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Abstract: In Southeast Asia, the incidence of Leukemia, a malignant blood cancer originating from 

hematopoietic progenitor cells, is on the rise, marked by a concerning 54% mortality rate. Early-stage prediction 

plays a crucial role in enhancing patient recovery prospects. This study is dedicated to significantly improving 

early-stage prediction methods. Leveraging Machine Learning and Data Science, we employ protein sequential 

data from frequently mutated genes such as BCL2, HSP90, PARP, and RB to predict Chronic Myeloid Leukemia 

(CML). Our approach relies on robust feature extraction techniques, namely Di-peptide Composition (DPC), 

Amino Acid Composition (AAC), and Pseudo amino acid composition (Pse-AAC), with prior attention to 

addressing outliers and validating feature selection through the Pearson Correlation Coefficient. Data 

augmentation ensures a well-rounded dataset for analysis. Employing a range of Machine Learning models, 

including Support Vector Machine (SVM), XGBoost, Random Forest (RF), K Nearest Neighbor (KNN), Decision 

Tree (DT), and Logistic Regression (LR), we achieve accuracy rates spanning from 66% to 94%. These classifiers 

undergo comprehensive assessment using performance metrics such as accuracy, sensitivity, specificity, F1-

score, and the confusion matrix. Our proposed solution, encompassing a user-friendly web application 

dashboard, presents an invaluable tool for early CML diagnosis with profound implications for practitioners, 

offering a deployable asset within healthcare institutions and hospitals. 

Keywords: protein sequences; pseudo-AAC; AAC; dipeptide-C; chronic myeloid leukemia; blood 

cancer early detection; healthcare application 

 

1. Introduction 

Leukemia is a complex medical condition influenced by genetic regulation in the production of 

blood cells. When hematopoietic precursor cells turn malignant [1], it gives rise to abnormal cell 

growth due to alterations in DNA and RNA sequences. This transformation results in the infiltration 

of healthy cells by malignant ones, thus causing Leukemia. The illness primarily entails the 

uncontrolled proliferation of specifically White Blood Cells (WBC), i.e., neutrophils, basophils, and 

eosinophils, while lymphocytes remain unaffected. Acute myeloid Leukemia (AML), chronic 

myeloid Leukemia (CML), acute lymphoblastic Leukemia (ALL), and chronic lymphocytic Leukemia 
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(CLL) are some of the several kinds of Leukemia [2]. The only subject of our research is Chronic 

Myeloid Leukemia (CML). 

 

Figure 1. Various stages of chronic Myeloid leukemia classification. 

Leukemia cancer presents a substantial health challenge due to the abnormal proliferation of 

White Blood Cells (WBC) [1]. While research has concentrated on detecting cancer through blood cell 

images, exploration of Protein Sequential data is limited. Leukemia diagnosis heavily relies on 

hematologists, posing limitations in regions with a scarcity of specialists. Mortality rates are on the 

rise, particularly in South East Asia [3], creating a demand for an early detection approach. 

The motivation for driving the proposed research arises from the observation that a plethora of 

research has been conducted on cancer predictions—such as lung cancer, liver cancer, colon cancer, 

ovarian cancer, etc. utilizing MRI (magnetic resonance imaging), CT (computed tomography) scans, 

image processing techniques and protein sequences  [4–6]. However, the realm of gene data in 

bioinformatics remains relatively uncharted, especially within the context of Chronic Myeloid 

Leukemia (CML). At present, no AI-based Dashboard system predicts Leukemia based on protein 

sequences, but developing such a system could revolutionize the diagnosis, leading to saved lives 

and eased healthcare burdens. Collaborative efforts between Machine Learning and Data Science can 

establish a robust model for accessible and timely Leukemia solutions. 

