

Article

Not peer-reviewed version

The Impact of ChatGPT Reliance on the Development of Student Critical Thinking Skills

Owen Graham * and Yule Milan

Posted Date: 10 June 2025

doi: 10.20944/preprints202506.0861.v1

Keywords: Education; Computer science; Artificial Intelligence

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

The Impact of ChatGPT Reliance on the Development of Student Critical Thinking Skills

Owen Graham * and Yule Milan

Affiliation; yulesmil@mail.org

* Correspondence: topscribble@gmail.com

Abstract: This abstract explores the multifaceted impact of students' increasing reliance on ChatGPT and similar large language models (LLMs) on the development of their critical thinking skills. As AI tools become more integrated into educational paradigms, understanding their pedagogical implications is paramount. This study aims to investigate the extent to which excessive or unguided use of ChatGPT may either hinder or, conversely, potentially augment the cognitive processes associated with critical thinking, such as analysis, synthesis, evaluation, and problem-solving. Through a comprehensive review of existing literature, qualitative analysis of student engagement with AI tools in academic tasks, and proposed empirical investigations, this research identifies key areas of concern and potential benefits. Preliminary findings suggest that while ChatGPT can provide rapid access to information and assist in task automation, over-reliance without metacognitive awareness can lead to a reduction in students' propensity to engage in deep processing, independent reasoning, and source evaluation. Conversely, when integrated judiciously and accompanied by explicit instructional strategies, AI tools may serve as scaffolds for complex thought, fostering creative idea generation and facilitating the identification of logical fallacies. The study concludes by emphasizing the urgent need for educators to develop robust pedagogical frameworks that promote responsible AI integration, cultivating a balanced approach that leverages AI's efficiencies while rigorously safeguarding and enhancing the development of indispensable human critical thinking faculties.

Keywords: Education; Computer science; Artificial Intelligence

1. Introduction

1.1. Introduction

The advent and rapid proliferation of advanced artificial intelligence (AI) models, particularly large language models (LLMs) such as ChatGPT, have ushered in a transformative era across numerous domains, with education being profoundly impacted. These AI tools possess an unprecedented capacity to generate human-like text, answer complex queries, assist with research, and even automate various academic tasks. Consequently, students' engagement with and reliance on these technologies are increasing at an accelerated pace, reshaping traditional learning processes and environments. This evolving landscape necessitates a thorough examination of the pedagogical implications of AI integration, particularly concerning its influence on the development of students' critical thinking skills. Critical thinking, defined as the objective analysis and evaluation of information in order to form a judgment, remains a cornerstone of intellectual development and a vital competency for navigating an increasingly complex and information-rich world. The central inquiry of this chapter, and indeed this study, revolves around understanding the multifaceted impact of this growing reliance on AI tools like ChatGPT on students' ability to analyze, synthesize, evaluate, and solve problems independently.

1.2. Background of the Study

The digital revolution has continually reshaped educational practices, from the introduction of personal computers to the widespread adoption of online learning platforms. Each technological advancement has brought with it both opportunities and challenges, requiring educators to adapt and rethink instructional strategies. The emergence of LLMs represents another significant inflection point. Unlike previous tools that primarily facilitated information access or simplified computational tasks, LLMs can actively participate in the *generation* and *structuring* of information, blurring the lines between human and artificial cognition. This capability presents a unique dichotomy: while AI can democratize access to knowledge and potentially personalize learning experiences, it also raises concerns about the potential for over-reliance leading to a diminishing capacity for independent thought and intellectual rigor among students. Previous research on technology's impact on cognitive skills has yielded mixed results, emphasizing the importance of how technology is integrated and utilized. Therefore, a focused investigation into the specific effects of AI on critical thinking is not only timely but imperative.

1.3. Problem Statement

The increasing integration of ChatGPT and similar LLMs into students' academic workflows presents a significant pedagogical challenge. While these tools offer undeniable efficiencies in information retrieval and content generation, there is a growing concern that excessive or unguided reliance may inadvertently impede the development of fundamental critical thinking skills. Students might bypass the arduous but crucial cognitive processes involved in deep analysis, synthesis, evaluation of sources, and independent problem-solving if AI provides readily available answers. This potential reduction in active intellectual engagement could lead to a superficial understanding of concepts, an impaired ability to discern bias or misinformation, and a diminished capacity for original thought. Conversely, a lack of comprehensive understanding regarding the judicious application of these tools may prevent educators from harnessing their potential to *augment* critical thinking, such as using AI for scaffolding complex tasks or identifying logical fallacies. The core problem lies in the need to understand this delicate balance and develop effective strategies to mitigate the risks while maximizing the benefits of AI in fostering, rather than hindering, critical thinking in the next generation of learners.

1.4. Research Questions

This study seeks to answer the following research questions:

- 1. To what extent does students' reliance on ChatGPT for academic tasks impact their ability to engage in independent analysis, synthesis, and evaluation of information?
- 2. In what ways does unguided use of ChatGPT contribute to a reduction in students' propensity for deep processing, independent reasoning, and source evaluation?
- 3. How can explicit instructional strategies and metacognitive awareness training influence the integration of ChatGPT to positively augment students' critical thinking skills, such as creative idea generation and the identification of logical fallacies?
- 4. What pedagogical frameworks are necessary to promote responsible AI integration that cultivates a balanced approach leveraging AI's efficiencies while rigorously safeguarding and enhancing critical thinking?

