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Abstract

Machine learning is a powerful approach for analysing RNA sequences, particularly for
understanding the function and regulation of non-coding RNAs. A critical step in this process is
feature extraction, which transforms biological sequences into numerical representations that allow
computational models to capture and interpret complex biological patterns. Despite its central role,
the field of RNA feature extraction remains broad and fragmented, with limited standardization and
accessibility hindering consistent application. In this comprehensive review, we address the
fragmentation of the field by systematically organizing over 25 feature extraction strategies into
sequence- and structure-based approaches. We further conduct a comparative analysis highlighting
how the choice of feature sets impacts model performance, reinforcing the importance of integrated
feature engineering. To facilitate practical adoption, it also provides a curated list of publicly available
tools and software packages. By consolidating methodologies and resources, this work seeks to
improve reproducibility, scalability, and interpretability in machine learning-driven RNA research.

Keywords: RNA bioinformatics; non-coding RNA (ncRNA); feature extraction; machine learning;
sequence representation

1. Introduction

RNA sequencing (RNA-seq) has revolutionized transcriptomics by enabling the comprehensive
analysis of RNA expression across various cell types, tissues, and biological conditions [1,2]. Beyond
quantifying gene expression, RNA-seq data support diverse applications such as the discovery of
novel transcripts, annotation of non-coding RNAs (ncRNAs), and exploration of transcriptomic
diversity [1]. RNA molecules, including messenger RNAs (mRNAs) and various classes of non-
coding RNAs such as microRNAs (miRNAs), long non-coding RNAs (IncRNAs), small RNAs
(sRNAs), and circular RNAs (circRNAs), play essential roles in gene regulation, RNA processing,
epigenetic control, and molecular interactions in both prokaryotic and eukaryotic organisms [3-6].
Determining the sequence and structural properties of these RNAs is therefore critical for
understanding cellular behaviour, genetic regulatory regions, and identifying biomarkers or
therapeutic targets [2].

With an increasing number of RNA-seq datasets, one of the key challenges is the transformation
of raw sequence data into meaningful, quantifiable features suitable for computational modelling
[7,8]. Machine learning (ML) algorithms cannot interpret nucleotide sequences in their original form
and therefore require the data to be converted into informative numerical representations. This
transformation is achieved through feature extraction, a vital preprocessing step that encodes
sequence and structural properties into numerical formats that retain relevant biological patterns
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while minimizing noise and redundancy [9-11]. These extracted features facilitate the development
of predictive models based on machine learning, which can be applied to various domain-specific
applications in molecular biology and biomedical research. These applications include but are not
limited to: RNA classification (e.g., non-coding vs. coding RNAs), RNA-protein and RNA-RNA
interaction prediction, transcript stability analysis, prediction of subcellular localization, functional
annotation, and the design of therapeutic RNAs, including small interfering RNAs (siRNAs), RNA
aptamers, and CRISPR guide RNAs. The quality and consistency of the extracted features are critical
to the effectiveness of these applications, as they influence model accuracy, generalizability, and
interpretability [7,8]

In parallel with traditional feature extraction methods, deep learning-based representation
learning approaches have emerged as a promising direction in computational biology [12].
Representation learning aims to automatically extract meaningful features directly from raw
sequence data, thereby eliminating the need for manual feature design [13]. However, despite its
potential, representation learning faces challenges such as its reliance on large datasets, susceptibility
to overfitting when applied to small datasets, significant computational requirements, and function
as black-box models, limiting transparency in decision-making [14-17]. For small to medium-sized
datasets, traditional machine learning methods such as support vector machines, random forests, and
gradient boosting remain effective alternatives. Although they require structured feature
engineering, which involves additional preprocessing, this process enables a more interpretable and
systematically controlled modelling approach [18].

Despite increasing interest in ML for RNA analysis, there is no consolidated overview of feature
extraction techniques tailored to RNA sequences and structures. Existing approaches are scattered
across domains, vary in implementation, and lack standardized documentation, hindering
reproducibility and accessibility, particularly for researchers with limited programming expertise.

To address this gap, this review provides a structured, accessible overview of established feature
extraction strategies for RNA, categorized into sequence-based and structure-based methods. Figure
1 outlines the complete workflow, from raw RNA sequences through feature extraction and
integration into predictive modelling frameworks. In addition to methodological categorization, we
compile publicly available tools and software packages to support practical implementation. By
organizing and contextualizing existing methods, this work aims to advance reproducibility,
accessibility, and interpretability in ML-driven RNA biology.
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Figure 1. Overview of RNA feature extraction and machine learning workflow. RNA sequences are processed
using software tools, web servers, or programming packages to extract informative numerical features. These
features are categorized as sequence-based or structure-based, assembled into a feature matrix, and used to train

machine learning models for various RNA-related predictive tasks.

