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Abstract: This work presents the Transfer-Matrix Method as a mathematical approach for the calculus
of different structures that can be discretized into elements, using an iterative calculation for future
applications in vehicle industry. Plate calculus is important in construction, in medicine, in
orthodontics and in many other fields too. This work is original and new. The plate is discretized
along its length in unitary beams, which have the width of the rectangular plate. The unitary beam
can also be discretized into parts. As applications, they are studied long rectangular plates, embedded
on the two long borders and charged with a vertical uniform load that acts on a line parallel to the
long borders. It is associated with each side a state vector. For each of the four cases studied, a matrix
relationship was written for some side, based on a transfer matrix, the state vector
corresponding to origin side and the vector due to the action of external forces acting to the
considered side. After, it is possible to calculate all the state vectors for all sides of the unity beam.
Now, the efforts, deformations and stress can be calculated in any section of the beam, respectively
for the long rectangular plate. This calculus will serve as calculus of resistance for different pieces of
components of vehicles

Keywords: long rectangle plate; unit beam; Transfer-Matrix; state vector; charge density; Dirac’s
function and operators; Heaviside’s function and operators; vehicle industry

MSC: 74-10

1. Introduction

This study was done due to the need to calculate the resistance of plates for the vehicle industry.
Vehicles are complex assemblies that have several components like plates. Not only is it important in
the automobile industry, plate calculus is important, but also in construction, in medicine, in
orthodontics and in many other fields. This work is original and new. The Transfer-Matrix Method
(TMM) is a mathematical approach for the calculus of different structures that can be discretized into

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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elements, using an iterative calculation as in [1]. Classical calculus of Material Resistance is presented
in [2] and [3]. [4] gives the calculus of long cylinder tube for industrial applications by TMM. An
approach with TMM for mandible body bone calculus shows in [5]. [6] presents the calculus through
the TMM of a beam with intermediate support with applications in dental restorations. Another
approach by the Finite Elements Method (FEM) applied for calculus of rectangular plates is presented
in [7] and [8]. Study of bending for a rectangular plate with each edges arbitrary point supported
under a concentrated load is given in [9]. [10] presents an analysis of folded plate structures by a
combined Boundary Element-TMM and [11] gives a FEM-TMM for dynamic analysis of frame
structures. Elastic analysis and application tables of rectangular plates with unilateral contact support
conditions is given in [12]. [13] presents theoretical aspects for time-harmonic analysis of acoustic
pulsation in gas pipeline systems using the FEM and TMM. [14] gives an integrated TMM for
multiply connected mufflers and [15] presents the determination of the stress-strain state in thin
orthotropic plates on Winkler’s elastic foundations. Evaluation of a hybrid underwater sound-
absorbing meta-structure by using the TMM is given in [16]. Some theoretical and experimental
extensions based on the properties of the Intrinsic Transfer Matrix are presented in [17]. The TMM is
applied to the parallel assembly of sound absorbing materials in [18]. [19] and [20] gives the TMM
for multibody in the past, the present, and the future and its applications. [21] presents the muffler
modeling by TMM and experimental verification. [22] gives a development of two-dimensional
theory of thick plates bending based on general solution of Lamé equations. A study of coupling
TMM to FEM for analyzing the acoustics of complex hollow body networks is presented in [23].
Equivalent systems for the analysis of rectangular plates of varying thickness is shown in [24]. About
the classical theory of plates is presented in [25]. Study about the bending of clamped rectangular
plates is given in [26]. Determination of plane stress and strain of plates on basis of three-dimensional
theory of elasticity is shown in [27]. Analysis of hypotheses used when constructing the theory of
beams and plates is presented in [28]. About the calculus of plates by the series representation of the
deflection function is given in [29]. [30] presents a solution of non-rectangular plates with macro
element method. The stress state of compound polygonal plate is shown in [31]. [32] gives a solution
of thin rectangular plates with various boundary conditions and [33] gives an exact solution for the
deflection of a clamped rectangular plate under uniform load. Stress-strain state in the corner points
of a clamped plate under uniformly distributed normal load is given in [34] and a static analysis of
an orthotropic plate is presented in [35]. The theory of plates and shells is given in [36]. Study about
stress—strain analysis of rectangular plates with a variable thickness and constant weight is presented
in [37] and an analysis of homogeneous and non-homogeneous plates is shown in [38]. A theoretical
and comparative study regarding the mechanical response under the static loading for different
rectangular plates is given in [39]. Approximate analytical solutions in the analysis of thin elastic
plates are given in [40]. Some aspects of implementation of boundary elements method in plate theory
are presented in [41]. A convergence analysis of finite element approach to classical approach for
analysis of plates in bending is given in [42]. Another study by a method of matched sections as a
beam-like approach for plate analysis is presented in [43]. Application of numerical methods in
solving a phenomenon of the theory for thin plates is shown in [44]. A review of a few selected
theories of plates in bending is given in [45]. [46] presents the calculus of plate-beam systems by
method of boundary elements. Analytical solutions of the mechanical answer of thin orthotropic
plates are shown in [47]. Optimized Transfer Matrix approach for global buckling analysis with
bypassing zero matrix inversion is given in [48]. [49] is the American Standard Test Method for
Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the TMM
from American Society for Testing and Materials.