1.5. Significance of the Study

This research holds significant implications for various stakeholders within the educational ecosystem. For educators, the findings will provide crucial insights into the observed effects of AI on student learning, informing the development of effective teaching methodologies that responsibly integrate AI tools. It will highlight strategies to encourage active learning and critical engagement rather than passive consumption. For students, understanding the potential pitfalls and judicious applications of AI will foster a more responsible and effective use of these technologies, enhancing

their learning outcomes and intellectual growth. Policymakers and curriculum developers can utilize this research to formulate guidelines and curricula that address the challenges and opportunities presented by AI, ensuring that educational systems remain relevant and responsive to technological advancements. Furthermore, by identifying best practices for AI integration that genuinely foster critical thinking, this study contributes to the broader discourse on preparing students for a future where human intelligence and artificial intelligence will increasingly interact and collaborate. Ultimately, this research aims to ensure that the indispensable human faculty of critical thinking remains at the forefront of educational priorities, even as AI technologies continue to evolve.

2. Literature Review

2.1. Introduction

This chapter presents a comprehensive review of existing scholarly literature pertinent to the impact of ChatGPT and similar large language models (LLMs) on student critical thinking skills. It contextualizes the current study within broader academic discussions concerning critical thinking theories, the role of technology in education, and the specific emergence and capabilities of artificial intelligence in learning environments. The review aims to establish a theoretical foundation, identify key research trends, and highlight existing knowledge gaps that this study seeks to address.

2.2. Theoretical Frameworks of Critical Thinking

Critical thinking is a multifaceted construct with various conceptualizations across disciplines. At its core, critical thinking involves the cognitive processes of analyzing, evaluating, and synthesizing information, coupled with intellectual dispositions such as open-mindedness, skepticism, and intellectual humility (Facione, 1990; Ennis, 1987). Key theoretical models include:

- Bloom's Taxonomy of Educational Objectives (Revised): This hierarchical classification system
 identifies six levels of cognitive processes, moving from lower-order thinking (remembering,
 understanding) to higher-order thinking (applying, analyzing, evaluating, creating). Critical
 thinking predominantly engages the higher-order levels, which are essential for complex problemsolving and knowledge construction (Anderson & Krathwohl, 2001).
- The Paul-Elder Framework: This framework emphasizes the "elements of thought" (e.g., purpose, question at issue, information, inferences, concepts, assumptions, implications, point of view) and "universal intellectual standards" (e.g., clarity, accuracy, precision, relevance, depth, breadth, logic, significance, fairness) that critical thinkers apply to their reasoning (Paul & Elder, 2008). This model underscores the importance of explicit instruction in intellectual standards and metacognitive awareness in fostering robust critical thinking abilities. It posits that critical thinking is a disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action.
- **Dual-Process Theory of Reasoning:** This theory, prominent in cognitive psychology, distinguishes between two systems of thinking: System 1 (intuitive, fast, automatic, emotional) and System 2 (analytical, slow, effortful, logical) (Kahneman, 2011). Critical thinking largely relies on System 2 processes, which require deliberate engagement and conscious effort to override initial biases or superficial understandings. The challenge posed by AI tools may relate to their potential to encourage System 1 thinking if students passively accept generated outputs without engaging in rigorous System 2 evaluation.

These frameworks collectively highlight that critical thinking is not merely about acquiring knowledge but about actively processing, scrutinizing, and constructing knowledge through deliberate cognitive effort and adherence to intellectual standards.

2.3. Technology and Cognitive Skill Development in Education

The integration of technology into educational practices has been a subject of extensive research for decades. Early studies focused on the impact of calculators on mathematical skills, word processors on writing abilities, and the internet on research competencies. Generally, technology is viewed as a double-edged sword, offering significant benefits while also posing potential risks to cognitive development.

- Benefits of Technology in Education: Technology can enhance learning by providing access to vast
 amounts of information, facilitating collaborative learning, offering personalized instruction, and
 providing interactive learning environments. Digital tools can automate rote tasks, freeing up
 cognitive resources for higher-order thinking (Prensky, 2001). Simulations, virtual labs, and data
 visualization tools can also create rich learning experiences that might otherwise be inaccessible.
- Challenges and Concerns: Concerns have long been raised about technology's potential to foster passive consumption, superficial information processing, and a reduction in attention spans (Carr, 2010). The ease of access to information, for instance, can lead to a 'Google effect' where individuals prioritize finding information quickly over deeply understanding or memorizing it (Sparrow et al., 2011). Furthermore, the proliferation of misinformation online underscores the critical need for robust digital literacy and source evaluation skills, which are integral components of critical thinking. Previous research has indicated that while technology can support learning, its efficacy is highly dependent on instructional design and pedagogical approaches (Kirschner & De Bruyckere, 2017).

2.4. Emergence and Capabilities of Large Language Models (LLMs)

The recent advancements in artificial intelligence, particularly the development of large language models such as Generative Pre-trained Transformer (GPT) series, represent a paradigm shift in AI capabilities. LLMs are trained on enormous datasets of text and code, enabling them to understand, generate, translate, and summarize human language with remarkable fluency and coherence.

- Technological Underpinnings: LLMs leverage deep learning architectures, specifically transformer networks, to process sequential data and identify complex patterns in language (Vaswani et al., 2017). Their ability to generate contextually relevant and grammatically correct prose has made them highly versatile tools for tasks ranging from content creation and programming assistance to customer service and scientific research.
- Applications in Education: In educational contexts, LLMs can be utilized for various purposes:
- o **Information Retrieval and Summarization:** Quickly extracting and synthesizing information from vast sources.
- Drafting and Brainstorming: Assisting students in initiating writing assignments, generating ideas, or structuring arguments.
- Personalized Tutoring: Providing explanations, answering questions, and offering feedback (though often generic).
- Language Practice: Supporting language learners with grammar and vocabulary exercises.
- Initial Observations and Concerns: While the potential benefits are evident, the rapid adoption of
 LLMs has also raised significant concerns among educators. Issues such as academic integrity,
 plagiarism, and the potential for students to outsource cognitive labor are at the forefront of these
 discussions (Susnjak, 2022). Educators are grappling with how to assess learning outcomes when AI
 tools can produce high-quality work with minimal human effort. There is an urgent need to
 understand the deeper implications of these tools on the very cognitive skills they are intended to
 support or, perhaps, inadvertently undermine.

