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Abstract: This work presents the Transfer-Matrix Method as a mathematical approach for the calculus 
of different structures that can be discretized into elements, using an iterative calculation for future 
applications in vehicle industry. Plate calculus is important in construction, in medicine, in 
orthodontics and in many other fields too. This work is original and new. The plate is discretized 
along its length in unitary beams, which have the width of the rectangular plate. The unitary beam 
can also be discretized into parts. As applications, they are studied long rectangular plates, embedded 
on the two long borders and charged with a vertical uniform load that acts on a line parallel to the 
long borders. It is associated with each side a state vector. For each of the four cases studied, a matrix 
relationship was written for some side, based on a transfer matrix, the state vector          
corresponding to origin side and the vector due to the action of external forces acting to the 
considered side. After, it is possible to calculate all the state vectors for all sides of the unity beam. 
Now, the efforts, deformations and stress can be calculated in any section of the beam, respectively 
for the long rectangular plate. This calculus will serve as calculus of resistance for different pieces of 
components of vehicles 

Keywords: long rectangle plate; unit beam; Transfer-Matrix; state vector; charge density; Dirac’s 
function and operators; Heaviside’s function and operators; vehicle industry 

MSC: 74-10 
 

1. Introduction 

 This study was done due to the need to calculate the resistance of plates for the vehicle industry. 
Vehicles are complex assemblies that have several components like plates. Not only is it important in 
the automobile industry, plate calculus is important, but also in construction, in medicine, in 
orthodontics and in many other fields. This work is original and new. The Transfer-Matrix Method 
(TMM) is a mathematical approach for the calculus of different structures that can be discretized into 
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elements, using an iterative calculation as in [1]. Classical calculus of Material Resistance is presented 
in [2] and [3]. [4] gives the calculus of long cylinder tube for industrial applications by TMM. An 
approach with TMM for mandible body bone calculus shows in [5]. [6] presents the calculus through 
the TMM of a beam with intermediate support with applications in dental restorations. Another 
approach by the Finite Elements Method (FEM) applied for calculus of rectangular plates is presented 
in [7] and [8]. Study of bending for a rectangular plate with each edges arbitrary point supported 
under a concentrated load is given in [9]. [10] presents an analysis of folded plate structures by a 
combined Boundary Element-TMM and [11] gives a FEM-TMM for dynamic analysis of frame 
structures. Elastic analysis and application tables of rectangular plates with unilateral contact support 
conditions is given in [12]. [13] presents theoretical aspects for time-harmonic analysis of acoustic 
pulsation in gas pipeline systems using the FEM and TMM. [14] gives an integrated TMM for 
multiply connected mufflers and [15] presents the determination of the stress-strain state in thin 
orthotropic plates on Winkler’s elastic foundations. Evaluation of a hybrid underwater sound-
absorbing meta-structure by using the TMM is given in [16]. Some theoretical and experimental 
extensions based on the properties of the Intrinsic Transfer Matrix are presented in [17]. The TMM is 
applied to the parallel assembly of sound absorbing materials in [18]. [19] and [20] gives the TMM 
for multibody in the past, the present, and the future and its applications. [21] presents the muffler 
modeling by TMM and experimental verification. [22] gives a development of two-dimensional 
theory of thick plates bending based on general solution of Lamé equations. A study of coupling 
TMM to FEM for analyzing the acoustics of complex hollow body networks is presented in [23]. 
Equivalent systems for the analysis of rectangular plates of varying thickness is shown in [24]. About 
the classical theory of plates is presented in [25]. Study about the bending of clamped rectangular 
plates is given in [26]. Determination of plane stress and strain of plates on basis of three-dimensional 
theory of elasticity is shown in [27]. Analysis of hypotheses used when constructing the theory of 
beams and plates is presented in [28]. About the calculus of plates by the series representation of the 
deflection function is given in [29]. [30] presents a solution of non-rectangular plates with macro 
element method. The stress state of compound polygonal plate is shown in [31]. [32] gives a solution 
of thin rectangular plates with various boundary conditions and [33] gives an exact solution for the 
deflection of a clamped rectangular plate under uniform load. Stress-strain state in the corner points 
of a clamped plate under uniformly distributed normal load is given in [34] and a static analysis of 
an orthotropic plate is presented in [35]. The theory of plates and shells is given in [36]. Study about 
stress–strain analysis of rectangular plates with a variable thickness and constant weight is presented 
in [37] and an analysis of homogeneous and non-homogeneous plates is shown in [38]. A theoretical 
and comparative study regarding the mechanical response under the static loading for different 
rectangular plates is given in [39]. Approximate analytical solutions in the analysis of thin elastic 
plates are given in [40]. Some aspects of implementation of boundary elements method in plate theory 
are presented in [41]. A convergence analysis of finite element approach to classical approach for 
analysis of plates in bending is given in [42]. Another study by a method of matched sections as a 
beam-like approach for plate analysis is presented in [43]. Application of numerical methods in 
solving a phenomenon of the theory for thin plates is shown in [44]. A review of a few selected 
theories of plates in bending is given in [45]. [46] presents the calculus of plate-beam systems by 
method of boundary elements. Analytical solutions of the mechanical answer of thin orthotropic 
plates are shown in [47]. Optimized Transfer Matrix approach for global buckling analysis with 
bypassing zero matrix inversion is given in [48]. [49] is the American Standard Test Method for 
Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the TMM 
from American Society for Testing and Materials.  

2. Calculus Premises through The Transfer-Matrix Method for The Long 
Rectangular Plates 

A rectangular plate with long lengths can be calculated through the TMM. The plate is 
discretized, of its lengths, into pieces, as in Figure 1., (a) and (b).  
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  (a) 

              (b) 

Figure 1. Long rectangular plate and its discretization: (a) A long rectangle plate discretized into 
beams (pieces) with width equal at unity; (b) A unit beam (unit piece) discretized into n parts with 
n+1 sides. 

A piece (a beam) has the width equal to unity.  

2.1. The State Vectors and The Transfer-Matrix for A Long Rectangular Plate 

2.1.1. State Vectors  

 For the unitary beam, with the width equal to unity, as in Figure 2., (a), it can be    
associated a Transfer-Matrix. It is deformed, as in Figure 2., (b). 

 
 

(a)                  (b) 

Figure 2. A unitary beam (unitary piece): (a) Unitary beam and the xOy reference system; (b) The 
average deformed fiber of the unitary beam. 

 Along its length, which is the width of the rectangular plate, the unitary beam can also be 
discretized into n parts (Figure 1., (b), Figure 2., (a)). The sectioning of the beam is done 
perpendicularly to the Ox axis. For each part has it can be defined as the left side and a right side. For 
the first left part, it is defined as the left side noted 0 and the right side is noted 1 and for the last right 
side of the last part n (on the right of the beam), is noted by n. So, the beam has n parts and n+1 sides. 

It is associated for each side a state vector, for some side x, it is associated a state vector {V(x)} = 
{V}x with four elements (a(x), r(x), M(x), C(x)). The state vector and its elements have always the index 
of the side it is on, (Figure 2., (b)), as in (1):  ሼ𝑉ሺ𝑥ሻሽ ൌ ሼ𝑉ሽ௫ ൌ ሼ𝑎ሺ𝑥ሻ, 𝑟ሺ𝑥ሻ,𝑀ሺ𝑥ሻ,𝐶ሺ𝑥ሻሽି1 ൌ ሼ𝑎௫, 𝑟௫,𝑀௫,𝐶௫ሽି1,      (1)

when: 
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- {V(x)} = {V}x is state vector corresponding at the side x; 
- a(x ) = ax is the arrow; 
- r(x) = rx is the rotation of the average fiber in the x section; 
- M(x) = Mx is the bending moment; 
- C(x) = Cx is the cutting force at the x-axis point. 

