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Abstract: Soil moisture maps are essential for hydrological, agricultural and risk assessment
applications. To best meet these requirements, it is essential to develop soil moisture products
at high spatial resolution which is now made possible using the free Sentinel-1 (51) SAR (Synthetic
Aperture Radar) data. Some soil moisture retrieval techniques using S1 data relied on the use of a
priori weather information in order to increase the precision of soil moisture estimates, which required
access to a weather forecasting framework. This paper presents an improved and fully automated
solution for high-resolution soil moisture mapping in bare agricultural areas. The proposed solution
derives a priori weather information directly from the original Sentinel images, thus bypassing the
need for a weather forecasting framework. For soil moisture estimation, the neural network technique
was implemented to ensure the optimum integration of radar information. The neural networks were
trained using synthetic data generated by the modified Integral Equation Model (IEM) model and
validated on real data from two study sites in France and Tunisia. Main findings showed that the use
of radar signal averaged over grids of a few km? in addition to radar signal at plot scale instead of a
priori weather information, provides good soil moisture estimations. The accuracy is even slightly
better comparatively to the accuracy obtained using a priori weather information.

Keywords: soil moisture; bare agricultural areas; neural networks; satellite remote sensing; Sentinel-1

1. Introduction

Understanding the water cycle is crucial for various natural phenomena, such as floods, landslides,
and droughts, which pose significant risks to human lives [1]. Soil surface characteristics, particularly
moisture content and surface roughness, play a vital role in water cycle monitoring [2-6]. While
ground measurements can accurately estimate these parameters, they are often time-consuming,
labor-intensive, and limited in spatial representation [7]. Observations collected through remote
sensing from space provide effective resources for tracking and mapping changes across vast regions
both spatially and over time which is needed for reliable predictions of water cycle behaviors [8]. In the
case of plot scale soil surface characteristics estimation, low spatial resolution measurements provided
by sensors like SMOS, SMAP, and ASCAT are unsuitable [9]. To overcome this low spatial resolution
limitation, the open source and free-of-charge Sentinel-1A and -1B Synthetic Aperture Radar (SAR)
sensors operating in the C-band have been introduced, offering high spatial resolution soil surface
characteristics mapping [10].

In areas with sparse vegetation cover, Synthetic Aperture Radar (SAR) data operating in the
C-band has emerged as a valuable tool for estimating soil moisture. Among the models employed to
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simulate the SAR signal, the Integral Equation Model (IEM), a physical model developed by Fung [11],
has gained considerable attention. Fung’s IEM possesses the advantage of not requiring site-specific
calibration, as it can consistently be used to simulate backscattering coefficients based on radar
configuration (frequency, polarization, and incidence angle) and soil parameters (soil moisture and
soil roughness). However, Fung’s IEM has shown discrepancies between simulated and observed SAR
data [12]. The IEM accurately replicates radar scatter on smooth surfaces. However, it under-performs
on rough surfaces, where it predicts a more uniform response with incidence angle than what is
observed in C and X bands signals. Baghdadi et al. [13,14] addressed this challenge by proposing
a semi-empirical calibration for the IEM. This calibration was designed to enhance the precision of
simulated backscattering values by accounting for the difficulties in measuring the correlation length
input parameter. Furthermore, it has been shown that for bare soil fields and at high incidence angles,
surface roughness has a more significant impact on the radar signal in the C-band than soil surface
moisture (SSM) [15]. Consequently, estimating soil moisture from SAR data without considering the
contribution of the root mean surface height (HRMS) would lead to imprecise soil moisture estimations,
with underestimation for low HRMS values and overestimation for higher values [16].

One of the prevailing approaches currently being employed to estimate surface soil moisture from
SAR data involves the inversion of backscatter simulation models using machine learning algorithms,
specifically neural networks [7,17]. The backscatter models are used to build a synthetic database of
simulated backscattering coefficients for various soil conditions and sensor attributes, then, neural
networks are trained to estimate soil moisture on this synthetic database [14]. A key enhancement to
this approach has been the use of a priori weather information in order to partition the estimation
domain into dry or wet conditions, leading to the application of one of two distinct neural networks,
each specifically trained for either dry to wet (between 4 vol.% and 30 vol.%) or very wet (between 20
vol.% and 40 vol.%) soil conditions [16].

Our study builds upon the approach introduced by El Hajj et al. [16] and presents a fully
automated solution to overcome the need for a priori weather information. By utilizing the
backscattering coefficients at the grid scale (a few km?), we can deduce the weather conditions used for
the estimation domain partitioning, without the need for a priori weather information. The hypothesis
behind this new approach relies on the fact that dry or wet conditions can be deduced for each grid
cell from the average backscatter coefficient of the whole grid. The second main objective is to study
the potential of incorporating soil roughness estimates into the soil moisture estimation procedure,
thereby analyzing the accuracy of surface soil moisture estimation when accounting for the influence
of surface roughness on radar backscattering. The added value of using grid data and soil roughness
estimates was studied in comparison to the previous models on the synthetic dataset generated by the
calibrated IEM [13] and on a real dataset taken from two study sites where in situ soil moisture and
soil roughness measurements are available.

2. Dataset description and problem statement

In this section, we provide a detailed description of the two datasets used in our study. The
first is the synthetic dataset obtained from the well-calibrated radar backscattering model IEM
(Integral Equation Model). The second dataset is a real dataset obtained from field measurements
conducted in Montpellier, France, and Kairouan, Tunisia. The performance of different neural network
configurations using these two datasets are then compared in order to identify the strengths and
limitations of each configuration.

2.1. Synthetic dataset

The synthetic dataset is a collection of generated backscattering coefficients obtained from the
calibrated IEM. The primary goal is to utilize a part of this dataset for training different machine
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learning configurations. The second part of this dataset will be used in the evaluation phase of our
radar signal inversion approaches, providing a reliable benchmark for performance comparison.