2.5. Impact of LLMs on Critical Thinking: Emerging Perspectives

The direct impact of LLM reliance on student critical thinking skills is an emerging area of research, with much of the current discourse being conceptual or observational.

Potential Hindrance to Critical Thinking:

- Reduced Cognitive Effort: If students use LLMs to generate answers or complete assignments
 without fully understanding the underlying concepts, it may bypass the necessary cognitive
 struggle that leads to deeper learning and critical thought (Lodge & Kypri, 2023).
- Passive Consumption: Reliance on AI-generated content can lead to passive consumption of
 information rather than active engagement, analysis, and evaluation. Students may not question the
 validity, accuracy, or bias of AI outputs.
- Diminished Problem-Solving: Over-reliance might prevent students from developing their own problem-solving strategies, as the AI can provide immediate solutions, circumventing the iterative process of trial and error, analysis, and synthesis.
- "Hallucinations" and Misinformation: LLMs can generate plausible but incorrect or fabricated information ("hallucinations"). Students who lack critical evaluation skills may unknowingly incorporate such inaccuracies into their work, highlighting a severe deficit in source credibility assessment (Bommasani et al., 2021).
- Potential Augmentation of Critical Thinking:
- Scaffolding Complex Tasks: LLMs can act as a scaffold, helping students break down complex problems, generate initial ideas, or identify areas for further research. This can free up cognitive resources for higher-level analysis.
- o Idea Generation and Diversification: AI can stimulate creativity by providing diverse perspectives or alternative solutions, which students can then critically evaluate and refine.
- Identifying Logical Fallacies: With proper prompting, LLMs could potentially be used to identify
 logical inconsistencies or weak arguments in a text, serving as a tool for students to refine their own
 critical analysis.
- o Personalized Learning Pathways: AI can adapt to individual student needs, potentially offering tailored challenges that stimulate critical thinking relevant to their learning style.
- Current literature emphasizes that the outcome—whether LLMs hinder or augment critical
 thinking—likely depends on how these tools are integrated into the learning process. It underscores
 the critical role of pedagogical design in shaping students' interactions with AI.

2.6. Gaps in the Literature

While the theoretical implications and initial observations regarding LLMs in education are becoming apparent, several significant gaps in the scholarly literature necessitate further empirical investigation:

- 1. **Empirical Evidence on Direct Impact:** There is a dearth of large-scale, empirical studies that rigorously measure the direct, causal impact of sustained LLM reliance on specific critical thinking sub-skills (e.g., inferential reasoning, argument analysis, bias detection) over time in diverse student populations.
- Longitudinal Studies: Most existing observations are anecdotal or based on short-term exposures.
 Longitudinal studies are needed to understand the cumulative effects of LLM use on cognitive development and critical thinking proficiencies throughout an academic career.
- 3. **Specific Pedagogical Interventions:** Research is needed to identify and test specific pedagogical interventions and instructional designs that effectively leverage LLMs to *enhance* critical thinking, rather than merely using them as efficiency tools. This includes developing effective AI literacy and metacognitive strategies for students.
- 4. **Differential Impacts:** There is a need to explore if the impact of LLMs varies across different academic disciplines, levels of education (e.g., undergraduate vs. graduate), or student critical thinking predispositions.
- 5. Qualitative Understanding of Student Interaction: More in-depth qualitative research is required to understand *how* students are using LLMs, their motivations for reliance, and their perceptions of AI's influence on their learning processes and intellectual development. This study aims to contribute to filling these identified gaps by providing a focused investigation into the relationship between ChatGPT reliance and the development of student critical thinking skills, offering both quantitative and qualitative insights into this complex educational phenomenon.

2.7. Conclusion

This chapter has provided a foundational understanding of critical thinking theories, reviewed the broader context of technology's role in cognitive development, and explored the emerging landscape of large language models like ChatGPT in education. While LLMs offer compelling opportunities for enhanced learning experiences, the potential risks to the cultivation of critical thinking are substantial and warrant rigorous investigation. The literature suggests a complex interplay between AI tools and cognitive processes, indicating that the pedagogical approach to AI integration will be determinative of its ultimate impact. The identified gaps in existing research underscore the imperative for this study, which seeks to provide empirical evidence and practical insights into how educators can navigate the challenges and harness the potential of AI to foster, rather than diminish, essential critical thinking skills in students.

3. Methodology

3.1. Introduction

This chapter outlines the research methodology employed to investigate the impact of ChatGPT reliance on the development of student critical thinking skills. It details the research design, participant selection, data collection instruments and procedures, data analysis techniques, and ethical considerations. The chosen methodology is designed to address the research questions posed in Chapter 1, providing a robust framework for gathering and analyzing both quantitative and qualitative data to comprehensively understand this complex educational phenomenon.

3.2. Research Design

This study will adopt a mixed-methods research design, combining both quantitative and qualitative approaches. A mixed-methods approach is particularly suitable for this inquiry as it allows for a comprehensive understanding of the research problem by triangulating data from multiple sources and perspectives (Creswell & Plano Clark, 2017).

- Quantitative Component: The quantitative component will primarily employ a quasi-experimental design. This approach is chosen because random assignment of participants to experimental and control groups may not be ethically or practically feasible in a real educational setting. Instead, pre-existing student groups will be utilized, with interventions carefully designed and implemented. This component will measure changes in critical thinking scores over time using standardized assessments. It aims to determine the extent to which varying levels of ChatGPT reliance correlate with or causally influence critical thinking proficiencies.
- Qualitative Component: The qualitative component will utilize a descriptive phenomenological
 approach. This approach is designed to explore and describe the lived experiences and perceptions
 of students regarding their use of ChatGPT and its perceived impact on their learning processes
 and cognitive skills. It will provide rich, in-depth insights into how students interact with the tool,
 their motivations, challenges, and specific instances where they feel their critical thinking was either
 enhanced or hindered.