2. Foundations of RNA Feature Extraction

2.1. Sequence-Based Features

Feature extraction from RNA sequences is a critical step in machine learning based RNA
analysis, transforming raw nucleotide strings into structured quantitative representations suitable
for predictive modelling. A wide range of feature extraction techniques have been developed to
encode RNA sequences, spanning from simple frequency-based representations to advanced
network-theoretic approaches [19], many of which are implemented in open-source toolkits [20].
Broadly, sequence-derived features can be categorised into the following groups: nucleotide
composition-based features, numerical mapping and signal transformation methods, Fourier and
Chaos-based features, entropy and information-theoretic measures, autocorrelation-based
descriptors, pseudo nucleotide compositions, and similarity or instance-based features [19]. This
categorization reflects an increasing level of computational and biological sophistication, progressing
from the capture of local nucleotide patterns to the modelling of long-range dependencies,
physicochemical properties, and structural complexities embedded within RNA sequences.

2.1.1. Nucleic Acid Composition

These methods capture short range or local sequence order by counting the occurrence
frequencies of adjacent or non-contiguous residues include:

One-hot encoding: One hot encoding is a widely adopted feature extraction technique that
represents each nucleotide in the RNA sequence as a unique binary vector. An RNA sequence
composed of the four bases A, U, C, and G can be represented by a 4-dimensional vector for each
base. For example, A is represented as [1,0,0,0], U as [0,1,0,0], C as [0,0,1,0], and G as [0,0,0,1].
Therefore, an RNA sequence of length L can be expressed as a 4 x L dimensional binary matrix in
which each column corresponds to a sequence position and each row represents a specific nucleotide
[21].

K-mer composition: The k-mer feature counts the frequency of distinct nucleotide subsequences
of length k within the RNA sequence. This is achieved by sliding a window of length k along the
sequence and counting how often each possible k-mer appears. The process considers all contiguous

subsequences of size k from position 1 to position (L — k + 1). The frequency (f ) is calculated as:
o)
fos = 5 Bq. 1
where C}, is the count of a specific k-mer, L is sequence length, K is the maximum k value, and 4
denotes the four nucleotide types [22]. K-mer features have been widely applied in the analysis of
RNA sequence properties, including classification of coding and non-coding RNAs, identification of
structural motifs, and functional annotation tasks [23-25].

Enhanced Nucleic Acid Composition (ENAC): Local nucleic acid composition can be calculated
using the Enhanced Nucleic Acid Composition encoding, which applies a fixed length sliding
window that moves sequentially from the 5 to the 3" end of the nucleotide sequence. This method is
generally applied to nucleotide sequences of equal length. The sliding window size and sequence
length determine the ENAC encoding dimension, calculated as (sequence length —
window size + 1) x 4. The ENAC encoding is defined as follows [26]:

E = (bl,bz, ...,bn), Eq.2

b(i) =2 Eq.3
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i € {A,C,G,T/U}

where b(i) represents the frequency of nucleotide i within a given window (N) of the sequence and
N(;y is the count of nucleotide i within that window.

Reverse complement k-mer: The reverse complement k-mer (k-RevcKmer) is a variation of the
standard k-mer feature used in RNA sequence analysis. In this approach, both the original k-mers in
the sequence and their reverse complements are considered during feature extraction. First, all
possible k-mers are generated from the RNA sequence. Any k-mer that is identical to its reverse
complement is removed to avoid redundancy. The remaining k-mers are then used to construct a
feature vector, with each feature representing the frequency of a specific k-mer in the sequence. This
method reduces the dimensionality of the k-mer space while retaining information from
complementary strand orientations [27].

Mismatch Profile: The mismatch profile approach is an extension of traditional k-mer counting
that allows up to m mismatches within each k-mer, where m < k. For example, if m =1 and k = 3, the
notation (3, 1) refers to a 3-length subsequence with at most one mismatch. Considering a 3-mer
“AAC” with one allowed mismatch, the count would include not only “AAC” itself, but also variants
such as “AAG,” "AAA,” "AAU,” "GAC,” “CAC,” and “UAC” that appear in the sequence. The
mismatch profile of a sequence x can be expressed as:

kr,nnizs(x) = (271:0 C1,j'25'n:o Cz,j) ---.2}10 C4k,j) Eq. 4

Here, C;; indicates the frequency of the i-th k-mer variant in sequence x with j mismatches,
where i ranges from 1 to 4% and j from 0 to m. By incorporating both exact matches and near
matches, the mismatch profile captures a broader spectrum of sequence patterns, potentially
revealing biologically significant variations that standard k-mer counts may miss [28,29].