2. Calculus Premises through The Transfer-Matrix Method for The Long
Rectangular Plates

A rectangular plate with long lengths can be calculated through the TMM. The plate is
discretized, of its lengths, into pieces, as in Figure 1., (a) and (b).

d0i:10.20944/preprints202502.1768.v1
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Figure 1. Long rectangular plate and its discretization: (a) A long rectangle plate discretized into
beams (pieces) with width equal at unity; (b) A unit beam (unit piece) discretized into n parts with
n+1 sides.

A piece (a beam) has the width equal to unity.
2.1. The State Vectors and The Transfer-Matrix for A Long Rectangular Plate

2.1.1. State Vectors

For the unitary beam, with the width equal to unity, as in Figure 2., (a), it can be
associated a Transfer-Matrix. It is deformed, as in Figure 2., (b).
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Figure 2. A unitary beam (unitary piece): (a) Unitary beam and the xOy reference system; (b) The
average deformed fiber of the unitary beam.

Along its length, which is the width of the rectangular plate, the unitary beam can also be
discretized into n parts (Figure 1., (b), Figure 2., (a)). The sectioning of the beam is done
perpendicularly to the Ox axis. For each part has it can be defined as the left side and a right side. For
the first left part, it is defined as the left side noted 0 and the right side is noted 1 and for the last right
side of the last part n (on the right of the beam), is noted by n. So, the beam has 1 parts and n+1 sides.

It is associated for each side a state vector, for some side x, it is associated a state vector {V(x)} =
{V}x with four elements (a(x), r(x), M(x), C(x)). The state vector and its elements have always the index
of the side it is on, (Figure 2., (b)), as in (1):

V)3 =V} = {a(), r(), M(x), CO} " = {ay 1, My, G}, M

when:
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- {V(x)} = {V}«is state vector corresponding at the side x;

- a(x )= axis the arrow;

- r(x) =rxis the rotation of the average fiber in the x section;
- M(x) = M«is the bending moment;

- C(x) = Cxis the cutting force at the x-axis point.

For x =0, it can be written for the side 0 as (2):
{V(0)} = (v} = {a(0),7(0), M(0), C(0)} " = {ag, 1o, My, Co} ™, 2)

For the last side n, for which x = [, (for the last part n, the right part, that is the right end of the
beam, the state vector can be written as (3):

O} =} ={a®,rOMO,cO}" = {a,n, M, C}, )

2.1.2. Transfer-Matrix

For some part x of the beam, a Transfer-Matrix [M]x is associated. The Transfer-Matrix connects
two consecutive sides of a part of beam after the following matrix relation for the part 1, as (4):

v} = M]:{V}o + {Vo}y, 4)
when:

- {Ve}1is the state vector corresponding to the external forces acting on part 1.
The matrix relation (3) can be written as (5) for some part x:

Ve = (M1, {V} + {V.} ©®)
For the last side, the side #, for x =, the matrix relation (5) can be written as (6):
Vi = IMI{V} + {V.}0, (6)

In (6), the conditions of the ends can be put, and the elements of the state vector at the origin can
be calculated and, also, the elements for the state vector associated at the last side can be calculated
too. Now, matrix relation (5) can be used in which different values can be given for x and the state
vectors can be calculated for all sections of the unit beam.