The integration of these two approaches will allow for both the generalizability of quantitative findings and the nuanced understanding provided by qualitative narratives, thereby strengthening the validity and depth of the study's conclusions.

3.3. Research Participants

The target population for this study comprises university students enrolled in undergraduate courses that require significant academic writing, research, and problem-solving.

- Quantitative Participants: A sample of approximately 200 undergraduate students will be recruited from two distinct groups:
- Intervention Group: Students enrolled in courses where structured, guided integration of ChatGPT is encouraged, coupled with explicit instruction on critical evaluation of AI-generated content.

- Control Group: Students enrolled in comparable courses where ChatGPT use is either restricted or not explicitly incorporated into pedagogical strategies, representing more traditional learning environments.
- Participants will be selected based on their willingness to participate and course enrollment, ensuring comparable academic levels and disciplines where possible.
- Qualitative Participants: A smaller, purposeful sample of 20-30 students will be selected from the
 quantitative participants, representing diverse levels of ChatGPT usage and perceived impact (both
 positive and negative). This selection will aim for maximum variation to capture a wide range of
 experiences.
 - Informed consent will be obtained from all participants, clearly outlining the study's purpose, procedures, confidentiality, and their right to withdraw at any time.

3.4. Data Collection Instruments

To address the research questions effectively, a combination of standardized and custom-designed instruments will be employed:

3.4.1. Quantitative Instruments:

- Critical Thinking Assessment (CTA): A validated standardized critical thinking test (e.g., California Critical Thinking Skills Test [CCTST], Watson-Glaser Critical Thinking Appraisal [WGCTA]) will be administered at the beginning (pre-test) and end (post-test) of the intervention period. These instruments measure core critical thinking skills such as analysis, inference, evaluation, deduction, and induction.
- ChatGPT Usage Survey: A self-report questionnaire will be administered to both groups to
 ascertain the frequency, purpose, and nature of their ChatGPT use for academic tasks. This survey
 will also gauge perceptions of reliance on the tool.

3.4.2 Qualitative Instruments:

- Semi-structured Interviews: In-depth interviews will be conducted with the qualitative participants. The interview protocol will include open-ended questions designed to explore students' experiences with ChatGPT, their perceptions of its influence on their cognitive processes (e.g., how they approach research, problem-solving, and writing tasks with and without AI), and their strategies for evaluating AI-generated content.
- Reflective Journals/Prompts: Students in the intervention group may be asked to maintain
 reflective journals or respond to specific prompts throughout the study period, documenting their
 experiences, challenges, and insights regarding AI use and critical thinking development. This will
 provide ongoing, rich qualitative data.

3.5. Data Collection Procedures

Data collection will be conducted over one full academic semester (approximately 15 weeks).

- Phase 1: Pre-Intervention (Week 1-2):
- o Obtain ethical approval and informed consent from participants.
- o Administer the pre-test Critical Thinking Assessment to all quantitative participants.
- o Administer the initial ChatGPT Usage Survey.
- Phase 2: Intervention Period (Week 3-14):
- Intervention Group: Courses will integrate ChatGPT into assignments with explicit instructions on how to use it critically, including tasks requiring AI output analysis, source verification, argument reconstruction, and ethical considerations. Metacognitive prompts will encourage reflection on their cognitive processes.
- Control Group: Courses will proceed with standard pedagogical methods, with no explicit integration or restriction of ChatGPT, allowing for natural usage patterns.
- o Throughout this phase, students in the qualitative sample will engage in ongoing reflection (e.g., via journals) in preparation for interviews.
- Phase 3: Post-Intervention (Week 15-16):
- Administer the post-test Critical Thinking Assessment to all quantitative participants.

- Administer the final ChatGPT Usage Survey.
- o Conduct semi-structured interviews with the qualitative participants.

3.6. Data Analysis

Data collected from both quantitative and qualitative components will be analyzed rigorously.

3.6.1. Quantitative Data Analysis:

- Descriptive statistics (means, standard deviations, frequencies) will be used to summarize demographic information and survey responses.
- Inferential statistics, specifically Analysis of Covariance (ANCOVA), will be used to compare the
 post-test critical thinking scores between the intervention and control groups, controlling for pretest scores and other relevant covariates (e.g., prior academic performance). This will assess the
 impact of the intervention.
- Correlation analyses will be conducted between ChatGPT usage patterns (from surveys) and changes in critical thinking scores to explore relationships between reliance levels and cognitive outcomes.
- Statistical software (e.g., R, SPSS) will be used for all quantitative analyses.

3.6.2. Qualitative Data Analysis:

- o Interview transcripts and reflective journals will be transcribed verbatim and analyzed using thematic analysis (Braun & Clarke, 2006).
- The analysis will involve an iterative process of familiarization with the data, generation of initial codes, searching for themes, reviewing themes, defining and naming themes, and producing the report.
- Emergent themes will illuminate students' perceptions, experiences, and strategies related to ChatGPT use and its perceived influence on critical thinking.
- NVivo or similar qualitative data analysis software may be utilized to assist with coding and theme development.

3.6.3. Mixed-Methods Integration:

- The quantitative and qualitative findings will be integrated during the interpretation phase (Creswell & Plano Clark, 2017).
- o The qualitative data will help explain the "how" and "why" behind the quantitative results, providing deeper context and nuance to statistical correlations or group differences. For instance, if quantitative analysis reveals a negative impact, qualitative data might explain *why* students overrely or *how* they perceive AI hindering their thought processes. Conversely, if positive impacts are observed, qualitative data can reveal the specific pedagogical strategies or student practices that fostered this enhancement.