2.1.1. Calibrated radar backscattering IEM

For bare agricultural areas, the IEM calculates the backscattering coefficient (¢) by incorporating
the sensor’s attributes (incidence angle, polarization, and radar wavelength) along with the soil’s
parameters (soil moisture and soil roughness). The radar backscattering coefficient for a bare
agricultural soil can be formulated as follows:

o = IEM(6, A, Pol, MV, HRMS) 1)

Where, the sensor attributes are:

0 is the radar backscatter coefficient (no unit)

6 is the incidence angle (°)

A is the radar wavelength (cm)

Pol is the polarization (VV or VH; Sentinel-1 configuration)

The soil parameters:

e MYV is the soil Moisture Value (vol.%)
e  HRMS is the Height Root Mean Square of soil roughness (cm)

In our study, we estimate the soil moisture from the radar backscattering coefficients (single or
dual polarization) and HRMS (measured or otherwise estimated). Thus, this inverse problem can be
formulated as follows:

MV = IEM~ (0,0, HRMS) )

In the case where the soil roughness is unknown, the inputs to the neural networks are the SAR
data:

MV = IEM~Y(c,6) (3)

Thus, inversion of the radar signal to estimate soil moisture does not necessarily require
knowledge of the roughness. Inaccurate estimates of soil moisture would be obtained, however,
in the case where the roughness value is unknown.

2.1.2. Range of input parameters

The input parameter values needed to build a relevant synthetic dataset were chosen to represent
the same range of values as the parameters of real sensors and soils in agricultural areas. These inputs
were used to generate backscattering coefficients using the calibrated IEM. The radar wavelength was
set to 5.5 cm representing the Sentinel-1 radar wavelength. The incidence angle (¢) ranged from 20°
to 45° with a step size of 1°. For each incidence angle, soil roughness (HRMS) was considered from
a generated list of values, ranging from 0.5 to 3.8 cm with a step size of 0.1 (34 values). For each (6,
HRMS) combination, the soil moisture spanned from 4 to 40 vol.% with a step size of 2 vol.%.

Given that the SAR signal can show a strong increase with changes in soil moisture, especially
after heavy rainfall [17], calculating the average radar signal over large areas (watershed or a given
grid of several km?) using bare agricultural soils is useful as is represents the general soil moisture
conditions over the study area (very wet, wet to dry). In this study, as input to our soil moisture
estimation algorithm, we use information at the plot level (marked with a "p", VVp and VHp) and
information at the grid level (marked with a "g", VVg and VHg). For grid synthetic data we followed
the following scheme: We start by fixing the grid soil moisture MVg between 4 and 40 vol.%). Next,
for a given MVg value and each combination of incidence angle, soil roughness within the chosen
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ranges, 100 samples of soil moisture at plot scale were generated using a bounded normal distribution
with a mean value equal to the soil moisture at grid scale and a standard deviation of 10 vol.%. The
generated MVp samples were constrained within the range [MVg -10, MVg+10] and the soil moisture
at the plot scale was filtered to retain only those between 4 and 40 vol.%. Thus, in addition to MVp
values, we can also have MVg values as input in our inversion algorithm.

2.1.3. Synthetic dataset generation

Once the synthetic inputs are generated, we run the calibrated IEM to generate the backscatter
coefficients for the grid level using the grid soil moisture values (O'VVX, O'VHg) or for the plot level
using the soil moisture at plot scale (¢yv,, ovp,). Then an absolute error corresponding to the SAR
observation accuracy was added to the simulated backscattering coefficients to obtain a more realistic
synthetic dataset. For Sentinel-1, this error is defined by the absolute radiometric accuracy, which
is equal to 0.70 dB and 1.0 dB for VV and VH polarizations respectively [10]. Accordingly, for each
element of our dataset, 5 noise samples were randomly selected from the zero-mean Gaussian noise
distribution with a standard deviation of 0.7 and 1.0 dB, respectively for VV and VH. The randomly
selected noise values were then added to the IEM’s simulated ¢ at both scales (plot and grid). Finally,
our noisy synthetic dataset, in VV and VH polarizations is composed of about 8 million elements.

Table 1 shows an example of the possible combinations of our input parameters in an 8-column
data format. Each row represents a unique data combination defined by a given radar incidence angle
(), surface roughness, and soil moisture at plot and grid scales. ovv, and oy H, Were simulated using
(6, HRMS, MV p) while A and OvH, were simulated using (6, HRMS, MV g).

Table 1. Example of synthetic data generated by the calibrated IEM using Sentinel-1 wavelength.

IEM inputs IEM outputs
0 HRMS MVg MVp O'VVP U'VH,, vag U'VHg

20.0 0.5 4.0 6.56 -12.16 -27.58 -9.30 -21.21
20.0 0.5 4.0 6.45 -10.72 -24.56 -9.06 -19.27
20.0 0.5 4.0 10.76  -10.21 -24.82 -8.77 -20.32

45.0 3.8 40.0 36.98 -6.04 -15.49 -7.67 -17.01
45.0 3.8 40.0 32.38 -6.36 -17.66 -8.60 -17.55
45.0 3.8 40.0 3840 -4.78 -15.53 -6.40 -17.39

In this study half of the synthetic dataset is used for training the neural networks and the other
half for their evaluation, the evaluation half is referred to as the validation dataset.

2.2. Real dataset

In this part, we introduce our real dataset from two distinct study areas in Montpellier, France,
and Kairouan, Tunisia. This dataset offers diverse environmental conditions with associated satellite
data and field measurements. The satellite data contain the backscatter coefficients in VV and VH
polarizations calculated from Sentinel-1 images. In addition, fields measurements provide measured
soil moisture (MVp) and surface roughness (HRMS) collected at reference fields. The proposed machine
learning configurations for soil moisture estimations are evaluated using the in situ measured soil
moisture in the two study sites.
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2.2.1. Montpellier dataset
Study area

The first real dataset is collected in a study site located in the Occitanie region of France as shown
in Figure 1. With a relatively flat terrain topography, it is composed mainly of forest, vineyards,
grasslands, and agricultural fields (mainly wheat). The climate of the study site is Mediterranean
with a rainy season between mid-October and March and an average annual cumulative rainfall of
approximately 750 mm. The average air temperature varies between 2.9 °C and 29.3 °C. The topsoil
texture of the agricultural fields is loam.
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Figure 1. Locator map of the Montpellier study area in the Occitanie region of France. In green are the
reference fields on which soil moisture and roughness measurements were collected.

Sentinel-1 images

Over the French study site, 28 Sentinel-1 images (S1) acquired between 15/04/2016 and
26/06/2018 were used. The Sentinel-1 (S1) images are downloadable from the Copernicus website
(https:/ /scihub.copernicus.eu/dhus/#/home). The 28 S1 images used were acquired in IW imaging
mode with the VV and VH polarizations. The S1 images were calibrated using the S1 toolbox developed
by ESA (European Spatial Agency). The calibration aims to convert the digital number values of S1
images into backscattering coefficients () in a linear unit. Thus, for each polarization, the average
signal of all pixels in each plot is computed to obtain a single representative value for each reference
plot (o). Then, to build real SAR signals at grid scale (0y), for each S1 acquisition and polarization the
average backscatter coefficient is computed using all agricultural pixels with low NDVI values (below
0.4).