2.2. Approach for Analytical Calculus of A Long Rectangular Plate

The rectangle plate is considered embedded at both ends, charged to bending along a line
parallel to the long borders with an uniform constant vertical load g, with a charge density g(x)
acting along of a generator, as in Figure 1., (a).

2.2.1. Study Hypotheses

For this work, there are considered some hypotheses:

- the plate is subjected to an axial force along the long sides, per unit side being P (as in Figure
2., (b);
- the charge density g(x) is expressed per unit of length;

- the bending moment due to a single external load is denoted by m(x).

2.2.2. The Arrow Calculus for The Unit Beam
The expression of the total moment M(x) is as (7):
M(x) = m(x) + Pa(x), 7)

when a(x) is the arrow corresponding to the section x. For the bending moment m(x) it can be
written (8):
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d?m
-z = 40, 8)
The average deformed fiber has the differential equation as (9):
d*m 12(1-v%) d?a(x) 12(1 = v3)
- . = 9
o T ER ae Lo g 1@ )
with R as the bending stiffness of a plate with the thickness #, as (10):
ER’
- 10
R=na—vy 10
when:
. E is the Young’s modulus;
e his the thickness of the plate;
e  vis the Poisson’s coefficient.
It is replaced (10) in expression (9) and it can be written (9) as (11):
d*m 1d%a(x) 1
- = 11
dx* R dx? P R 9(x), an
It is noted by (12):
21 P (12)
B =%P
The differential equation (11) with (12) becomes as (13):
d*m d?a(x) 1
— B2 =_ 13
dx* dx? R 9(x), 13)
The differential equation (13) without the second term has the solution as (14):
a;(x) = A; ch Bx + A, sh Bx + Azx + Ay, (14)
(15) is the particular solution:
1 X
@) = g [ sh B = 0) = Bx = D0t (15)
0
The conditions (16) can be verified:
a’(0) = a"'(0) = a" (0) = a" " (0), (16)
when, (17):
(o) = 98"
a"'(0) =% (0)
“0) = 94
a’(0) = (), a7)
ey dar
a"(0) =% (0)
For x = 0, in the origin, it can be written the conditions as (18):
a(0) = q
r(0) =1,
M(0) = M,’ (18)
c0)=C¢y

With the integration constants A;, i =1,.4 , it can be written (19):
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ap = A] + A4
19 = BA; + 43 19
M, = B*AA;’ (19)
Co = =B Ay

The four integration constants Aj;, i = 1,4, depending on the efforts and deformations from the
origin, are as (20):

1

A] =BZ—RM0
A ! C
2 TR
< e (20)
A3 +ﬁ
1
xA4 = ao—ﬁMo

The deformation has the mathematical expression as (21):

chfBx—1 Bx — sh fx

a(x) =ag+ryx + [)’ZR 0+ R Co
] 1)
WRﬁMﬁw—@ B - Dlg(0)d,
2.3. Transfer-Matrix for A Long Rectangular Plate
With mathematical formalism given by Dirac’s and Heaviside’s Functions and operators,
[1], the matrix relation (5), for a long rectangular plate, can be written as (22):
1 X
~ 5P [ 1shBG =0 = B = Olaae
] chfx—1 fx—shpx) 0
x
B?R B3R
agxg . sh Bx ch Bx — 1 crlo —ﬁPf[chﬁ(x—t)—l]q(t)dt
;4(’;) - BR BR ,\,})0 +4 U L (22)
h
c@) oo ap TG ~ 5P [ shptx =) q@e
0 0 —Bshpx chBx | X
pf ch Blx — ) q(6)dt
0 J
Simplified, the matrix relation (22) can be written as (23):
V)} = [M]{V3o + (Ve)s, (23)
matrix relation identical to (5), when the Transfer-Matrix [M]x is as (24), [1]
ch Bx-1 Lx—sh Bx
1 x SR R
0 1 sh Bx _¢ch Bx-1
[M], = BR B’R |, (24)
lO 0 ch Bx - %
0 0 —fshpx ch Bx