As illustrated in Figure 1, the proposed research suggests the utilization of Machine Learning-

based techniques to identify genes that cause Leukemia through Protein Sequences, aiming for early 

detection and a reduction in the mortality rate. This undertaking could emerge as a flagship initiative 

in health sciences, addressing the shortage of specialized hematologists. Implementation of the 

system would result in timely interventions and improved recovery prospects. Automating certain 

diagnostic processes could ease the load on specialists and enhance healthcare services. The potential 

impact goes beyond Leukemia diagnosis, garnering recognition, and interest from the medical 

community. Overall, this AI-driven research holds immense promise in reshaping healthcare and 

propelling the advancement of AI applications. 

Because of this research, innovative insights, and progress in predicting and comprehending 

CML could come to fruition. This might lead to more effective diagnostic and treatment 

methodologies, benefiting patients and healthcare systems. Furthermore, the successful integration 

of bioinformatics and AI could pave the way for pioneering applications and further interdisciplinary 

research at the intersection of these two promising domains. 

The main contribution of our proposed research is as follows: 

• The current study focuses on protein sequential data rather than image data. 

• The most frequently mutated genes that were responsible for chronic myeloid leukemia were 

discovered through a literature review. 

• Datasets were formulated from the most frequently muted gene data. 
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• Features were extracted through physicochemical properties of Amino Acid composition, 

Pseudo Amino Acid Composition, and di-peptide composition. 

• The study focuses on enhancing early-stage prediction to improve patient recovery prospects 

significantly. 

• Our proposed solution encompasses a user-friendly web application dashboard that presents 

an invaluable tool for early CML diagnosis, offering a deploy-able asset within healthcare 

institutions and hospitals. 

This paper follows a structured format that aims to understand the research comprehensively. 

Section 1, 'Introduction,' outlines the problem statement. Section 2, 'Literature Review,' discusses 

related research, positioning our study in the existing body of knowledge. Section 3, 'Materials and 

Methods,' details the dataset creation process and experimental techniques. Section 4, 'Development 

of Individual Classifiers,' presents our methodology and analysis. Section 5, 'Results and Discussion,' 

succinctly interprets the findings. Lastly, in Section 6, we offer a conclusion summarizing our 

contributions and outlining future research directions. 

2. Literature Review 

This section comprehensively discusses the recently conducted Leukemia research, focusing on 

Protein Sequences, RNA, and blood cell imagery. It elaborates acquiring and forming the dataset, 

which is pivotal in creating standardized Leukemia datasets by utilizing protein sequences. 

Importantly, previous researchers have not combined these three distinct feature extraction 

techniques while implementing a user-friendly dashboard, as done in this study. 

In [7], the Random Forest model was utilized to diagnose the cancerous growth of White Blood 

Cells with an accuracy of 94.3%. In the research by [8], the classifier was evaluated using 60 photos, 

demonstrating that models like K-nearest neighbors and Naive Bayes Classifier could identify ALL 

with an accuracy of 92.8%. According to research  [9], the Artificial Bee Colony algorithm – Back 

Propagation Neural Network (ABC-BPNN) scheme and Principal Component Analysis (PCA) were 

used to classify Leukemia cells with an average accuracy of 98.72% while also speeding up the 

calculation. 

In reference [10]  Jothi et al. investigated the identification of leukemia sub-types, particularly 

ALL, using BSA-based clustering and advanced classification algorithms such as decision tree (DT), 

K-nearest neighbor (KNN), Naive Bayes (NB), and Support Vector Machine (SVM). The SVM model 

exhibited an accuracy rate of 89.81%. The SVM model was used in research [11] to identify ALL, with 

an accuracy rate of 89.81%. The dataset was used in [12] to classify ALL using the K-nearest neighbor 

method, with a 96.25% accuracy rate. In study gal [13], the exploration centered around the use of 

ML algorithms to analyze gene expression patterns derived from RNA sequencing (RNA-seq) for 

accurately predicting the likelihood of CR in pediatric AML patients’ post-induction therapy. 

