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Abstract: In Kenya, Rift Valley Fever (RVF) outbreaks pose significant challenges, being one of the most severe

climate-sensitive zoonoses. While Machine Learning (ML) techniques have shown superior performance in time

series forecasting, their application in predicting disease outbreaks in Africa remains under explored. Leveraging

data from the International Livestock Research Institute (ILRI) in Kenya, this study pioneers the use of ML

techniques to forecast RVF outbreaks by analysing climate data spanning from 1981 to 2010, including machine

learning models. Through a comprehensive analysis of ML model performance and the influence of environmental

factors on RVF outbreaks, this study provides valuable insights into the intricate dynamics of disease transmission.

The XGB Classifier emerged as the top-performing model, exhibiting remarkable accuracy in identifying RVF

outbreak cases, with an accuracy score of 0.997310. Additionally, positive correlations were observed between

various environmental variables, including rainfall, humidity, and clay patterns, and RVF cases, underscoring the

critical role of climatic conditions in disease spread. These findings have significant implications for public health

strategies, particularly in RVF-endemic regions, where targeted surveillance and control measures are imperative.

However, the study also acknowledges the limitations in model accuracy, especially in scenarios involving

concurrent infections with multiple diseases, highlighting the need for ongoing research and development to

address these challenges. Overall, this study contributes valuable insights to the field of disease prediction and

management, paving the way for innovative solutions and improved public health outcomes in RVF-endemic

areas and beyond

Keywords: machine learning; outbreak; training; XGBoost; Rift Valley fever

1. Introduction

Rift Valley Fever Virus (RVFV) is the cause of Rift Valley Fever in farmed animals in all Sub-
Saharan African countries and the Arabian Peninsula, [4]. RVF virus belongs to the genus Phlebovirus
in the order Bunyavirales, [20]. The virus was first identified in 1931 during an investigation into
an endemic among sheep on a farm in the Rift valley province of Kenya, [18]. The livestock disease
outbreaks remains a public health concern with the biggest burden of the diseases going to the pastoral
communities, [18]. Once an animal or human being has been exposed to the RVF virus, it takes
between 2-6 days for the symptoms to appear, [9]. For human beings, the symptoms are mild and
mostly go unnoticed, however, a small percentage (usually lee than 10 percent) of persons infected with
the virus experience serious symptoms, such as ocular illness, encephalitis and hemorrhagic fever, [19].
The virus is very severe in animals especially the young animals. It is characterized by fever, abortions
and weaknesses with abortions occurring to nearly 100 percent of all the pregnancies, [18]. For adult
animals, severity is much lower. Artificial intelligence and machine learning are growing in popularity
very quickly these days, [18]. They are extensively employed in many fields, such as stock market
trading, fraud detection, medical diagnosis, and speech, picture, and pattern recognition. They have
not been used widely in the field of public health, particularly in disease modeling and integrating local
climate and ecological data. Numerous studies have been conducted to show how livestock diseases
reduce livestock productivity, restrict access to domestic and foreign markets, and jeopardize human
health through the spread of zoonotic diseases; however, none of these studies have used machine
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learning techniques to predict or categorize these outbreaks. Because of its strong performance in
managing complicated datasets, feature interactions, and non-linear relationships, XGBoost (Extreme
Gradient Boosting) has become more and more popular in the field of disease modeling. Research has
shown that in disease prediction tasks, XGBoost consistently performs better than statistical models
and conventional machine learning algorithms. For instance, XGBoost outperformed logistic regression
and random forest algorithms in a study by [19] when it came to predicting diseases like diabetes and
cardiovascular disorders. Because of its capacity to manage large-scale, highly dimensional datasets,
XGBoost is an excellent choice for disease modeling tasks involving a multitude of predictors and
intricate relationships between variables. To sum up, XGBoost presents a robust framework for disease
modeling that offers high accuracy, insights into the importance of features, and versatility in managing
a variety of datasets.