For x = 0, it can be written for the side 0 as (2):                    ሼ𝑉ሺ0ሻሽ = ሼ𝑉ሽ0 = ሼ𝑎ሺ0ሻ, 𝑟ሺ0ሻ,𝑀ሺ0ሻ,𝐶ሺ0ሻሽି1 = ሼ𝑎0, 𝑟0,𝑀0,𝐶0ሽି1,    (2)

For the last side n, for which x = l, (for the last part n, the right part, that is the right end of the 
beam, the state vector can be written as (3):     ሼ𝑉ሺ𝑙ሻሽ = ሼ𝑉ሽ௟ = ሼ𝑎ሺ𝑙ሻ, 𝑟ሺ𝑙ሻ,𝑀ሺ𝑙ሻ,𝐶ሺ𝑙ሻሽି1 = ሼ𝑎௟ , 𝑟௟ ,𝑀௟ ,𝐶௟ሽି1,       (3)

2.1.2. Transfer-Matrix 

For some part x of the beam, a Transfer-Matrix [M]x is associated. The Transfer-Matrix connects 
two consecutive sides of a part of beam after the following matrix relation for the part 1, as (4):                                                       ሼ𝑉ሽ1 = ሾ𝑀ሿ1ሼ𝑉ሽ0 + ሼ𝑉௘ሽ1,                        (4)

when: 

- {Ve}1 is the state vector corresponding to the external forces acting on part 1. 
The matrix relation (3) can be written as (5) for some part x:                                                      ሼ𝑉ሽ௫ = ሾ𝑀ሿ௫ሼ𝑉ሽ0 + ሼ𝑉௘ሽ௫,                      (5)

For the last side, the side n, for x = l, the matrix relation (5) can be written as (6):                                                      ሼ𝑉ሽ௟ = ሾ𝑀ሿ௟ሼ𝑉ሽ0 + ሼ𝑉௘ሽ௟ ,                      (6)

In (6), the conditions of the ends can be put, and the elements of the state vector at the origin can 
be calculated and, also, the elements for the state vector associated at the last side can be calculated 
too. Now, matrix relation (5) can be used in which different values can be given for x and the state 
vectors can be calculated for all sections of the unit beam. 

2.2. Approach for Analytical Calculus of A Long Rectangular Plate 

 The rectangle plate is considered embedded at both ends, charged to bending along a line 
parallel to the long borders with an uniform constant vertical load q, with a charge density q(x) 
acting along of a generator, as in Figure 1., (a).    

2.2.1. Study Hypotheses  

For this work, there are considered some hypotheses: 

- the plate is subjected to an axial force along the long sides, per unit side being P (as in Figure 
2., (b)); 

- the charge density q(x) is expressed per unit of length; 
- the bending moment due to a single external load is denoted by m(x). 

2.2.2. The Arrow Calculus for The Unit Beam 

The expression of the total moment M(x) is as (7):  𝑀ሺ𝑥ሻ = 𝑚ሺ𝑥ሻ + 𝑃𝑎ሺ𝑥ሻ, (7)

when a(x) is the arrow corresponding to the section x. For the bending moment m(x) it can be 
written (8): 
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  ௗ2௠ௗ௫2 = 𝑞ሺ𝑥ሻ,        (8)

The average deformed fiber has the differential equation as (9): 𝑑4𝑚𝑑𝑥4 − 12ሺ1− 𝜈2ሻ𝐸ℎ3 ∙ 𝑑2𝑎ሺ𝑥ሻ𝑑𝑥2 𝑃 = 12ሺ1− 𝜈2ሻ𝐸ℎ3 𝑞ሺ𝑥ሻ, (9)

with R as the bending stiffness of a plate with the thickness h, as (10): 𝑅 = 𝐸ℎ3

12ሺ1 − 𝜈2ሻ, (10)

when:  

• E is the Young’s modulus; 
• h is the thickness of the plate; 
• ν is the Poisson’s coefficient. 

It is replaced (10) in expression (9) and it can be written (9) as (11): 𝑑4𝑚𝑑𝑥4 − 1𝑅 𝑑2𝑎ሺ𝑥ሻ𝑑𝑥2 𝑃 = 1𝑅 𝑞ሺ𝑥ሻ, (11)

It is noted by (12): 𝛽2 = 1𝑅 𝑃, (12)

The differential equation (11) with (12) becomes as (13): 𝑑4𝑚𝑑𝑥4 − 𝛽2 𝑑2𝑎ሺ𝑥ሻ𝑑𝑥2 = 1𝑅 𝑞ሺ𝑥ሻ, (13)

The differential equation (13) without the second term has the solution as (14): 𝑎1ሺ𝑥ሻ = 𝐴1 𝑐ℎ 𝛽𝑥 + 𝐴2 𝑠ℎ 𝛽𝑥 + 𝐴3𝑥 + 𝐴4, (14)

(15) is the particular solution: 

𝑎∗ሺ𝑥ሻ = 1𝑅𝛽3 නሾ𝑠ℎ 𝛽ሺ𝑥 − 𝑡ሻ − 𝛽ሺ𝑥 − 𝑡ሻሿ𝑞ሺ𝑡ሻ𝑑𝑡௫
0

, (15)

The conditions (16) can be verified: 𝑎∗ሺ0ሻ = 𝑎∗′ሺ0ሻ = 𝑎∗′′ሺ0ሻ = 𝑎∗′′′ሺ0ሻ, (16)

when, (17):  

   ⎩⎪⎨
⎪⎧ 𝑎∗′ሺ0ሻ = ௗ௔∗ௗ௫ ሺ0ሻ𝑎∗′′ሺ0ሻ = ௗ௔∗′ௗ௫ ሺ0ሻ𝑎∗′′′ሺ0ሻ = ௗ௔∗′′ௗ௫ ሺ0ሻ,    (17)

For x = 0, in the origin, it can be written the conditions as (18): 

⎩⎨
⎧ 𝑎ሺ0ሻ = 𝑎0𝑟ሺ0ሻ = 𝑟0𝑀ሺ0ሻ = 𝑀0 𝐶ሺ0ሻ = 𝐶0

,    (18)

With the integration constants Ai, i = 1,.4 , it can be written (19): 
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⎩⎨
⎧ 𝑎0 = 𝐴1 + 𝐴4𝑟0 = 𝛽𝐴2 + 𝐴3𝑀0 = 𝛽2𝐴1𝐴4𝐶0 = −𝛽3𝐴2𝐴4

, (19)

The four integration constants Ai, i = 1,4, depending on the efforts and deformations from the 
origin, are as (20):  

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝐴1 = 1𝛽2𝑅𝑀0𝐴2 = − 1𝛽3𝑅 𝐶0𝐴3 = 𝑟0 + 1𝛽3𝑅 𝐶0𝐴4 = 𝑎0 − 1𝛽2𝑅𝑀0

, (20)

The deformation has the mathematical expression as (21): 𝑎ሺ𝑥ሻ = 𝑎0 + 𝑟0𝑥 + 𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅 𝑀0 + 𝛽𝑥 − 𝑠ℎ 𝛽𝑥𝛽3𝑅 𝐶0+ 1𝛽3𝑅නሾ𝑠ℎ 𝛽ሺ𝑥 − 𝑡ሻ − 𝛽ሺ𝑥 − 𝑡ሻሿ𝑞ሺ𝑡ሻ𝑑𝑡,௫
0

 
 (21)

2.3. Transfer-Matrix for A Long Rectangular Plate 

With mathematical formalism given by Dirac’s and Heaviside’s Functions and      operators, 
[1], the matrix relation (5), for a long rectangular plate, can be written as (22): 

