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Abstract: In Southeast Asia, the incidence of Leukemia, a malignant blood cancer originating from
hematopoietic progenitor cells, is on the rise, marked by a concerning 54% mortality rate. Early-stage prediction
plays a crucial role in enhancing patient recovery prospects. This study is dedicated to significantly improving
early-stage prediction methods. Leveraging Machine Learning and Data Science, we employ protein sequential
data from frequently mutated genes such as BCL2, HSP90, PARP, and RB to predict Chronic Myeloid Leukemia
(CML). Our approach relies on robust feature extraction techniques, namely Di-peptide Composition (DPC),
Amino Acid Composition (AAC), and Pseudo amino acid composition (Pse-AAC), with prior attention to
addressing outliers and validating feature selection through the Pearson Correlation Coefficient. Data
augmentation ensures a well-rounded dataset for analysis. Employing a range of Machine Learning models,
including Support Vector Machine (SVM), XGBoost, Random Forest (RF), K Nearest Neighbor (KNN), Decision
Tree (DT), and Logistic Regression (LR), we achieve accuracy rates spanning from 66% to 94%. These classifiers
undergo comprehensive assessment using performance metrics such as accuracy, sensitivity, specificity, F1-
score, and the confusion matrix. Our proposed solution, encompassing a user-friendly web application
dashboard, presents an invaluable tool for early CML diagnosis with profound implications for practitioners,
offering a deployable asset within healthcare institutions and hospitals.

Keywords: protein sequences; pseudo-AAC; AAC; dipeptide-C; chronic myeloid leukemia; blood
cancer early detection; healthcare application

1. Introduction

Leukemia is a complex medical condition influenced by genetic regulation in the production of
blood cells. When hematopoietic precursor cells turn malignant [1], it gives rise to abnormal cell
growth due to alterations in DNA and RNA sequences. This transformation results in the infiltration
of healthy cells by malignant ones, thus causing Leukemia. The illness primarily entails the
uncontrolled proliferation of specifically White Blood Cells (WBC), i.e., neutrophils, basophils, and
eosinophils, while lymphocytes remain unaffected. Acute myeloid Leukemia (AML), chronic
myeloid Leukemia (CML), acute lymphoblastic Leukemia (ALL), and chronic lymphocytic Leukemia
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(CLL) are some of the several kinds of Leukemia [2]. The only subject of our research is Chronic
Myeloid Leukemia (CML).
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Figure 1. Various stages of chronic Myeloid leukemia classification.

Leukemia cancer presents a substantial health challenge due to the abnormal proliferation of
White Blood Cells (WBC) [1]. While research has concentrated on detecting cancer through blood cell
images, exploration of Protein Sequential data is limited. Leukemia diagnosis heavily relies on
hematologists, posing limitations in regions with a scarcity of specialists. Mortality rates are on the
rise, particularly in South East Asia [3], creating a demand for an early detection approach.

The motivation for driving the proposed research arises from the observation that a plethora of
research has been conducted on cancer predictions—such as lung cancer, liver cancer, colon cancer,
ovarian cancer, etc. utilizing MRI (magnetic resonance imaging), CT (computed tomography) scans,
image processing techniques and protein sequences [4-6]. However, the realm of gene data in
bioinformatics remains relatively uncharted, especially within the context of Chronic Myeloid
Leukemia (CML). At present, no Al-based Dashboard system predicts Leukemia based on protein
sequences, but developing such a system could revolutionize the diagnosis, leading to saved lives
and eased healthcare burdens. Collaborative efforts between Machine Learning and Data Science can
establish a robust model for accessible and timely Leukemia solutions.

As illustrated in Figure 1, the proposed research suggests the utilization of Machine Learning-
based techniques to identify genes that cause Leukemia through Protein Sequences, aiming for early
detection and a reduction in the mortality rate. This undertaking could emerge as a flagship initiative
in health sciences, addressing the shortage of specialized hematologists. Implementation of the
system would result in timely interventions and improved recovery prospects. Automating certain
diagnostic processes could ease the load on specialists and enhance healthcare services. The potential
impact goes beyond Leukemia diagnosis, garnering recognition, and interest from the medical
community. Overall, this Al-driven research holds immense promise in reshaping healthcare and
propelling the advancement of Al applications.