xxKGAP Encoding: The xxKGAP composition is a key approach employed in PyFeat package
[71, considering kgaps in RNA sub-sequences. A sliding window is utilized to count the occurrences
of discontinuous bases with g gaps (C,), and the frequency (f 4) is calculated as:

fas = (Cg/46+2_g)/(l‘ -9-1 Eq.5

where G represents the maximum value of g [22]. For example, the sequence can be encoded into
X_X frequencies for mMKGap features with a kgap of 1, producing 16-dimensional features
(4 x 1 x 4). If kgap =2, the sequence can be characterised by 32 features (4 X 2 X 4). For dMKGap, the
total number of features is calculated as 4% X n x 4 [20]. This representation allows the capture of
dependencies between nonadjacent nucleotides, which can reflect structural or functional patterns in
RNA sequences.

GC content: GC content indicates the proportion of guanine and cytosine nucleotides within an
RNA sequence. This metric is often employed to differentiate protein-coding regions from non-
coding sequences. Generally, non-coding elements such as 5’ untranslated regions (UTRs) and introns
have a lower percentage of GC bases compared to protein-coding sequences. The GC content is
calculated as follows [30]:

N(G)+N(C) Eq 6

t

GC Content =

where N(C) and N(G) refer to the numbers of G and C nucleotides respectively, and L; is the
overall transcript length.

Accumulated nucleotide frequency: The accumulated nucleotide frequency (ANF) encoding
system represents the density and distribution of each nucleotide within a sequence [26]. To capture
the nucleotide frequency and the distribution of each nucleotide in the RNA sequence, the density
(d;) of any nucleotide (S;) at position i in the RNA sequence is defined using the following formula

[31],
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di = ﬁZﬁﬂf(sj), Eq 7

fa={,27 9= kg5

0 other cases

Here, | represents the length of the sequence, |S;| denotes the length of the i -th prefix string
{s1,85,..5;} within the sequence, and gq € {4,C,GorU} . For the example sequence
“UCGUUCAUGG”, the density of each nucleotide is as follows: For “U’, the density is 1 (1/1) at
position 1, 0.5 (2/4) at position 4, 0.6 (3/5) at position 5, and 0.5 (4/8) at position 8. For ‘C’, the density
is 0.5 (1/2) and 0.33 (2/6) at positions 2 and 6, respectively. The density of “A” is 0.14 (1/7) at position
7. Finally, the density of ‘G’ is 0.33 (1/3) at position 3, 0.22 (2/9) at position 9, and 0.3 (3/10) at position
10 [31].

AUGC Ratio: The AU/GC ratio is a simple compositional feature that generates a single scalar
value for each RNA sequence. It measures the relative abundance of adenine and uracil bases
compared to guanine and cytosine bases. The ratio is calculated as [32].

YA+ U
YG+¥cC Eq. 9

GC Skew: GC skew, calculated as (G —C/(G + C), measures strand-specific nucleotide

asymmetry and is commonly used to determine replication origin and terminus in bacterial genomes

[33,34]. Although originally developed as a genome level measure, GC skew can also be applied to
RNA sequences to provide additional compositional information that may be relevant for
distinguishing functional classes or structural properties [32,35].

2.1.2. Autocorrelation Descriptors

These approaches look for correlations between two di- or trinucleotides based on their
physicochemical properties for RNA sequence analysis. Unlike simple compositional features, which
only quantify nucleotide frequencies, autocorrelation descriptors preserve sequence-order
information and can reveal periodic or long-range dependencies, making them useful for complex
sequence analysis tasks. Two widely used approaches are autocovariance, which measures
correlations of the same physicochemical property across nucleotide groups at a defined distance,
and cross-covariance, which assesses correlations between different physicochemical indices [36].
According to the approaches applied in several studies for RNA, the autocorrelation module is
divided into several categories based on different properties and correlation types. These include
dinucleotide-based autocorrelation (DAC), dinucleotide-based Moran autocorrelation (DMAC),
dinucleotide-based Geary autocorrelation (DGAC), and normalised Moreau-Broto autocorrelation
(NMBAC). Similarly, for cross-correlation and auto-cross-correlation modules, two methods exist for
RNA: dinucleotide-based cross-correlation (DCC) and dinucleotide-based auto-cross-correlation
(DACC) [37,38].