൞𝑎ሺ𝑥ሻ𝑟ሺ𝑥ሻ𝑀ሺ𝑥ሻ𝐶ሺ𝑥ሻൢ =
⎣⎢⎢
⎢⎢⎢
⎢⎡1 𝑥 𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅 𝛽𝑥 − 𝑠ℎ 𝛽𝑥𝛽3𝑅
0 1

𝑠ℎ 𝛽𝑥𝛽𝑅 −𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅
0 0  𝑐ℎ 𝛽𝑥 −𝑠ℎ 𝛽𝑥𝛽
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎥
⎥⎤ ൞𝑎0𝑟0𝑀0𝐶0

ൢ +
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧− 1𝛽3𝑅 𝑃නሾ𝑠ℎ 𝛽ሺ𝑥 − 𝑡ሻ − 𝛽ሺ𝑥 − 𝑡ሻሿ𝑞ሺ𝑡ሻ𝑑𝑡௫

0− 1𝛽2𝑅 𝑃නሾ𝑐ℎ 𝛽ሺ𝑥 − 𝑡ሻ − 1ሿ𝑞ሺ𝑡ሻ𝑑𝑡௫
0− 1𝛽 𝑃න𝑠ℎ 𝛽ሺ𝑥 − 𝑡ሻ௫

0

𝑞ሺ𝑡ሻ𝑑𝑡
𝑃න𝑐ℎ 𝛽ሺ𝑥 − 𝑡ሻ௫

0

𝑞ሺ𝑡ሻ𝑑𝑡
  
⎭⎪⎪
⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

,  (22) 

Simplified, the matrix relation (22) can be written as (23): 

          ሼ𝑉ሺ𝑥ሻሽ = ሾ𝑀ሿ௫ሼ𝑉ሽ0 + ሼ𝑉௘ሽ௫ ,   (23)

matrix relation identical to (5), when the Transfer-Matrix [M]x is as (24), [1]: 

    ሾ𝑀ሿ௫ =
⎣⎢⎢
⎢⎢⎡1 𝑥 ௖௛ ఉ௫ି1ఉ2ோ ఉ௫ି௦௛ ఉ௫ఉ3ோ
0 1 ௦௛ ఉ௫ఉோ − ௖௛ ఉ௫ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑥 − ௦௛ ఉ௫ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎤,  (24) 

3. Applications and Results for The Calculus of a Long Rectangular Plate Embedded at The Two 
Long Borders Charged with Vertical Uniform Loads That Act on A Line Parallel Along of The 
Long Borders  
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As applications, they are studied long rectangular plates, embedded on the two long borders. 
The plate is discretized in beams with width equal to unity, as in Figure 1., (a)) with the length equal 
to the width l of the plate and with the thickness h, equal to the thickness of the long rectangular 
plate. To simplify the writing, the same notations will be kept in all cases, even if it is obvious that 
the elements of the state vectors, of the transfer matrices and of the vectors corresponding to the 
external forces are different.  

In the matrix relation (23), the conditions of the ends can be put, and the elements of the state 
vector at the origin can be calculated and, also, the elements for the state vector associated at the last 
side can be calculated too. (23) serves to calculate the elements for the state vectors for all sections of 
the unity beam and after, the efforts and deformations in the origin section, and then, the efforts, 
deformations and stresses can be calculated in any section of the beam, respectively for the long 
rectangular plate.  

In the following, four cases of loading with a concentrated vertical force will be studied for the 
plate embedded on the two long borders. 

3.1. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load (Figure 3., (a), (b), 
(c) and (d)) 

A unit beam embedded at the two edges, charged with a concentrated load P in different 
situations is considered, as in Figure 3., (a), (b), (c) and (d).  

 

                    

 

                             

                           (a)              (b) 

                     

 

                             

                           (c)              (d) 

Figure 3. Unitary beam embedded at both ends with a concentrated vertical load P: (a) Concentrated 
vertical load (-P) which acts in a certain section x0; (b) Concentrated vertical load (-P) which acts in a 
the section x0  = l/2; (c) Concentrated vertical load P which acts in a certain section x0; (d) Concentrated 
vertical load P which acts in a the section x0  = l/2.  

3.1.1. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load (-P) 
Which Acts in a Certain Section x0 (as in Figure 3., (a)) 

It can be written the charge density, as (25): 𝑞′ሺ𝑥ሻ = −Pሺ𝑥 − 𝑥0ሻ, (25)

The state vector {𝑉௘′}x corresponding at exterior load is, With Dirac’s and Heaviside’s functions 
and operators, as (26): 

P 
 
ℓ 

  x0 P 
 
ℓ 

  ℓ/2 

P  
ℓ 

  x0 

P 
 
ℓ 

ℓ/
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            ൛𝑉௘′ൟ௫ =
⎩⎪⎨
⎪⎧− 1ఉ3ோ 𝑃𝑌ሺ𝑥 − 𝑥0ሻሾ𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 𝛽ሺ𝑥 − 𝑥0ሻሿ− 1ఉ2ோ 𝑃𝑌ሺ𝑥 − 𝑥0ሻሾ𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 1ሿ− 1ఉ 𝑃𝑌ሺ𝑥 − 𝑥0ሻ 𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ𝑃𝑌ሺ𝑥 − 𝑥0ሻ 𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ ⎭⎪⎬

⎪⎫,     (26)

In this case, the matrix relation is as (27): 

           ൞𝑎′ሺ𝑥ሻ𝑟′ሺ𝑥ሻ𝑀′ሺ𝑥ሻ𝐶′ሺ𝑥ሻൢ =
⎣⎢⎢
⎢⎢⎢
⎢⎡1 𝑥 𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅 𝛽𝑥 − 𝑠ℎ 𝛽𝑥𝛽3𝑅
0 1

𝑠ℎ 𝛽𝑥𝛽𝑅 −𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅
0 0  𝑐ℎ 𝛽𝑥 −𝑠ℎ 𝛽𝑥𝛽
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎥
⎥⎤
⎩⎪⎨
⎪⎧𝑎0

′𝑟0′𝑀0
′𝐶0
′⎭⎪⎬
⎪⎫−

⎩⎪⎪
⎨⎪
⎪⎧ 1𝛽3𝑅 𝑃𝑌ሺ𝑥 − 𝑥0ሻሾ𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 𝛽ሺ𝑥 − 𝑥0ሻሿ

1𝛽2𝑅 𝑃𝑌ሺ𝑥 − 𝑥0ሻሾ𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 1ሿ
1𝛽 𝑃𝑌ሺ𝑥 − 𝑥0ሻ 𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ−𝑃𝑌ሺ𝑥 − 𝑥0ሻ 𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ ⎭⎪⎪

⎬⎪
⎪⎫

 , 
 

                                                                    (27) 
 Or, it can be written (27) as (28):   

൞𝑎′ሺ𝑥ሻ𝑟′ሺ𝑥ሻ𝑀′ሺ𝑥ሻ𝐶′ሺ𝑥ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑥 ௖௛ ఉ௫ି1ఉ2ோ ఉ௫ି௦௛ ఉ௫ఉ3ோ
0 1 ௦௛ ఉ௫ఉோ − ௖௛ ఉ௫ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑥 − ௦௛ ఉ௫ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧𝑎0

′𝑟0′𝑀0
′𝐶0
′⎭⎪⎬
⎪⎫ −

⎩⎪⎨
⎪⎧ 1ఉ3ோ 𝑃ሾ𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 𝛽ሺ𝑥 − 𝑥0ሻሿ

1ఉ2ோ 𝑃ሾ𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 1ሿ
1ఉ 𝑃 𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ−𝑃 𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ ⎭⎪⎬

⎪⎫,    (28) 

Expression (28) becomes (29) for the right end, for x = l:   