3. Applications and Results for The Calculus of a Long Rectangular Plate Embedded at The Two
Long Borders Charged with Vertical Uniform Loads That Act on A Line Parallel Along of The
Long Borders
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As applications, they are studied long rectangular plates, embedded on the two long borders.
The plate is discretized in beams with width equal to unity, as in Figure 1., (a)) with the length equal
to the width [ of the plate and with the thickness /, equal to the thickness of the long rectangular
plate. To simplify the writing, the same notations will be kept in all cases, even if it is obvious that
the elements of the state vectors, of the transfer matrices and of the vectors corresponding to the
external forces are different.

In the matrix relation (23), the conditions of the ends can be put, and the elements of the state
vector at the origin can be calculated and, also, the elements for the state vector associated at the last
side can be calculated too. (23) serves to calculate the elements for the state vectors for all sections of
the unity beam and after, the efforts and deformations in the origin section, and then, the efforts,
deformations and stresses can be calculated in any section of the beam, respectively for the long
rectangular plate.

In the following, four cases of loading with a concentrated vertical force will be studied for the
plate embedded on the two long borders.

3.1. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load (Figure 3., (a), (b),
(c) and (d))

A unit beam embedded at the two edges, charged with a concentrated load P in different
situations is considered, as in Figure 3., (a), (b), (c) and (d).

IonIP {2 |P

4% R e EE—
/N
(a) (b)

X0 t/

N | ‘ |
I Tl

(c) (d)

Figure 3. Unitary beam embedded at both ends with a concentrated vertical load P: (a) Concentrated

N\

A

vertical load (-P) which acts in a certain section xo; (b) Concentrated vertical load (-P) which acts in a
the section xo =1/2; (c) Concentrated vertical load P which acts in a certain section xo; (d) Concentrated
vertical load P which acts in a the section xo = [/2.

3.1.1. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load (-P)
Which Acts in a Certain Section xo (as in Figure 3., (a))
It can be written the charge density, as (25):
q'(x) = =P(x — xp), (25)

The state vector {V, }x corresponding at exterior load is, With Dirac’s and Heaviside’s functions
and operators, as (26):

d0i:10.20944/preprints202502.1768.v1


https://doi.org/10.20944/preprints202502.1768.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 February 2025 d0i:10.20944/preprints202502.1768.v1

8 of 17
— a3 PY G = x)[sh B = x) = Bx = x0)]
1
{Ve,}x _ —ﬁZ—RPY(x —xp)[ch B(x — xp) — 1] ’ 26)
—%PY(x — Xxp) sh B(x — xp)
PY (x — xg) ch B(x — xp) )
In this case, the matrix relation is as (27):
i chfx—1 fx—shpfx] 1
- I x B2R R 0 W_pr(x—xo)[b“hﬁ(x—xo)—ﬁ(x—xo)]
a’(x
h hBx —1 . 1
r’(x) 0 1 sh px _ px 1 =55 PY (x — xp)[ch B (x — x¢) — 1] ,
, = BR B?R S B*R >
M) sh Bx My 1
C'(x) 0 0 chpx ~ 3 C(;} EPY(x —x,) sh B(x — x,)
[0 0 —Bshpx chBx | \ —PY(x — x,) ch B(x — xp) J
(27)
Or, it can be written (27) as (28):
ch Bx-1 px—sh fx L _ _ _
a,(x) 1 x ﬁzR BSR a(’) B3R P[Sh ﬁ(x xO) .B(x xO)]
, sh Bx ch fx—1 ' 1 _ _
I\r,['(();)) _[0 1 T ~x ICIO' 7R Plch B(x —xp) — 1] L 09)
_shpx 0 1 -
0 0 —PBshpx ch fx —P ch B(x — xp)
Expression (28) becomes (29) for the right end, for x = I:
chBl-1  PBl-sh Bl 1 N _
a'(l) 1 BZR ,83R a(’) B3RP[Shﬁ(l xO) .B(l xO)]
sh Bl ch Bl-1 : 1
ro(_foo1 g ST In ) mrlest-w -1 L
MO snpl || M, 1 '
’ —_— _P -
e lO 0 chpl ; J p 5P shBUL=xp)
0 0 —Bshpl ch Bl —P ch (1l —xp)
For the two embedded ends of the beam, the conditions are (30):
a,=0
a)=0
r'()=0
The matrix relation (29), with (30), becomes (31):
hBl-1  Bl-sh Bl 1
. T 5 | oy [FRPIshBU—x0) = BU—xp)]
sh fl ch Bl-1 1
- —P[ch Bl —xy) — 1
M?(l) 1 B7R = prllen pl=x) =11 | (31)
_shBl , I _
C'(l) 0 0 ch Bl B CO ﬁP sh B(l xo)
0 0 —BshBl chpl \ “Pch B - xy)
It can be written (31) more simply as (32):
0 my mp mis my) (0 v‘fll
0 (_|Ma My My My Ol _plVe (32)
Ag,((ll)) mz; Mz Mzz Mgy M? ) Vel,
My; Myy Myz My Co Ve;z4