2. Materials and Methods

This study encompasses several essential steps including data pre processing, the attributes
selection part, K-fold cross validation, and assessment of the available important attributes. The
subsequent sections provide a comprehensive overview of the entire process undertaken in predicting
the RVF cases in Kenya. This includes a detailed presentation and explanation of the data using the
Machine Learning (ML) methodologies employed, the evaluation metrics utilized, and a breakdown
of the workflow followed throughout the study.

2.1. Study Area

The data encompasses 30 years of monthly Rift Valley Fever (RVF) outbreaks in Kenya from 1981
to 2010 the distribution pattern is mapped in Figure 1

Figure 1. Distribution of RVF cases in Kenya from 1981- 2010

2.2. Data Description and Attribute Selection

Alongside RVF cases in years, comprehensive topographic details were collected, including
climate metrics like rainfall (mm), humidity, and slope, sourced from the meteorological department.
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These variables are continuous, while the target variable, the occurrence of RVF outbreaks, is binary (
"1 = RVF outbreak, 0 = No outbreak"), denoting its presence or absence within a specific location over
a defined period exceeding typical expectations. Additional data categories such as clay patterns were
also included following the contribution to a detailed taxonomy of Kenya’s meteorological landscape.
The description of variables considered in this study are as outlined in Table 1. This dataset serves as
a rich resource for analysing the interplay between environmental factors and the prevalence of RVF,
facilitating informed research and mitigation strategies.

Table 1. Description of the variables used in the study.

Variable scale of measurement variable category Possible impact

Month
Discrete independent variable +/-

Rainfall
Categorical (Jan-Dec Independent variable +/-

Elevation
Continuous Independent variable +/-

Slope
Continuous Independent variable +/-

Clay
Continuous Independent variable +/-

Humidity
Continuous Independent variable +/-

RVF outbreak cases
Independent variable +/-

Categorical +/-

Using Pearson correlation coefficients, we measured the strength and direction of linear rela-
tionships between continuous variables, such as rainfall, humidity, and slope, within our datasets.
A correlation coefficient close to +1 meaning a strong positive relationship, while any value near
-1 meaning a strong negative relationship. Values close to 0 means a weak or it means no linear
relationship and been shown on the correlation matrix.

2.3. Machine Learning Methodology

2.3.1. Data Pre - Processing

In this study, our initial dataset contained 181,801 records, which were reduced to 180,289 after
removing outliers. Specifically, 1,512 records were identified as outliers and eliminated. Following
outlier removal, data splitting was conducted with test size of 0.2 (meaning 80% for train data and 20%
for test data) and the random state used was 42 indicating that the randomly train and test sets was
obtained across different 42 executions. The training and testing sets split in an 80:20 ratio makes the
splitting in the ratio 1:3:3:5, resulting in training, testing, and validation sets that adequately represent
the dataset’s variability having 144230 and 36058 split of raw data.

2.4. Models in Machine Learning

In this study we applied various Machine Learning (ML) methods to address classification tasks
within our dataset. These methods included Linear Discriminant Analysis (LDA), Logistic Regression
(LR), Gaussian Naive Bayes (NB), K-Nearest Neighbours (KNN) ), Support Vector Machines (SVM),
Decision Tree Classifier (CART), Random Forest (RF), and XGBoost (Extreme Gradient Boosting).
Each of these ML models offers distinct advantages and is suited for different types of data and
tasks. Logistic Regression is effective for binary classification tasks and provides interpretable results.
Linear Discriminant Analysis works well with multiclass classification and assumes normality in data
distribution. K-Nearest Neighbours is a non-parametric method suitable for small datasets and simple
decision boundaries.

Decision Tree Classifier is intuitive, simple to interpret, and can handle both categorical data and
numerical data. Gaussian Naive Bayes is efficient with large datasets and works well with categorical
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data. Support Vector Machines are powerful for complex classification tasks and can handle high-
dimensional data effectively. Random Forest is an ensemble method that reduces over fitting and
improves accuracy by aggregating predictions from multiple decision trees. XGBoost is known for
its speed and performance, particularly in large datasets, and is widely used in competitions and
real-world applications.