In situ measurements

In situ measurements of soil moisture and surface roughness were collected during 28 field
surveys between 15/04/2016 and 26/06/2018. These fields correspond to bare or partially vegetated
soils (NDVI lower than 0.4). Soil moisture at plot scale (MVp) was measured within a window of 2
h with respect to the Sentinel-1 acquisition date. For each reference plot, 20 to 30 measurements of
volumetric soil moisture were conducted in the top 5 cm of soil by means of a calibrated TDR (Time
Domain Reflectometry) probe. All soil moisture measurements within each plot were averaged to
provide a mean value for each plot. The range of the soil moisture value is between 4.5 and 32.5
vol.%. In addition, the soil roughness parameter HRMS was determined using a needle profilometer
with a length of 1 m and a needle spacing of 1 cm. For each reference plot, five parallel roughness
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profiles along the SAR line of sight were recorded and another five perpendicular to the line. Thus, by
processing the roughness profile, the HRMS was derived. In our study, the recorded HRMS values
of the reference plots varied between 0.5 and 4.0 cm. It is important to note that the parcels are not
irrigated.

Finally, our French dataset is composed of 198 elements with radar backscattering coefficients (in
VV and VH) and in situ measurements of soil moisture (MVp) and surface roughness (HRMS). Each
element of this real dataset represents a reference plot with an associated MVp value, incidence angle
and mean backscattering coefficients in VV and VH. The incidence angles of our reference plots vary
from 39° to 41°. This dataset was only used to validate our soil moisture estimates.

2.2.2. Kairouan dataset

Study area

The second real dataset was collected over a study area located in the Kairouan Governorate of Tunisia
as shown in Figure 2, in central Tunisia. The climate in this region is semi-arid, with an average annual
rainfall of approximately 300 mm/year, characterized by a rainy season lasting from October to May,
with the two rainiest months being October and March. The mean temperature in Kairouan City is
19.2 °C (minimum of 10.7 °C in January and maximum of 38.6 °C in August). The landscape is mainly
flat, and the vegetation is dominated by agricultural production (cereals, olive groves, fruit trees,
market gardens and bare soils).
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Figure 2. Locator map of the Kairouan study area in the Kairouan Governorate of Tunisia. In green are
the reference fields on which soil moisture measurements are collected.

Sentinel-1 images

17 Sentinel-1 images were acquired between 06/12/2015 and 30/03/2017 over this study area. The
same processing of S1 images was performed as that for the Montpellier study site.

In situ measurements

Ground campaigns were carried out at the same time as the 17 Sentinel-1 acquisitions. The ground
measurements made on the reference fields involved the characterization of the soil moisture using
a theta-probe instrument. On average 35 bare soil reference fields were selected at each Sentinel-1
visit. For each reference field, approximately 20 handheld theta-probe measurements were made at
a depth of 5 cm. The samples were taken from various locations in each reference field, within a
two-hour time frame between 15:40 and 17:40, coinciding with the time of each S1 acquisition. The
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volumetric moisture ranged between 4.0 vol.% and 32.0 vol.%. Soil roughness measurements were not
available for the Kairouan dataset as opposed to the Montpellier dataset. It is important to note that
the Kairouan parcels are frequently irrigated. Finally, our Tunisian dataset is composed of 201 elements
with radar backscattering coefficients (in VV and VH) and in situ measurements of soil moisture (MVp)
and surface roughness (HRMS). The incidence angles of our reference plots vary from 39.5° to 39.9°.
This dataset was only used to validate our soil moisture estimates.

In summary, the synthetic dataset will serve as a benchmark for training and evaluating various
machine learning configurations through a wide range of backscattering coefficients obtained from the
calibrated IEM. Additionally, the real dataset offers a comprehensive and diverse set of environmental
conditions, satellite data, and field measurements from two distinct study areas in Montpellier, France,
and Kairouan, Tunisia. By comparing the soil moisture estimated from the sensor attributes and the
in situ soil moisture, our study can evaluate the machine learning configurations on veritable data.
The field measurements obtained from both study areas provide us with real data on soil attributes,
enabling us to ensure that the satellite data analysis is grounded in reality and is providing an accurate
representation of the soil attributes being studied.

3. Methodology

In this section, we introduce our experimental setups for inverting Sentinel-1 signals in order
to estimate soil moisture. First, inversion models are described. Then, the model architecture and
the process of model training and optimization are presented. Finally, the different input/output
configurations of the inversion model as well as the precision metrics used for the models evaluation
are detailed.

3.1. Inversion algorithm

This study focuses on estimating soil moisture content using radar backscattering coefficients
as input data (inverse equations 2 and 3). Therefore, the problem is formulated as developing a
model that can effectively estimate soil moisture levels based on the provided radar backscattering
coefficients, enabling a better understanding and monitoring of soil moisture dynamics. In fact, the
inversion model uses the neural network technique trained on the synthetic dataset described in the
previous section in order to inverse the radar signal. The trained neural networks are then used to
estimate soil moisture using the real Backscatter computed from Sentinel-1 images.

Given an input vector of S1 radar measurements, we want to learn the function N that maps the
radar measurements to soil moisture values MV. This problem can be formulated as:

MV = N(c,0, HRMS; w) + € (4)

where the the inputs are ¢ the radar backscatter coefficient (dB) at VV and VH polarizations (Sentinel-1
configuration) provided by the satellite images and spatially averaged at plot (VVp and VHp) or
grid scales (VVg and VHg), 8 the associated incidence angle (°), and HRMS the soil roughness value
(if available). The vector w = (W, b) denotes W the weights and b the bias of the neural network
N. € denotes the estimation error. One of the objectives of this study is to find the best attribute
configuration, with the minimum e.