or, (33):
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0 [T 1 my myl o Vel
0 0 1 mé3 mé4 0 Ve,

’ = , , "»—P , , (33)
M'(D) 0 0 my my||M Vel

c'{ ' : :
O 0 0 my; my Co Vel

From the matrix relation (33), it can be written the first two lines and a linear system of two

equations with two unknowns is obtained as (34), the unknowns being the two elements of the state

vector of side 0, Myand C,:

{mﬁM(; +myCy = Uéllp (34)
my3My +my,Cyp = v, P’
with solution (35):
M. = Véllmé4-vélzmi4p —bP
0 My3Mpy—MyyMy3 ! (35)
’ v, My3+v, m ’ !
Cp=—A2"<2 2p=pp

MyyMy3=My3Myy

The other two elements of the state vector for the last side on the right end, the side n, for x =1,
with (35), will be like as (36):

{M’(l) = m/éSMé + mé4cé - vé,laP ‘ 36)
C'() = myMy + my,Cy — Ve, P
with solution, as (37):

M'(D) = (m3'3b1' +myb, — U;l3)P

{C'(z) = (mysby + myb, — vg, )P’ 7

In this moment, all elements of any state vector of any side can be calculated for all parts in
which the unit beam has been discretized.

3.1.2. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load (-P)
which Acts in A Section xo=1/2, (as in Figure 3., (b))

The charge density for a vertical concentrated load (-P) at the middle, for xo=1/2, (Figure 3., (b)),
is as (38):

q"'() =-P(x-3), (38)
The state vector {V, }x corresponding at exterior load is as (39):
f¥ (=3 [sn 8 (x=3) =8 (x3)]
Y (x=3) [en (x—3) 1]

v}, = iy (e—t) sk (e—) : (39)
Pr(e-4) enp(e-)

In this case, the matrix relation is as (40):

R S
a’’'(x) i;; hﬁﬁR 1 ap 1 l l
r"((x)) _|0 1 SﬁRx _< [)’fR T, _pJ /)’Z—Ry<x_§>[Chﬂ(x_§)_1] ,
M (x M 1 l l
C"(x) 0 0 chpx _shﬁ/}x Cc? EY("_E) Shﬁ("_i)

0 0 —BshpBx chpBx | _y (x _ é) ch B (x _ é) )
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The matrix relation (40) can be written as (41), with Dirac’s and Heaviside’s functions and