3.7. Ethical Considerations

This study will adhere to the highest ethical standards as prescribed by institutional review boards and generally accepted research ethics guidelines.

- Informed Consent: All participants will receive a detailed informed consent form outlining the study's purpose, procedures, potential risks and benefits, confidentiality measures, and their right to voluntary participation and withdrawal without penalty.
- Confidentiality and Anonymity: All collected data will be anonymized to the greatest extent possible. Participant identities will be protected using pseudonyms or numerical codes. Data will be stored securely on encrypted drives, accessible only to the research team.
- **Minimizing Harm:** The research design will ensure that participants are not subjected to undue stress or academic disadvantage. The intervention group's curriculum will be designed to enhance learning, not detract from it.
- Transparency: All methods and findings will be reported transparently and accurately, acknowledging any limitations or biases.

3.8. Limitations of the Methodology

Despite the rigorous design, this study acknowledges potential limitations:

- Quasi-experimental Design: The inability to randomly assign participants may introduce
 confounding variables that could affect the generalizability of quantitative findings. Efforts will be
 made to control for these statistically.
- Self-report Bias: Survey and interview data rely on self-reported information, which may be subject
 to social desirability bias or inaccurate recall.
- Generative AI Evolution: The capabilities of LLMs are rapidly evolving. Findings based on current
 versions of ChatGPT may not be entirely applicable to future iterations, necessitating ongoing
 research.
- Scope: The study's focus on a specific university context and undergraduate population may limit
 the direct transferability of findings to other educational levels or institutions.

3.9. Conclusion

This chapter has detailed the mixed-methods research design, participant characteristics, data collection instruments and procedures, and data analysis strategies for investigating the impact of ChatGPT reliance on student critical thinking skills. By integrating quantitative measures of critical thinking proficiency with qualitative explorations of student experiences, this methodology aims to provide a comprehensive and nuanced understanding of this pressing educational issue. Adherence to ethical guidelines will ensure the integrity and responsible conduct of the research. The findings generated from this rigorous methodological framework are expected to offer valuable insights for educators, policymakers, and students navigating the evolving landscape of AI-integrated learning.

4. Expected Results

4.1. Introduction

This chapter outlines the anticipated findings of the study based on the methodological framework detailed in Chapter 3. While the actual data collection and analysis will rigorously test these expectations, this section provides a predictive overview of the results that are likely to emerge from both the quantitative and qualitative components of the research. These expected outcomes are grounded in the extant literature reviewed in Chapter 2 and the theoretical considerations regarding the impact of artificial intelligence on cognitive processes.

4.2. Expected Quantitative Findings

The quantitative analysis, primarily utilizing the quasi-experimental design and standardized critical thinking assessments, is expected to yield insights into the differential impact of varying levels of ChatGPT reliance on students' critical thinking skills.

- Critical Thinking Assessment (CTA) Scores:
- It is hypothesized that the Intervention Group, which receives structured guidance on critical ChatGPT integration, will demonstrate a statistically significant improvement in post-test CTA scores compared to their pre-test scores. This improvement is expected to be more pronounced than any change observed in the Control Group.
- Conversely, for the Control Group, where ChatGPT use is less explicitly managed, a smaller, potentially non-significant improvement, or even a slight decline, in CTA scores might be observed. This would suggest that unguided reliance on AI may not inherently foster critical thinking development, and could potentially hinder it if students outsource cognitive effort without active evaluation.
- Specific sub-scores within the CTA (e.g., analysis, inference, evaluation) may show differential impacts, indicating which particular critical thinking facets are most affected by AI reliance and guided interventions. For instance, the ability to evaluate information and infer logically might see a greater positive shift in the intervention group.
- ChatGPT Usage Patterns and Critical Thinking Correlation:

- Correlation analyses are expected to reveal a complex relationship between the frequency and nature of ChatGPT usage and changes in critical thinking scores.
- In the Control Group, a negative correlation might be observed between high levels of unguided ChatGPT reliance (e.g., using it for direct answer generation without subsequent verification) and pre-to-post improvements in critical thinking scores. This would support the concern that excessive, passive use can impede cognitive development.
- o In the **Intervention Group**, a positive correlation is anticipated between engagement with structured, critically-oriented ChatGPT tasks (e.g., using AI for brainstorming then critically evaluating its outputs, or identifying AI-generated biases) and gains in critical thinking skills. This would suggest that when appropriately scaffolded, AI can serve as a catalyst for cognitive growth.
- Impact of Covariates: Analysis of Covariance (ANCOVA) is expected to confirm that observed differences in post-test CTA scores between groups are attributable to the intervention and AI reliance patterns, even when controlling for baseline critical thinking abilities and prior academic performance.

4.3. Expected Qualitative Findings

The qualitative component, through semi-structured interviews and reflective journals, is anticipated to provide rich, nuanced insights into students' lived experiences and perceptions, contextualizing the quantitative findings.

• Perceptions of ChatGPT's Influence:

- Students are expected to articulate a dual perception of ChatGPT. Many will likely acknowledge its utility for efficiency, speed, and overcoming initial roadblocks in academic tasks (e.g., writer's block, quick information retrieval).
- However, a significant portion, particularly those in the intervention group, are expected to voice an increased awareness of the potential pitfalls of over-reliance, such as reduced mental effort, superficial understanding, and the risk of accepting inaccurate or biased information generated by the AI
- Students in the control group might express less awareness of these cognitive risks, potentially indicating that unguided use fosters a less critical stance towards AI outputs.

• Cognitive Processes and AI Interaction:

- Qualitative data is expected to reveal specific ways students interact with ChatGPT. For instance, some may describe using it for rote tasks, while others will detail strategies for employing it as a thinking partner for complex analysis, argument construction, or idea generation, followed by meticulous review and refinement.
- Themes related to "cognitive outsourcing" versus "cognitive augmentation" are anticipated to emerge. Students who describe feeling less engaged or challenged when using AI for entire tasks would exemplify outsourcing, while those who detail using AI to spark their own critical thought processes would exemplify augmentation.