Because of this research, innovative insights, and progress in predicting and comprehending
CML could come to fruition. This might lead to more effective diagnostic and treatment
methodologies, benefiting patients and healthcare systems. Furthermore, the successful integration
of bioinformatics and Al could pave the way for pioneering applications and further interdisciplinary
research at the intersection of these two promising domains.

The main contribution of our proposed research is as follows:

e  The current study focuses on protein sequential data rather than image data.
e  The most frequently mutated genes that were responsible for chronic myeloid leukemia were
discovered through a literature review.

e Datasets were formulated from the most frequently muted gene data.
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o  Features were extracted through physicochemical properties of Amino Acid composition,
Pseudo Amino Acid Composition, and di-peptide composition.

e  The study focuses on enhancing early-stage prediction to improve patient recovery prospects
significantly.

e  Our proposed solution encompasses a user-friendly web application dashboard that presents
an invaluable tool for early CML diagnosis, offering a deploy-able asset within healthcare

institutions and hospitals.

This paper follows a structured format that aims to understand the research comprehensively.
Section 1, 'Introduction,’ outlines the problem statement. Section 2, 'Literature Review," discusses
related research, positioning our study in the existing body of knowledge. Section 3, 'Materials and
Methods,' details the dataset creation process and experimental techniques. Section 4, 'Development
of Individual Classifiers,' presents our methodology and analysis. Section 5, 'Results and Discussion,'
succinctly interprets the findings. Lastly, in Section 6, we offer a conclusion summarizing our
contributions and outlining future research directions.

2. Literature Review

This section comprehensively discusses the recently conducted Leukemia research, focusing on
Protein Sequences, RNA, and blood cell imagery. It elaborates acquiring and forming the dataset,
which is pivotal in creating standardized Leukemia datasets by utilizing protein sequences.
Importantly, previous researchers have not combined these three distinct feature extraction
techniques while implementing a user-friendly dashboard, as done in this study.

In [7], the Random Forest model was utilized to diagnose the cancerous growth of White Blood
Cells with an accuracy of 94.3%. In the research by [8], the classifier was evaluated using 60 photos,
demonstrating that models like K-nearest neighbors and Naive Bayes Classifier could identify ALL
with an accuracy of 92.8%. According to research [9], the Artificial Bee Colony algorithm — Back
Propagation Neural Network (ABC-BPNN) scheme and Principal Component Analysis (PCA) were
used to classify Leukemia cells with an average accuracy of 98.72% while also speeding up the
calculation.

In reference [10] Jothi et al. investigated the identification of leukemia sub-types, particularly
ALL, using BSA-based clustering and advanced classification algorithms such as decision tree (DT),
K-nearest neighbor (KNN), Naive Bayes (NB), and Support Vector Machine (SVM). The SVM model
exhibited an accuracy rate of 89.81%. The SVM model was used in research [11] to identify ALL, with
an accuracy rate of 89.81%. The dataset was used in [12] to classify ALL using the K-nearest neighbor
method, with a 96.25% accuracy rate. In study gal [13], the exploration centered around the use of
ML algorithms to analyze gene expression patterns derived from RNA sequencing (RNA-seq) for
accurately predicting the likelihood of CR in pediatric AML patients” post-induction therapy.

Research [14] Developed models for predicting and classifying different stages of colon cancer
using RN A-seq data of extracellular vesicles (EV) from healthy individuals and colon cancer patients.
The study employed five canonical ML and Deep Learning (DL) classifiers, achieving high accuracy
rates, resulting in an accuracy of 94.6% for K-nearest neighbor, 97.33% for Random Forest, 93% for
LMT, and 92% for Random Tree. In [15], the early diagnosis and distinction between types of lung
cancers, i.e., Non-Small Cell Lung Cancer and Small Cell Lung Cancer, were highlighted as crucial
for improving patient survival rates. The proposed diagnostic system utilized sequence-derived
structural and physicochemical attributes of proteins associated with tumor types, employing feature
extraction, selection, and prediction models.