The adopted neural network architecture is composed of two hidden layers. The first layer is
associated with a linear activation function while the second hidden layer uses a tangent sigmoid
activation function. Both hidden layers contain 20 neurons each [16]. In fact, after comparing this
neural network with other machine learning models (gradient-boosted decision tree and multi-layer
perceptron), we found that the added value of changing the machine learning model can be ignored in
relation to the added value of changing the machine learning model’s attributes. Let Wy, W, and W3
be the weight matrices of dimensions 20 x 1,20 x 20, and 1 x 20, respectively, and by, by, and b3 be the
bias vectors of dimensions 20 x 1,20 x 1, and 1 x 1, respectively. For the first hidden layer, we use a
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linear transfer function, denoted as g1 (+), and for the second hidden layer, we use a tangent sigmoid
transfer function, denoted as g (-). The forward pass can be formulated as:
a) First hidden layer (linear transfer function):

z1 = Wix + bl/ a) = gl(Zl), a) =z (5)
b) Second hidden layer (tangent sigmoid transfer function):
zp = Whay + by, ap = gz(Zz), ay = tanh(zz) (6)

) Output layer:
zz3 =Waap+b3, §= h(zs) (7)

Where x is the input vector containing the sensor attributes values and 7 is the estimated output.

The optimization problem aims to minimize a loss function L(7,y), where  is the estimated
output and y is the observed output. We want to find the optimal weight matrices (W;, W,, W3) and
bias vectors (b1, b, b3) that minimize the loss function:

w* = arg min L(9,y) (8)

with w = (er Wh, W3, by, by, b3).

This is typically achieved through an iterative process such as gradient descent, which updates
the weights and biases based on the gradients of the loss function with respect to the model parameters.
In our case the optimization technique used is the Levenberg-Marquardt (LM) algorithm [18]. The
Levenberg-Marquardt (LM) algorithm is a popular optimization technique that combines the features of
gradient descent and the Gauss-Newton method, making it particularly suitable for solving nonlinear
least-squares problems (see appendix). The LM algorithm is applied to our neural networks (N) for
training by minimizing the sum of squared errors (SSE) loss function.

3.2. Evaluated Sentinel-1 configurations

Various configurations aimed at optimizing soil moisture estimation accuracy were evaluated.
These configurations involve the integration of Sentinel-1 polarizations, partitioning the estimation
domain into dry and wet conditions, incorporating a Sentinel-1 large-scale signal thanks to the grid
backscatter coefficients, and training neural networks with soil roughness estimates.

. Configuration 1: Analyze the effect of Sentinel-1 polarizations

Three inversion Sentinel-1 configurations were tested: (1) VV polarization alone; (2) VH
polarization alone; and (3) both VV and VH polarizations. In this configuration the soil roughness
parameter HRMS is ignored. They can be formulated as:

Config 1. VV : MVp = N (oyy,, 6;w) + €
Config 1 VH: MVp = N (oyn,, 0;w) +€ )
Config 1. VV_VH: MVp = N(U’VVP,O'VHP, 0, w)+e€
e  Configuration 2: Separate the MVp estimation domain into two separate domains one for dry to
slightly wet and one for very wet

Using the same polarizations as in the previous configuration, we separate our MVp solution
search domain into two domains: one with a search for a solution for dry to slightly wet soil
conditions and one for a solution for wet to very wet soil conditions. This configuration needs a
priori information on MVp (a priori dry to slightly wet or very wet). Partitioning the estimation
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domain into distinct dry and wet conditions and training dedicated neural networks for each
domain may significantly enhance soil moisture estimation accuracy [16]. By focusing on
domain-specific patterns and relationships, the specialized neural networks can capture the
complexities associated with soil moisture variations more effectively. In the case of a priori dry
to slightly wet soil, N will be built up using the synthetic training dataset elements with MVp
between 4 and 30 vol.%. Contrarily, in the case of a priori very wet soil conditions, N will be
developed using the synthetic training dataset elements with MVp between 20 and 40 vol.%.
An overlap of 10 vol.% on MVp is considered between the dry to slightly wet and the very wet
training datasets of /. During the evaluation, the dry V is applied on attributes with MVp < 25,
while the wet \ is applied on attributes with MVp > 25. In an operational context, the choice
between Ny, or Nyt is determined by meteorological data, primarily focusing on precipitation.
For example, if there has been significant rainfall one or two days before the S1 acquisition, the
Nuwet would be used; otherwise, the Nd,y is applied. In this configuration the soil roughness
parameter HRMS is ignored.

This is formulated as:

Config 2 VV : MVpgry = Nyry(ovv,, 0;w) + €gry
MV pwer = Nuvet (UVVPI 6; w) + Ewet

Config 2 VH : MVpgy, = Ndry (UVH,,/ 6, w) + €dry

(10)
MV pryer = Nwet(UVH,,r 0; w) + Ewet

Config 2_VV_VH: MVPdry = Ndry (‘TVVpr OVH,/ 6, w) + €dry

MV paer = Nuet(0vv,, 0vi,, 0; W) + wer

*  Configuration 3: Assess the added value of using the grid information in addition to plot scale

In this configuration, we hypothesize that incorporating backscatter coefficients at the grid
scale into the soil moisture estimation process, in addition to backscatter coefficients at the
plot scale, can improve the accuracy of MVp estimation, potentially offering an alternative to
the domain-separated approach which necessitates weather data for selecting the appropriate
neural network (dry to slightly wet or very wet). This hypothesis assumes that integrating grid
coefficients can inform A about the soil moisture status in the study area, enabling the inversion
model to adapt to both dry and wet soil characteristics. We also chose to use both polarizations
as its the most precise configurations. There are two subcases of configuration 3, formulated as:

Config 3_grid : MVp = Ny (0vv,, 0vH,, 0vv,, OV, 0; W) + €My

Config _3_grid_MVg: MV, = NMvg(UVVg,UVHg,H;w) + emvy (11)
Mvpdry = Ndry (UVVpr UVle O'VVgr O'Vng 6; w) + €dry

MVpuwet = Nuwet(0vv,, 0vH,, OVv,, OvH,, 0; W) + €wet

Equations (11) give a detailed presentation of the neural networks and their inputs used in
configuration 3. In Config_3_grid only Ny, was used, this network was trained using
the backscatter coefficients for VV and VH polarizations on the grid and plot scales. In
Config_3_grid_MVg three N were used, Ny, is trained to estimate MV g using the backscatter
coefficients for VV and VH on the grid scale, the MV g estimated from Ny, will serve as dry /wet
domain separator if estimated MVg < 25 vol.% the config will use NV, in order to estimate MVp
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otherwise it will use Ny,t. The second and third A/ were trained using the backscatter coefficients
for VV and VH polarizations on the grid and plot scales, Ny, uses backscatter coefficients on
MVp < 30 vol.% and Ny, uses backscatter coefficients on MVp > 20 vol.%. In this configuration
the soil roughness parameter HRMS is ignored.