2.1.3. Pseudo Nucleotide Composition

The third category of sequence-derived features includes pseudo k-tuple nucleotide
composition (PseKNC) methods, which are designed to capture both global and long-range
sequence-order information, as well as physicochemical properties of nucleotides. Due to their strong
performance across various predictive tasks, several versatile web servers and software tools have
been developed to generate pseudo nucleotide composition features [39-41]. A comprehensive
overview of pseudo nucleotide composition approaches can be found in a recent review [42]. Within
this category, pseudo dinucleotide composition (PseDNC) encoding is one of the most widely used
methods in RNA sequence analysis. PseDNC takes into account not only the sequential arrangement
of nucleotides but also the physicochemical properties of dinucleotide pairs within the RNA
molecule, resulting in a numerical feature set for each analysed sequence. The total number of
PseDNC features is given by 16+A. The initial 16 features are derived from pairs of adjacent
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dinucleotides. The remaining A features are calculated based on dinucleotide pairs that are separated
by different distances along the sequence. A denotes the greatest possible separation between any
two dinucleotides considered in the analysis [43]. Several publicly available packages have been
developed to extract PseDNC features such as Pse-in-One 2.0 [44], repRNA [45], and UltraPse [46].

2.1.4. Numerical Mapping Features

Real, integer, and complex number mappings: In sequence analysis, numerical mapping
methods such as integer, complex, and real number representations are widely used to convert
symbolic nucleotide sequences into numerical form suitable for computational analysis [19]. Integer
mapping assigns simple whole numbers to nucleotides, for example A=0,C=1, G=2, and T/U=3
[47]. Complex number mapping places nucleotides as points in the complex plane, suchas A =1 +1i,
T/U=1-i,C=-1-1i,and G=-1 +1i [48]. Real number mapping, on the other hand, uses continuous
real values such as A=-1.5, T/U=1.5, C=0.5, and G=-0.5. This representation has the useful property
that complementary sequences can be derived by reversing the sequence order and changing the sign
of each value [49].

EIIP: EIIP encoding transforms RNA sequences into numerical feature vectors by assigning each
nucleotide a specific electron-ion interaction Pseudopotentials (EIIP) value: A =0.1260, C =0.1340, G
=0.0806, and U = 0.1335 [50]. To represent trinucleotide composition, this method constructs a 64-
dimensional feature vector in which each element corresponds to a specific trinucleotide. For a
trinucleotide sequence mno, the EIIP value is calculated as:

EIIP,,,, = EIIP,, + EIIP, + EIIP, Eq.10
where m, n, 0 € {A, C, G, U} and f;;,,, is the frequency of that trinucleotide in the sequence. The
resulting vector is:

Z-Curve: The Z-curve theory, originally developed for DNA sequence analysis, is a three-
dimensional representation of a sequence’s base distribution [51]. This method can be effectively
adapted for RNA sequence analysis due to its distinct geometrical properties and the similarity
between RNA and DNA nucleotide structures, with the primary difference being the substitution of
uracil (U) for thymine (T) [11,52,53]. The Z curve is formed by a series of nodes, P, Ps,...Pn, where N
is the sequence length and each node has coordinates X,, Y,, Z,, defined as:

xp = (Ay + Gy) — (Cy + Uy) Eq. 12
Yn = (A, + C) — (G, + Uy,) Eq.13
z, = (4, + Uy) — (C, + G) Eq. 14
n=0,12..,N

where 4,, G,, C,, U, denote the cumulative counts of each nucleotide from the first position up to
position 7 in the sequence.

Nucleotides are classified into six categories based on their properties: purine (R = A, G) versus
pyrimidine (Y = C, U), amino (M = A, C) versus keto (K= G, U), and hydrogen bond strength, strong
(S =G, C) versus weak (W = A, U). The x-component of the Z-curve represents the distribution of
purines and pyrimidines, the y-component corresponds to amino and keto distribution, and the z-
component reflects the distribution of strong and weak hydrogen bonds in the nucleotide sequence
[54]. As a result, three numerical features can be generated from the Z-curve representation for
downstream analysis.