Using a variety of ML models allows us to compare their performance, identify the most suitable
model for our dataset, and improve the robustness and reliability of our classification results. Each
model brings unique strengths and capabilities, and by leveraging multiple models, we can enhance
our understanding of the data and make more accurate predictions or classifications.

2.5. Analytical Flow Chart Approach

The overall flowchart of our study’s Machine Learning (ML) approach for predicting Rift Valley
Fever (RVF) outbreaks in Kenya begins with data collection and preprocessing, followed by data
cleaning and outlier removal using Isolation Forest.

Figure 2. Flowchart for Machine Learning approach

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 October 2024 doi:10.20944/preprints202410.0752.v1

https://doi.org/10.20944/preprints202410.0752.v1


5 of 15

2.6. Evaluation Metrics in Machine Learning

In predicting RVF cases in Kenya, the evaluation of our Machine Learning (ML) models is crucial
for assessing their effectiveness and reliability. We utilized a range of evaluation metrics tailored to the
nature of our classification task and the specific challenges posed by RVF outbreak prediction which is
as shown in Table 2.

Table 2. Binary classification evaluation metrics and its importance

Metric and Curves Implication of usage Formula

False Positive When we predict a level or event that did
not happen FP =

FP
FP + TN

(1)

False Negative when we do not predict a level or event and
it does happen FN =

FN
FN + TP

(2)

True positive When we predict the right level
TP =

TN
TN + FP

(3)

Negative Predictive value Looks on precision for negative class.
NP =

TN
TN + FN

(4)

Sensitivity/Recall How accurately does the classifier classify
actual events? TP =

TP
TP + FN

(5)

Precision How accurately does the classifier predict
events? P =

TP
TP + FP

(6)

Accuracy How good at classifying both positive and
negative cases your model is

ACC =
TP + TN

FN + TP + TN + FP
(7)

Confusion matrix Table that contains true negative, false posi-
tive, false negative, and true positive values TP + FP

TN + FN
(8)

F1 score Geometric average of precision and recall

F1 = (1+ β2)
precision ∗ recall

β2 ∗ precision + recall
(9)

ROC AUC curve and scores It can be used to show the trade-off between
False Predictive Rate (FPR) and True Posi-
tive rate (TPR) in a single visualization

Precision-Recall curve and scores When data is heavily imbalanced, it can be
used to combines precision (PPV) and Recall
(TPR) in a single visualization

3. Results

3.1. Descriptive Statistics of Data Used

Table 3 presents the prevalence of Rift Valley Fever (RVF) cases in Kenya from 1981 up to the year
2010, categorized by province. The table shows the number of RVF cases reported in each province,
along with the corresponding percentage of RVF cases relative to the total cases reported across all
provinces. The provinces are listed with their respective RVF case counts, ranging from 0 cases in
Nyanza and Western provinces to the highest number of cases in Rift Valley province with 116 cases in
Rift Valley province.
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Table 3. Prevalence of Rift Valley Fever cases in Kenya up to the year 2010

Province RVF Cases Percentage (%)

Central 63 14.5
Coast 46 10.6
Eastern 89 20.6
Nairobi 37 8.5
North Eastern 82 18.9
Nyanza 0 0
Rift Valley 116 26.8
Western 0 0

The percentages highlight the distribution of RVF cases across different regions of Kenya, indicat-
ing that Rift Valley province had the highest proportion of RVF cases at 26.8%, followed by Eastern
province at 20.6%, Northeastern province at 18.9%, and Central province at 14.5%. Coast province
had 10.6% of RVF cases, while Nairobi had 8.5%. Notably, Nyanza and Western provinces did not
report any RVF cases during this period. This data provides valuable insights into the geographic
distribution and prevalence of RVF cases within Kenya, aiding in understanding disease patterns and
informing public health strategies and interventions, [20].