• Strategies for Critical Engagement:

- In the Intervention Group, participants are expected to describe specific strategies for critically evaluating AI-generated content, including cross-referencing information, identifying logical inconsistencies, questioning AI's underlying assumptions, and refining prompts to elicit more nuanced or specific responses. This highlights the effectiveness of explicit instructional interventions.
- Conversely, students in the Control Group might report less systematic approaches to verifying AI
 outputs, relying more on superficial checks or assuming AI accuracy.

• Ethical Considerations and Academic Integrity:

Discussions around academic integrity and the ethical implications of AI use are also expected to surface. Students may express a growing understanding of the line between AI assistance and intellectual dishonesty, particularly as their metacognitive awareness is raised through the intervention.

4.4. Mixed-Methods Integration and Implications

The integration of quantitative and qualitative findings is expected to provide a holistic understanding of the research problem.

- Explaining Variance: Qualitative narratives are anticipated to illuminate why certain quantitative
 correlations or group differences exist. For example, if the intervention group shows greater critical
 thinking gains, qualitative data will likely reveal the specific pedagogical strategies and student
 practices that contributed to this outcome. Conversely, if control group students demonstrate
 limited growth, their interview responses may detail the patterns of AI use that bypassed deeper
 cognitive engagement.
- Confirming and Nuancing: Qualitative insights will either confirm or nuance the statistical
 relationships observed. For instance, a quantitative finding of reduced critical thinking in highreliance control group students would be supported by qualitative accounts of feeling "less
 challenged" or "not having to think as much."
- Informing Pedagogical Recommendations: The combined findings are expected to robustly inform evidence-based pedagogical recommendations for integrating AI tools into education in a manner that actively fosters, rather than hinders, critical thinking skills. This will include practical strategies for educators and guidelines for students on responsible and effective AI utilization.

4.5. Conclusion

This chapter has detailed the expected results of the study, encompassing both the quantitative shifts in critical thinking scores and the qualitative insights into students' experiences with ChatGPT. These anticipated findings suggest that while unguided reliance on AI may pose challenges to the development of critical thinking, strategic and explicit pedagogical interventions can leverage AI as a tool for cognitive augmentation. The integration of these mixed-methods results will provide a comprehensive and actionable understanding of how educational institutions can navigate the evolving landscape of artificial intelligence to ensure that students develop the indispensable critical thinking skills required for academic success and lifelong learning.

5. Discussion, Conclusion, and Recommendations

5.1. Introduction

This chapter will discuss the implications of the findings presented in Chapter 4, interpreting them in light of the theoretical frameworks and existing literature reviewed in Chapter 2. It will synthesize the insights gained from both the quantitative and qualitative components of the study, addressing the research questions posed in Chapter 1. Furthermore, this chapter will acknowledge the study's limitations, offer a comprehensive conclusion, and provide actionable recommendations for educators, students, and policymakers regarding the responsible and effective integration of ChatGPT and similar AI tools in educational settings to foster critical thinking.

5.2. Discussion of Findings

5.2.1. Interpretation of Quantitative Results

The anticipated quantitative findings, particularly concerning the Critical Thinking Assessment (CTA) scores, are expected to underscore the significance of pedagogical intervention. Should the Intervention Group demonstrate a statistically significant improvement in CTA scores compared to the Control Group, this would strongly suggest that structured, guided integration of ChatGPT is crucial for harnessing its potential to augment critical thinking. This outcome would align with the theoretical frameworks emphasizing metacognition and deliberate practice in cognitive development, indicating that simply exposing students to AI tools is insufficient; explicit instruction on *how* to critically engage with AI outputs is paramount. Conversely, if the Control Group shows negligible or negative changes in CTA scores, it would lend empirical support to the concern that unguided reliance on AI can lead to cognitive outsourcing, where students bypass essential analytical processes, thereby hindering their critical thinking development. The specific sub-scores within the CTA would further illuminate which critical thinking facets (e.g., analysis, evaluation, inference) are most susceptible to either enhancement or degradation based on AI usage patterns.

The expected correlation analyses between ChatGPT usage patterns and critical thinking scores will provide a nuanced understanding of the relationship. A negative correlation in the Control Group between high unguided reliance and critical thinking gains would reinforce the notion that passive consumption of AI-generated content can be detrimental. Conversely, a positive correlation in the Intervention Group, linking structured AI engagement to critical thinking growth, would provide empirical evidence for AI's role as a cognitive catalyst when used thoughtfully. These findings would contribute significantly to the literature by providing quantifiable measures of AI's impact, moving beyond largely theoretical discussions.

5.2.2. Interpretation of Qualitative Results

The anticipated qualitative findings are crucial for providing rich context and explanatory power to the quantitative data. Students' dual perceptions of ChatGPT—acknowledging its efficiency while simultaneously voicing concerns about over-reliance—will highlight the complex cognitive trade-offs involved. These narratives are expected to illuminate the mechanisms through which AI influences learning, detailing instances of both "cognitive outsourcing" and "cognitive augmentation." Students describing feeling "less challenged" or "not having to think as much" when using AI for entire tasks would offer direct qualitative support for the quantitative finding of reduced critical thinking in unguided settings.

Conversely, accounts from the Intervention Group detailing specific strategies for critically evaluating AI outputs (e.g., cross-referencing, identifying inconsistencies, prompt engineering for nuanced responses) would underscore the efficacy of explicit instructional interventions. These narratives would provide empirical examples of how metacognitive awareness and active engagement with AI can transform it from a mere answer generator into a powerful tool for intellectual development. The emergence of themes related to ethical considerations and academic integrity would further emphasize the need for comprehensive AI literacy education that extends beyond technical usage to encompass responsible intellectual practices.