2.1.5. Codon Usage and Coding Potential Features

Fickett Score: The Fickett score is a feature extraction method designed to differentiate coding
from non-coding RNAs by integrating nucleotide composition with codon usage bias. It evaluates
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four position values and four content values for each sequence followed by a weighted summation.
The position values capture the preference of each nucleotide (A, C, G, U) for specific positions within
codons, offering insights into positional biases within the transcript. For each nucleotide, its position
value within the RNA transcript is determined using the following formula:

A; = N(base A in Position 0,3,6,...) Eq.15
A, = N(base A in Position 1,4,7,...) Eq. 16
Az = N(base A in Position 2,5,8,...) Eq.17

Max (Al,Az,A3)
Apos =
Min (Al,Az,Ag)‘l'l

Eq. 18

Here, N() represents the total count of nucleotides under the specified condition. The values
for Upess Gpos, Cpos are derived in the same way as Ap,s. The overall content-based metrics for each
nucleotide in the transcript are then computed as follows:

A __ N(base Ain an RNA transcript)
content — Le

Eq. 19

The calculation methods for Ucontents Geontents aNd Ceontene are identical. Ultimately, a lookup
table is employed to transform the four positional attributes and four compositional attributes into
probabilities indicative of coding potential. The Fickett score is then derived by multiplying these
eight probability values (p) by their respective weighting factors (w). These weights reflect the
effectiveness of each positional or compositional feature in distinguishing between coding and non-
coding sequences [30,55].

Fickett score = Y5_; p;w; Eq.20

Relative Codon Bias (RCB): Relative codon bias serves as a metric to quantify the non-uniform
usage of codon triplets within the open reading frames (ORFs) of an RNA transcript. It measures how
much the observed codon usage deviates from what would be expected based on the independent
nucleotide composition at each codon position. To derive the RCB value for an ORF, the product of
the individual usage biases for all its codon triplets is computed. The codon usage bias d,,, for a
specific triplet (x,y,z) is determined as follows:

— f(x:yvz)_fl(x)fz(y)fS(z) Eq' 21

eyz [0 f(2)

N(xy.2)
f(x,y,z) = m Eq 22

N(base x in position 0 of each codon)
filx) = Eq. 23

Leodon

Here, N(x,y,z) is the count of the codon triplet (x,y,z) found in the ORF, and L;y4,, is the
ORF length in codons. The calculations for f,(y) and f3(z) at the second and third positions are
analogous to the calculation of f;(x) at the first nucleotide position. Subsequently, the complete RCB
value for the RNA transcript’s ORF is computed as shown below [30,56]:

RCB = ([[:°%"(1 + diy,)) /L — 1 Eq.24

ORF Related Features (Max ORF length, Max ORF coverage, Average ORF length, Average
ORF coverage): An open reading frame (ORF) is a segment within an RNA transcript that has the
potential to encode a protein. Analyses of ORF characteristics are commonly used to distinguish
protein-coding transcripts from long non-coding RNAs (IncRNAs), although these features are
generally less effective for differentiating among various IncRNA subtypes [57]. To capture protein-
coding information more comprehensively, analyses may extend beyond the conventional definition
of an OREF as the region between a start codon and a stop codon. Alternative definitions include ORFs
that begin with a start codon and extend to the transcript’s end, or segments that span from any non-
stop codon to a stop codon. An integrated approach can also select the longer sequence between these
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start-codon-focused and stop-codon-focused variants. For each ORF type, the maximum length
across all three reading frames can be determined and extracted as the max ORF.

In addition to their absolute length, the max ORF coverage can be computed by dividing the
max ORF length by the total transcript length. Furthermore, for conventionally defined ORFs
(bounded by start and stop codons), both the average ORF length and the average ORF coverage are
determined. These features provide informative measures of coding potential and have been widely
applied in computational transcript classification [30].

2.1.6. Signal Transformation Features (Fourier-Based)

This category encompasses feature extraction techniques that convert RNA sequences into
numerical signals and then apply methods from genomic signal processing (GSP) to derive
informative features. Among these, the Fourier Transform (FT) is one of the most widely used
approaches in biological sequence analysis [10,58,59]. A detailed mathematical formulation of the
Fourier-based approach for nucleotide sequences is provided in [10].

2.1.7. Chaos Game-Based Features

Chaos Game Representation (CGR) is a method that visually encodes RNA sequences as two-
dimensional fractal patterns derived from nucleotide composition. For machine learning
applications, CGR can be quantified using Frequency Chaos Game Representation (FCGR), in which
the fractal image is divided into a grid and the frequencies of subsequences falling into each grid cell
are counted. This process generates a numerical matrix that can be flattened into a fixed-length vector,
providing an alignment-free feature representation for RNA sequence analysis. The detailed
methodology and applications of CGR and FCGR are described in [60].