The provided context contains a dataset of Rift Valley Fever (RVF) cases per month, with a range
from January to December. The data indicates that RVF cases are not uniformly distributed throughout
the year, with some months experiencing significantly higher numbers of cases (up to 115) compared
to others (as low as 10). This variation suggests a potential seasonal pattern, with RVF cases being
more frequent during certain months including December up to April, possibly due to factors such as
climate, vector activity, or human behaviour. Further , Figure 3 shows that the number of RVF (Rift
Valley Fever) cases has been steadily increasing over time, with a significant jump between 1996 to
2007. The trend continues to rise, with a consistent upward slope from 1996 to 2010. This suggests that
the disease is becoming more prevalent, and it’s essential to take measures to control its spread and
mitigate its impact on public health.

Figure 3. Rift Valley fever cases across months and years

3.1.1. Correlation across Variables

The correlation matrix in Figure 4 provides insights into the relationships between various
variables and their impact on the outbreak of Rift Valley Fever (RVF). Among the variables positively
impacting RVF outbreak cases, rainfall shows a slight positive correlation (0.02903), indicating that
higher rainfall levels may contribute slightly to increased RVF cases. Similarly, the positive correlation
with humidity (0.01407) suggests that higher humidity levels might contribute slightly to increased
RVF cases. Additionally, Year also exhibits a positive correlation (0.02079) with RVF outbreak cases.
Conversely, variables such as elevation (-0.01063) and slope (-0.01503) show negligible correlations with
RVF outbreak cases, suggesting that these factors may not significantly influence the occurrence of RVF
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outbreaks. The positive correlation with clay patterns (0.00301) implies that specific soil characteristics,
possibly related to clay content, may have a minor impact on the occurrence of RVF outbreaks.

Figure 4. Correlation matrix of variables used

3.2. Model Selection and Evaluation

In this section, we delve into the critical process of selecting appropriate Machine Learning
(ML) models for predicting Rift Valley Fever (RVF) outbreaks in Kenya. This section outlines the
rationale behind choosing specific ML algorithms and details the evaluation metrics used to assess the
performance of these models. By thoroughly examining the model selection criteria and evaluation
methods, we aim to ensure the reliability, accuracy, and robustness of our prediction tool, ultimately
contributing to effective public health management strategies for RVF control.

3.3. ML Models Evaluation Metrics and Ensemble Predictions

Among the Machine Learning (ML) models evaluated in Table 4 for predicting Rift Valley Fever
(RVF) outbreaks in Kenya, Logistic Regression (LR), Linear Discriminant Analysis (LDA), Support
Vector Machines (SVM), Random Forest (RF) and XGBoost demonstrate somehow good performance
across various metrics in the context of balanced data. LR and LDA exhibit the highest accuracy scores
of 0.997310 and 0.997227, respectively, showcasing their reliability in overall predictions. LR , SVM
and RF achieve near-perfect specificity scores of 1.000000 followed by LDA and Xgboost, indicating
their proficiency in correctly identifying non-outbreak periods.

However, none of the models perform well in terms of sensitivity, precision, recall, or F1 score
for identifying RVF outbreak cases, as evidenced by low or zero values across these metrics. This
discrepancy guided into further model refinement on feature engineering to improve the models’
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ability to detect actual RVF outbreaks accurately where by the AUC ROC and PR AUC was used for
further comparison and dealing with Imbalanced data.

Table 4. Performance of classification models for Rift Valley fever cases prediction

LR LDA KNN CART NB SVM RF XGBoost

Accuracy 0.997310 0.997227 0.997310 0.994897 0.989961 0.997310 0.995785 0.997199
Sensitivity 0.000000 0.000000 0.000000 0.020619 0.010309 0.000000 0.020619 0.000000
Specificity 1.000000 0.999917 1.000000 0.997525 0.992603 1.000000 0.998415 0.999889
Precision 0.000000 0.000000 0.000000 0.021978 0.003745 0.000000 0.033898 0.000000
Recall 0.000000 0.000000 0.000000 0.020619 0.010309 0.000000 0.020619 0.000000
F1 score 0.000000 0.000000 0.000000 0.021277 0.005495 0.000000 0.025641 0.000000

3.4. Comparison between Machine Learning Models Based on Accuracy

Relying on accuracy of the models, Figure 5 gives some insight on the model performances by
showing that Logistic Regression (LR), Linear Discriminant Analysis (LDA), Support Vector Machines
(SVM), Random Forest (RF) and XGBoost has good model accuracy.

