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Abstract: Soil moisture maps are essential for hydrological, agricultural and risk assessment

applications. To best meet these requirements, it is essential to develop soil moisture products

at high spatial resolution which is now made possible using the free Sentinel-1 (S1) SAR (Synthetic

Aperture Radar) data. Some soil moisture retrieval techniques using S1 data relied on the use of a

priori weather information in order to increase the precision of soil moisture estimates, which required

access to a weather forecasting framework. This paper presents an improved and fully automated

solution for high-resolution soil moisture mapping in bare agricultural areas. The proposed solution

derives a priori weather information directly from the original Sentinel images, thus bypassing the

need for a weather forecasting framework. For soil moisture estimation, the neural network technique

was implemented to ensure the optimum integration of radar information. The neural networks were

trained using synthetic data generated by the modified Integral Equation Model (IEM) model and

validated on real data from two study sites in France and Tunisia. Main findings showed that the use

of radar signal averaged over grids of a few km2 in addition to radar signal at plot scale instead of a

priori weather information, provides good soil moisture estimations. The accuracy is even slightly

better comparatively to the accuracy obtained using a priori weather information.

Keywords: soil moisture; bare agricultural areas; neural networks; satellite remote sensing; Sentinel-1

1. Introduction

Understanding the water cycle is crucial for various natural phenomena, such as floods, landslides,

and droughts, which pose significant risks to human lives [1]. Soil surface characteristics, particularly

moisture content and surface roughness, play a vital role in water cycle monitoring [2–6]. While

ground measurements can accurately estimate these parameters, they are often time-consuming,

labor-intensive, and limited in spatial representation [7]. Observations collected through remote

sensing from space provide effective resources for tracking and mapping changes across vast regions

both spatially and over time which is needed for reliable predictions of water cycle behaviors [8]. In the

case of plot scale soil surface characteristics estimation, low spatial resolution measurements provided

by sensors like SMOS, SMAP, and ASCAT are unsuitable [9]. To overcome this low spatial resolution

limitation, the open source and free-of-charge Sentinel-1A and -1B Synthetic Aperture Radar (SAR)

sensors operating in the C-band have been introduced, offering high spatial resolution soil surface

characteristics mapping [10].

In areas with sparse vegetation cover, Synthetic Aperture Radar (SAR) data operating in the

C-band has emerged as a valuable tool for estimating soil moisture. Among the models employed to
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simulate the SAR signal, the Integral Equation Model (IEM), a physical model developed by Fung [11],

has gained considerable attention. Fung’s IEM possesses the advantage of not requiring site-specific

calibration, as it can consistently be used to simulate backscattering coefficients based on radar

configuration (frequency, polarization, and incidence angle) and soil parameters (soil moisture and

soil roughness). However, Fung’s IEM has shown discrepancies between simulated and observed SAR

data [12]. The IEM accurately replicates radar scatter on smooth surfaces. However, it under-performs

on rough surfaces, where it predicts a more uniform response with incidence angle than what is

observed in C and X bands signals. Baghdadi et al. [13,14] addressed this challenge by proposing

a semi-empirical calibration for the IEM. This calibration was designed to enhance the precision of

simulated backscattering values by accounting for the difficulties in measuring the correlation length

input parameter. Furthermore, it has been shown that for bare soil fields and at high incidence angles,

surface roughness has a more significant impact on the radar signal in the C-band than soil surface

moisture (SSM) [15]. Consequently, estimating soil moisture from SAR data without considering the

contribution of the root mean surface height (HRMS) would lead to imprecise soil moisture estimations,

with underestimation for low HRMS values and overestimation for higher values [16].

One of the prevailing approaches currently being employed to estimate surface soil moisture from

SAR data involves the inversion of backscatter simulation models using machine learning algorithms,

specifically neural networks [7,17]. The backscatter models are used to build a synthetic database of

simulated backscattering coefficients for various soil conditions and sensor attributes, then, neural

networks are trained to estimate soil moisture on this synthetic database [14]. A key enhancement to

this approach has been the use of a priori weather information in order to partition the estimation

domain into dry or wet conditions, leading to the application of one of two distinct neural networks,

each specifically trained for either dry to wet (between 4 vol.% and 30 vol.%) or very wet (between 20

vol.% and 40 vol.%) soil conditions [16].

Our study builds upon the approach introduced by El Hajj et al. [16] and presents a fully

automated solution to overcome the need for a priori weather information. By utilizing the

backscattering coefficients at the grid scale (a few km2), we can deduce the weather conditions used for

the estimation domain partitioning, without the need for a priori weather information. The hypothesis

behind this new approach relies on the fact that dry or wet conditions can be deduced for each grid

cell from the average backscatter coefficient of the whole grid. The second main objective is to study

the potential of incorporating soil roughness estimates into the soil moisture estimation procedure,

thereby analyzing the accuracy of surface soil moisture estimation when accounting for the influence

of surface roughness on radar backscattering. The added value of using grid data and soil roughness

estimates was studied in comparison to the previous models on the synthetic dataset generated by the

calibrated IEM [13] and on a real dataset taken from two study sites where in situ soil moisture and

soil roughness measurements are available.

2. Dataset description and problem statement

In this section, we provide a detailed description of the two datasets used in our study. The

first is the synthetic dataset obtained from the well-calibrated radar backscattering model IEM

(Integral Equation Model). The second dataset is a real dataset obtained from field measurements

conducted in Montpellier, France, and Kairouan, Tunisia. The performance of different neural network

configurations using these two datasets are then compared in order to identify the strengths and

limitations of each configuration.

2.1. Synthetic dataset

The synthetic dataset is a collection of generated backscattering coefficients obtained from the

calibrated IEM. The primary goal is to utilize a part of this dataset for training different machine
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learning configurations. The second part of this dataset will be used in the evaluation phase of our

radar signal inversion approaches, providing a reliable benchmark for performance comparison.