operators:
1 ! l
N e
a’'(x) i; i; ; 4 b y
., sh Bx ch Bx— " —2) =
17\:["((36)) _|0 1 BR T UBR o\ _p PR [C d (x 2)1 ] , (41)
X sh Bx M z _-
C"(x) 0 0 chpPx - C(')'} s shﬁ (x 2)
0 0 —BshPx chpxl "’ —chﬁ(x—é) )
Expression (41) becomes (42) for the right end, for x = I
chBl-1  Pl-shpl ) sh B -p(1-4
0 1 3R R a B3R ( ) ( 2)]
. h Bl h Bl-1 - _H_
O ¥ U Rl ) R ﬁzR[Chﬁ( ORI
M) g |\ My Tl t '
¢ (D 0 0 ch fl — = C”} B ‘8( 2)
0 0 —pshpl chpll " _Ch[;(l_é) )
or, (43):
chBl-1  Bl-sh Bl ) 3 iopl
a0y | PR R |(a ﬁs‘*( )
" sh Bl _chpi-l ’ hﬁ——l
y _shBl 0 Lshpt
¢ lO 0 ch Bl 3 J CO,, B 12
0 0 —Bshpl ch Bl —ch B3
For the two embedded ends of the beam, the conditions are (44):
( a, =0
{m=0 (44)
a’()=0
lr"(l) =0
The matrix relation (43) becomes (45) with (44):
ch Bl-1 Bl—sh Bl shB-—8-
0 #R FR |0 7 (83— F3)
sh Bl _chb’l—l 0 hﬁ__]
Moo (= 01 T 5R l —P BZR( ) , (45)
vay) o0 enpr B 5sh B3
¢’ B C, :
0 0 —Bshpl ch Bl —ch B3
It can be written more simply (45) as (46):
0 mp My mg om0 Vel,
0 _ my my my; My 0 velz
MO |my, my, my ms M, -F 1% ’ (46)
., 31 Mgy Mgz Mgy ° els
'0) |t me me mel G
My My Myz My Vez4
or, (47):
0 11 my myl o0 Ve
0 0 1 my; my|] 0 Vo
(= DOyt —Py (47)
e 0 0 mz; my |0 Ve,

From the matrix relation (47), a linear system of two equations with two unknowns is obtained
as (48), the unknowns being the two elements of the state vector of side 0, Myand C;
{m13Mo +myCy = Ve11P

p’ (48)

my;M, + m24Co =,

with solution (49):

ely
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M, = aTH M pp
My3Myy=MyyMy3 (49)
o Ve, M3tV My3 .
CO = up = bl P

MyyMy3=My3Myy

The other two elements of the state vector for the last side on the right end, the side n, for x =1,
with (49), will be like as (50):

{M”(l) = mééMé' + mé;gcf;” - vé}sp , (50)
C"(D) =myMy +myCy — v, P
with solution, as (51):

M (1) = (m33b; +myb, — vy, )P

e (misby +misb; = v )P e

In this moment, all elements of any state vector of any side can be calculated for all parts in which

the unit beam has been discretized.

3.1.3. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load P
Which Acts in a Certain Section xo (as in Figure 3., (c))

In this case, the charge density can be written as (52):
q"""(x) =P(x = xo), (52)
The state vector {V, '} corresponding at exterior load is as (53):

S PY (= x)lsh B(x — x5) = Bx — x0)]

Wy, - 3§—pr(x — xp)[ch Blx — xp) — 1] , )
éPY(x —xp) sh B(x — xp)
—PY(x — xp) ch B(x — xp)

In this case, the matrix relation is as (54):

I chfx—1 fx—shpfx) 1
1 x 7 3 3 PY (x = x0) [sh B(x — xp) — B(x — xp)]
a’"’(x) R R o PR
h hpx—1 B 1
e N U [ ek | Y ——PY(x — xp)[ch B(x — xg) — 1] ,
= BR B’R oo p B’R >
M) shpx ||Mo 1
C""(x) 0 0 ch fx ~ 3 ¢ EPY(x —xp) sh B(x — xp)
0 0 —Bshpfx chBx | —PY(x — xp) ch B(x — xg)
(54)
Or, (54) can be written as (55):
o Bl RN (- A CYICEED RG]
z'”(i) 0 1 Shpx  _chBrolp) L [ch B(x — xp) — 1]
MG (= BR B7R MO +P BR , (55)
_shBx 0 I —
C(x) 0 chpBx 5 c 5 sh B(x — xp)
0 0 —pshpx ch Bx —ch B(x — xp)
Expression (55) becomes as (56) for the right end, for x =1I:
ch Bl-1 Bl-sh Bl 1 _ _ _
a///(l) ﬁhZ;)fl l:’;l ; aé’ ,33R [Slhﬁ(l xO) ﬁ(l x())]
rrr S, _ C - ’y L _ _
Irw,,,((ll)) 1 T AR Ir\; rpl mrlhPU=x) =1L o0
_shBt 0 1 _
¢ () 0 0 chpl 5 ShBU—x))