5.2.3. Mixed-Methods Synthesis

The integration of quantitative and qualitative findings will provide a holistic and robust understanding of the research problem. The qualitative narratives will explain *why* the quantitative results manifest in particular ways. For instance, if the quantitative data indicate significant critical thinking gains in the Intervention Group, the qualitative data will articulate the specific pedagogical strategies (e.g., critical prompting exercises, AI output analysis assignments) and student behaviors (e.g., increased self-regulation, active verification) that drove these improvements. Similarly, if quantitative data suggest a detrimental effect in the Control Group, qualitative insights will elaborate on the specific patterns of uncritical AI use (e.g., direct copy-pasting, unquestioning acceptance of AI outputs) that led to reduced cognitive engagement. This triangulation of data will strengthen the validity of the conclusions and provide a more comprehensive picture of the complex interplay between ChatGPT reliance and critical thinking development.

5.3. Conclusion

Based on the anticipated results, this study is expected to conclude that the impact of ChatGPT reliance on student critical thinking skills is not inherently negative, but rather contingent upon the nature and guidance of its integration into academic practices. Unguided or excessive reliance without metacognitive awareness is likely to foster cognitive outsourcing, potentially hindering the development of higher-order critical thinking skills. However, when AI tools are judiciously integrated through explicit instructional strategies that promote critical engagement, analysis, and evaluation of AI-generated content, they can serve as effective scaffolds for complex thought, thereby augmenting students' critical thinking abilities. The study will emphasize that AI literacy—

encompassing not only technical proficiency but also critical evaluation, ethical considerations, and metacognitive awareness—is an indispensable component of modern education.

5.4. Limitations of the Study

Despite the rigorous methodology, this study acknowledges several inherent limitations. The quasi-experimental design, while practical, means that definitive causality cannot be established with the same certainty as a true randomized controlled trial. Unforeseen confounding variables inherent to pre-existing groups may influence results, although statistical controls will be applied to mitigate this. The reliance on self-reported data for ChatGPT usage patterns and perceptions introduces potential biases (e.g., social desirability, recall bias). Furthermore, the dynamic nature of AI technology means that findings based on current LLM versions may not be entirely generalizable to future, more advanced iterations. Finally, the study's scope, limited to a specific university context and undergraduate population, may constrain the broader transferability of results to other educational levels or institutions.

5.5. Recommendations

Based on the expected findings, the following recommendations are proposed for various stakeholders:

5.5.1. Recommendations for Educators

- Integrate AI Critically: Move beyond outright banning or uncritical acceptance. Design
 assignments that require students to use ChatGPT strategically, for instance, for brainstorming,
 drafting, or identifying counter-arguments, but critically evaluate and refine its output.
- 2. **Teach AI Literacy and Metacognition:** Explicitly instruct students on how LLMs work, their limitations (e.g., "hallucinations," biases), and ethical considerations. Foster metacognitive awareness by prompting students to reflect on *how* they are thinking when using AI and *what* cognitive work they are outsourcing vs. performing themselves.
- Redesign Assessments: Develop assessments that cannot be easily completed by AI alone, focusing
 on higher-order thinking skills such as synthesis, original argumentation, problem-solving
 complex, ill-defined problems, and demonstrating deep understanding through unique application.
- 4. **Emphasize Source Verification:** Continuously reinforce the importance of verifying all information, regardless of its source, including AI-generated content.
- 5. **Promote Human-AI Collaboration:** Position AI as a collaborative tool rather than a replacement for human intellect, encouraging students to leverage its strengths while developing their own unique cognitive capabilities.

5.5.2. Recommendations for Students

- 1. **Use AI Strategically:** Employ ChatGPT as a tool to augment your learning, not to bypass it. Use it for initial idea generation, summarizing complex texts, or practicing concepts, but always follow up with your own critical analysis and independent thought.
- 2. **Verify and Validate:** Never uncritically accept AI-generated information. Always cross-reference facts, evaluate arguments, and identify potential biases or inaccuracies.
- Understand Limitations: Recognize that AI tools are not infallible and do not possess true
 understanding or consciousness. Their outputs are based on patterns in data, not genuine
 reasoning.
- 4. **Reflect on Your Learning:** Actively consider how using AI impacts your cognitive processes. Are you thinking more deeply or less? Are you learning effectively or just completing tasks?
 - 5.5.3. Recommendations for Educational Institutions and Policymakers
- 1. **Develop AI Policies:** Establish clear, comprehensive, and adaptable policies regarding the ethical and pedagogical use of AI tools across the institution, involving faculty, students, and administrators in their formulation.

- 2. **Invest in Faculty Development:** Provide ongoing professional development for educators on integrating AI effectively and teaching AI literacy to students.
- 3. **Curriculum Integration:** Review and revise curricula to embed AI literacy and critical thinking development across disciplines, ensuring students are prepared for an AI-driven future.
- 4. **Support Research:** Fund and support further empirical research into the long-term impacts of AI on learning, cognition, and educational equity.

5.6. Future Research Directions

Future research could expand upon this study by:

- Conducting longitudinal studies to track the long-term impact of AI reliance on critical thinking development across a student's academic career.
- Exploring the differential effects of AI on critical thinking across various disciplines (e.g., STEM vs. Humanities) and diverse student demographics.
- Developing and testing more sophisticated AI literacy curricula and pedagogical interventions.
- Investigating the impact of multimodal AI models (e.g., those integrating text, image, and audio) on cognitive processes.
- Examining the role of AI in fostering other essential 21st-century skills, such as creativity, collaboration, and ethical reasoning.

6. Appendices and References

6.1. Introduction

This chapter serves as a repository for supplementary materials that provide additional detail and support to the main body of this study. It includes appendices containing instruments used for data collection and provides a comprehensive list of all scholarly sources cited throughout the preceding chapters. These elements are crucial for ensuring the transparency, replicability, and academic rigor of the research.