Research [14] Developed models for predicting and classifying different stages of colon cancer 

using RNA-seq data of extracellular vesicles (EV) from healthy individuals and colon cancer patients. 

The study employed five canonical ML and Deep Learning (DL) classifiers, achieving high accuracy 

rates, resulting in an accuracy of 94.6% for K-nearest neighbor, 97.33% for Random Forest, 93% for 

LMT, and 92% for Random Tree. In [15], the early diagnosis and distinction between types of lung 

cancers, i.e., Non-Small Cell Lung Cancer and Small Cell Lung Cancer, were highlighted as crucial 

for improving patient survival rates. The proposed diagnostic system utilized sequence-derived 

structural and physicochemical attributes of proteins associated with tumor types, employing feature 

extraction, selection, and prediction models. 

The study conducted by Dhakal et al. [16] introduced a stacking classifier algorithm addressing 

CTS selection criteria through feature-encoding techniques, generating feature vectors that 

encompass k-mer nucleotide composition, dinucleotide composition, pseudo-nucleotide 

composition, and sequence order coupling. This innovative stacking classifier algorithm 

outperformed previous state-of-the-art algorithms in predicting functional miRNA targets, achieving 
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an accuracy of 79.77%. In another study, Albitar et al. [17], Using Next Generation Sequencing (NGS) 

and targeted RNA sequencing along with a machine learning approach, Albitar et al. investigated 

the potential of discovering new biomarkers that can predict Acute graft-vs.-host disease (aGVHD). 

The study by Ahmad et al. [18], Predicted chronic Lymphocytic Leukemia using protein sequences 

with Chou’s Pseudo Amino Acid Composition (PseAAC) and statistical moments. 

In the study [19], using deep learning (DL), Jian et al. constructed a prediction model for 

transcription factor binding sites only from original DNA base sequences. Here, a DL method based 

on convolutions neural network (CNN) and long short-term memory (LSTM) was proposed to 

investigate four Leukemia categories from the perspective of transcription factor binding sites using 

four large non-redundant datasets for acute, chronic, myeloid, and lymphatic Leukemia, giving an 

average prediction accuracy of 75%. 

3. Materials and Methods 

The proposed research centers on the detection of leukemia, specifically targeting Chronic 

Myeloid Leukemia (CML), characterized by the neoplastic proliferation of White Blood Cells (WBCs) 

such as neutrophils, basophils, and eosinophils, while excluding lymphocytes. As previously 

mentioned, CML is linked to a heightened mortality rate due to its typical diagnosis at advanced 

stages, posing challenges for effective recovery. In response to this concern, we aim is to create a 

dashboard to identify leukemia utilizing Protein Sequential data. 

To achieve this goal, we collected data on the most frequently mutated genes related to leukemia 

cancer, leveraging the physiochemical properties of protein sequences for feature extraction. 

Subsequently, data augmentation techniques were applied to enhance the extracted features, while 

outliers were detected and removed to ensure data quality. We employed a diverse set of machine 

learning algorithms, including Support Vector Machine (SVM)  [20–23] XG Boost, Random Forest 

[24,25] KNN [26,27] logistic regression, and decision tree, as comprehensively described in a study 

review [28–31]. The accuracy of each algorithm was evaluated, and the one exhibiting the highest 

accuracy was selected for integration into our system. This chosen algorithm determines the presence 

or absence of cancer in an individual. Finally, we serialized our model using tools such as Pickle or 

Joblib, facilitating the preservation of the trained model alongside its associated data. These trained 

models were then incorporated into a Streamlit-based dashboard, enhancing their user-friendly 

deployment in hospitals and other medical facilities (see Figure 2). 