The study conducted by Dhakal et al. [16] introduced a stacking classifier algorithm addressing
CTS selection criteria through feature-encoding techniques, generating feature vectors that
encompass k-mer nucleotide composition, dinucleotide composition, pseudo-nucleotide
composition, and sequence order coupling. This innovative stacking classifier algorithm
outperformed previous state-of-the-art algorithms in predicting functional miRNA targets, achieving
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an accuracy of 79.77%. In another study, Albitar et al. [17], Using Next Generation Sequencing (NGS)
and targeted RNA sequencing along with a machine learning approach, Albitar et al. investigated
the potential of discovering new biomarkers that can predict Acute graft-vs.-host disease (aGVHD).
The study by Ahmad et al. [18], Predicted chronic Lymphocytic Leukemia using protein sequences
with Chou’s Pseudo Amino Acid Composition (PseAAC) and statistical moments.

In the study [19], using deep learning (DL), Jian et al. constructed a prediction model for
transcription factor binding sites only from original DNA base sequences. Here, a DL method based
on convolutions neural network (CNN) and long short-term memory (LSTM) was proposed to
investigate four Leukemia categories from the perspective of transcription factor binding sites using
four large non-redundant datasets for acute, chronic, myeloid, and lymphatic Leukemia, giving an
average prediction accuracy of 75%.

3. Materials and Methods

The proposed research centers on the detection of leukemia, specifically targeting Chronic
Myeloid Leukemia (CML), characterized by the neoplastic proliferation of White Blood Cells (WBCs)
such as neutrophils, basophils, and eosinophils, while excluding lymphocytes. As previously
mentioned, CML is linked to a heightened mortality rate due to its typical diagnosis at advanced
stages, posing challenges for effective recovery. In response to this concern, we aim is to create a
dashboard to identify leukemia utilizing Protein Sequential data.

To achieve this goal, we collected data on the most frequently mutated genes related to leukemia
cancer, leveraging the physiochemical properties of protein sequences for feature extraction.
Subsequently, data augmentation techniques were applied to enhance the extracted features, while
outliers were detected and removed to ensure data quality. We employed a diverse set of machine
learning algorithms, including Support Vector Machine (SVM) [20-23] XG Boost, Random Forest
[24,25] KNN [26,27] logistic regression, and decision tree, as comprehensively described in a study
review [28-31]. The accuracy of each algorithm was evaluated, and the one exhibiting the highest
accuracy was selected for integration into our system. This chosen algorithm determines the presence
or absence of cancer in an individual. Finally, we serialized our model using tools such as Pickle or
Joblib, facilitating the preservation of the trained model alongside its associated data. These trained
models were then incorporated into a Streamlit-based dashboard, enhancing their user-friendly
deployment in hospitals and other medical facilities (see Figure 2).

3.1. Block Diagram
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Figure 2. Block Diagram of Designed System.

3.2. Dataset Collection

There are many genes involved in CML. Based on the literature review, genes that are most often
mutated, i.e. BCL2, HSP90, PARP and RB, were utilized for CML [20]. Moreover, the homologous
samples were eliminated by maintaining 0.6 as the cutoff level [24]. HSP90functions as a chaperone
protein, crucial in protein folding and degradation processes. It is up-regulation has been identified
in various cancer types, including chronic myeloid leukemia (CML). Extensive research has
demonstrated that inhibiting HSP90 can attenuate the growth of CML cells and enhance their
susceptibility to chemotherapy and tyrosine kinase inhibitors (TKIs) [32,33]. PARP (Poly ADP-ribose
polymerase) is an essential enzyme involved in DNA repair processes. Inhibiting PARP has
demonstrated effectiveness in the treatment of cancers with BRCA mutations, and there is emerging
evidence suggesting its potential applicability in managing chronic myeloid leukemia (CML) [34,35].

The BCL2 (B-cell lymphoma 2) protein family plays a crucial role in regulating programmed cell
death, known as apoptosis. Elevated levels of BCL2 have been linked to resistance to chemotherapy
in chronic myeloid leukemia (CML) cells. Studies have demonstrated that inhibiting BCL2 can
reinstate apoptosis in CML cells and boost the effectiveness of tyrosine kinase inhibitors (TKIs)
[36,37]. RB (Retinoblastoma) is a pivotal tumor suppressor gene involved in regulating cell cycle
progression. The deactivation of RB is a prevalent characteristic in CML, and research has established
that its reactivation can impede the proliferation of CML cells [38], [39]. The FASTA file format was
used to extract the CML-related protein sequences from the Universal Resource of Proteins
(UniProtKB) [22], [40]. A successful dataset was created as a result. The same number of negative and
positive samples were gathered for CML using the opposite query phrase to create a negative dataset.
Consequently, the dataset created for CML is balanced.

