORF‐based 

2022 [88]
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PyFeat  Python toolkit 

Z‐curve; GC content; 

AT/GC ratio; cumulative 

skew; Chou’s pseudo‐

composition; k‐gap 

statistics 

2019  [32]

MathFeature  R/Python package & web server

Numerical mapping; chaos 

game descriptors; Fourier 

transform; entropy and 

graph descriptors; pseudo‐

composition 

2022  [19]

Pse‐In‐One  Web server 

Nucleic acid composition; 

autocorrelation descriptors; 

pseudo‐nucleotide 

composition 

2015  [41]

Pse‐in‐One 2.0  Web server 

Nucleic acid composition; 

autocorrelation; triplet 

sequence‐structure 

elements; pseudo‐structure 

status composition; 

PseDPC 

2017  [44]

UltraPse  Software platform 

Nucleic acid composition; 

autocorrelation descriptors; 

pseudo‐nucleotide 

composition 

2017  [46]

5. Discussion and Conclusions 

The rapid expansion of publicly available RNA sequence data has created new opportunities for 

computational  approaches  to uncover  their biological  roles. Despite  this  availability, many RNA 

sequences  remain poorly  characterized with  respect  to  their  functional  and  structural properties. 

Machine  learning has emerged as a powerful  framework  for addressing  this gap, but  its  success 

depends  heavily  on  how  effectively  raw  sequences  are  transformed  into  informative  numerical 

representations. This review has provided a detailed overview of descriptor categories and feature 

extraction strategies for encoding RNA sequences and structures into numerical form. We have also 

discussed  available  tools  and platforms  that  implement  these methods  and highlighted how  the 

choice and diversity of feature sets can influence the predictive performance and interpretability of 

machine learning models in RNA‐related applications. 

Most  prediction  tasks  in  biological  sequence  analysis  are  framed  as  binary  or multi‐class 

classification problems. Numerous efficient computational approaches have been developed using 

machine  learning  algorithms  to  predict  or  analyse  sequence‐related  characteristics  solely  from 

sequence  information  [87].  However, most  existing machine‐learning  techniques,  such  as  SVM 

(support vector machine) and KNN (k‐nearest neighbour), are designed to handle numerical vectors 

rather than raw sequences [45]. Consequently, feature extraction plays a pivotal role in converting 

sequences into mathematical representations that preserve their intrinsic relationship with the target 

variable, thereby directly influencing model performance [89]. To facilitate this process, a range of 

web‐based servers and stand‐alone software tools have been developed, enabling the extraction of 

diverse  sequence,  structural,  and physicochemical  features  [37,44,45,86]. Nevertheless,  significant 

challenges remain. Many existing tools focus on a narrow subset of features, limiting their ability to 

integrate both sequence‐ and structure‐based  information  in a unified  framework. This  limitation 

reduces  their  effectiveness  for  complex  RNA  analyses  that  require  comprehensive  feature 

representations. 

Traditional feature extraction approaches, such as nucleic acid composition, pseudo‐nucleotide 

composition, and autocorrelation have been widely used because of their effectiveness and simplicity 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 August 2025 doi:10.20944/preprints202508.1739.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1739.v1
http://creativecommons.org/licenses/by/4.0/


  14  of  18 

 

in capturing sequence features. Tools like MathFeature expand on these foundations by incorporating 

innovative mathematical descriptors, such as chaos game  theory, genomic signal processing, and 

entropy, which enable high accuracy across a variety of classification tasks [19]. On the other hand, 

some  feature  extraction  pipelines,  such  as  iLearnPlus  [38]  and  the  recently  introduced  R‐based 

package  ftrCOOL  [88], have  expanded  the  range of  features by  integrating physicochemical  and 

structural descriptors  alongside  the  aforementioned  traditional  approaches.  ftrCOOL  remarkably 

outperforms iLearnPlus in processing speed, making it a preferred choice for analysing large RNA 

datasets [88] 

Although  the  field  has made  substantial  progress,  further  efforts  are  required  to  address 

persistent  challenges.  Future  feature  extraction  platforms  should  prioritise  user‐friendliness  and 

computational  efficiency,  enabling  both  expert  bioinformaticians  and  researchers  with  limited 

programming  experience  to  perform  advanced  analyses.  In  addition,  expanding  the  range  of 

available  feature  descriptors  and  integrating  broader  analytical  capabilities will  be  essential  for 

improving model performance and reproducibility in RNA‐focused machine learning studies. 
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