3.1. Block Diagram 
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Figure 2. Block Diagram of Designed System. 

3.2. Dataset Collection 

There are many genes involved in CML. Based on the literature review, genes that are most often 

mutated, i.e.  BCL2, HSP90, PARP and RB, were utilized for CML [20]. Moreover, the homologous 

samples were eliminated by maintaining 0.6 as the cutoff level [24]. HSP90functions as a chaperone 

protein, crucial in protein folding and degradation processes. It is up-regulation has been identified 

in various cancer types, including chronic myeloid leukemia (CML). Extensive research has 

demonstrated that inhibiting HSP90 can attenuate the growth of CML cells and enhance their 

susceptibility to chemotherapy and tyrosine kinase inhibitors (TKIs) [32,33]. PARP (Poly ADP-ribose 

polymerase) is an essential enzyme involved in DNA repair processes. Inhibiting PARP has 

demonstrated effectiveness in the treatment of cancers with BRCA mutations, and there is emerging 

evidence suggesting its potential applicability in managing chronic myeloid leukemia (CML) [34,35].  

The BCL2 (B-cell lymphoma 2) protein family plays a crucial role in regulating programmed cell 

death, known as apoptosis. Elevated levels of BCL2 have been linked to resistance to chemotherapy 

in chronic myeloid leukemia (CML) cells. Studies have demonstrated that inhibiting BCL2 can 

reinstate apoptosis in CML cells and boost the effectiveness of tyrosine kinase inhibitors (TKIs) 

[36,37]. RB (Retinoblastoma) is a pivotal tumor suppressor gene involved in regulating cell cycle 

progression. The deactivation of RB is a prevalent characteristic in CML, and research has established 

that its reactivation can impede the proliferation of CML cells [38], [39]. The FASTA file format was 

used to extract the CML-related protein sequences from the Universal Resource of Proteins 

(UniProtKB) [22], [40]. A successful dataset was created as a result. The same number of negative and 

positive samples were gathered for CML using the opposite query phrase to create a negative dataset. 

Consequently, the dataset created for CML is balanced. 

3.2.1. Fasta Format 

In bioinformatics, the fasta format is a popular text-based format for representing proteins. It is 

derived from the FASTA software suite and follows a specific structure. A FASTA sequence starts 

with a single line that serves as a description and is followed by lines containing the sequencing data 

[40]. 
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The description line is distinguished from the sequence data by the presence of a greater-than 

symbol (">") in the first column. The term following the ">" sign is used to identify the sequence, while 

the rest of the line can be used to provide an additional description, though both are optional.  

3.2.2. Sample of Protein Sequence (HSP90) 

Initially, protein sequences contained redundant data. We employed a benchmark method 

known as CD-Hit to address the issue of redundant data within the initial protein sequences (Figure 

3). It is essential to utilize a benchmark algorithm for redundancy removal to ensure the validity and 

reliability of the data. CD-Hit, an online clustered database, was selected for this purpose, with a 

threshold of 0.6[41]. This threshold value helps in effectively removing redundancy while preserving 

the integrity of the dataset. 

 

Figure 3. Gene Sample. 

3.3. Feature Extraction 

This section elaborates on the feature extraction techniques using physiochemical properties of 

the protein sequences. These techniques enable the effective representation of protein sequences and 

extraction of meaningful information crucial for predicting Chronic Myeloid Leukemia. The feature 

extraction methods utilized in this study fall into three categories:   

3.3.1. Amino Acid Composition 

The presence of specific amino acids often in a protein sequence is highlighted by AAC 

characteristics [42,43]. The percentage frequency of an amino acid, AAC i,j, in the jth protein is 

calculated using the formula below: 

𝑨𝑨𝑪𝒊,𝒋 = (
𝒏𝒊,𝒋

𝒏𝒂,𝒋
) × 𝟏𝟎𝟎 …………………………. (1) 

In the above equation, n denotes the amount of amino acids type (I) found in proteins j while na, 

aj refers to the total amount of amino acids contained in a protein. The jth protein sequence in the AAC 

features dataset is represented as a 20-dimensional (20-D) feature vector as follows: 

𝑿𝒋 = [𝑨𝑨𝑪𝟏,𝒋, 𝑨𝑨𝑪𝟐,𝒋, … , 𝑨𝑨𝑪𝟐𝟎,𝒋]
𝑻
…………………………. (2) 

Where,  𝑋𝑗 = [𝐴𝐴𝐶1,𝑗 , 𝐴𝐴𝐶2,𝑗, … , 𝐴𝐴𝐶20,𝑗]
𝑇
 demonstrates how amino acids are composed. 