3.2.1. Fasta Format

In bioinformatics, the fasta format is a popular text-based format for representing proteins. It is
derived from the FASTA software suite and follows a specific structure. A FASTA sequence starts
with a single line that serves as a description and is followed by lines containing the sequencing data
[40].
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The description line is distinguished from the sequence data by the presence of a greater-than
symbol (">") in the first column. The term following the ">" sign is used to identify the sequence, while
the rest of the line can be used to provide an additional description, though both are optional.

3.2.2. Sample of Protein Sequence (HSP90)

Initially, protein sequences contained redundant data. We employed a benchmark method
known as CD-Hit to address the issue of redundant data within the initial protein sequences (Figure
3). It is essential to utilize a benchmark algorithm for redundancy removal to ensure the validity and
reliability of the data. CD-Hit, an online clustered database, was selected for this purpose, with a
threshold of 0.6[41]. This threshold value helps in effectively removing redundancy while preserving
the integrity of the dataset.

>5p| Q07817 |B2CL1_HUMAN Bcl-2-like protein 1 OS=Homo sapiens OX=9606 GN=BCL2L1 PE=1 SV=1
MSQSNRELVWOFLSYKLSQKGYSWSQFSOVEENRTEAPEGTESEME TPSATNGNPSWHLA
DSPAVNGATGHSSS LDAREVIPMAAVKQALREAGDEFELRYRRAFSOLTSQLHITPGTAY

QSFEQVVNELFRDGVNWGRIVAFFSFGGALCVESVOKEMQVLVSR IAAWMATYLNOHLEP
WIQENGGWDTFVELYGNMAAAE SRKGQERFNRWFLTGMTVAGVWLLGSLFSRK

Figure 3. Gene Sample.

3.3. Feature Extraction

This section elaborates on the feature extraction techniques using physiochemical properties of
the protein sequences. These techniques enable the effective representation of protein sequences and
extraction of meaningful information crucial for predicting Chronic Myeloid Leukemia. The feature
extraction methods utilized in this study fall into three categories:

3.3.1. Amino Acid Composition

The presence of specific amino acids often in a protein sequence is highlighted by AAC
characteristics [42,43]. The percentage frequency of an amino acid, AAC ij, in the jt protein is
calculated using the formula below:

AAC,; = (n—) X100 oo (1)

In the above equation, n denotes the amount of amino acids type (I) found in proteins j while na,
aj refers to the total amount of amino acids contained in a protein. The j* protein sequence in the AAC
features dataset is represented as a 20-dimensional (20-D) feature vector as follows:

X; = [AACyj,AAC, ...,AACs0;| ..o, )

Where, X; = [AACL »AACy ), ..., AACy,, j]T demonstrates how amino acids are composed.

The technique of amino acid composition involves extracting features from our data, resulting
in a 20-dimensional feature set. However, the problem with this approach lies in the limited
usefulness of the features extracted. Despite employing various data science feature engineering
approaches and conducting hyper-parameter tuning, accuracy remains constrained. Consequently,
this approach proves less efficacious in attaining the desired outcomes.

3.3.2. Pseudo Amino Acid Composition

A 25-dimensional feature set is produced using the Pseudo Amino Acid Composition (PAAC)
approach to extract features from our data[44]. The remarkable fact is that the features extracted
through this method are highly valuable. By further applying data science methods and feature
engineering techniques, accuracy significantly improves, reaching an impressive range of 91% to
93%. This achievement represents a remarkable success in our endeavors.
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In Figure 5, we present graphs illustrating the impact of outlier removal on the dataset.
Specifically, we depict the changes in data distribution before and after outlier removal. Additionally,
we conducted data augmentation on the processed dataset to further enhance its accuracy.