൞𝑎′ሺ𝑙ሻ𝑟′ሺ𝑙ሻ𝑀′ሺ𝑙ሻ𝐶′ሺ𝑙ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧𝑎0

′𝑟0′𝑀0
′𝐶0
′⎭⎪⎬
⎪⎫ −

⎩⎪⎨
⎪⎧ 1ఉ3ோ 𝑃ሾ𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 𝛽ሺ𝑙 − 𝑥0ሻሿ

1ఉ2ோ 𝑃ሾ𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 1ሿ
1ఉ 𝑃 𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ−𝑃 𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ ⎭⎪⎬

⎪⎫,    (29) 

For the two embedded ends of the beam, the conditions are (30): 

⎩⎪⎨
⎪⎧ 𝑎0

′ = 0𝑟0′ = 0𝑎′ሺ𝑙ሻ = 0 𝑟′ሺ𝑙ሻ = 0

,                               (30) 

The matrix relation (29), with (30), becomes (31):  

൞ 0
0𝑀′ሺ𝑙ሻ𝐶′ሺ𝑙ሻൢ =

⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′𝐶0
′⎭⎬
⎫ −

⎩⎪⎨
⎪⎧ 1ఉ3ோ 𝑃ሾ𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 𝛽ሺ𝑙 − 𝑥0ሻሿ

1ఉ2ோ 𝑃ሾ𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 1ሿ
1ఉ 𝑃 𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ−𝑃 𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ ⎭⎪⎬

⎪⎫,    (31) 

      It can be written (31) more simply as (32): 

൞ 0
0𝑀′ሺ𝑙ሻ𝐶′ሺ𝑙ሻൢ = ⎣⎢⎢

⎢⎡𝑚11
′ 𝑚12

′ 𝑚13
′ 𝑚14

′𝑚21
′ 𝑚22

′ 𝑚23
′ 𝑚24

′𝑚31
′ 𝑚32

′ 𝑚33
′ 𝑚34

′𝑚41
′ 𝑚42

′ 𝑚43
′ 𝑚44

′ ⎦⎥⎥
⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′𝐶0
′⎭⎬
⎫− 𝑃⎩⎪⎨

⎪⎧𝑣௘௟1′𝑣௘௟2′𝑣௘௟3′𝑣௘௟4′ ⎭⎪⎬
⎪⎫,               (32) 

     or, (33): 
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൞ 0
0𝑀′ሺ𝑙ሻ𝐶′ሺ𝑙ሻൢ = ⎣⎢⎢

⎢⎡1 𝑙 𝑚13
′ 𝑚14

′

0 1 𝑚23
′ 𝑚24

′

0 0 𝑚33
′ 𝑚34

′

0 0 𝑚43
′ 𝑚44

′ ⎦⎥⎥
⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′𝐶0
′⎭⎬
⎫− 𝑃⎩⎪⎨

⎪⎧𝑣௘௟1′𝑣௘௟2′𝑣௘௟3′𝑣௘௟4′ ⎭⎪⎬
⎪⎫,                 (33) 

From the matrix relation (33), it can be written the first two lines and a linear system of two 
equations with two unknowns is obtained as (34), the unknowns being the two elements of the state 
vector of side 0, 𝑀0

′and 𝐶0
′:  ቊ 𝑚13

′ 𝑀0
′ + 𝑚14

′ 𝐶0
′ = 𝑣௘௟1′ 𝑃𝑚23

′ 𝑀0
′ + 𝑚24

′ 𝐶0
′ = 𝑣௘௟2′ 𝑃  ,                        (34) 

with solution (35): 

  ⎩⎨
⎧𝑀0

′ = ௩೐೗1′ ௠24
′ ି௩೐೗2′ ௠14

′௠13
′ ௠24

′ ି௠14
′ ௠23

′ 𝑃 = 𝑏1
′𝑃𝐶0

′ = ௩೐೗1′ ௠23
′ ା௩೐೗2′ ௠13

′௠14
′ ௠23

′ ି௠13
′ ௠24

′ 𝑃 = 𝑏1
′𝑃 ,                    (35) 

The other two elements of the state vector for the last side on the right end, the side n, for x = l, 
with (35), will be like as (36): ቊ𝑀′ሺ𝑙ሻ = 𝑚33

′ 𝑀0
′ + 𝑚34

′ 𝐶0
′ − 𝑣௘௟3′ 𝑃𝐶′ሺ𝑙ሻ = 𝑚43

′ 𝑀0
′ + 𝑚44

′ 𝐶0
′ − 𝑣௘௟4′ 𝑃   ,                  (36) 

with solution, as (37): 

     ቊ𝑀′ሺ𝑙ሻ = ൫𝑚33
′ 𝑏1

′ + 𝑚34
′ 𝑏2

′ − 𝑣௘௟3′ ൯𝑃𝐶′ሺ𝑙ሻ = ൫𝑚43
′ 𝑏1

′ + 𝑚44
′ 𝑏2

′ − 𝑣௘௟4′ ൯𝑃   ,                 (37) 

In this moment, all elements of any state vector of any side can be calculated for all parts in 
which the unit beam has been discretized. 

3.1.2. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load (-P) 
which Acts in A Section x0 = l/2, (as in Figure 3., (b)) 

The charge density for a vertical concentrated load (-P) at the middle, for x0 = l/2, (Figure 3., (b)), 
is as (38): 

   𝑞′′ሺ𝑥ሻ = −Pቀ𝑥 − ௟
2
ቁ, (38)

The state vector {𝑉௘′′}x corresponding at exterior load is as (39): 

        ൛𝑉௘′′ൟ௫ =
⎩⎪⎪⎨
⎪⎪⎧− 1ఉ3ோ 𝑃𝑌 ቀ𝑥 − ௟

2
ቁ ቂ𝑠ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ − 𝛽 ቀ𝑥 − ௟

2
ቁቃ− 1ఉ2ோ 𝑃𝑌 ቀ𝑥 − ௟

2
ቁ ቂ𝑐ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ − 1ቃ− 1ఉ 𝑃𝑌 ቀ𝑥 − ௟

2
ቁ  𝑠ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ𝑃𝑌 ቀ𝑥 − ௟

2
ቁ  𝑐ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ ⎭⎪⎪⎬

⎪⎪⎫ ,    (39)

In this case, the matrix relation is as (40): 

           ൞𝑎′′ሺ𝑥ሻ𝑟′′ሺ𝑥ሻ𝑀′′ሺ𝑥ሻ𝐶′′ሺ𝑥ሻൢ =
⎣⎢⎢
⎢⎢⎢
⎢⎡1 𝑥 𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅 𝛽𝑥 − 𝑠ℎ 𝛽𝑥𝛽3𝑅
0 1

𝑠ℎ 𝛽𝑥𝛽𝑅 −𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅
0 0  𝑐ℎ 𝛽𝑥 − 𝑠ℎ 𝛽𝑥𝛽
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎥
⎥⎤
⎩⎪⎨
⎪⎧𝑎0

′′𝑟0′′𝑀0
′′𝐶0
′′⎭⎪⎬
⎪⎫ − 𝑃

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 1𝛽3𝑅 𝑌 ൬𝑥 − 𝑙

2൰ ൤𝑠ℎ 𝛽 ൬𝑥 − 𝑙
2൰ − 𝛽 ൬𝑥 − 𝑙

2൰൨
1𝛽2𝑅 𝑌 ൬𝑥 − 𝑙

2൰ ൤𝑐ℎ 𝛽 ൬𝑥 − 𝑙
2൰ − 1൨

1𝛽 𝑌 ൬𝑥 − 𝑙
2൰  𝑠ℎ 𝛽 ൬𝑥 − 𝑙

2൰−𝑌 ൬𝑥 − 𝑙
2൰  𝑐ℎ 𝛽 ൬𝑥 − 𝑙

2൰ ⎭⎪⎪⎪
⎬⎪
⎪⎪⎫

 , 
 

                                                                    (40) 
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The matrix relation (40) can be written as (41), with Dirac’s and Heaviside’s functions and 
operators:  