e  Configuration 4: Analyze the added value of using soil roughness estimates

In this last configuration, we hypothesize that training neural networks with soil roughness
estimates, in conjunction with incorporating grid backscatter coefficients and partitioning
estimation domains, can potentially improve soil moisture estimation accuracy. This hypothesis
suggests that by accounting for the complex relationships between soil moisture, surface
roughness, and backscatter signals, neural networks can better capture the intricacies of soil
moisture variations across various surface conditions. There are two subcases of configuration 4,
formulated as:

Config_4_grid : HRMS = Nyurms(0vv,, 0vi,, 0vv,, 0vH,, 0; W) + €HRMS

MVp = Nuvy(ovy,, ovh,, ovv,, ovi, HRMS, 0;w) + emvyp

Config 4 grid_MVg: MVy = Nyve(ovv,, ovh,, 0;w) + emvg
HRMSuyy = Nurwms,,, (0vv,, OVH,, Ovv,, OVH, 0; W) + €HRMS,,, (12)
HRMSuwet = NHRMS 4t (OVV,s OVH, s OV Vs OV H,, 05 W) + EHRMS
MVpary = Nary(ovv,, 0vH,, 0vv,, 0vH, HRMS iy, 0;w) + €4yy

MV puwer = Nuwet(0vv,,0vh,, 0vv,, 0V, HRMSwet, 0; w) + €wer

In Config 4 grid two N were used. Nyrps was trained to estimate the soil roughness using the
backscatter coefficients for VV and VH polarizations on the grid and plot scales, while Ny, was
trained to estimate the soil moisture using the backscatter coefficients for VV and VH polarizations
on the grid and plot scales in addition to soil roughness. Further, to account for the uncertainties
on HRMS estimated from SAR images [7] in the training phase, a zero-mean Gaussian noise
was added to HRMS with a standard deviation of 0.5. Estimated HRMS from N yrus is used to
estimates MV p.

In Config_4_grid_MVg five N were used, like in Config_3_grid_MVg, Ny, is used to separate
the estimation domain of HRMS and MVp into two domains dry-wet/very wet using the same
thresholds on MV g as Config_3. Then, HRMS is estimated according to dry or wet conditions
(MHRMS ary OF Nur MS,,;) and then this estimate of HRMS is used in the network to estimate MVp
(Ndry or Nuet).

Note that configurations 1 and 2 have already been tested by El Hajj & al. [16] and that in our
study they serve as benchmarks for configurations 3 and 4.

3.3. Evaluation metrics

The first evaluation metric used is the Root Mean Squared Error (RMSE). RMSE is a valuable
metric in soil moisture estimation due to its comprehensive assessment of accuracy, emphasis on larger
errors, and clear interpretability. Its consideration of larger discrepancies ensures significant errors are
addressed. It can be formulated as:

(13)
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with N representing the number of data, y; denoting the observed value for the i-th data point, and 7;
denoting the estimated value for the i-th data point.

The second evaluation metric used is Bias. The Bias metric serves as an important evaluation
tool due to its interpretability and ability to quantify systematic error. By measuring the average
difference between estimated and observed values, the Bias metric offers valuable insights into the
model’s overall performance. This metric enables us to identify and understand the extent to which a
model consistently overestimates or underestimates the target variable:

o1
Bias = - ) (9 — vi) (14)
N3
The third evaluation metric used is the Mean Absolute Percentage Error (MAPE). MAPE is an
essential evaluation metric that provides a clear understanding of a model’s prediction accuracy in
terms of relative error. It computes the average percentage differences between estimated and observed

values:
1 N
MAPE = —
np>

Yi— Ui

15
m (15)

4. Result analysis

In this section, the effectiveness of the configurations described in the section « Methodology »
will be compared on both the synthetic validation set (half the dataset that wasn’t used for training)
and the real dataset. This comprehensive evaluation will allow us to assess the performance of each
configuration under controlled and real-world conditions, thereby providing a better understanding
of their applicability and potential limitations. By examining the outcomes of these configurations, we
aim to determine the most effective configurations for optimizing soil moisture estimation accuracy.

4.1. Using synthetic validation set

All the configurations previously discussed are ranked using the three mentioned metrics and
displayed as a bar plot leaderboard in Figure 3. For configuration 1, which focused on the effect
of Sentinel-1 polarization, the combined use of VV and VH polarizations yielded a more accurate
estimation compared to using either polarization individually, with an RMSE decrease of about 0.7
vol.% for VH and 0.35 vol.% for VV as shown in Figure 3. In configuration 2 (with a priori information
on MVp), which involved separating the estimation domain into dry and wet conditions using a
weather forecasting framework, improved accuracy was observed in comparison to configuration 1,
particularly when both VV and VH polarizations were utilized, with an RMSE decrease of 0.4 vol.%.
For configuration 3, which assessed the added value of using the radar signal computed at the grid
scale, the two subcases (Config_3_grid and Config_3_grid_MVg) show that directly estimating MVp
with grid information produces the same performance as estimating MVg and then partitioning the
MVp to dry and wet using the MVg estimated. However, the three precision metrics show a clear
improvement in MVp accuracy using the grid scale information compared to configurations 1 and 2
except for configuration 2 when both polarizations are used, where we get an RMSE that improves
only of about 0.2 vol.%. Lastly, in configuration 4, which analyzed the added value of using soil
roughness estimates, the integration of soil roughness estimates did not improve the MV p estimation
accuracy in comparison to configuration 3. Figure 3 shows that we get the same order of magnitude on
all three precision metrics between configurations 3 and 4, about 3.5 vol.% on RMSE and 14% on MAPE.


https://doi.org/10.20944/preprints202306.0661.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0661.v1

12 of 21
5.00 24
4.75 22
_ | =450l i
& I = 4.25 9
- =4, )
g0.0 B | l g <18
2 <4.00 W
vl “‘" {16
2-0.1 L ¥375 <
@ 5 14
& 3,50
—0:2 3.25 12
3.00 10
I>2II>2I T oo o IEII;IEmgm I;IIEIEUEU‘
> > T > T 2 > > > >LC 2t 2 > > > > T > L >
Sulagulﬁﬁlz 5 G050 00 5% 55 G,06,5,00,0 35 9%
i'-—c.«'émm""“c‘“‘v' >,_|,,§NNMI-U¢|-D ;HH?NNm‘UqIU
R ] wheg b = S el PR B C L < e wdigd wl S ol B
CEECEEEBRES  CrEelrrERER  Crelreihth
~ 8989488 8m8 <« ~ 38 ~A3880mO0O« - 38 ~8 8 0mOw
- - E e F O} B -
8 8 8 8 Lv] ¥ (V] (v) ] 9] U (W]

Figure 3. Accuracy metrics (BIAS, RMSE and MAPE) on soil moisture estimates of the 4 configurations
using the synthetic validation set.