The technique of amino acid composition involves extracting features from our data, resulting 

in a 20-dimensional feature set. However, the problem with this approach lies in the limited 

usefulness of the features extracted. Despite employing various data science feature engineering 

approaches and conducting hyper-parameter tuning, accuracy remains constrained. Consequently, 

this approach proves less efficacious in attaining the desired outcomes. 

3.3.2. Pseudo Amino Acid Composition 

A 25-dimensional feature set is produced using the Pseudo Amino Acid Composition (PAAC) 

approach to extract features from our data[44]. The remarkable fact is that the features extracted 

through this method are highly valuable. By further applying data science methods and feature 

engineering techniques, accuracy significantly improves, reaching an impressive range of 91% to 

93%. This achievement represents a remarkable success in our endeavors. 
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𝑷 = [𝑷𝟏, 𝑷𝟐, … , 𝑷𝟐𝟎, 𝑷𝟐𝟎+𝟏, … , 𝑷𝟐𝟎+𝛌]𝑻…………………………. (3) 

𝑷𝒖 =
𝒇𝒖

∑ 𝒇𝒊
𝟐𝟎
𝒊=𝟏 +𝒘 ∑ 𝑻𝒌

𝛌
𝒌=𝟏

 (𝟏 ≤ 𝒖 ≤ 𝟐𝟎) …………………………. (4) 

𝑷𝒖 =
𝑾𝑻(𝒖−𝟐𝟎)

∑ 𝒇𝒊
𝟐𝟎
𝒊=𝟏 +𝛇 ∑ 𝑻𝒌

𝛌
𝒌=𝟏

 (𝟐𝟎 + 𝟏 ≤ 𝒖 ≤ 𝟐𝟎 + 𝛌) …………………………. (5) 

In Figure 5, we present graphs illustrating the impact of outlier removal on the dataset. 

Specifically, we depict the changes in data distribution before and after outlier removal. Additionally, 

we conducted data augmentation on the processed dataset to further enhance its accuracy.  

3.3.3. Di-peptide Composition 

The letters AA, AC, AD, YV, YW, and YY denote protein sequences with dipeptide 

characteristics. There are 400 components in these sequences. The DC feature of each component is 

determined as follows: 

𝑫𝑪(𝒊) =
𝑫𝑪 Total (𝒊)

𝟒𝟎𝟎
 …………………………. (6) 

Where DC(i)represents the structure of ith dipeptide for i =  1, 2, … , 400. In vector form, this 

feature space is represented as: XDC = [DCAA, DCAC, DCAD, … , DCYY]T . The di-peptide composition 

technique extracts features from our data, resulting in 400 dimensions or four hundred features. 

However, it became evident that not all these features were essential. By applying data science 

methods and feature engineering, it is concluded that only 229 features out of the initial 400 were 

necessary. Surprisingly, after this selection process, the accuracy of our results significantly 

improved, reaching an impressive 91% to 93%. This outcome marks a great success. The graphs 

illustrate the impact of outlier removal on the dataset, both before and after the process. 

3.3.4. Data Augmentation 

The Data augmentation process is initiated by segregating our dataset into positive and negative 

segments. The method entails isolating patients who have tested positive from those with negative 

results. Subsequently, a series of operations are designed to generate numerical replicas of the 

existing data, thereby augmenting the sample size. This augmentation enhances the machine learning 

algorithm's training procedure, attributed to the increased abundance of available data. However, it 

is important to note that the data transforms during the creation of these numerical duplicates, 

transitioning from its initial format into a list structure.  