൞𝑎′′ሺ𝑥ሻ𝑟′′ሺ𝑥ሻ𝑀′′ሺ𝑥ሻ𝐶′′ሺ𝑥ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑥 ௖௛ ఉ௫ି1ఉ2ோ ఉ௫ି௦௛ ఉ௫ఉ3ோ
0 1 ௦௛ ఉ௫ఉோ − ௖௛ ఉ௫ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑥 − ௦௛ ఉ௫ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧𝑎0

′′𝑟0′′𝑀0
′′𝐶0
′′⎭⎪⎬
⎪⎫ − 𝑃

⎩⎪⎪⎨
⎪⎪⎧ 1ఉ3ோ ቂ𝑠ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ − 𝛽 ቀ𝑥 − ௟

2
ቁቃ

1ఉ2ோ ቂ𝑐ℎ 𝛽 ቀ𝑥 − ௟
2
ቁ − 1ቃ

1ఉ  𝑠ℎ 𝛽 ቀ𝑥 − ௟
2
ቁ− 𝑐ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ ⎭⎪⎪⎬

⎪⎪⎫,  (41) 

Expression (41) becomes (42) for the right end, for x = l:   

൞𝑎′′ሺ𝑙ሻ𝑟′′ሺ𝑙ሻ𝑀′′ሺ𝑙ሻ𝐶′′ሺ𝑙ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧𝑎0

′′𝑟0′′𝑀0
′′𝐶0
′′⎭⎪⎬
⎪⎫ − 𝑃

⎩⎪⎪⎨
⎪⎪⎧ 1ఉ3ோ ቂ𝑠ℎ 𝛽 ቀ𝑙 − ௟

2
ቁ − 𝛽 ቀ𝑙 − ௟

2
ቁቃ

1ఉ2ோ ቂ𝑐ℎ 𝛽 ቀ𝑙 − ௟
2
ቁ − 1ቃ

1ఉ  𝑠ℎ 𝛽 ቀ𝑙 − ௟
2
ቁ− 𝑐ℎ 𝛽 ቀ𝑙 − ௟

2
ቁ ⎭⎪⎪⎬

⎪⎪⎫,   (42) 

or, (43):   

൞𝑎′′ሺ𝑙ሻ𝑟′′ሺ𝑙ሻ𝑀′′ሺ𝑙ሻ𝐶′′ሺ𝑙ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧𝑎0

′′𝑟0′′𝑀0
′′𝐶0
′′⎭⎪⎬
⎪⎫ − 𝑃

⎩⎪⎪⎨
⎪⎪⎧ 1ఉ3ோ ቀ𝑠ℎ 𝛽 ௟

2
− 𝛽 ௟

2
ቁ

1ఉ2ோ ቀ𝑐ℎ 𝛽 ௟
2
− 1ቁ

1ఉ  𝑠ℎ 𝛽 ௟
2−𝑐ℎ 𝛽 ௟
2 ⎭⎪⎪⎬

⎪⎪⎫,        (43) 

For the two embedded ends of the beam, the conditions are (44): 

⎩⎪⎨
⎪⎧ 𝑎0

′′ = 0𝑟0′′ = 0𝑎′′ሺ𝑙ሻ = 0 𝑟′′ሺ𝑙ሻ = 0

,                                (44) 

The matrix relation (43) becomes (45) with (44):  

൞ 0
0𝑀′′ሺ𝑙ሻ𝐶′′ሺ𝑙ሻൢ =

⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′′𝐶0
′′⎭⎬
⎫ − 𝑃

⎩⎪⎪⎨
⎪⎪⎧ 1ఉ3ோ ቀ𝑠ℎ 𝛽 ௟

2
− 𝛽 ௟

2
ቁ

1ఉ2ோ ቀ𝑐ℎ 𝛽 ௟
2
− 1ቁ

1ఉ 𝑠ℎ 𝛽 ௟
2−𝑐ℎ 𝛽 ௟
2 ⎭⎪⎪⎬

⎪⎪⎫,        (45) 

     It can be written more simply (45) as (46): 

൞ 0
0𝑀′′ሺ𝑙ሻ𝐶′′ሺ𝑙ሻൢ = ⎣⎢⎢

⎢⎡𝑚11
′′ 𝑚12

′′ 𝑚13
′′ 𝑚14

′′𝑚21
′′ 𝑚22

′′ 𝑚23
′′ 𝑚24

′′𝑚31
′′ 𝑚32

′′ 𝑚33
′′ 𝑚34

′′𝑚41
′′ 𝑚42

′′ 𝑚43
′′ 𝑚44

′′ ⎦⎥⎥
⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′′𝐶0
′′⎭⎬
⎫ − 𝑃⎩⎪⎨

⎪⎧𝑣௘௟1′′𝑣௘௟2′′𝑣௘௟3′′𝑣௘௟4′′ ⎭⎪⎬
⎪⎫,                (46) 

     or, (47): 

൞ 0
0𝑀′′ሺ𝑙ሻ𝐶′′ሺ𝑙ሻൢ = ⎣⎢⎢

⎢⎡1 𝑙 𝑚13
′′ 𝑚14

′′

0 1 𝑚23
′′ 𝑚24

′′

0 0 𝑚33
′′ 𝑚34

′′

0 0 𝑚43
′′ 𝑚44

′′ ⎦⎥⎥
⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′′𝐶0
′′⎭⎬
⎫ − 𝑃⎩⎪⎨

⎪⎧𝑣௘௟1′′𝑣௘௟2′′𝑣௘௟3′′𝑣௘௟4′′ ⎭⎪⎬
⎪⎫,                  (47) 

From the matrix relation (47), a linear system of two equations with two unknowns is obtained 
as (48), the unknowns being the two elements of the state vector of side 0, 𝑀0

′′and 𝐶0
′′:  ቊ 𝑚13

′′ 𝑀0
′′ + 𝑚14

′′ 𝐶0
′′ = 𝑣௘௟1′′ 𝑃𝑚23

′′ 𝑀0
′′ + 𝑚24

′′ 𝐶0
′′ = 𝑣௘௟2′′ 𝑃  ,                          (48) 

with solution (49): 
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  ⎩⎨
⎧𝑀0

′′ = ௩೐೗1′′ ௠24
′′ ି௩೐೗2′′ ௠14

′′௠13
′′ ௠24

′′ ି௠14
′′ ௠23

′′ 𝑃 = 𝑏1
′′𝑃𝐶0

′′ = ௩೐೗1′′ ௠23
′′ ା௩೐೗2′′ ௠13

′′௠14
′′ ௠23

′′ ି௠13
′′ ௠24

′′ 𝑃 = 𝑏1
′′𝑃 ,                       (49) 

The other two elements of the state vector for the last side on the right end, the side n, for x = l, 
with (49), will be like as (50): ቊ𝑀′′ሺ𝑙ሻ = 𝑚33

′′ 𝑀0
′′ + 𝑚34

′′ 𝐶0
′′ − 𝑣௘௟3′′ 𝑃𝐶′′ሺ𝑙ሻ = 𝑚43

′′ 𝑀0
′′ + 𝑚44

′′ 𝐶0
′′ − 𝑣௘௟4′′ 𝑃   ,                     (50) 

with solution, as (51): 

     ቊ𝑀′′ሺ𝑙ሻ = ൫𝑚33
′′ 𝑏1

′′ + 𝑚34
′′ 𝑏2

′′ − 𝑣௘௟3′′ ൯𝑃𝐶′′ሺ𝑙ሻ = ൫𝑚43
′′ 𝑏1

′′ + 𝑚44
′′ 𝑏2

′′ − 𝑣௘௟4′′ ൯𝑃   ,                    (51) 

In this moment, all elements of any state vector of any side can be calculated for all parts in which 
the unit beam has been discretized. 