Thus, the evaluation of these configurations suggests that the combined use of VV and VH
polarizations, separating the MVp estimation domain into dry and wet conditions yields better results
than the configuration without a priori information on MVp (configuration 1). The incorporation of
radar signal computed at grid scale using the bare agricultural soils included in each grid cell replaces
the priori information on the soil moisture conditions, extracted in general using expert knowledge
from meteorological data [16]. The added value of soil roughness estimates is negligible compared to
other configurations without the use of roughness information.

4.1.1. Performance of used N\ as a function of the soil moisture

In this part, model sensitivities to soil moisture are analyzed on the synthetic validation set.
Figure 4 shows the three precision metrics (Bias, RMSE and MAPE) calculated for intervals of soil
moisture values as boxplots. In configurations 1 and 2, the percentile values reveal a general increase
in RMSE values as the MVp level increases. The RMSE passes of about 2 vol.% for MVp in the range
4 to 7.5 vol.% to about 5 vol.% for MVp in the range 37.5 to 40 vol.%, indicating a decline in soil
moisture estimation accuracy as the soil moisture levels increase, as shown in Figure 4. However, the
MAPE shows that despite the increase in the RMSE, the performance of the soil moisture estimations
is improved as the soil moisture level increase. For example, the MAPE for the level [32.5,37.5] was
about 10% less than that for low soil moisture values between 4 vol% and 7.5 vol%. This suggests
that soil moisture estimation accuracy is influenced by the soil moisture levels. In configurations
3 and 4, without a priori information on MVp in order to estimate the soil moisture, the percentile
values demonstrate an improvement in soil moisture estimation accuracy compared to configurations
1 and 2. In fact, for seven of the eight MVp ranges, the difference between 25% and 75% percentiles
is smaller for configurations 3 and 4 than for configurations 1 and 2 on all metrics, showing that not
only configurations 3 and 4 are more precise but also more stable. Finally, in configuration 4 where
estimated HRMS is used to optimize the MVp estimates, the percentile values reveal a very slight
improvement in soil moisture estimation accuracy than the other configurations. The bias metric
shows that all configurations tend to overestimate soil moisture for MVp under 32.5 vol.% and start to
underestimate soil moisture values above 32.5 vol.%.
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Figure 4. V sensitivities on soil moisture ranges for the synthetic validation set. Only the best subcase

of each configuration is plotted, conf_3_grid and conf_4_grid were plotted without a priori information
on MVp.

4.1.2. Performance of used N as a function of the soil roughness value

In this section, we evaluate how the best subcase of each configuration reacts to soil roughness
variations on the synthetic validation dataset. The precision metrics computed over diverse soil
roughness ranges are presented as boxplots in Figure 5. For all configurations, the percentile values
show high RMSE and MAPE values for low (HRMS < 1.5 cm) and high soil roughnesses (HRMS > 2.5
cm), they also show the lowest scores for HRMS range between 1.5 and 2.5 cm Figure 5. The bias
shows that all configurations tend to underestimate MVp for low roughnesses (HRMS < 1.5 cm) and
overestimate MVp for high roughnesses (HRMS > 2.5), this suggests that soil moisture estimation
accuracy is influenced by soil roughness and that the best HRMS range for estimating MVp is between
1.5 and 2.5 cm as shown in Figure 5. In configurations 3 and 4 without a priori information on MVp,
the percentile values demonstrate an improvement in soil moisture estimation accuracy compared to
configurations 1 and 2, especially for HRMS > 1.5. Finally, in configuration 4, the percentile values
reveal a slightly greater improvement in soil moisture estimation accuracy than in other configurations,
thus affirming that V' might benefit from training using soil roughness estimates.
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Figure 5. N sensitivities on soil roughness (HRMS) for the synthetic validation set. Only the best
subcase of each configuration is plotted, conf_3_grid and conf_4_grid were plotted without a priori
information on MVp.

4.2. Using real Dataset

In this section, we present the results of our evaluation on the real dataset, which originates from
the Kairouan region in Tunisia and the Occitanie region in France. The bar chart, referenced as Figure 6,
displays the rankings for the previously discussed configurations, using data from the real dataset.
The results of configurations 1 and 2 align with our findings from the synthetic dataset, where the
combination of both polarizations significantly improves estimation accuracy compared to using each
polarization individually (Figure 6). The use of both polarization reduces the RMSE on MVp estimates
of about 0.5.vol% in the case of configuration 1 and of about 0.35 vol.% for configuration 2. In addition,
the use of two polarizations considerably reduces bias as shown in Figure 6. Results of configuration 3
suggest that incorporating grid information optimizes soil moisture estimation accuracy compared
to the first configuration. The accuracy analysis on the MVp estimates obtained by configuration 3
shows the same accuracy gain compared to configuration 1 as in configuration 2, confirming that
we can achieve higher accuracy using grid information without the need for a priori weather. The
integration of roughness estimates (configuration 4) shows a relatively minor improvement in soil
moisture estimates compared to configurations 2 and 3. These results are consistent with the synthetic
dataset results.
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Figure 6. Accuracy metrics (BIAS, RMSE and MAPE) on soil moisture estimates of the 4 configurations
using the real dataset.