2.1.1. Calibrated radar backscattering IEM

For bare agricultural areas, the IEM calculates the backscattering coefficient (σ) by incorporating

the sensor’s attributes (incidence angle, polarization, and radar wavelength) along with the soil’s

parameters (soil moisture and soil roughness). The radar backscattering coefficient for a bare

agricultural soil can be formulated as follows:

σ = IEM(θ, λ, Pol, MV, HRMS) (1)

Where, the sensor attributes are:

• σ is the radar backscatter coefficient (no unit)
• θ is the incidence angle (°)
• λ is the radar wavelength (cm)
• Pol is the polarization (VV or VH; Sentinel-1 configuration)

The soil parameters:

• MV is the soil Moisture Value (vol.%)
• HRMS is the Height Root Mean Square of soil roughness (cm)

In our study, we estimate the soil moisture from the radar backscattering coefficients (single or

dual polarization) and HRMS (measured or otherwise estimated). Thus, this inverse problem can be

formulated as follows:

MV = IEM−1(σ, θ, HRMS) (2)

In the case where the soil roughness is unknown, the inputs to the neural networks are the SAR

data:

MV = IEM−1(σ, θ) (3)

Thus, inversion of the radar signal to estimate soil moisture does not necessarily require

knowledge of the roughness. Inaccurate estimates of soil moisture would be obtained, however,

in the case where the roughness value is unknown.

2.1.2. Range of input parameters

The input parameter values needed to build a relevant synthetic dataset were chosen to represent

the same range of values as the parameters of real sensors and soils in agricultural areas. These inputs

were used to generate backscattering coefficients using the calibrated IEM. The radar wavelength was

set to 5.5 cm representing the Sentinel-1 radar wavelength. The incidence angle (θ) ranged from 20°

to 45° with a step size of 1°. For each incidence angle, soil roughness (HRMS) was considered from

a generated list of values, ranging from 0.5 to 3.8 cm with a step size of 0.1 (34 values). For each (θ,

HRMS) combination, the soil moisture spanned from 4 to 40 vol.% with a step size of 2 vol.%.

Given that the SAR signal can show a strong increase with changes in soil moisture, especially

after heavy rainfall [17], calculating the average radar signal over large areas (watershed or a given

grid of several km²) using bare agricultural soils is useful as is represents the general soil moisture

conditions over the study area (very wet, wet to dry). In this study, as input to our soil moisture

estimation algorithm, we use information at the plot level (marked with a "p", VVp and VHp) and

information at the grid level (marked with a "g", VVg and VHg). For grid synthetic data we followed

the following scheme: We start by fixing the grid soil moisture MVg between 4 and 40 vol.%). Next,

for a given MVg value and each combination of incidence angle, soil roughness within the chosen
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ranges, 100 samples of soil moisture at plot scale were generated using a bounded normal distribution

with a mean value equal to the soil moisture at grid scale and a standard deviation of 10 vol.%. The

generated MVp samples were constrained within the range [MVg -10, MVg+10] and the soil moisture

at the plot scale was filtered to retain only those between 4 and 40 vol.%. Thus, in addition to MVp

values, we can also have MVg values as input in our inversion algorithm.

2.1.3. Synthetic dataset generation

Once the synthetic inputs are generated, we run the calibrated IEM to generate the backscatter

coefficients for the grid level using the grid soil moisture values (σVVg , σVHg ) or for the plot level

using the soil moisture at plot scale (σVVp , σVHp ). Then an absolute error corresponding to the SAR

observation accuracy was added to the simulated backscattering coefficients to obtain a more realistic

synthetic dataset. For Sentinel-1, this error is defined by the absolute radiometric accuracy, which

is equal to 0.70 dB and 1.0 dB for VV and VH polarizations respectively [10]. Accordingly, for each

element of our dataset, 5 noise samples were randomly selected from the zero-mean Gaussian noise

distribution with a standard deviation of 0.7 and 1.0 dB, respectively for VV and VH. The randomly

selected noise values were then added to the IEM’s simulated σ at both scales (plot and grid). Finally,

our noisy synthetic dataset, in VV and VH polarizations is composed of about 8 million elements.

Table 1 shows an example of the possible combinations of our input parameters in an 8-column

data format. Each row represents a unique data combination defined by a given radar incidence angle

(θ), surface roughness, and soil moisture at plot and grid scales. σVVp and σVHp were simulated using

(θ, HRMS, MVp) while σVVg and σVHg were simulated using (θ, HRMS, MVg).

Table 1. Example of synthetic data generated by the calibrated IEM using Sentinel-1 wavelength.

IEM inputs IEM outputs

θ HRMS MVg MVp σVVp
σV Hp

σVVg
σV Hg

20.0 0.5 4.0 6.56 -12.16 -27.58 -9.30 -21.21

20.0 0.5 4.0 6.45 -10.72 -24.56 -9.06 -19.27

20.0 0.5 4.0 10.76 -10.21 -24.82 -8.77 -20.32

... ... ... ... ... ... ... ...

45.0 3.8 40.0 36.98 -6.04 -15.49 -7.67 -17.01

45.0 3.8 40.0 32.38 -6.36 -17.66 -8.60 -17.55

45.0 3.8 40.0 38.40 -4.78 -15.53 -6.40 -17.39

In this study half of the synthetic dataset is used for training the neural networks and the other

half for their evaluation, the evaluation half is referred to as the validation dataset.

2.2. Real dataset

In this part, we introduce our real dataset from two distinct study areas in Montpellier, France,

and Kairouan, Tunisia. This dataset offers diverse environmental conditions with associated satellite

data and field measurements. The satellite data contain the backscatter coefficients in VV and VH

polarizations calculated from Sentinel-1 images. In addition, fields measurements provide measured

soil moisture (MVp) and surface roughness (HRMS) collected at reference fields. The proposed machine

learning configurations for soil moisture estimations are evaluated using the in situ measured soil

moisture in the two study sites.
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2.2.1. Montpellier dataset

Study area

The first real dataset is collected in a study site located in the Occitanie region of France as shown

in Figure 1. With a relatively flat terrain topography, it is composed mainly of forest, vineyards,

grasslands, and agricultural fields (mainly wheat). The climate of the study site is Mediterranean

with a rainy season between mid-October and March and an average annual cumulative rainfall of

approximately 750 mm. The average air temperature varies between 2.9 °C and 29.3 °C. The topsoil

texture of the agricultural fields is loam.

Figure 1. Locator map of the Montpellier study area in the Occitanie region of France. In green are the

reference fields on which soil moisture and roughness measurements were collected.