Figure 5. comparison between machine learning models based on accuracy.

Figure 6 shows the confusion matrix of the ensemble predictions which reflect the performance
ML models when predicting RVF cases.
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Figure 6. Confusion matrix for ML models used

3.5. Advanced Machine Learning Models Evaluation Metrics

Previously we explored the performance of various Machine Learning (ML) models using stan-
dard evaluation metrics such as accuracy, sensitivity, specificity, precision, recall, and F1 score. How-
ever here we delve into more nuanced evaluation metrics specifically focused on predictive perfor-
mance, namely Precision-Recall Area Under the Curve (PR AUC) and Receiver Operating Characteristic
Area Under the Curve (ROC AUC). According to [18], these metrics provide deeper insights into
how well ML models distinguish between positive and negative cases, emphasizing the importance
of model discrimination and reliability in complex prediction tasks such as Rift Valley Fever (RVF)
outbreak detection and justify the model even regardless of the imbalanced effect arising in it.
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Figure 7. Average Receiver Operating Characteristic (ROC) curve for machine learning model using
balanced tests
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Figure 8. Average Precision Recall curve for Machine Learning models using unbalanced tests

The comparison in Table 5 highlights the performance of various Machine Learning (ML) models
based on two key metrics that is PR AUC and ROC AUC. Based on results in Table 5, the XGB Classifier
emerges as the top-performing model, achieving the highest PR AUC of 0.9110 and a strong ROC
AUC of 0.0223. This indicates that the XGB Classifier is particularly effective in distinguishing RVF
outbreak cases from non-outbreak periods, with high precision and recall rates[14].Following closely
behind, the Gaussian NB model demonstrates a respectable PR AUC of 0.7192 and a ROC AUC of
0.0214, suggesting decent performance in classifying RVF cases.

Table 5. Ranking machine learning models based on feature importance and balanced nature of tests

PR AUC ROC AUC

Decision Tree Classifier 0.0223 XGB Classifier 0.9110
XGB Classifier 0.0214 Gaussian NB 0.7192
KNeighbors Classifier 0.0096 Linear Discriminant Analy-

sis
0.6941

Random Forest Classifier 0.0089 Logistic Regression 0.6756
Gaussian NB 0.0062 Random Forest Classifier 0.5736
Linear Discriminant Analy-
sis

0.0059 KNeighbors Classifier 0.5303

Logistic Regression 0.0052 Decision Tree Classifier 0.5090
SVM 0.0049 SVM 0.4487

Similarly, the Linear Discriminant Analysis (LDA) and Logistic Regression models show mod-
erate PR AUC and ROC AUC scores, indicating acceptable discriminatory power but with room for
improvement. On the other hand, the Random Forest Classifier, often considered a robust ML model,
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ranks lower in this comparison with a PR AUC of 0.5736 and a ROC AUC of 0.0089, underscoring the
importance of considering multiple metrics for model evaluation.

3.6. Xgboost Tree Classification Adopted in RVF Prediction

The tree based XGBoost classification tree plot in Figure 9 , utilized in this study exhibited
remarkable performance and were categorized based on their classification metric outcomes and
statistical evaluations. This finding holds significance due to the inherent interpretability of tree-
based models, a quality that can profoundly impact the decision-making process within healthcare
settings, [20]. The interpretability of such models empowers healthcare professionals to comprehend
and interpret the outputs of classification models effectively, thus enhancing their acceptance and
utilization in clinical practice. This aligns with existing literature emphasizing the importance of
interpretable machine learning systems in facilitating informed decision-making and fostering trust
among healthcare practitioners.

Figure 9. Xgboost tree classification adopted in RVF prediction

4. Discussion

The discussion delves into the nuanced aspects and implications of predicting Rift Valley Fever
(RVF) outbreaks in Kenya using Machine Learning (ML) models, [18]. These models serve as powerful
tools in disease surveillance and management, offering insights that can significantly impact public
health strategies. The study evaluated several ML models, with the XGB Classifier emerging as the
most accurate in predicting RVF outbreaks based on PR AUC and ROC AUC metrics. This aligns
with previous studies highlighting the effectiveness of ensemble methods like XGBoost in disease
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prediction tasks, [15]. The strong performance of the XGB Classifier underscores its potential as a
valuable tool for early detection and intervention in RVF outbreaks.