4.2.1. Performance of used N\ as a function of the soil moisture

In this part, model sensitivities to soil moisture are analyzed on real data. Figure 7 presents
Bias, RMSE and MAPE scores as percentile values for our better configurations (conf_1_VV_VH,
conf 2_VV_VH, conf _3_grid MVg, and conf_4_grid) across various soil moisture levels ranging from
very dry to very wet conditions. For all configurations, the percentile values reveal a general decrease
in RMSE and MAPE values as MVp increases in the MVp range lower than 17.5 vol.% (from very dry
to slightly wet soils). Then we observe a change in trend as the MVp level increases from 17.5 vol.%
(slightly wet) to 32.5 (wet), as shown in Figure 7. Furthermore, the BIAS percentile values show that
our model is prone to slight overestimation in dry soil conditions and high underestimation in wet soil
conditions (bias reaches 10 vol.% for MVp higher than 32.5 vol.%). Separately, Figure 7 shows that
configurations 3 and 4 give better scores from very dry to wet conditions (best overall percentiles on
all scores) and that configuration 1 gives the best scores on very wet conditions.
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Figure 7. Model sensitivity on soil moisture for the real dataset. Only the best subcase of each

configuration is plotted, case_3_grid_MVg and conf_4_grid were plotted without a priori information
on MVp.


https://doi.org/10.20944/preprints202306.0661.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0661.v1

16 of 21

4.2.2. Performance of used N as a function of the soil roughness

This part focuses on examining the sensitivities of the model to soil roughness using real data.
Figure 8 displays percentile values of Bias, RMSE, and MAPE scores for the best 4 configurations across
different soil moisture levels. Soil moisture estimates appear to be unaffected by variations in soil
roughness since the BIAS metric demonstrates relatively balanced bias scores across all soil roughness
ranges as shown in Figure 8. This observation holds true for every configuration tested. Consequently,
soil roughness does not introduce any significant bias into soil moisture assessment. The dependence
between the accuracy on the estimation of MVp and the soil roughness is less well marked with the
real data because only a few measurements have roughnesses lower than 1 cm or higher than 3 cm.
Indeed, it is only on the small and strong roughnesses that we could observe a strong dependence on
the radar signal in C-band [22].
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Figure 8. Model sensitivity across different soil roughness ranges for the real dataset. Only the best
subcase of each configuration is plotted, case_3_grid_MVg and conf_4_grid were plotted without a
priori information on MVp.

5. Discussion

In this part, we discuss the limitations of our S1 signal inversion procedures. The first limitation
concerns the accuracy of our model results, which may be due to an incorrect choice to use dry network
instead of wet network or vice versa (configurations 2, 3 and 4). This issue arises in cases where
some fields are irrigated, such as in the Kairouan study site, as opposed to the non-irrigated fields
in the Montpellier site. Indeed, for a given S1 date where the soils are mostly dry (lack of rainfall
since a long time), the dry network will be used in configurations 2, 3 and 4 in order to estimate
the soil moisture even if some fields are very wet after a recent irrigation event. Similarly, for the
configurations 3 and 4 with the use of MVg estimates in input to AV for estimating MVp, the low and
medium values of estimated MVg corresponding to dry to slightly wet soil conditions even with some
irrigated fields in each grid cell will inform the network that will estimate MVp that overall we are
in dry to moderately wet soil conditions (at grid scale), while for some fields the moisture content
can be very high because they have been irrigated very recently. Thus, the presence of irrigated fields
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could lead to a strong underestimation of MVp for irrigated fields. The Bias values in Figures 9 and 10
are stronger for Kairouan (irrigated site). For example, MVP is underestimated by about 10 vol.% in
very wet conditions (MVP between 27.5 and 32.5 vol.%) for Kairouan against 7 vol.% for Montpellier
(non irrigated site). In addition, Figure 10 shows that the configurations 2, 3 and 4 demonstrate better
performance on non-irrigated parcels (lower Bias and RMSE).
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Figure 9. Model sensitivity on soil moisture for the Montpellier dataset. Only the best subcase of each
configuration is plotted, case_3_grid_MVg and conf_4_grid were plotted without a priori information

on MVp.
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Figure 10. Model sensitivity on soil moisture for the Kairouan dataset. Only the best subcase of each
configuration is plotted, case_3_grid and conf_4_grid were plotted without a priori information on
MVp.

The second limitation pertains to the generation of our dataset. The data generation process
involves fixing grid soil moisture (MVg) values between 4 and 40 vol.%, and then generating 100
samples of soil moisture at the plot scale (MVp) for each combination of incidence angle and soil
roughness. These samples are created using a bounded normal distribution, with a mean value
equal to the grid soil moisture and a standard deviation of 10 vol.%. The generated MVp samples
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are constrained within the range [MVg -10, MVg+10], and soil moisture at the plot scale is filtered
to retain only values between 4 and 40 vol.%. Capping the values in this manner can lead to an
unbalanced dataset, as MVg values below 14 and above 30 do not have MVp samples centered
on MVg with a standard deviation of 10. This constraint results in a limited representation of soil
moisture variability for these particular MVg ranges. Consequently, the dataset becomes skewed, with
certain soil moisture ranges being underrepresented. This imbalance negatively impacts the model’s
performance, particularly in scenarios where soil moisture values fall within the underrepresented
ranges, potentially leading to biased or inaccurate results.

The results obtained with configuration 4 which uses an estimation of the roughness in input
to V to estimate the soil moisture are not very conclusive because of the limiting Sentinel-1 sensor’s
instrumental characteristics for mapping the soil roughness (C-band, VV and VH polarizations,
incidence angles between 25° and 45°). Numerous results show that the radar signal in the C-band is
strongly dependent on surface roughness mainly for low levels of roughness [11,13,19]. The studies
showed that the sensitivity of radar signal to surface roughness increases with incidence angle.
Baghdadi et al [13] have shown that high incidence angles (45°) are best suited to the discrimination
between smooth and rough areas. Furthermore, when the incidence angle is low (between 20° and
35°), the backscattering coefficient rapidly attains its maximum value for roughness values around 1
cm (HRMS of less than 1 cm are rare in agricultural areas). Therefore, for agricultural applications,
soil-roughness mapping is not feasible using C-band SAR data at a low incidence angle due to the
rapid saturation of the radar signal. Concerning polarization effect, we observe theoretically and from
experimental studies a higher dynamic to soil roughness for HH and VH than with VV polarization
[5,11,12]. All this literature review shows that Sentinel-1 data are not optimal for a good estimation of
soil roughness. Thus, an unreliable estimate of roughness in N does not provide an improvement in
moisture estimation compared to the case where soil roughness is not considered a parameter of \V.

The radar signal, which depends on various radar parameters (polarization, incidence angle,
and frequency), is also correlated, for bare soils, with soil surface roughness and moisture content
[11]. In an inversion approach, we are led to estimate the two soil parameters MV and HRMS or
only one of the two parameters if we have information on the second parameter. Estimating both soil
parameters requires two input channels. The ideal way would be to have at least two decorrelated
channels, for example two different incidence angles (one low 25° and one high 45°) or two different
radar frequencies (C and L for example). This is not possible because the available SAR sensors are
mono-wavelength and acquire, on a given date, a backscattered signal at a single incidence angle.
However, on a given date, Sentinel-1 acquires data at C-band and at only one incidence (the incidence
angle value depends on the position of the pixel in the image) but with two polarizations VV and VH.
As VV and VH are not completely decorrelated for the estimation of soil parameters, the use of both
VV and VH in the inversion approach of SAR images does not always allow a good optimization of
the estimated values of MVp and HRMS. This ambiguity in the estimation of the couple (MVp, HRMS)
can sometimes occur mainly in the case of soils with low HRMS value and high MVp value or vice
versa.