2.1.8. Entropy and Information-Theoretic Features

Several studies have applied concepts from information theory to extract meaningful features
from biological sequences, with Shannon entropy (SE) being one of the most widely used measures
[61,62]. SE quantifies the uncertainty or diversity in the distribution of nucleotides or k-mers within
a sequence, providing insights into its complexity. In addition to SE, Tsallis entropy (TE) [63,64] has
been successfully employed as an alternative or complementary descriptor in sequence analysis. TE
generalizes the concept of entropy by introducing a parameter that can adjust the sensitivity of the
measure to rare or frequent events. Both SE and TE capture important statistical properties of RNA
sequences and can be applied at different k-mer levels to highlight sequence variability and
compositional bias [30].

2.2. Structural Feature Extraction

Understanding the structural configuration of an RNA molecule is an essential first stage in
uncovering its functional mechanisms [65]. Among structural characteristics, the secondary structure
is particularly critical in diverse biological processes and is often more conserved than the primary
sequence [66]. The set of base pairs formed through hydrogen bonding between nucleotides defines
the RNA secondary structure. The main challenge in secondary structure prediction lies in
determining which nucleotides are paired with each other in a given sequence [67]. Thermodynamic
principles can be used to predict the secondary structure of an RNA sequence [68]. These
thermodynamics-based methods employ nearest-neighbour parameters to estimate structural
stability, which is quantified by the change in folding free energy [69-71]. Structure prediction is
commonly achieved by determining the conformation with the lowest free energy [65]. Minimum
free energy (MFE) acts as a fundamental structural indicator, reflecting the stability of the RNA
structure [66]. The assumption is that a lower free energy implies greater stability of the RNA
secondary structure [30]. Alternative prediction strategies include sampling from the Boltzmann
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ensemble to identify a representative centroid structure [72] or selecting the structure with the highest
sum of base-pairing probabilities, known as the maximum expected accuracy (MEA) structure [73].

A widely used tool for RNA secondary structure prediction is RNAfold, part of the ViennaRNA
Package, which applies MFE calculations to identify the most probable configurations [74]. RN Afold
decomposes RNA secondary structures into elements such as interior loops, hairpin loops,
multiloops, bulge loops, and stacking pairs, with each contributing to the total free energy. The total
free energy of RNA’s secondary structure is determined by summing the free energy values of its
constituent substructures. The most stable predicted structure is generated for each RNA transcript
and used for downstream feature extraction [74]. A comprehensive list of available RNA secondary
structure prediction tools is available at [75].

In a study conducted by Kang et al. [22], RNA secondary structures were predicted using the
RNAfold package, which represents structural features using a system of brackets (“(“ or “)” = paired
nucleotide) and dots ( “.” = unpaired). These approaches can extract both continuous and
discontinuous structural patterns. However, unlike sequence-based analyses that consider the four
nucleotide types, structural analysis is constrained to two symbol types (brackets and dots),
necessitating adjustments in calculation parameters. Accordingly, several structural features can be
derived from the dot-bracket notations produced by these tools, as described in the following
paragraphs.

2.2.1. Paired Ratio

This is a metric based on the secondary structure of an RNA transcript, representing the
proportion of nucleotides involved in Watson-Crick base pairing compared to those that remain
unpaired. This ratio is used to assess structural stability; RNA molecules with a higher percentage of
paired nucleotides have more stable secondary structures [30]. The formula is as follows:

N(Paired Nucleutide Bases
¢ : ) Eq.25
t

Paired Ratio =

2.2.2. Triplet

This method integrates both sequence and structure information and has shown superior
performance in tasks such as microRNA identification [45,76]. Using dot/bracket notation, there are
8 (23) possible structural configurations for a set of three adjacent nucleotides: “(((*, “((.", “(..", “(.(*, “.((*,
“(/, *.(*, and “...". By focusing on the middle nucleotide within each group of three, 32 possible
structure-sequence combinations (4 x 8) can be obtained, denoted as fa (“(((*), fo (“(((), etc. These
combinations define the triplet structure-sequence elements, which integrate both nucleotide
sequence and corresponding structural information, allowing for comprehensive analysis [21,45].

2.2.3. Pseudo-Structure Status Composition (PseSSC) & Pseudo-Distance Structure Status Pair
Composition (PseDPC)

Liu et al. proposed PseSSC and PseDPC methods for capturing the compositional and sequential
information of RNA sequences by efficiently representing RNA secondary structures like stem loops.
These approaches approximate the sequential information of RNA sequences employing a
correlation function based on secondary structure status, considering both the distance between
structural status pairs and the minimum free energy [77]. Details can be found in the referenced
sources [78,79].