Sentinel-1 images

Over the French study site, 28 Sentinel-1 images (S1) acquired between 15/04/2016 and

26/06/2018 were used. The Sentinel-1 (S1) images are downloadable from the Copernicus website

(https://scihub.copernicus.eu/dhus/#/home). The 28 S1 images used were acquired in IW imaging

mode with the VV and VH polarizations. The S1 images were calibrated using the S1 toolbox developed

by ESA (European Spatial Agency). The calibration aims to convert the digital number values of S1

images into backscattering coefficients (σ) in a linear unit. Thus, for each polarization, the average

signal of all pixels in each plot is computed to obtain a single representative value for each reference

plot (σp). Then, to build real SAR signals at grid scale (σg), for each S1 acquisition and polarization the

average backscatter coefficient is computed using all agricultural pixels with low NDVI values (below

0.4).

In situ measurements

In situ measurements of soil moisture and surface roughness were collected during 28 field

surveys between 15/04/2016 and 26/06/2018. These fields correspond to bare or partially vegetated

soils (NDVI lower than 0.4). Soil moisture at plot scale (MVp) was measured within a window of 2

h with respect to the Sentinel-1 acquisition date. For each reference plot, 20 to 30 measurements of

volumetric soil moisture were conducted in the top 5 cm of soil by means of a calibrated TDR (Time

Domain Reflectometry) probe. All soil moisture measurements within each plot were averaged to

provide a mean value for each plot. The range of the soil moisture value is between 4.5 and 32.5

vol.%. In addition, the soil roughness parameter HRMS was determined using a needle profilometer

with a length of 1 m and a needle spacing of 1 cm. For each reference plot, five parallel roughness
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profiles along the SAR line of sight were recorded and another five perpendicular to the line. Thus, by

processing the roughness profile, the HRMS was derived. In our study, the recorded HRMS values

of the reference plots varied between 0.5 and 4.0 cm. It is important to note that the parcels are not

irrigated.

Finally, our French dataset is composed of 198 elements with radar backscattering coefficients (in

VV and VH) and in situ measurements of soil moisture (MVp) and surface roughness (HRMS). Each

element of this real dataset represents a reference plot with an associated MVp value, incidence angle

and mean backscattering coefficients in VV and VH. The incidence angles of our reference plots vary

from 39° to 41°. This dataset was only used to validate our soil moisture estimates.

2.2.2. Kairouan dataset

Study area

The second real dataset was collected over a study area located in the Kairouan Governorate of Tunisia

as shown in Figure 2, in central Tunisia. The climate in this region is semi-arid, with an average annual

rainfall of approximately 300 mm/year, characterized by a rainy season lasting from October to May,

with the two rainiest months being October and March. The mean temperature in Kairouan City is

19.2 °C (minimum of 10.7 °C in January and maximum of 38.6 °C in August). The landscape is mainly

flat, and the vegetation is dominated by agricultural production (cereals, olive groves, fruit trees,

market gardens and bare soils).

Figure 2. Locator map of the Kairouan study area in the Kairouan Governorate of Tunisia. In green are

the reference fields on which soil moisture measurements are collected.

Sentinel-1 images

17 Sentinel-1 images were acquired between 06/12/2015 and 30/03/2017 over this study area. The

same processing of S1 images was performed as that for the Montpellier study site.

In situ measurements

Ground campaigns were carried out at the same time as the 17 Sentinel-1 acquisitions. The ground

measurements made on the reference fields involved the characterization of the soil moisture using

a theta-probe instrument. On average 35 bare soil reference fields were selected at each Sentinel-1

visit. For each reference field, approximately 20 handheld theta-probe measurements were made at

a depth of 5 cm. The samples were taken from various locations in each reference field, within a

two-hour time frame between 15:40 and 17:40, coinciding with the time of each S1 acquisition. The
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volumetric moisture ranged between 4.0 vol.% and 32.0 vol.%. Soil roughness measurements were not

available for the Kairouan dataset as opposed to the Montpellier dataset. It is important to note that

the Kairouan parcels are frequently irrigated. Finally, our Tunisian dataset is composed of 201 elements

with radar backscattering coefficients (in VV and VH) and in situ measurements of soil moisture (MVp)

and surface roughness (HRMS). The incidence angles of our reference plots vary from 39.5° to 39.9°.

This dataset was only used to validate our soil moisture estimates.

In summary, the synthetic dataset will serve as a benchmark for training and evaluating various

machine learning configurations through a wide range of backscattering coefficients obtained from the

calibrated IEM. Additionally, the real dataset offers a comprehensive and diverse set of environmental

conditions, satellite data, and field measurements from two distinct study areas in Montpellier, France,

and Kairouan, Tunisia. By comparing the soil moisture estimated from the sensor attributes and the

in situ soil moisture, our study can evaluate the machine learning configurations on veritable data.

The field measurements obtained from both study areas provide us with real data on soil attributes,

enabling us to ensure that the satellite data analysis is grounded in reality and is providing an accurate

representation of the soil attributes being studied.

3. Methodology

In this section, we introduce our experimental setups for inverting Sentinel-1 signals in order

to estimate soil moisture. First, inversion models are described. Then, the model architecture and

the process of model training and optimization are presented. Finally, the different input/output

configurations of the inversion model as well as the precision metrics used for the models evaluation

are detailed.

3.1. Inversion algorithm

This study focuses on estimating soil moisture content using radar backscattering coefficients

as input data (inverse equations 2 and 3). Therefore, the problem is formulated as developing a

model that can effectively estimate soil moisture levels based on the provided radar backscattering

coefficients, enabling a better understanding and monitoring of soil moisture dynamics. In fact, the

inversion model uses the neural network technique trained on the synthetic dataset described in the

previous section in order to inverse the radar signal. The trained neural networks are then used to

estimate soil moisture using the real Backscatter computed from Sentinel-1 images.

Given an input vector of S1 radar measurements, we want to learn the function N that maps the

radar measurements to soil moisture values MV. This problem can be formulated as:

MV = N (σ, θ, HRMS; w) + ϵ (4)

where the the inputs are σ the radar backscatter coefficient (dB) at VV and VH polarizations (Sentinel-1

configuration) provided by the satellite images and spatially averaged at plot (VVp and VHp) or

grid scales (VVg and VHg), θ the associated incidence angle (°), and HRMS the soil roughness value

(if available). The vector w = (W , b) denotes W the weights and b the bias of the neural network

N . ϵ denotes the estimation error. One of the objectives of this study is to find the best attribute

configuration, with the minimum ϵ.