Consequently, the modified data is transited from this list format into a data frame. This 

procedural sequence ultimately leads to reintegrating the transformed data, thereby completing the 

data augmentation process.  

4. Development of Individual Classifiers 

4.1. Support Vector Machine 

SVM classifier by creating a hyperplane with the greatest distance between any two points in 

the data  [45–50]. SVM's decision surface is as follows. 

𝒀(𝑿) = ∑ 𝛂𝒊𝒕𝒊𝑿𝒊
𝑻𝑿𝒏

𝒊=𝟏 + 𝒃𝒊𝒂𝒔 …………………………. (7) 

We selected the parameters such as, Kernel = “rbf”, Degree =8, C =10000, gamma =100000, 

probability = True. 

4.2. Random Forest 
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This method generates a substantial quantity of decision trees that are combined to arrive at a 

final decision. For training we selected 129,361, and for testing, 86,228 samples were selected, and we 

came up with the best number of estimators, i.e., n=50. In the case of dipeptide composition, we 

selected 2536 for training and 845 for testing, and n=150 estimators gave optimal results. 

𝒀(𝑿) = ∑ 𝒉𝒊(𝑿)𝒏𝒕
𝒊=𝟏  …………………………. (8) 

4.3. K-Nearest Neighbor (KNN) 

The KNN algorithm is learned by observing samples [51,52]. Instance-based classifiers assume 

that the classification of unknown instances can be accomplished by comparing the unidentified 

instance to a known instance using a distance/similarity function [53–56].  

The calculation of the Euclidean distance (below, denoted as 𝑑(𝑋𝑖, 𝑋𝑗) , between two m-

dimensional vectors Xi and Xj is as follows: 

𝒅(𝑿𝒊, 𝑿𝒋) = √(𝒙𝒊,𝟏 − 𝒙𝒋,𝟏)
𝟐

+ (𝒙𝒊,𝟐 − 𝒙𝒋,𝟐)
𝟐

+ ⋯ + (𝒙𝒊,𝒎 − 𝒙𝒋,𝒎)
𝟐
 …………………………. (9) 

4.4. Naïve Bayes 

Bayes rules represent this learning procedure based on the notion of independent 

attributes/features. The Gaussian function to train the model with equal prior probabilities in the 

following manner: 

𝑷(𝑿𝒇𝟏, 𝑿𝒇𝟐, … , 𝑿𝒇𝒏|𝒄) = ∏ 𝑷(𝑿𝒇𝒊|𝒄)𝒏
𝒊=𝟏  …………………………. (10) 

𝑷(𝑿𝒇𝒊|𝒄) =
𝑷(𝒄𝒊|𝑿𝒇)𝑷(𝑿𝒇)

𝑷(𝒄𝒊)
 …………………………. (11) 

4.5. XGBoost 

Gradient boosting is a boosting approach that significantly lowers errors by adding several 

classifiers to pre-existing models. The term "gradient boosting" refers to using a gradient descent 

strategy to minimize loss. The steps involved in gradient boosting are as follows: 

𝑭𝟎(𝒙) =  𝛄argmin ∑ 𝑳(𝒚, 𝛄)𝒏
𝒊=𝟏  …………………………. (12) 

rim = −𝛂 [
𝛛𝑳(𝒚𝒊,𝑭(𝒙𝒊))

𝛛𝑭(𝒙𝒊)
] …………………………. (13) 

4.6. Logistic Regression 

In categorical binary classification, a statistical machine-learning approach called logistic 

regression is employed [57]. The parameters we selected were C=10, tol = 0.1, and penalty = L2. 