2.2.4. Number of Distinct Loop Structures

This metric counts different loop types in the secondary structure, including interior loops (N(I)),
hairpin loops (N(H)), bulge loops (N(B)), and multibranch loops (N(M)) [30]. The typical loop
structures are illustrated in Figure 2.
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Figure 2. Example of an RNA secondary structure illustrating various types of structural elements. (Created in
BioRender.com).
2.2.5. Coverage of Different Loop Structures

For each loop type, coverage is computed as the number of loops divided by the transcript length
[301.

C(H) = %’) Eq. 26
cl) = %’) Eq.27 C(B) = %‘) Eq. 28
C(M) = %”) Eq. 29

2.2.6. GC Content of Paired Nucleotides

This attribute is calculated as the proportion of guanine-cytosine (G-C) base pairs in the
secondary structure of an RNA transcript. G-C bonds are stronger and more stable than adenine-
thymine/uracil (A-T/U) bonds, so a higher GC content in paired nucleotides typically reflects a more
stable secondary structure for the RNA transcript [30].

N(Paired G) + N(Paired C)
N (paired nucleotides)

GC content paired nucleotides = Eq. 30

3. Comparative Impact of Feature Set Choice on Model Performance

The predictive performance of machine learning models in RNA analysis is strongly influenced
by the composition of the input feature set [9,79]. While the choice of algorithm plays a role, the
diversity and informativeness of the features are equally critical in determining model accuracy.
Evidence from four independent studies [81-84], each employing different combinations of RNA-
derived features for various RNA classification tasks, highlights this effect (Figure 3). Across these
examples, a consistent pattern is observed: models trained on integrated feature sets, combining
multiple descriptor types, often outperform those relying on a single feature category. This reinforces
the view that strategic feature engineering is not a preliminary or optional step but a core element in
building reliable predictive models in RNA biology. Consequently, the careful composition of
complementary feature types can yield substantial performance gains, often independent of the
specific model architecture employed.
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Figure 3. Performance comparison across different feature sets and machine learning models in four
independent RNA-related studies. A) Area Under the Receiver Operating Characteristic (AUROC) curve for an
AdaBoost model predicting bacterial small RNAs. Performance is evaluated for 15 individual feature groups
(G1-G15)* and their combinations, demonstrating that combined feature sets generally yield higher predictive
power [81]. B) Accuracy of a Support Vector Machine (SVM) model predicting disease-related IncRNAs, where
the integration of multiple feature groups improves performance [82]. C) AUROC values from a Random Forest
model predicting IncRNA localization, comparing the effectiveness of four descriptor categories [83]. D) AUROC
values for a Random Forest model predicting bacterial small RNAs, illustrating differences in predictive ability
across five distinct sequence encoding strategies [84].*The 15 individual feature groups (G1-G15) in panel A are,
respectively: Biological features; 1-mer to 5-mer frequencies; 1-mer to 5-mer reverse complement k-mer
(RCkmer) frequencies; PCPseDNC, parallel correlation pseudo-dinucleotide composition; PCPseTNC, parallel
correlation pseudo-trinucleotide composition; SCPseDNC, series correlation pseudo-dinucleotide composition;

SCPseTNC, series correlation pseudo-trinucleotide composition.

4. Feature Extraction Tools

Over the years, a variety of computational tools have been developed to facilitate the extraction
of RNA sequence and structure features. These tools implement a broad spectrum of methodologies,
enabling the derivation of descriptors such as k-mer frequencies, physicochemical properties,
structural stability metrics, entropy-based measures, and other specialized attributes discussed in
previous sections. Table 1 presents a summary of widely used tools in the literature, outlining their
primary functionalities and feature categories. The availability of these resources has significantly
streamlined the process of generating high-dimensional, informative feature sets for downstream
machine learning applications in RNA biology.
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Table 1. Publicly available tools for extracting sequence-based and structure-based features from RNA

sequences.

Tool/Package Name Access Type Type of Feature CategoriesPublished YearRef
Oligonucleotide

composition; pseudo-

RepRNA Web server 2016 [45]

nucleotide composition;
structure composition
Pseudo-dinucleotide

composition (PseDNC);
pseudo-trinucleotide

PseKNC Web server 2014 [39]

composition (PseTNC)

K-tuple nucleotide
composition;
PseKNC-General Web server autocorrelation descriptors; 2015 [40]
pseudo-nucleotide
composition
Nucleic acid composition;
autocorrelation descriptors;
pseudo-nucleotide

BioTriangle Web server 2016 [85]

composition

Residue-level composition;

sequence-level

BioSeq-Analysis2.0 Web server 2019 [86]

physicochemical and
structural descriptors
Nucleic acid composition;
autocorrelation descriptors;
pseudo-nucleotide 2019 [36]
composition; predicted