The adopted neural network architecture is composed of two hidden layers. The first layer is

associated with a linear activation function while the second hidden layer uses a tangent sigmoid

activation function. Both hidden layers contain 20 neurons each [16]. In fact, after comparing this

neural network with other machine learning models (gradient-boosted decision tree and multi-layer

perceptron), we found that the added value of changing the machine learning model can be ignored in

relation to the added value of changing the machine learning model’s attributes. Let W1, W2, and W3

be the weight matrices of dimensions 20 × n, 20 × 20, and 1 × 20, respectively, and b1, b2, and b3 be the

bias vectors of dimensions 20 × 1, 20 × 1, and 1 × 1, respectively. For the first hidden layer, we use a
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linear transfer function, denoted as g1(·), and for the second hidden layer, we use a tangent sigmoid

transfer function, denoted as g2(·). The forward pass can be formulated as:

a) First hidden layer (linear transfer function):

z1 = W1x + b1, a1 = g1(z1), a1 = z1 (5)

b) Second hidden layer (tangent sigmoid transfer function):

z2 = W2a1 + b2, a2 = g2(z2), a2 = tanh(z2) (6)

c) Output layer:

z3 = W3a2 + b3, ŷ = h(z3) (7)

Where x is the input vector containing the sensor attributes values and ŷ is the estimated output.

The optimization problem aims to minimize a loss function L(ŷ, y), where ŷ is the estimated

output and y is the observed output. We want to find the optimal weight matrices (W1, W2, W3) and

bias vectors (b1, b2, b3) that minimize the loss function:

w∗ = arg min
w

L(ŷ, y) (8)

with w = (W1, W2, W3, b1, b2, b3).

This is typically achieved through an iterative process such as gradient descent, which updates

the weights and biases based on the gradients of the loss function with respect to the model parameters.

In our case the optimization technique used is the Levenberg-Marquardt (LM) algorithm [18]. The

Levenberg-Marquardt (LM) algorithm is a popular optimization technique that combines the features of

gradient descent and the Gauss-Newton method, making it particularly suitable for solving nonlinear

least-squares problems (see appendix). The LM algorithm is applied to our neural networks (N ) for

training by minimizing the sum of squared errors (SSE) loss function.

3.2. Evaluated Sentinel-1 configurations

Various configurations aimed at optimizing soil moisture estimation accuracy were evaluated.

These configurations involve the integration of Sentinel-1 polarizations, partitioning the estimation

domain into dry and wet conditions, incorporating a Sentinel-1 large-scale signal thanks to the grid

backscatter coefficients, and training neural networks with soil roughness estimates.

• Configuration 1: Analyze the effect of Sentinel-1 polarizations

Three inversion Sentinel-1 configurations were tested: (1) VV polarization alone; (2) VH

polarization alone; and (3) both VV and VH polarizations. In this configuration the soil roughness

parameter HRMS is ignored. They can be formulated as:

Con f ig_1_VV : MVp = N (σVVp , θ; w) + ϵ

Con f ig_1_VH : MVp = N (σVHp , θ; w) + ϵ

Con f ig_1_VV_VH : MVp = N (σVVp , σVHp , θ; w) + ϵ

(9)

• Configuration 2: Separate the MVp estimation domain into two separate domains one for dry to

slightly wet and one for very wet

Using the same polarizations as in the previous configuration, we separate our MVp solution

search domain into two domains: one with a search for a solution for dry to slightly wet soil

conditions and one for a solution for wet to very wet soil conditions. This configuration needs a

priori information on MVp (a priori dry to slightly wet or very wet). Partitioning the estimation
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domain into distinct dry and wet conditions and training dedicated neural networks for each

domain may significantly enhance soil moisture estimation accuracy [16]. By focusing on

domain-specific patterns and relationships, the specialized neural networks can capture the

complexities associated with soil moisture variations more effectively. In the case of a priori dry

to slightly wet soil, N will be built up using the synthetic training dataset elements with MVp

between 4 and 30 vol.%. Contrarily, in the case of a priori very wet soil conditions, N will be

developed using the synthetic training dataset elements with MVp between 20 and 40 vol.%.

An overlap of 10 vol.% on MVp is considered between the dry to slightly wet and the very wet

training datasets of N . During the evaluation, the dry N is applied on attributes with MVp < 25,

while the wet N is applied on attributes with MVp ≥ 25. In an operational context, the choice

between Ndry or Nwet is determined by meteorological data, primarily focusing on precipitation.

For example, if there has been significant rainfall one or two days before the S1 acquisition, the

Nwet would be used; otherwise, the Ndry is applied. In this configuration the soil roughness

parameter HRMS is ignored.

This is formulated as:

Con f ig_2_VV : MVpdry = Ndry(σVVp , θ; w) + ϵdry

MVpwet = Nwet(σVVp , θ; w) + ϵwet

Con f ig_2_VH : MVpdry = Ndry(σVHp , θ; w) + ϵdry

MVpwet = Nwet(σVHp , θ; w) + ϵwet

Con f ig_2_VV_VH : MVpdry = Ndry(σVVp , σVHp , θ; w) + ϵdry

MVpwet = Nwet(σVVp , σVHp , θ; w) + ϵwet

(10)

• Configuration 3: Assess the added value of using the grid information in addition to plot scale

In this configuration, we hypothesize that incorporating backscatter coefficients at the grid

scale into the soil moisture estimation process, in addition to backscatter coefficients at the

plot scale, can improve the accuracy of MVp estimation, potentially offering an alternative to

the domain-separated approach which necessitates weather data for selecting the appropriate

neural network (dry to slightly wet or very wet). This hypothesis assumes that integrating grid

coefficients can inform N about the soil moisture status in the study area, enabling the inversion

model to adapt to both dry and wet soil characteristics. We also chose to use both polarizations

as its the most precise configurations. There are two subcases of configuration 3, formulated as:

Con f ig_3_grid : MVp = NMVp(σVVp , σVHp , σVVg , σVHg , θ; w) + ϵMVp

Con f ig_3_grid_MVg : MVg = NMVg(σVVg , σVHg , θ; w) + ϵMVg

MVpdry = Ndry(σVVp , σVHp , σVVg , σVHg , θ; w) + ϵdry

MVpwet = Nwet(σVVp , σVHp , σVVg , σVHg , θ; w) + ϵwet

(11)

Equations (11) give a detailed presentation of the neural networks and their inputs used in

configuration 3. In Con f ig_3_grid only NMVp was used, this network was trained using

the backscatter coefficients for VV and VH polarizations on the grid and plot scales. In