𝑷(𝒚 = 𝟏|𝑿) =
𝟏

𝟏+𝒆−𝛃𝑻𝑿
 …………………………. (14) 

5. Results and Discussion 

5.1. Results on Pseudo Amino Acid Composition (Pse-AAC) Data 

The findings of the matrices employed in the project Accuracy score, F1-score, recall [58,59], and 

specificity receptively on the data of Pse-AAC are displayed in Table 1 below. 

Table 1. Results on Pseudo Amino Acid Composition (Pse-AAC) Data. 

Name of Algorithm Accuracy F1-Score Recall Specificity 
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Support Vector Classifier 92~94% 91~92% 91~93% 92~94% 

Extreme Gradient Boost 79~85% 63~70% 51~55% 92~94% 

Logistic Regression 66~69% 10~20% 6~10% 97~98% 

Decision Tree 81~84% 73~76% 74~76% 84~86% 

Random Forest 87~91% 85~87% 80~83% 96~97% 

K Nearest Neighbor 82~86% 72~74% 61~64% 93~95% 

 

Table 2 presents the results of each machine learning (ML) model concerning the data utilized, 

specifically the Pse-AAC data. It also includes the outcomes of additional metrics used in the research, 

namely Specificity and Confusion Matrix. These metrics provide insights into the True Positive, True 

Negative, False Positive, and False Negative values, contributing to a comprehensive evaluation of 

the models' performance.   

Table 2. Confusion Matrix. 

Name of Algorithm Confusion Matrix 

Support Vector Classifier 
True Negative = 424 

False Negative = 14 

False Positive = 28 

True Positive = 211 

Extreme Gradient Boost 
True Negative = 26159 

False Negative = 3435 

False Positive = 2271 

True Positive = 10890 

Logistic Regression 
True Negative = 25817 

False Negative = 11010 

False Positive = 2849 

True Positive = 3445 

Decision Tree 
True Negative = 24388 

False Negative = 3803 

False Positive = 4278 

True Positive = 10652 

Random Forest 
True Negative = 28014 

False Negative = 2753 

False Positive = 808 

True Positive = 11546 

K Nearest Neighbor 
True Negative = 419 

False Negative = 95 

False Positive = 23 

True Positive = 140 

 

5.2. Accuracy Result on Amino Acid Composition (AAC) Data 

The research employs accuracy score, F1-score, recall score, and specificity as metrics on the 

AAC data. The outcomes of these metrics are presented in Table 3 below. 

Table 3. Result on Amino Acid Composition (AAC) Data. 

Name of Algorithm Accuracy F1-Score Recall Specificity 

Support Vector Classifier 54.95% 14.3% 0.7% 100% 

Extreme Gradient Boost 56.8% 52.9% 45.9% 69% 

Logistic Regression 51.1% 27.6% 19.1% 81.7% 

Decision Tree 54.4% 52.25% 52.9% 55.8% 

Random Forest 50.6% 41.1% 35.4% 64.9% 

K Nearest Neighbor 54.2% 54.8% 57% 51% 

 
The following table (Table 4) presents the results of each machine learning (ML) model 

concerning the utilized data, namely AAC. Additionally, it showcases the outcomes of other metrics 
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employed in the project, such as the Specificity and Confusion Matrix. These matrices provide 

essential values, including True Positive, True Negative, False Positive, and False Negative, 

contributing to a comprehensive assessment of the models' performance. 

Table 4. Confusion Matrix. 

Name of Algorithm Confusion Matrix 

Support Vector Classifier 
True Negative = 271 

False Negative = 121 

False Positive = 0 

True Positive = 62 

Extreme Gradient Boost 
True Negative = 409 

False Negative = 119 

False Positive = 23 

True Positive = 103 

Logistic Regression 
True Negative = 9028 

False Negative = 8519 

False Positive = 2022 

True Positive = 2025 

Decision Tree 
True Negative = 124 

False Negative = 95 

False Positive = 98 

True Positive = 107 

Random Forest 
True Negative = 12612 

False Negative = 11832 

False Positive = 6817 

True Positive = 6510 

K Nearest Neighbor 
True Negative = 112 

False Negative = 89 

False Positive = 105 

True Positive = 118 

5.3. Accuracy Results on Di-Peptide Composition (DPC) 

The table below (Table 5) displays the accuracy score, F1-score, and recall score matrices utilized 

in the research and their respective outcomes when applied to the DPC data. 