Further, while the XGB Classifier demonstrated high accuracy, other models also contributed
valuable insights. For instance, Random Forest and Logistic Regression models, though ranking lower,
provided additional perspectives on RVF outbreak dynamics. This underscores the importance of
considering a range of ML models to gain a comprehensive understanding of disease patterns, [18].
The positive correlations observed between rainfall, humidity, clay patterns, and RVF outbreak cases
highlight the complex interplay between environmental factors and disease transmission, [19]. These
findings are consistent with existing literature indicating that climatic conditions play a crucial role
in vector abundance and disease spread. Future research could dig deeper into understanding the
mechanisms linking environmental variables and RVF outbreaks, potentially enhancing early warning
systems and preventive measures, [18]. By understanding these correlations, public health authorities
can tailor surveillance and control measures to specific environmental conditions, enhancing the
effectiveness of interventions. The study’s results have significant implications for public health man-
agement strategies in RVF-endemic regions like Kenya. The accurate prediction of RVF outbreaks using
ML models like the XGB Classifier can facilitate timely interventions, resource allocation, and targeted
surveillance efforts. These insights underscore the importance of integrating advanced technologies
into public health decision-making processes. The accurate identification of RVF outbreak cases using
ML models can facilitate timely interventions, resource allocation, and targeted surveillance efforts
[18]. This can significantly impact disease control and prevention, particularly in RVF-endemic regions
like Kenya. Additionally, the discussion highlights the potential scalability of ML-based approaches
to decision support systems, paving the way for innovative solutions in disease management. In
light of the study’s findings, several future research directions can be explored. Firstly, enhancing the
predictive capabilities of ML models by incorporating additional data sources, such as satellite imagery
or genetic sequencing data, could improve the accuracy of RVF outbreak predictions, [19]. Secondly,
conducting longitudinal studies to track environmental changes and their impact on RVF transmission
dynamics over time could provide valuable insights for predictive modeling. Furthermore, exploring
the use of advanced ML techniques, such as deep learning algorithms, may uncover hidden patterns
and enhance the understanding of RVF epidemiology. Lastly, interdisciplinary collaborations between
epidemiologists, veterinarians, climatologists, and data scientists could foster innovative approaches
to disease surveillance and management, [20] ultimately benefiting public health on a broader scale.

5. Conclusion

In conclusion, the study’s findings shed light on the effectiveness of ML models, particularly the
XGB Classifier, in predicting RVF outbreaks. The positive correlations between environmental variables
and RVF cases emphasize the need for holistic approaches to disease surveillance and control. By
leveraging advanced analytics and interdisciplinary collaborations, future research can further enhance
our understanding of RVF dynamics and contribute to more effective public health interventions. These
insights are crucial for mitigating the impact of RVF and other zoonotic diseases on human and animal
populations, ultimately promoting global health security and resilience. The findings underscore the
effectiveness of ensemble methods like the XGB Classifier in accurately identifying RVF outbreak
cases, highlighting their role in early detection and intervention. Moreover, the positive correlations
observed between environmental variables such as rainfall, humidity, and clay patterns with RVF cases
emphasize the complex interplay of climatic factors in disease transmission dynamics. These insights
are invaluable for public health authorities in devising targeted surveillance and control measures,
particularly in RVF-endemic regions. In light of these findings, future research directions could focus on
enhancing the predictive capabilities of ML models by integrating additional data sources, conducting
longitudinal studies to track environmental changes, and exploring interdisciplinary collaborations for
innovative disease surveillance and management approaches. The development of a clinical decision
support system based on the study’s approach, along with usability tests and scalability considerations,
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presents exciting opportunities for translating research outcomes into practical solutions for RVF
control and public health management on a broader scale.
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