Con f ig_3_grid_MVg three N were used, NMVg is trained to estimate MVg using the backscatter

coefficients for VV and VH on the grid scale, the MVg estimated from NMVg will serve as dry/wet

domain separator if estimated MVg < 25 vol.% the config will use Ndry in order to estimate MVp
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otherwise it will use Nwet. The second and third N were trained using the backscatter coefficients

for VV and VH polarizations on the grid and plot scales, Ndry uses backscatter coefficients on

MVp < 30 vol.% and Nwet uses backscatter coefficients on MVp > 20 vol.%. In this configuration

the soil roughness parameter HRMS is ignored.
• Configuration 4: Analyze the added value of using soil roughness estimates

In this last configuration, we hypothesize that training neural networks with soil roughness

estimates, in conjunction with incorporating grid backscatter coefficients and partitioning

estimation domains, can potentially improve soil moisture estimation accuracy. This hypothesis

suggests that by accounting for the complex relationships between soil moisture, surface

roughness, and backscatter signals, neural networks can better capture the intricacies of soil

moisture variations across various surface conditions. There are two subcases of configuration 4,

formulated as:

Con f ig_4_grid : HRMS = NHRMS(σVVp , σVHp , σVVg , σVHg , θ; w) + ϵHRMS

MVp = NMVp(σVVp , σVHp , σVVg , σVHg , HRMS, θ; w) + ϵMVp

Con f ig_4_grid_MVg : MVg = NMVg(σVVg , σVHg , θ; w) + ϵMVg

HRMSdry = NHRMSdry
(σVVp , σVHp , σVVg , σVHg , θ; w) + ϵHRMSdry

HRMSwet = NHRMSwet
(σVVp , σVHp , σVVg , σVHg , θ; w) + ϵHRMSwet

MVpdry = Ndry(σVVp , σVHp , σVVg , σVHg , HRMSdry, θ; w) + ϵdry

MVpwet = Nwet(σVVp , σVHp , σVVg , σVHg , HRMSwet, θ; w) + ϵwet

(12)

In Con f ig_4_grid two N were used. NHRMS was trained to estimate the soil roughness using the

backscatter coefficients for VV and VH polarizations on the grid and plot scales, while NMVp was

trained to estimate the soil moisture using the backscatter coefficients for VV and VH polarizations

on the grid and plot scales in addition to soil roughness. Further, to account for the uncertainties

on HRMS estimated from SAR images [7] in the training phase, a zero-mean Gaussian noise

was added to HRMS with a standard deviation of 0.5. Estimated HRMS from NHRMS is used to

estimates MVp.

In Con f ig_4_grid_MVg five N were used, like in Con f ig_3_grid_MVg, NMVg is used to separate

the estimation domain of HRMS and MVp into two domains dry-wet/very wet using the same

thresholds on MVg as Con f ig_3. Then, HRMS is estimated according to dry or wet conditions

(NHRMSdry
or NHRMSwet

) and then this estimate of HRMS is used in the network to estimate MVp

(Ndry or Nwet).

Note that configurations 1 and 2 have already been tested by El Hajj & al. [16] and that in our

study they serve as benchmarks for configurations 3 and 4.

3.3. Evaluation metrics

The first evaluation metric used is the Root Mean Squared Error (RMSE). RMSE is a valuable

metric in soil moisture estimation due to its comprehensive assessment of accuracy, emphasis on larger

errors, and clear interpretability. Its consideration of larger discrepancies ensures significant errors are

addressed. It can be formulated as:

RMSE =

√

√

√

√

1

N

N

∑
i=1

(yi − ŷi)2 (13)
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with N representing the number of data, yi denoting the observed value for the i-th data point, and ŷi

denoting the estimated value for the i-th data point.

The second evaluation metric used is Bias. The Bias metric serves as an important evaluation

tool due to its interpretability and ability to quantify systematic error. By measuring the average

difference between estimated and observed values, the Bias metric offers valuable insights into the

model’s overall performance. This metric enables us to identify and understand the extent to which a

model consistently overestimates or underestimates the target variable:

Bias =
1

N

N

∑
i=1

(ŷi − yi) (14)

The third evaluation metric used is the Mean Absolute Percentage Error (MAPE). MAPE is an

essential evaluation metric that provides a clear understanding of a model’s prediction accuracy in

terms of relative error. It computes the average percentage differences between estimated and observed

values:

MAPE =
1

N

N

∑
i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

(15)

4. Result analysis

In this section, the effectiveness of the configurations described in the section « Methodology »

will be compared on both the synthetic validation set (half the dataset that wasn’t used for training)

and the real dataset. This comprehensive evaluation will allow us to assess the performance of each

configuration under controlled and real-world conditions, thereby providing a better understanding

of their applicability and potential limitations. By examining the outcomes of these configurations, we

aim to determine the most effective configurations for optimizing soil moisture estimation accuracy.

4.1. Using synthetic validation set

All the configurations previously discussed are ranked using the three mentioned metrics and

displayed as a bar plot leaderboard in Figure 3. For configuration 1, which focused on the effect

of Sentinel-1 polarization, the combined use of VV and VH polarizations yielded a more accurate

estimation compared to using either polarization individually, with an RMSE decrease of about 0.7

vol.% for VH and 0.35 vol.% for VV as shown in Figure 3. In configuration 2 (with a priori information

on MVp), which involved separating the estimation domain into dry and wet conditions using a

weather forecasting framework, improved accuracy was observed in comparison to configuration 1,

particularly when both VV and VH polarizations were utilized, with an RMSE decrease of 0.4 vol.%.

For configuration 3, which assessed the added value of using the radar signal computed at the grid

scale, the two subcases (Config_3_grid and Config_3_grid_MVg) show that directly estimating MVp

with grid information produces the same performance as estimating MVg and then partitioning the

MVp to dry and wet using the MVg estimated. However, the three precision metrics show a clear

improvement in MVp accuracy using the grid scale information compared to configurations 1 and 2

except for configuration 2 when both polarizations are used, where we get an RMSE that improves

only of about 0.2 vol.%. Lastly, in configuration 4, which analyzed the added value of using soil

roughness estimates, the integration of soil roughness estimates did not improve the MVp estimation

accuracy in comparison to configuration 3. Figure 3 shows that we get the same order of magnitude on

all three precision metrics between configurations 3 and 4, about 3.5 vol.% on RMSE and 14% on MAPE.
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Figure 3. Accuracy metrics (BIAS, RMSE and MAPE) on soil moisture estimates of the 4 configurations

using the synthetic validation set.