 

 3.1.3. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load P 
Which Acts in a Certain Section x0 (as in Figure 3., (c)) 

In this case, the charge density can be written as (52): 

     𝑞′′′ሺ𝑥ሻ =Pሺ𝑥 − 𝑥0ሻ,   (52) 

The state vector {𝑉௘′′′}x corresponding at exterior load is as (53): 

    ൛𝑉௘′′′ൟ௫ =
⎩⎪⎨
⎪⎧ 1ఉ3ோ 𝑃𝑌ሺ𝑥 − 𝑥0ሻሾ𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 𝛽ሺ𝑥 − 𝑥0ሻሿ

1ఉ2ோ 𝑃𝑌ሺ𝑥 − 𝑥0ሻሾ𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 1ሿ
1ఉ 𝑃𝑌ሺ𝑥 − 𝑥0ሻ 𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ−𝑃𝑌ሺ𝑥 − 𝑥0ሻ 𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ ⎭⎪⎬

⎪⎫,    (53)

In this case, the matrix relation is as (54): 

           ൞𝑎′′′ሺ𝑥ሻ𝑟′′′ሺ𝑥ሻ𝑀′′′ሺ𝑥ሻ𝐶′′′ሺ𝑥ሻൢ =
⎣⎢⎢
⎢⎢⎢
⎢⎡1 𝑥 𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅 𝛽𝑥 − 𝑠ℎ 𝛽𝑥𝛽3𝑅
0 1

𝑠ℎ 𝛽𝑥𝛽𝑅 −𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅
0 0  𝑐ℎ 𝛽𝑥 −𝑠ℎ 𝛽𝑥𝛽
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎥
⎥⎤
⎩⎪⎨
⎪⎧𝑎0

′′′𝑟0′′′𝑀0
′′′𝐶0
′′′⎭⎪⎬
⎪⎫ +

⎩⎪⎪
⎨⎪
⎪⎧ 1𝛽3𝑅 𝑃𝑌ሺ𝑥 − 𝑥0ሻሾ𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 𝛽ሺ𝑥 − 𝑥0ሻሿ

1𝛽2𝑅 𝑃𝑌ሺ𝑥 − 𝑥0ሻሾ𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 1ሿ
1𝛽 𝑃𝑌ሺ𝑥 − 𝑥0ሻ 𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ−𝑃𝑌ሺ𝑥 − 𝑥0ሻ 𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ ⎭⎪⎪

⎬⎪
⎪⎫

 , 
 

 

                                                                       (54) 
Or, (54) can be written as (55):   

൞𝑎′′′ሺ𝑥ሻ𝑟′′′ሺ𝑥ሻ𝑀′′′ሺ𝑥ሻ𝐶′′′ሺ𝑥ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑥 ௖௛ ఉ௫ି1ఉ2ோ ఉ௫ି௦௛ ఉ௫ఉ3ோ
0 1 ௦௛ ఉ௫ఉோ − ௖௛ ఉ௫ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑥 − ௦௛ ఉ௫ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧𝑎0

′′′𝑟0′′′𝑀0
′′′𝐶0
′′′⎭⎪⎬
⎪⎫ + 𝑃

⎩⎪⎨
⎪⎧ 1ఉ3ோ ሾ𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 𝛽ሺ𝑥 − 𝑥0ሻሿ

1ఉ2ோ ሾ𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ − 1ሿ
1ఉ  𝑠ℎ 𝛽ሺ𝑥 − 𝑥0ሻ− 𝑐ℎ 𝛽ሺ𝑥 − 𝑥0ሻ ⎭⎪⎬

⎪⎫, (55) 

Expression (55) becomes as (56) for the right end, for x = l:   

    ൞𝑎′′′ሺ𝑙ሻ𝑟′′′ሺ𝑙ሻ𝑀′′′ሺ𝑙ሻ𝐶′′′ሺ𝑙ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧ 𝑎0

′′′𝑟0′′′𝑀0
′′′𝐶0
′′′⎭⎪⎬
⎪⎫ + 𝑃

⎩⎪⎨
⎪⎧ 1ఉ3ோ ሾ𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 𝛽ሺ𝑙 − 𝑥0ሻሿ

1ఉ2ோ ሾ𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 1ሿ
1ఉ  𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ− 𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ ⎭⎪⎬

⎪⎫,   (56) 
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The conditions for the two embedded ends of the beam are (57): 

⎩⎪⎨
⎪⎧ 𝑎0

′′′ = 0𝑟0′′′ = 0𝑎′′′ሺ𝑙ሻ = 0 𝑟′′′ሺ𝑙ሻ = 0

,                               (57) 

     With (57), the matrix relation (56) becomes as (58):  

൞ 0
0𝑀′′′ሺ𝑙ሻ𝐶′′′ሺ𝑙ሻൢ =

⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′′′𝐶0
′′′⎭⎬
⎫ + 𝑃

⎩⎪⎨
⎪⎧ 1ఉ3ோ ሾ𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 𝛽ሺ𝑙 − 𝑥0ሻሿ

1ఉ2ோ ሾ𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 1ሿ
1ఉ  𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ− 𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ ⎭⎪⎬

⎪⎫,  (58) 

     or, more simply is as (59): 

൞ 0
0𝑀′′′ሺ𝑙ሻ𝐶′′′ሺ𝑙ሻൢ = ⎣⎢⎢

⎢⎡𝑚11
′′′ 𝑚12

′′′ 𝑚13
′′′ 𝑚14

′′′𝑚21
′′′ 𝑚22

′′′ 𝑚23
′′′ 𝑚24

′′′𝑚31
′′′ 𝑚32

′′′ 𝑚33
′′′ 𝑚34

′′′𝑚41
′′′ 𝑚42

′′′ 𝑚43
′′′ 𝑚44

′′′⎦⎥⎥
⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′′′𝐶0
′′′⎭⎬
⎫ + 𝑃⎩⎪⎨

⎪⎧𝑣௘௟1′′′𝑣௘௟2′′′𝑣௘௟3′′′𝑣௘௟4′′′ ⎭⎪⎬
⎪⎫,              (59) 

     or, (60): 

൞ 0
0𝑀′′′ሺ𝑙ሻ𝐶′′′ሺ𝑙ሻൢ = ⎣⎢⎢

⎢⎡1 𝑙 𝑚13
′′′ 𝑚14

′′′

0 1 𝑚23
′′′ 𝑚24

′′′

0 0 𝑚33
′′′ 𝑚34

′′′

0 0 𝑚43
′′′ 𝑚44

′′′⎦⎥⎥
⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′′′𝐶0
′′′⎭⎬
⎫ + 𝑃⎩⎪⎨

⎪⎧𝑣௘௟1′′′𝑣௘௟2′′′𝑣௘௟3′′′𝑣௘௟4′′′ ⎭⎪⎬
⎪⎫,                (60) 

A linear system of two equations with two unknowns is obtained as (61), the unknowns being 
the two elements of the state vector of side 0, 𝑀0

′′′and 𝐶0
′′′:  ቊ 𝑚13

′′′𝑀0
′′′ + 𝑚14

′′′𝐶0
′′′ = −𝑣௘௟1′′′ 𝑃𝑚23

′′′𝑀0
′′′ + 𝑚24

′′′𝐶0
′′′ = −𝑣௘௟2′′′ 𝑃  ,                        (61) 

with solution (62): 

 ⎩⎨
⎧𝑀0

′′′ = ௩೐೗2′′′ ௠14
′′′ି௩೐೗1′′′ ௠24

′′′௠13
′′′௠24

′′′ି௠14
′′′௠23

′′′ 𝑃 = 𝑏1
′′′𝑃𝐶0

′′′ = ௩೐೗2′′′ ௠13
′′′ି௩೐೗1′′′ ௠23

′′′௠14
′′′௠23

′′′ି௠13
′′′௠24

′′′ 𝑃 = 𝑏1
′′′𝑃 ,                       (62) 