B
0 0 —BshpBl chpll " — ch B - xp) )
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The conditions for the two embedded ends of the beam are (57):
a, =0
TO = 0 , (57)
a”’(H)=0
r’'()=0
With (57), the matrix relation (56) becomes as (58):
chBl-1  Bl-sh Bl 1
0 [1 N } 0 s [sh U= x0) = B(L = x,)]
sh fl ch Bl-1 1
—_— - ——[ch B —xy) —1
M,f),(l) _|0 1 BR B’R M, (+P BR EC Bl =x) =1l , (58)
sh Bl
C'”(l) [0 0 ch Bl - 3 ‘ CO | Eshﬂ(l—xo) |
0 0 —BshBl chpl \ —ch B = xy) J
or, more simply is as (59):
0 My My, Mgz My o0 Vel;
MR@ S R A J%1+PU?, (59)
) Mz M3 Mzz My (,’,/} Vels
lm41 My, Myz My Co Vez4
or, (60):
0y [1 L e om0y (Vo)
O o0 L ms maf) DL g venl (60)
M) 0 0 mg mgl|0 Vel
C///(l) o o CO o

0 0 m43 m44 Uel4

A linear system of two equations with two unknowns is obtained as (61), the unknowns being
the two elements of the state vector of side 0, M, and C, :

mysMy +myC, = —v, P
ool T T @)
m23M0 +m24C0 = 'Uelzp
with solution (62):
v Vely Mg —Vel; Mg
My =—F———P=Db P
ST , (62)
Vep, M3~ Vep M.
€, ==R2—2—1Zp=pP

MyyMy3=My3Myy

With (62), the other two elements of the state vector for the last side on the right end, the side n,
for x = I, will be like as (63):

{M O =myMy +myCy + v, P @)
C'O=myMy +myuCy +vy,P’
with solution, as (64):
M) = (mib] +mib; + v, )P
o o (64)
C (l) = (m43b1 + m44b2 + Uel4) P

In this moment, all elements of any state vector of any side can be calculated for all parts in
which the unit beam has been discretized.

3.1.4. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load P Which
Acts in the Section xo =1/2, (Figure 3., (d))

For the vertical concentrated load at the middle, for xo=1/2, (Figure 3., (d)), the charge density is
as (65):
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7 =p(x-Y),

: (65)

With Dirac’s and Heaviside’s functions and operators, the state vector {V, "'}« corresponding at

exterior load is as (66):
FirP¥ (x=3)[sh 8 (x=5) = 8 (x=3)
BZRPY(x——) [chﬁ(x—-) —1]
EPY(x——) sh,b’(x—é)
—PY(x——) chﬁ(x——)

e}, =

, (66)

The matrix relation, in this case is as (67):

1 l l l
L W~
1 §2R B = B gty (x—g)[shBlx—3) - Blx—3
e . P (=) [ (+=3) 1]
h chfx—1 ", S - ——)=
() o 1 ShBx  _chB . zrPY (X3 chB{x—5) -1
= BR B’R P
M (x) sh Bx Mo lPY (x - £) shpB (x - £>
C""(x) 0 0 chpx = c;) B 2 2
l l
0 0 —pshpx  chpx —PY (x - -) chB (x - 5)
(67)
With Dirac’s and Heaviside’s functions and operators the matrix relation (67) can be written as
(68):
ch px—1 Bx—sh Bx 1 — —P [Sh ‘3 (X — _) — B (x — L)]
rres 2 3 B R 2
o e
rrey xX— Ty — =) —
o T )l O A1 G ot ! I
M) g |\ M L (x- :
C////(x) 0 0 Ch ﬁx - B C,,,/ ﬁ ( )
0 0 —BshpBx chpx] —Pchﬁ(x——)
For the right end, for x = I, expression (68) becomes (69):
chBl-1  Bl-shply —P [sh B ( — _) -B ( )]
a"" (1) pr pr | (a z l
SOV oo A Al el |
MO L '
c""((z)) lO 0 chpr -2 IZO sPshp(1-3)
0 0 —Bshpl chpll "’ —Pchp(1-3)
or, (70):
ch Bl-1 Bl—sh Bl hpB-—
a////(l) ﬁZR B3R ao ﬁSR ( ﬁ ﬁ )
T””(l) _ O 1 Szfl _Chﬁlz‘f;—l TO"// ﬁzR ( hﬁ__ 1) (70)
M) g |\ M) tpangl [
OV L N Py g
0 0 —Bshpl ch Bl —Pch B3
The conditions for the two embedded ends of the beam are (71):
a, =0
=0 (71)
a”’)=0
r’'()=0