Thus, the evaluation of these configurations suggests that the combined use of VV and VH

polarizations, separating the MVp estimation domain into dry and wet conditions yields better results

than the configuration without a priori information on MVp (configuration 1). The incorporation of

radar signal computed at grid scale using the bare agricultural soils included in each grid cell replaces

the priori information on the soil moisture conditions, extracted in general using expert knowledge

from meteorological data [16]. The added value of soil roughness estimates is negligible compared to

other configurations without the use of roughness information.

4.1.1. Performance of used N as a function of the soil moisture

In this part, model sensitivities to soil moisture are analyzed on the synthetic validation set.

Figure 4 shows the three precision metrics (Bias, RMSE and MAPE) calculated for intervals of soil

moisture values as boxplots. In configurations 1 and 2, the percentile values reveal a general increase

in RMSE values as the MVp level increases. The RMSE passes of about 2 vol.% for MVp in the range

4 to 7.5 vol.% to about 5 vol.% for MVp in the range 37.5 to 40 vol.%, indicating a decline in soil

moisture estimation accuracy as the soil moisture levels increase, as shown in Figure 4. However, the

MAPE shows that despite the increase in the RMSE, the performance of the soil moisture estimations

is improved as the soil moisture level increase. For example, the MAPE for the level [32.5,37.5[ was

about 10% less than that for low soil moisture values between 4 vol% and 7.5 vol%. This suggests

that soil moisture estimation accuracy is influenced by the soil moisture levels. In configurations

3 and 4, without a priori information on MVp in order to estimate the soil moisture, the percentile

values demonstrate an improvement in soil moisture estimation accuracy compared to configurations

1 and 2. In fact, for seven of the eight MVp ranges, the difference between 25% and 75% percentiles

is smaller for configurations 3 and 4 than for configurations 1 and 2 on all metrics, showing that not

only configurations 3 and 4 are more precise but also more stable. Finally, in configuration 4 where

estimated HRMS is used to optimize the MVp estimates, the percentile values reveal a very slight

improvement in soil moisture estimation accuracy than the other configurations. The bias metric

shows that all configurations tend to overestimate soil moisture for MVp under 32.5 vol.% and start to

underestimate soil moisture values above 32.5 vol.%.
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Figure 4. N sensitivities on soil moisture ranges for the synthetic validation set. Only the best subcase

of each configuration is plotted, conf_3_grid and conf_4_grid were plotted without a priori information

on MVp.

4.1.2. Performance of used N as a function of the soil roughness value

In this section, we evaluate how the best subcase of each configuration reacts to soil roughness

variations on the synthetic validation dataset. The precision metrics computed over diverse soil

roughness ranges are presented as boxplots in Figure 5. For all configurations, the percentile values

show high RMSE and MAPE values for low (HRMS < 1.5 cm) and high soil roughnesses (HRMS ≥ 2.5

cm), they also show the lowest scores for HRMS range between 1.5 and 2.5 cm Figure 5. The bias

shows that all configurations tend to underestimate MVp for low roughnesses (HRMS < 1.5 cm) and

overestimate MVp for high roughnesses (HRMS ≥ 2.5), this suggests that soil moisture estimation

accuracy is influenced by soil roughness and that the best HRMS range for estimating MVp is between

1.5 and 2.5 cm as shown in Figure 5. In configurations 3 and 4 without a priori information on MVp,

the percentile values demonstrate an improvement in soil moisture estimation accuracy compared to

configurations 1 and 2, especially for HRMS ≥ 1.5. Finally, in configuration 4, the percentile values

reveal a slightly greater improvement in soil moisture estimation accuracy than in other configurations,

thus affirming that N might benefit from training using soil roughness estimates.
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Figure 5. N sensitivities on soil roughness (HRMS) for the synthetic validation set. Only the best

subcase of each configuration is plotted, conf_3_grid and conf_4_grid were plotted without a priori

information on MVp.

4.2. Using real Dataset

In this section, we present the results of our evaluation on the real dataset, which originates from

the Kairouan region in Tunisia and the Occitanie region in France. The bar chart, referenced as Figure 6,

displays the rankings for the previously discussed configurations, using data from the real dataset.

The results of configurations 1 and 2 align with our findings from the synthetic dataset, where the

combination of both polarizations significantly improves estimation accuracy compared to using each

polarization individually (Figure 6). The use of both polarization reduces the RMSE on MVp estimates

of about 0.5.vol% in the case of configuration 1 and of about 0.35 vol.% for configuration 2. In addition,

the use of two polarizations considerably reduces bias as shown in Figure 6. Results of configuration 3

suggest that incorporating grid information optimizes soil moisture estimation accuracy compared

to the first configuration. The accuracy analysis on the MVp estimates obtained by configuration 3

shows the same accuracy gain compared to configuration 1 as in configuration 2, confirming that

we can achieve higher accuracy using grid information without the need for a priori weather. The

integration of roughness estimates (configuration 4) shows a relatively minor improvement in soil

moisture estimates compared to configurations 2 and 3. These results are consistent with the synthetic

dataset results.
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Figure 6. Accuracy metrics (BIAS, RMSE and MAPE) on soil moisture estimates of the 4 configurations

using the real dataset.

4.2.1. Performance of used N as a function of the soil moisture

In this part, model sensitivities to soil moisture are analyzed on real data. Figure 7 presents

Bias, RMSE and MAPE scores as percentile values for our better configurations (conf_1_VV_VH,

conf_2_VV_VH, conf_3_grid_MVg, and conf_4_grid) across various soil moisture levels ranging from

very dry to very wet conditions. For all configurations, the percentile values reveal a general decrease

in RMSE and MAPE values as MVp increases in the MVp range lower than 17.5 vol.% (from very dry

to slightly wet soils). Then we observe a change in trend as the MVp level increases from 17.5 vol.%

(slightly wet) to 32.5 (wet), as shown in Figure 7. Furthermore, the BIAS percentile values show that

our model is prone to slight overestimation in dry soil conditions and high underestimation in wet soil

conditions (bias reaches 10 vol.% for MVp higher than 32.5 vol.%). Separately, Figure 7 shows that

configurations 3 and 4 give better scores from very dry to wet conditions (best overall percentiles on

all scores) and that configuration 1 gives the best scores on very wet conditions.