In this study, as in previous studies before it, the incorporation of coarse soil moisture information
over a given site is of great interest to improve the estimation of soil moisture. In [16,20], the
introduction of expert knowledge on the soil moisture (dry to wet soils or very wet soils) using
meteorological data (e.g. precipitations, temperature) reduced the errors on the soil moisture estimates
by one third. By adding a priori information on the humidity, the inversion of the radar signal is
done on half of the space (MVp, HRMS) thus reducing the ambiguity in the retrieval problem. This
paper has successfully tested the use of a feature computed from Sentinel-1 input data instead of using
meteorological data which is not always free, open access, and available in real-time, thus making the
inversion chain completely independent. This feature highly correlated with rainfall, corresponds to
the average of the Sentinel-1 signal at large scale (grid cells of 5 km x 5 km). In fact, Bazzi et al [17],
[21]) showed that the S1 backscattering signal averaged over a few km? (using the bare agricultural
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pixels) is strongly correlated with rainfall and can be used as an indicator for the soil moisture content
at the date of passage of S1.

6. Conclusions

This study aimed to develop a fully automated solution for high-resolution soil moisture mapping
in bare agricultural areas using Sentinel-1 data, while eliminating the need for a priori weather
information, sometimes required for better accuracy on soil moisture estimates. Algorithms based on
neural networks were trained on a synthetic dataset generated by the radar backscattering model IEM
and validated using real data from two study sites in Montpellier, France, and Kairouan, Tunisia. The
results showed that our proposed algorithms were able to estimate soil moisture with high accuracy.
The use of the backscattering coefficients at plot scale as well as those at grid scale defined by the
average of all bare soil pixel values within each grid cell allowed for the inference of global soil
moisture conditions at a large scale.

Combining VV and VH polarizations (Configuration 1) consistently improves accuracy compared
to using either polarizations individually. Separating the estimation domain into dry and wet
conditions (Configuration 2) highlights the importance of using a priori information on the global soil
moisture state in the study site, yielding even better results when both VV and VH polarizations are
used, with about 14% gain on the synthetic dataset and 5% gain on the real dataset in RMSE compared
to the best configuration without domain separation. Incorporating grid information (Configuration 3)
optimizes accuracy without the need for weather information with about an 18% gain on the synthetic
dataset (slightly better than the configuration that separates the estimation domain using weather
information) and a 5% gain on the real dataset in RMSE compared to the first configuration. Finally,
while integrating soil roughness estimates (Configuration 4) does slightly enhance estimation accuracy,
the improvements are negligible as to the complexity of the architecture (5 NNs compared to just 1).
Overall, the combined use of VV and VH polarizations and incorporating grid information offers the
most significant improvements in soil moisture estimation accuracy, with soil roughness estimates
providing a marginal additional contribution to the process.

Our Sentinel-1 signal inversion procedures have revealed limitations. Firstly, the accuracy of
the inversion model based on the use of grid information or incorporating a priori information on
soil moisture (dry to slightly wet condition or very wet condition) can be compromised due to the
inappropriate choice of dry or wet network for estimating soil moisture, especially in areas with
irrigation practices. Secondly, the results from Configuration 4, which estimates soil roughness, are
inconclusive due to the instrumental characteristics of the Sentinel-1 sensor. Indeed, the C-band of
Sentinel-1 is not the optimum wavelength for soil roughness mapping as well as the incidence angles
which are lower than 40°-45° for a wide part of Sentinel-1 images. Lastly, the high dependence of the
radar signal on both soil roughness and moisture content leads to an ambiguity in the estimation of
soil moisture when the inversion model estimates only the soil moisture without taking into account
roughness or when the inversion model can’t estimate correctly both soil roughness and moisture
content (SAR layers in the input are insufficient). Despite these limitations, integrating coarse soil
moisture information (average moisture over large areas) has been demonstrated to improve soil
moisture estimation at plot scale.
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7. Appendix

7.1. Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm [18] is used to optimize the parameters of our neural network
and writes as follows:

1. Initialize the parameters: Set the weight matrices (W1, Wy, W3) and bias vectors (by, b, b3) to
initial values and choose an initial damping factor A.

2. Compute the Jacobian matrix J: For each input-output pair (x;, y;), compute the Jacobian matrix
Ji, which contains the partial derivatives of the loss function with respect to the model parameters
(W1, Wy, W3, by, by, b3) for that specific input-output pair. Then, compute the combined Jacobian
matrix | by stacking J; vertically for all input-output pairs in the dataset.

3. Compute the gradient vector g: Calculate the gradient vector ¢ by multiplying the transpose of
the Jacobian matrix | with the error vector e (the difference between the predicted output and the
true output) for all input-output pairs in the dataset.

4.  Update the parameters: Solve the following linear equation for the parameter update vector Ap:

(J'T+A-diag(J'T)Ap = —g (16)

where diag(JT]) represents a diagonal matrix with the diagonal elements of the matrix JT], and A
is the damping factor.

5. Update the parameters by adding the parameter update vector Ap: (W1, Wy, W3, b1, b,,b3) =
(W1, Wa, W3, by, by, bs) + Ap

6. Evaluate the new parameters: Calculate the new loss function value Lpew using the updated
parameters. If Lpew is smaller than the current loss function value L, accept the updated
parameters, decrease the damping factor A (e.g., by multiplying it by a factor between 0.1 and
0.5), and proceed to the next iteration. If Lpew is not smaller than the current loss function value L,
reject the updated parameters, increase the damping factor A (e.g., by multiplying it by a factor
between 2 and 10), and repeat the parameter update step.

7. Convergence check: Repeat steps 2-6 until a stopping criterion is met, such as reaching a
maximum number of iterations, a minimum change in the loss function, or a minimum change in
the model parameters.

The Levenberg-Marquardt algorithm adjusts the damping factor A to balance between gradient descent
and Gauss-Newton method behavior, resulting in a more efficient convergence to the optimal solution.
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