With (62), the other two elements of the state vector for the last side on the right end, the side n, 
for x = l, will be like as (63): ቊ𝑀′′′ሺ௟ሻ = 𝑚33

′′′𝑀0
′′′ + 𝑚34

′′′𝐶0
′′′ + 𝑣௘௟3′′′ 𝑃𝐶′′′ሺ௟ሻ = 𝑚43

′′′𝑀0
′′′ + 𝑚44

′′′𝐶0
′′′ + 𝑣௘௟4′′′ 𝑃   ,                   (63) 

with solution, as (64): 

     ൝𝑀′′′ሺ𝑙ሻ = ൫𝑚33
′′′𝑏1

′′′ + 𝑚34
′′′𝑏2

′′′ + 𝑣௘௟3′′′ ൯𝑃𝐶′′′ሺ𝑙ሻ = ቀ𝑚43
′′′𝑏1

′′′ + 𝑚44
′′′𝑏2

′′′ + 𝑣௘௟4′′′ ቁ 𝑃  ,                  (64) 

In this moment, all elements of any state vector of any side can be calculated for all parts in 
which the unit beam has been discretized. 

3.1.4. Unit Width Beam Embedded at The Two Edges Charged with A Concentrated Load P Which 
Acts in the Section x0  = l/2, (Figure 3., (d)) 

For the vertical concentrated load at the middle, for x0 = l/2, (Figure 3., (d)), the charge density is 
as (65): 
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𝑞′′′′ሺ𝑥ሻ =Pቀ𝑥 − ௟
2
ቁ, (65)

With Dirac’s and Heaviside’s functions and operators, the state vector {𝑉௘′′′′}x corresponding at 
exterior load is as (66): 

                 ൛𝑉௘′′′′ൟ௫ =
⎩⎪⎪⎨
⎪⎪⎧ 1ఉ3ோ 𝑃𝑌 ቀ𝑥 − ௟

2
ቁ ቂ𝑠ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ − 𝛽 ቀ𝑥 − ௟

2
ቁቃ

1ఉ2ோ 𝑃𝑌 ቀ𝑥 − ௟
2
ቁ ቂ𝑐ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ − 1ቃ

1ఉ 𝑃𝑌 ቀ𝑥 − ௟
2
ቁ  𝑠ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ−𝑃𝑌 ቀ𝑥 − ௟

2
ቁ  𝑐ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ ⎭⎪⎪⎬

⎪⎪⎫,  (66)

The matrix relation, in this case is as (67): 

           ൞𝑎′′′′ሺ𝑥ሻ𝑟′′′′ሺ𝑥ሻ𝑀′′′′ሺ𝑥ሻ𝐶′′′′ሺ𝑥ሻൢ =
⎣⎢⎢
⎢⎢⎢
⎢⎡1 𝑥 𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅 𝛽𝑥 − 𝑠ℎ 𝛽𝑥𝛽3𝑅
0 1

𝑠ℎ 𝛽𝑥𝛽𝑅 −𝑐ℎ 𝛽𝑥 − 1𝛽2𝑅
0 0  𝑐ℎ 𝛽𝑥 − 𝑠ℎ 𝛽𝑥𝛽
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎥
⎥⎤
⎩⎪⎨
⎪⎧ 𝑎0

′′′′𝑟0′′′′𝑀0
′′′′𝐶0
′′′′ ⎭⎪⎬
⎪⎫ +

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 1𝛽3𝑅 𝑃𝑌 ൬𝑥 − 𝑙

2൰ ൤𝑠ℎ𝛽 ൬𝑥 − 𝑙
2൰ − 𝛽 ൬𝑥 − 𝑙

2൰൨
1𝛽2𝑅 𝑃𝑌 ൬𝑥 − 𝑙

2൰ ൤𝑐ℎ𝛽 ൬𝑥 − 𝑙
2൰ − 1൨

1𝛽 𝑃𝑌 ൬𝑥 − 𝑙
2൰  𝑠ℎ𝛽 ൬𝑥 − 𝑙

2൰−𝑃𝑌 ൬𝑥 − 𝑙
2൰  𝑐ℎ𝛽 ൬𝑥 − 𝑙

2൰ ⎭⎪⎪⎪
⎬⎪
⎪⎪⎫

 , 
 

                                                                    (67) 
With Dirac’s and Heaviside’s functions and operators the matrix relation (67) can be written as 

(68):   

൞𝑎′′′′ሺ𝑥ሻ𝑟′′′′ሺ𝑥ሻ𝑀′′′′ሺ𝑥ሻ𝐶′′′′ሺ𝑥ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑥 ௖௛ ఉ௫ି1ఉ2ோ ఉ௫ି௦௛ ఉ௫ఉ3ோ
0 1 ௦௛ ఉ௫ఉோ − ௖௛ ఉ௫ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑥 − ௦௛ ఉ௫ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑥   𝑐ℎ 𝛽𝑥 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧ 𝑎0

′′′′𝑟0′′′′𝑀0
′′′′𝐶0
′′′′ ⎭⎪⎬
⎪⎫ +

⎩⎪⎪⎨
⎪⎪⎧ 1ఉ3ோ 𝑃 ቂ𝑠ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ − 𝛽 ቀ𝑥 − ௟

2
ቁቃ

1ఉ2ோ 𝑃 ቂ𝑐ℎ 𝛽 ቀ𝑥 − ௟
2
ቁ − 1ቃ

1ఉ 𝑃 𝑠ℎ 𝛽 ቀ𝑥 − ௟
2
ቁ−𝑃 𝑐ℎ 𝛽 ቀ𝑥 − ௟

2
ቁ ⎭⎪⎪⎬

⎪⎪⎫,  (68) 

For the right end, for x = l, expression (68) becomes (69):   

൞𝑎′′′′ሺ𝑙ሻ𝑟′′′′ሺ𝑙ሻ𝑀′′′′ሺ𝑙ሻ𝐶′′′′ሺ𝑙ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧ 𝑎0

′′′′𝑟0′′′′𝑀0
′′′′𝐶0
′′′′ ⎭⎪⎬
⎪⎫ +

⎩⎪⎪⎨
⎪⎪⎧ 1ఉ3ோ 𝑃 ቂ𝑠ℎ 𝛽 ቀ𝑙 − ௟

2
ቁ − 𝛽 ቀ𝑙 − ௟

2
ቁቃ

1ఉ2ோ 𝑃 ቂ𝑐ℎ 𝛽 ቀ𝑙 − ௟
2
ቁ − 1ቃ

1ఉ 𝑃 𝑠ℎ 𝛽 ቀ𝑙 − ௟
2
ቁ−𝑃 𝑐ℎ 𝛽 ቀ𝑙 − ௟

2
ቁ ⎭⎪⎪⎬

⎪⎪⎫,   (69) 

or, (70):   

൞𝑎′′′′ሺ𝑙ሻ𝑟′′′′ሺ𝑙ሻ𝑀′′′′ሺ𝑙ሻ𝐶′′′′ሺ𝑙ሻൢ =
⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎪⎨
⎪⎧ 𝑎0

′′′′𝑟0′′′′𝑀0
′′′′𝐶0
′′′′ ⎭⎪⎬
⎪⎫ +

⎩⎪⎪⎨
⎪⎪⎧ 1ఉ3ோ 𝑃 ቀ𝑠ℎ 𝛽 ௟

2
− 𝛽 ௟

2
ቁ

1ఉ2ோ 𝑃 ቀ𝑐ℎ 𝛽 ௟
2
− 1ቁ

1ఉ 𝑃 𝑠ℎ 𝛽 ௟
2−𝑃 𝑐ℎ 𝛽 ௟
2 ⎭⎪⎪⎬

⎪⎪⎫,      (70) 