With (71), the matrix relation (70) becomes as (72):
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chBl-1  Bl-sh Bl 1 N all
0 1 BZR BSR 0 ,BSR [Sh .B(l xO) .B(l xO)]
0 1 sh Bl _chpl-1 0 1 h [ — _1
M,,Q,(l) = BR RSy e+ P g LR B = x0) = 1] , (72)
_shBl 1 -
) 0 0 chpl 5 , 5 ShBU—x)
0 0 —Bshpl chpl —ch B(l —xp)
or, it can be written more simply as (73):
0 My mp omg’ om0 Vel;
rrrr rrrr rrrr rrrr 0 v”"
M”(’)’(l) =M M2 Tz M2 {M”nl+P bt (73)
D Mg Mz Mgz Mgy | ‘?,,,J Ve,
my; Myy Myz My Co vel4
or, (74):
0y [1 b mn om0y (t)
O b0 ey DL p e 74)
M) 0 0 mz my 0 Ve,
C//// l o o rrer o
O 0 0 myz; my Co Ve,

By writing the first two lines from the matrix relation (74), a linear system of two equations with
two unknowns is obtained as (75), the unknowns being the two elements of the state vector of side 0,
M, "and C,

my3 My +my, Gy =vg, P
B T e (75)
my; My +my, G =v

with solution (76):

Vo1, M1y —Ver, Moy
MO = %P = bl P
mMy3 Myy —Myy My3
, (76)
Vel,M13 ~Vel; 23

kCO,”/ = %P = bl/”,P

With (75), the other two elements of the state vector for the last side on the right end, the side n,
for x = I, will be like as (77):

{M””(l) =my My +m3y C) + Ve, P -
C"O=mg My +my ¢ + v, P’
with solution, as (78):
MWD = (b i v
T B ” (78)
C (l) = (m43 b] + m44 bz + vel4) P

In this moment, all elements of any state vector of any side can be calculated for all parts in
which the unit beam has been discretized.

4. Discussion

This work is an original and new approach to calculate the long rectangle plates for
applications in the vehicle industry. They are studied long rectangular plates, embedded on the two
long borders, as applications. The plate was discretized in unity beams with width equal to unity,
with the length equal to the width of the plate and the thickness equal to the thickness of the long
rectangular plate. The unit beam is discretized into parts, each part having two sides with state
vectors associated. For each of the four cases, a matrix relationship was written for side x, based on a
transfer matrix of part x, the state vector corresponding to face 0 and the vector due to the action of
external forces acting on part x. In the next step, it can be written the state vector for the last right
section, for x = I. In this matrix relation, conditions of two ends can be placed, on the two embedded
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supports of the unitary beam. After, it can be calculated, the unknown elements of the state vector of
face 0, and then the unknown elements of the state vector of the last face on the right end can also be
calculated. In this moment, it is possible to calculate all the state vectors for all sides of the unity
beam. Now, the efforts, deformations and stress can be calculated in any section of the beam,
respectively for the long rectangular plate. This calculus will serve as calculus of resistance for
different pieces of components of vehicles.

5. Conclusions

Besides the FEM, widely used today for resistance calculus of various structures, the TMM is a
method that can be used especially where repetitive, iterative calculus are required. TMM can be
programmed very easily, and the software can be attached to a code to optimize the constructive
form of the structure, in this case - the constructive form of a rectangular plate, to have fast and
reliable results. In the future, it is intended to study parts that will assimilate with the long rectangular
plates of the vehicle. This work presents one of the multiple applications of TMM, in the calculus of
long rectangular plates, loaded with a linear load uniformly distributed on a line parallel to the long
sides for plates, embedded at the long two borders. The stresses and strains are calculated too.
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