Table 5. Results on Pseudo Amino Acid Composition (Pse-AAC) Data. 

Name of Algorithm Accuracy F1-Score Recall Specificity 

Support Vector Classifier 92~94% 87~88% 91~93% 90~93% 

Extreme Gradient Boost 79~84% 66~68% 55~57% 92~94% 

Logistic Regression 66~69% 0~0% 6~10% 100% 

Decision Tree 81~84% 70~73% 56~59% 96~97% 

Random Forest 82~84% 67~68% 57~58% 94~95% 

K Nearest Neighbor 72~73% 31~32% 20~21% 95~97% 

 
The performance of each machine learning model is analyzed concerning the DPC data utilized. 

Additionally, the Specificity and Confusion Matrix results are presented (Table 6). This matrix 

provides essential values such as True Positive, True Negative, False Positive, and False Negative, 

contributing to a comprehensive evaluation of the models' performance. 

Table 6. Confusion Matrix. 

Name of Algorithm Confusion Matrix 

Support Vector Classifier 
True Negative = 416 

False Negative = 17 

False Positive = 37 

True Positive = 207 

Extreme Gradient Boost 
True Negative = 413 

False Negative = 105 

False Positive = 25 

True Positive = 134 
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Logistic Regression 
True Negative = 453 

False Negative = 224 

False Positive = 0 

True Positive = 0 

Decision Tree 
True Negative = 433 

False Negative = 54 

False Positive = 16 

True Positive = 134 

Random Forest 
True Negative = 437 

False Negative = 93 

False Positive = 23 

True Positive = 124 

K Nearest Neighbor 
True Negative = 438 

False Negative = 179 

False Positive = 15 

True Positive = 45 

5.5. Machine Learning Based Dashboard 

In Figure 4, we provide an overview of the dashboard developed using Streamlit, which is 

accessible through Streamlit Cloud. This interactive dashboard enables users to select their preferred 

model for analysis. Within this user-friendly interface, individuals are prompted to upload patient 

records directly through the web application and select a specific prediction model. Subsequently, 

users can review the results to ascertain whether an individual is affected by leukemia. Users can 

effortlessly select and upload patient records from their computer by simply clicking the browse 

button. Once the data is uploaded, users gain access to both the raw data and predictive outcomes, 

as illustrated in Figure 5. 

 

Figure 4. Screenshot of dashboard. 

 

Figure 5. Prediction on Data. 

5. Conclusion 

This research is focused on Chronic Myeloid Leukemia (CML), a condition characterized by 

genetic mutations leading to abnormal proliferation of white blood cells, red blood cells, and 

platelets. While MRI and CT scans have been extensively used in cancer detection, research on protein 

sequence data in this domain is limited. By leveraging information from mutated genes like BCL2, 
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HSP90, PARP, and RB, the research aims to revolutionize early CML prediction. Through rigorous 

data preprocessing and feature extraction techniques, we achieved an impressive accuracy rate of 92–

94%. The proposed approach integrates diverse machine learning algorithms such as SVM, Decision 

Trees, XGBoost, Random Forest, and KNN, each offering unique strengths in pattern recognition and 

prediction. The resulting dashboard facilitates easy prediction of CML in patients, enhancing clinical 

workflows and potentially saving lives. This study sheds light on critical scientific challenges in CML 

research, offering insights into disease mechanisms and biomarker identification. we envision 

expanding this research to encompass multi-cancer detection, integrating AI and bioinformatics with 

healthcare systems for enhanced cancer diagnosis and improved patient outcomes.  
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