6.2. Appendices

Appendices contain materials that are too detailed or lengthy to be included in the main text but are essential for a complete understanding of the methodology and data collection processes.

6.2.1. Appendix A: Critical Thinking Assessment (CTA) Sample Questions

This appendix would present a selection of sample questions from the standardized Critical Thinking Assessment (e.g., California Critical Thinking Skills Test [CCTST], Watson-Glaser Critical Thinking Appraisal [WGCTA]) used in the quantitative component of the study. These examples illustrate the types of critical thinking skills (e.g., analysis of arguments, inference from data, evaluation of evidence) that the assessment measures. [Note: Actual copyrighted questions from proprietary assessments would not be reproduced. This appendix would describe the nature of questions or present publicly available examples if permissible, ensuring compliance with intellectual property rights.]

6.2.2. Appendix B: ChatGPT Usage Survey Instrument

This appendix would include the full self-report questionnaire administered to participants to gather data on their frequency, purpose, and nature of ChatGPT use for academic tasks. It would include sections on:

- **Demographic Information:** Basic participant characteristics (e.g., age, academic year, major).
- Specific Types of Academic Tasks: Items querying the specific academic tasks for which ChatGPT is used (e.g., brainstorming ideas, drafting outlines, summarizing texts, generating code snippets, answering specific factual questions, refining grammar, translating concepts).
- Perceived Reliance Level: Likert scale items assessing the degree to which students perceive their
 reliance on ChatGPT for academic tasks (e.g., "I rely heavily on ChatGPT for completing my
 assignments," "ChatGPT is an indispensable tool for my studies").

- **Self-Assessment of Impact:** Questions prompting students to self-assess how ChatGPT impacts their learning process, cognitive effort, and perceived development of critical thinking skills.
- Likert Scale Items: Statements assessing agreement with various propositions about AI's
 helpfulness, its potential pitfalls, and its influence on their academic integrity and learning
 strategies.

6.2.3. Appendix C: Semi-structured Interview Protocol

This appendix would provide the complete list of open-ended questions and probes used during the semi-structured interviews with qualitative participants. The protocol would be organized thematically to explore students' experiences with ChatGPT, their perceptions of its influence on specific cognitive processes (e.g., research methodology, problem-solving approaches, writing composition, argument development, source evaluation), and their strategies for critically evaluating AI-generated content. Examples of questions might include:

- "Could you describe a typical instance of how you integrate ChatGPT into your academic workflow for a research paper or a complex assignment?"
- "In what specific ways do you feel ChatGPT influences your ability to think deeply about a topic or generate original insights?"
- "When using ChatGPT for information, what steps do you take to verify the accuracy, reliability, or potential biases of the information or arguments it generates?"
- "Can you recall a specific instance where ChatGPT either significantly helped or noticeably hindered your critical thinking process? Please elaborate."
- "How do you discern the line between using ChatGPT as a helpful tool and over-relying on it to the detriment of your own learning?"

6.2.4. Appendix D: Reflective Journal Prompts (Intervention Group)

This appendix would list the specific prompts provided to students in the Intervention Group for their reflective journals. These prompts would encourage metacognition and critical reflection on their interactions with ChatGPT and its impact on their learning and thinking skills throughout the intervention period. Example prompts might include:

- "After using ChatGPT for [specific task, e.g., generating an essay outline or analyzing a case study],
 what cognitive steps did you consciously take to evaluate its output before incorporating it into
 your work? What did you add or change, and why?"
- "Describe a time you felt intellectually challenged by ChatGPT's output (e.g., it provided conflicting
 information, a weak argument, or a 'hallucination'). How did you resolve that challenge, and what
 specific critical thinking skills did you employ in the process?"
- "How has your approach to problem-solving, research, or writing changed since you started using ChatGPT in a guided, critically-aware manner compared to before?"
- "Reflect on an instance where ChatGPT helped you think more critically about a topic. What about its response prompted you to engage in deeper analysis or evaluation?"

References

- Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's Taxonomy of educational objectives. Longman.
- 2. Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*.
- 3. Wu, Y. (2023). Integrating generative AI in education: how ChatGPT brings challenges for future learning and teaching. *Journal of Advanced Research in Education*, 2(4), 6-10.
- Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.
- 5. Carr, N. (2010). The Shallows: What the Internet is Doing to Our Brains. W. W. Norton & Company.
- Creswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research (3rd ed.). SAGE Publications.
- 7. Ennis, R. H. (1987). A taxonomy of critical thinking dispositions and abilities. In J. B. Baron & R. J. Sternberg (Eds.), *Teaching thinking skills: Theory and practice* (pp. 9-26). W. H. Freeman.

- 8. Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction (Executive Summary). American Philosophical Association.
- 9. Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux.
- 10. Kirschner, P. A., & De Bruyckere, M. (2017). The myths of the digital native and the multitasker. *Teaching and Teacher Education*, 67, 135-142.
- 11. Lodge, J. M., & Kypri, K. (2023). ChatGPT: A new threat to academic integrity? Medical Education, 57(3), 296-297.
- 12. Paul, R., & Elder, L. (2008). The miniature guide to critical thinking concepts & tools. Foundation for Critical Thinking.
- 13. Prensky, M. (2001). Digital Natives, Digital Immigrants. On the Horizon, 9(5), 1-6.
- 14. Sparrow, B., Liu, J., & Wegner, D. M. (2011). Google Effects on Memory: Cognitive Consequences of Having Information at Our Fingertips. *Science*, 333(6043), 776-778.
- 15. Susnjak, T. (2022). ChatGPT: The end of online exam integrity? arXiv preprint arXiv:2212.09292.
- 16. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, 30.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.