The conditions for the two embedded ends of the beam are (71): 

⎩⎪⎨
⎪⎧ 𝑎0

′′′′ = 0𝑟0′′′′ = 0𝑎′′′′ሺ𝑙ሻ = 0 𝑟′′′′ሺ𝑙ሻ = 0

,                               (71) 

     With (71), the matrix relation (70) becomes as (72):  
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൞ 0
0𝑀′′′′ሺ𝑙ሻ𝐶′′′′ሺ𝑙ሻൢ =

⎣⎢⎢
⎢⎢⎡1 𝑙 ௖௛ ఉ௟ି1ఉ2ோ ఉ௟ି௦௛ ఉ௟ఉ3ோ
0 1 ௦௛ ఉ௟ఉோ − ௖௛ ఉ௟ି1ఉ2ோ
0 0  𝑐ℎ 𝛽𝑙 − ௦௛ ఉ௟ఉ
0 0 −𝛽𝑠ℎ 𝛽𝑙   𝑐ℎ 𝛽𝑙 ⎦⎥⎥

⎥⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′′′′𝐶0
′′′′ ⎭⎬
⎫ + 𝑃

⎩⎪⎨
⎪⎧ 1ఉ3ோ ሾ𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 𝛽ሺ𝑙 − 𝑥0ሻሿ

1ఉ2ோ ሾ𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ − 1ሿ
1ఉ  𝑠ℎ 𝛽ሺ𝑙 − 𝑥0ሻ− 𝑐ℎ 𝛽ሺ𝑙 − 𝑥0ሻ ⎭⎪⎬

⎪⎫,  (72) 

     or, it can be written more simply as (73): 

൞ 0
0𝑀′′′′ሺ𝑙ሻ𝐶′′′′ሺ𝑙ሻൢ = ⎣⎢⎢

⎢⎡𝑚11
′′′′ 𝑚12

′′′′ 𝑚13
′′′′ 𝑚14

′′′′𝑚21
′′′′ 𝑚22

′′′′ 𝑚23
′′′′ 𝑚24

′′′′𝑚31
′′′′ 𝑚32

′′′′ 𝑚33
′′′′ 𝑚34

′′′′𝑚41
′′′′ 𝑚42

′′′′ 𝑚43
′′′′ 𝑚44

′′′′⎦⎥⎥
⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′′′′𝐶0
′′′′ ⎭⎬
⎫ + 𝑃⎩⎪⎨

⎪⎧𝑣௘௟1′′′′𝑣௘௟2′′′′𝑣௘௟3′′′′𝑣௘௟4′′′′⎭⎪⎬
⎪⎫,             (73) 

     or, (74): 

൞ 0
0𝑀′′′′ሺ𝑙ሻ𝐶′′′′ሺ𝑙ሻൢ = ⎣⎢⎢

⎢⎡1 𝑙 𝑚13
′′′′ 𝑚14

′′′′

0 1 𝑚23
′′′′ 𝑚24

′′′′

0 0 𝑚33
′′′′ 𝑚34

′′′′

0 0 𝑚43
′′′′ 𝑚44

′′′′⎦⎥⎥
⎥⎤ ⎩⎨
⎧ 0

0𝑀0
′′′′𝐶0
′′′′⎭⎬
⎫ + 𝑃⎩⎪⎨

⎪⎧𝑣௘௟1′′′′𝑣௘௟2′′′′𝑣௘௟3′′′′𝑣௘௟4′′′′⎭⎪⎬
⎪⎫,                (74) 

By writing the first two lines from the matrix relation (74), a linear system of two equations with 
two unknowns is obtained as (75), the unknowns being the two elements of the state vector of side 0, 𝑀0
′′′′and 𝐶0

′′′′:  ቊ 𝑚13
′′′′𝑀0

′′′′ + 𝑚14
′′′′𝐶0

′′′′ = 𝑣௘௟1′′′′𝑃𝑚23
′′′′𝑀0

′′′′ + 𝑚24
′′′′𝐶0

′′′′ = 𝑣௘௟2′′′′𝑃  ,                       (75) 

with solution (76): 

  ⎩⎨
⎧𝑀0

′′′′ = ௩೐೗2′′′′௠14
′′′′ି௩೐೗1′′′′௠24

′′′′௠13
′′′′௠24

′′′′ି௠14
′′′′௠23

′′′′ 𝑃 = 𝑏1
′′′′𝑃𝐶0

′′′′ = ௩೐೗2′′′′௠13
′′′′ି௩೐೗1′′′′௠23

′′′′௠14
′′′′௠23

′′′′ି௠13
′′′′௠24

′′′′ 𝑃 = 𝑏1
′′′′𝑃 ,                    (76) 

With (75), the other two elements of the state vector for the last side on the right end, the side n, 
for x = l, will be like as (77): ቊ𝑀′′′′ሺ௟ሻ = 𝑚33

′′′′𝑀0
′′′′ + 𝑚34

′′′′𝐶0
′′′′ + 𝑣௘௟3′′′′𝑃𝐶′′′′ሺ௟ሻ = 𝑚43

′′′′𝑀0
′′′′ + 𝑚44

′′′′𝐶0
′′′′ + 𝑣௘௟4′′′′𝑃   ,                   (77) 

with solution, as (78): 

     ൝𝑀′′′′ሺ𝑙ሻ = ൫𝑚33
′′′′𝑏1

′′′′ + 𝑚34
′′′′𝑏2

′′′′ + 𝑣௘௟3′′′′൯𝑃𝐶′′′′ሺ𝑙ሻ = ቀ𝑚43
′′′′𝑏1

′′′′ + 𝑚44
′′′′𝑏2

′′′′ + 𝑣௘௟4′′′′ቁ𝑃  ,                  (78) 

In this moment, all elements of any state vector of any side can be calculated for all parts in 
which the unit beam has been discretized. 

4. Discussion 

 This work is an original and new approach to calculate the long rectangle plates for 
applications in the vehicle industry. They are studied long rectangular plates, embedded on the two 
long borders, as applications. The plate was discretized in unity beams with width equal to unity, 
with the length equal to the width of the plate and the thickness equal to the thickness of the long 
rectangular plate. The unit beam is discretized into parts, each part having two sides with state 
vectors associated. For each of the four cases, a matrix relationship was written for side x, based on a 
transfer matrix of part x, the state vector corresponding to face 0 and the vector due to the action of 
external forces acting on part x. In the next step, it can be written the state vector for the last right 
section, for x = l. In this matrix relation, conditions of two ends can be placed, on the two embedded 
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supports of the unitary beam. After, it can be calculated, the unknown elements of the state vector of 
face 0, and then the unknown elements of the state vector of the last face on the right end can also be 
calculated. In this moment, it is possible to calculate all the state vectors for all sides of the unity 
beam. Now, the efforts, deformations and stress can be calculated in any section of the beam, 
respectively for the long rectangular plate. This calculus will serve as calculus of resistance for 
different pieces of components of vehicles.  

5. Conclusions 

Besides the FEM, widely used today for resistance calculus of various structures, the TMM is a 
method that can be used especially where repetitive, iterative calculus are required. TMM can be 
programmed very easily, and the software can be attached to a code to optimize the constructive 
form of the structure, in this case - the constructive form of a rectangular plate, to have fast and 
reliable results. In the future, it is intended to study parts that will assimilate with the long rectangular 
plates of the vehicle. This work presents one of the multiple applications of TMM, in the calculus of 
long rectangular plates, loaded with a linear load uniformly distributed on a line parallel to the long 
sides for plates, embedded at the long two borders. The stresses and strains are calculated too.  
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