Figure 7. Model sensitivity on soil moisture for the real dataset. Only the best subcase of each

configuration is plotted, case_3_grid_MVg and conf_4_grid were plotted without a priori information

on MVp.
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4.2.2. Performance of used N as a function of the soil roughness

This part focuses on examining the sensitivities of the model to soil roughness using real data.

Figure 8 displays percentile values of Bias, RMSE, and MAPE scores for the best 4 configurations across

different soil moisture levels. Soil moisture estimates appear to be unaffected by variations in soil

roughness since the BIAS metric demonstrates relatively balanced bias scores across all soil roughness

ranges as shown in Figure 8. This observation holds true for every configuration tested. Consequently,

soil roughness does not introduce any significant bias into soil moisture assessment. The dependence

between the accuracy on the estimation of MVp and the soil roughness is less well marked with the

real data because only a few measurements have roughnesses lower than 1 cm or higher than 3 cm.

Indeed, it is only on the small and strong roughnesses that we could observe a strong dependence on

the radar signal in C-band [22].

Figure 8. Model sensitivity across different soil roughness ranges for the real dataset. Only the best

subcase of each configuration is plotted, case_3_grid_MVg and conf_4_grid were plotted without a

priori information on MVp.

5. Discussion

In this part, we discuss the limitations of our S1 signal inversion procedures. The first limitation

concerns the accuracy of our model results, which may be due to an incorrect choice to use dry network

instead of wet network or vice versa (configurations 2, 3 and 4). This issue arises in cases where

some fields are irrigated, such as in the Kairouan study site, as opposed to the non-irrigated fields

in the Montpellier site. Indeed, for a given S1 date where the soils are mostly dry (lack of rainfall

since a long time), the dry network will be used in configurations 2, 3 and 4 in order to estimate

the soil moisture even if some fields are very wet after a recent irrigation event. Similarly, for the

configurations 3 and 4 with the use of MVg estimates in input to N for estimating MVp, the low and

medium values of estimated MVg corresponding to dry to slightly wet soil conditions even with some

irrigated fields in each grid cell will inform the network that will estimate MVp that overall we are

in dry to moderately wet soil conditions (at grid scale), while for some fields the moisture content

can be very high because they have been irrigated very recently. Thus, the presence of irrigated fields
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could lead to a strong underestimation of MVp for irrigated fields. The Bias values in Figures 9 and 10

are stronger for Kairouan (irrigated site). For example, MVP is underestimated by about 10 vol.% in

very wet conditions (MVP between 27.5 and 32.5 vol.%) for Kairouan against 7 vol.% for Montpellier

(non irrigated site). In addition, Figure 10 shows that the configurations 2, 3 and 4 demonstrate better

performance on non-irrigated parcels (lower Bias and RMSE).

Figure 9. Model sensitivity on soil moisture for the Montpellier dataset. Only the best subcase of each

configuration is plotted, case_3_grid_MVg and conf_4_grid were plotted without a priori information

on MVp.

Figure 10. Model sensitivity on soil moisture for the Kairouan dataset. Only the best subcase of each

configuration is plotted, case_3_grid and conf_4_grid were plotted without a priori information on

MVp.

The second limitation pertains to the generation of our dataset. The data generation process

involves fixing grid soil moisture (MVg) values between 4 and 40 vol.%, and then generating 100

samples of soil moisture at the plot scale (MVp) for each combination of incidence angle and soil

roughness. These samples are created using a bounded normal distribution, with a mean value

equal to the grid soil moisture and a standard deviation of 10 vol.%. The generated MVp samples
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are constrained within the range [MVg -10, MVg+10], and soil moisture at the plot scale is filtered

to retain only values between 4 and 40 vol.%. Capping the values in this manner can lead to an

unbalanced dataset, as MVg values below 14 and above 30 do not have MVp samples centered

on MVg with a standard deviation of 10. This constraint results in a limited representation of soil

moisture variability for these particular MVg ranges. Consequently, the dataset becomes skewed, with

certain soil moisture ranges being underrepresented. This imbalance negatively impacts the model’s

performance, particularly in scenarios where soil moisture values fall within the underrepresented

ranges, potentially leading to biased or inaccurate results.

The results obtained with configuration 4 which uses an estimation of the roughness in input

to N to estimate the soil moisture are not very conclusive because of the limiting Sentinel-1 sensor’s

instrumental characteristics for mapping the soil roughness (C-band, VV and VH polarizations,

incidence angles between 25° and 45°). Numerous results show that the radar signal in the C-band is

strongly dependent on surface roughness mainly for low levels of roughness [11,13,19]. The studies

showed that the sensitivity of radar signal to surface roughness increases with incidence angle.

Baghdadi et al [13] have shown that high incidence angles (45°) are best suited to the discrimination

between smooth and rough areas. Furthermore, when the incidence angle is low (between 20° and

35°), the backscattering coefficient rapidly attains its maximum value for roughness values around 1

cm (HRMS of less than 1 cm are rare in agricultural areas). Therefore, for agricultural applications,

soil-roughness mapping is not feasible using C-band SAR data at a low incidence angle due to the

rapid saturation of the radar signal. Concerning polarization effect, we observe theoretically and from

experimental studies a higher dynamic to soil roughness for HH and VH than with VV polarization

[5,11,12]. All this literature review shows that Sentinel-1 data are not optimal for a good estimation of

soil roughness. Thus, an unreliable estimate of roughness in N does not provide an improvement in

moisture estimation compared to the case where soil roughness is not considered a parameter of N .

The radar signal, which depends on various radar parameters (polarization, incidence angle,

and frequency), is also correlated, for bare soils, with soil surface roughness and moisture content

[11]. In an inversion approach, we are led to estimate the two soil parameters MV and HRMS or

only one of the two parameters if we have information on the second parameter. Estimating both soil

parameters requires two input channels. The ideal way would be to have at least two decorrelated

channels, for example two different incidence angles (one low 25° and one high 45°) or two different

radar frequencies (C and L for example). This is not possible because the available SAR sensors are

mono-wavelength and acquire, on a given date, a backscattered signal at a single incidence angle.

However, on a given date, Sentinel-1 acquires data at C-band and at only one incidence (the incidence

angle value depends on the position of the pixel in the image) but with two polarizations VV and VH.