Standalone program & web

BioSeq-Analysi
ioSeq-Analysis servor

structure composition

Nucleic acid composition;
distance distribution of
Nfeature R/Python package & web server nucleotides; nucleotide 2021 [37]
repeat index; pseudo-
composition; entropy
Nucleic acid composition;
binary encoding; position-
iLearn Python toolkit specific trinucleotide 2019 [87]
tendencies; autocorrelation;
pseudo-composition
Nucleic acid composition;
residue composition;
position-specific
trinucleotide tendencies;

iLearnPlus R/Python package & web server . 2021 [38]
autocorrelation;

physicochemical; mutual
information; similarity-
based; pseudo-composition

Nucleic acid composition;
substitution matrices; k-
ftrCOOL R/Python package nearest-neighbor RNA; 2022 [88]
local position-specific k-
frequency; maxORF-based
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Z-curve; GC content;
AT/GC ratio; cumulative
PyFeat Python toolkit skew; Chou’s pseudo- 2019 [32]
composition; k-gap
statistics

Numerical mapping; chaos
game descriptors; Fourier
MathFeature  R/Python package & web server transform; entropy and 2022 [19]
graph descriptors; pseudo-
composition
Nucleic acid composition;
autocorrelation descriptors;
pseudo-nucleotide
composition
Nucleic acid composition;
autocorrelation; triplet

Pse-In-One Web server 2015 [41]

sequence-structure

Pse-in-One 2.0 Web server 2017 [44]

elements; pseudo-structure
status composition;
PseDPC
Nucleic acid composition;
autocorrelation descriptors;
pseudo-nucleotide
composition

UltraPse Software platform 2017 [46]

5. Discussion and Conclusions

The rapid expansion of publicly available RNA sequence data has created new opportunities for
computational approaches to uncover their biological roles. Despite this availability, many RNA
sequences remain poorly characterized with respect to their functional and structural properties.
Machine learning has emerged as a powerful framework for addressing this gap, but its success
depends heavily on how effectively raw sequences are transformed into informative numerical
representations. This review has provided a detailed overview of descriptor categories and feature
extraction strategies for encoding RNA sequences and structures into numerical form. We have also
discussed available tools and platforms that implement these methods and highlighted how the
choice and diversity of feature sets can influence the predictive performance and interpretability of
machine learning models in RN A-related applications.

Most prediction tasks in biological sequence analysis are framed as binary or multi-class
classification problems. Numerous efficient computational approaches have been developed using
machine learning algorithms to predict or analyse sequence-related characteristics solely from
sequence information [87]. However, most existing machine-learning techniques, such as SVM
(support vector machine) and KNN (k-nearest neighbour), are designed to handle numerical vectors
rather than raw sequences [45]. Consequently, feature extraction plays a pivotal role in converting
sequences into mathematical representations that preserve their intrinsic relationship with the target
variable, thereby directly influencing model performance [89]. To facilitate this process, a range of
web-based servers and stand-alone software tools have been developed, enabling the extraction of
diverse sequence, structural, and physicochemical features [37,44,45,86]. Nevertheless, significant
challenges remain. Many existing tools focus on a narrow subset of features, limiting their ability to
integrate both sequence- and structure-based information in a unified framework. This limitation
reduces their effectiveness for complex RNA analyses that require comprehensive feature
representations.

Traditional feature extraction approaches, such as nucleic acid composition, pseudo-nucleotide
composition, and autocorrelation have been widely used because of their effectiveness and simplicity
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in capturing sequence features. Tools like MathFeature expand on these foundations by incorporating
innovative mathematical descriptors, such as chaos game theory, genomic signal processing, and
entropy, which enable high accuracy across a variety of classification tasks [19]. On the other hand,
some feature extraction pipelines, such as iLearnPlus [38] and the recently introduced R-based
package ftrCOOL [88], have expanded the range of features by integrating physicochemical and
structural descriptors alongside the aforementioned traditional approaches. ftrCOOL remarkably
outperforms iLearnPlus in processing speed, making it a preferred choice for analysing large RNA
datasets [88]

Although the field has made substantial progress, further efforts are required to address
persistent challenges. Future feature extraction platforms should prioritise user-friendliness and
computational efficiency, enabling both expert bioinformaticians and researchers with limited
programming experience to perform advanced analyses. In addition, expanding the range of
available feature descriptors and integrating broader analytical capabilities will be essential for
improving model performance and reproducibility in RNA-focused machine learning studies.
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