As VV and VH are not completely decorrelated for the estimation of soil parameters, the use of both

VV and VH in the inversion approach of SAR images does not always allow a good optimization of

the estimated values of MVp and HRMS. This ambiguity in the estimation of the couple (MVp, HRMS)

can sometimes occur mainly in the case of soils with low HRMS value and high MVp value or vice

versa.

In this study, as in previous studies before it, the incorporation of coarse soil moisture information

over a given site is of great interest to improve the estimation of soil moisture. In [16,20], the

introduction of expert knowledge on the soil moisture (dry to wet soils or very wet soils) using

meteorological data (e.g. precipitations, temperature) reduced the errors on the soil moisture estimates

by one third. By adding a priori information on the humidity, the inversion of the radar signal is

done on half of the space (MVp, HRMS) thus reducing the ambiguity in the retrieval problem. This

paper has successfully tested the use of a feature computed from Sentinel-1 input data instead of using

meteorological data which is not always free, open access, and available in real-time, thus making the

inversion chain completely independent. This feature highly correlated with rainfall, corresponds to

the average of the Sentinel-1 signal at large scale (grid cells of 5 km x 5 km). In fact, Bazzi et al [17],

[21]) showed that the S1 backscattering signal averaged over a few km2 (using the bare agricultural
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pixels) is strongly correlated with rainfall and can be used as an indicator for the soil moisture content

at the date of passage of S1.

6. Conclusions

This study aimed to develop a fully automated solution for high-resolution soil moisture mapping

in bare agricultural areas using Sentinel-1 data, while eliminating the need for a priori weather

information, sometimes required for better accuracy on soil moisture estimates. Algorithms based on

neural networks were trained on a synthetic dataset generated by the radar backscattering model IEM

and validated using real data from two study sites in Montpellier, France, and Kairouan, Tunisia. The

results showed that our proposed algorithms were able to estimate soil moisture with high accuracy.

The use of the backscattering coefficients at plot scale as well as those at grid scale defined by the

average of all bare soil pixel values within each grid cell allowed for the inference of global soil

moisture conditions at a large scale.

Combining VV and VH polarizations (Configuration 1) consistently improves accuracy compared

to using either polarizations individually. Separating the estimation domain into dry and wet

conditions (Configuration 2) highlights the importance of using a priori information on the global soil

moisture state in the study site, yielding even better results when both VV and VH polarizations are

used, with about 14% gain on the synthetic dataset and 5% gain on the real dataset in RMSE compared

to the best configuration without domain separation. Incorporating grid information (Configuration 3)

optimizes accuracy without the need for weather information with about an 18% gain on the synthetic

dataset (slightly better than the configuration that separates the estimation domain using weather

information) and a 5% gain on the real dataset in RMSE compared to the first configuration. Finally,

while integrating soil roughness estimates (Configuration 4) does slightly enhance estimation accuracy,

the improvements are negligible as to the complexity of the architecture (5 NNs compared to just 1).

Overall, the combined use of VV and VH polarizations and incorporating grid information offers the

most significant improvements in soil moisture estimation accuracy, with soil roughness estimates

providing a marginal additional contribution to the process.

Our Sentinel-1 signal inversion procedures have revealed limitations. Firstly, the accuracy of

the inversion model based on the use of grid information or incorporating a priori information on

soil moisture (dry to slightly wet condition or very wet condition) can be compromised due to the

inappropriate choice of dry or wet network for estimating soil moisture, especially in areas with

irrigation practices. Secondly, the results from Configuration 4, which estimates soil roughness, are

inconclusive due to the instrumental characteristics of the Sentinel-1 sensor. Indeed, the C-band of

Sentinel-1 is not the optimum wavelength for soil roughness mapping as well as the incidence angles

which are lower than 40°-45° for a wide part of Sentinel-1 images. Lastly, the high dependence of the

radar signal on both soil roughness and moisture content leads to an ambiguity in the estimation of

soil moisture when the inversion model estimates only the soil moisture without taking into account

roughness or when the inversion model can’t estimate correctly both soil roughness and moisture

content (SAR layers in the input are insufficient). Despite these limitations, integrating coarse soil

moisture information (average moisture over large areas) has been demonstrated to improve soil

moisture estimation at plot scale.
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7. Appendix

7.1. Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm [18] is used to optimize the parameters of our neural network

and writes as follows:

1. Initialize the parameters: Set the weight matrices (W1, W2, W3) and bias vectors (b1, b2, b3) to

initial values and choose an initial damping factor λ.
2. Compute the Jacobian matrix J: For each input-output pair (xi, yi), compute the Jacobian matrix

Ji, which contains the partial derivatives of the loss function with respect to the model parameters

(W1, W2, W3, b1, b2, b3) for that specific input-output pair. Then, compute the combined Jacobian

matrix J by stacking Ji vertically for all input-output pairs in the dataset.
3. Compute the gradient vector g: Calculate the gradient vector g by multiplying the transpose of

the Jacobian matrix J with the error vector e (the difference between the predicted output and the

true output) for all input-output pairs in the dataset.
4. Update the parameters: Solve the following linear equation for the parameter update vector ∆p:

(JT J + λ · diag(JT J))∆p = −g (16)

where diag(JT J) represents a diagonal matrix with the diagonal elements of the matrix JT J, and λ

is the damping factor.
5. Update the parameters by adding the parameter update vector ∆p: (W1, W2, W3, b1, b2, b3) =

(W1, W2, W3, b1, b2, b3) + ∆p
6. Evaluate the new parameters: Calculate the new loss function value Lnew using the updated

parameters. If Lnew is smaller than the current loss function value L, accept the updated

parameters, decrease the damping factor λ (e.g., by multiplying it by a factor between 0.1 and

0.5), and proceed to the next iteration. If Lnew is not smaller than the current loss function value L,

reject the updated parameters, increase the damping factor λ (e.g., by multiplying it by a factor

between 2 and 10), and repeat the parameter update step.
7. Convergence check: Repeat steps 2-6 until a stopping criterion is met, such as reaching a

maximum number of iterations, a minimum change in the loss function, or a minimum change in

the model parameters.

The Levenberg-Marquardt algorithm adjusts the damping factor λ to balance between gradient descent

and Gauss-Newton method behavior, resulting in a more efficient convergence to the optimal solution.
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