3.3.3. Di-peptide Composition

The letters AA, AC, AD, YV, YW, and YY denote protein sequences with dipeptide
characteristics. There are 400 components in these sequences. The DC feature of each component is
determined as follows:

DC(i) = %ﬂj‘“ ............................... (6)

Where DC(i)represents the structure of ith dipeptide for i = 1,2,...,400. In vector form, this
feature space is represented as: Xpc = [DCaa, DCac, DCap, -, DCyy]T. The di-peptide composition
technique extracts features from our data, resulting in 400 dimensions or four hundred features.
However, it became evident that not all these features were essential. By applying data science
methods and feature engineering, it is concluded that only 229 features out of the initial 400 were
necessary. Surprisingly, after this selection process, the accuracy of our results significantly
improved, reaching an impressive 91% to 93%. This outcome marks a great success. The graphs
illustrate the impact of outlier removal on the dataset, both before and after the process.

3.3.4. Data Augmentation

The Data augmentation process is initiated by segregating our dataset into positive and negative
segments. The method entails isolating patients who have tested positive from those with negative
results. Subsequently, a series of operations are designed to generate numerical replicas of the
existing data, thereby augmenting the sample size. This augmentation enhances the machine learning
algorithm's training procedure, attributed to the increased abundance of available data. However, it
is important to note that the data transforms during the creation of these numerical duplicates,
transitioning from its initial format into a list structure.

Consequently, the modified data is transited from this list format into a data frame. This
procedural sequence ultimately leads to reintegrating the transformed data, thereby completing the
data augmentation process.

4. Development of Individual Classifiers

4.1. Support Vector Machine

SVM classifier by creating a hyperplane with the greatest distance between any two points in
the data [45-50]. SVM's decision surface is as follows.

YX) =Yt at; XX+ bias .........cc.ooooveeeiinn.. (7)

We selected the parameters such as, Kernel = “rbf”, Degree =8, C =10000, gamma =100000,
probability = True.

4.2. Random Forest


https://doi.org/10.20944/preprints202312.0053.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2024 d0i:10.20944/preprints202312.0053.v2

This method generates a substantial quantity of decision trees that are combined to arrive at a
final decision. For training we selected 129,361, and for testing, 86,228 samples were selected, and we
came up with the best number of estimators, i.e.,, n=50. In the case of dipeptide composition, we
selected 2536 for training and 845 for testing, and n=150 estimators gave optimal results.

Y(X) = 20 Ri(X) e (8)

4.3. K-Nearest Neighbor (KNN)

The KNN algorithm is learned by observing samples [51,52]. Instance-based classifiers assume
that the classification of unknown instances can be accomplished by comparing the unidentified
instance to a known instance using a distance/similarity function [53-56].

The calculation of the Euclidean distance (below, denoted as d(Xi,Xj), between two m-
dimensional vectors Xi and X is as follows:

d(Xl,X]) = \/(x,-‘l - x]"l)z + (xi,Z - xl',z)z + -+ (xi,m - x]-,m)z ............................... (9)

4.4. Naive Bayes

Bayes rules represent this learning procedure based on the notion of independent
attributes/features. The Gaussian function to train the model with equal prior probabilities in the
following manner:

P(Xf1, Xp2, s Xpn|€) = T P(Xpil€) oo, (10)
C; X
P(Xyi|c) = % ............................... (11)

4.5. XGBoost

Gradient boosting is a boosting approach that significantly lowers errors by adding several
classifiers to pre-existing models. The term "gradient boosting" refers to using a gradient descent
strategy to minimize loss. The steps involved in gradient boosting are as follows:

Fo(x) = yargmin Y i L(Y,Y) coeeeeniiiiiiiiiien (12)
rim = —a [M (13)
- aF(xl) -------------------------------

4.6. Logistic Regression

In categorical binary classification, a statistical machine-learning approach called logistic
regression is employed [57]. The parameters we selected were C=10, tol = 0.1, and penalty = L2.

1
P(y: 1|X) =m ............................... (14:)

5. Results and Discussion

5.1. Results on Pseudo Amino Acid Composition (Pse-AAC) Data

The findings of the matrices employed in the project Accuracy score, F1-score, recall [58,59], and
specificity receptively on the data of Pse-AAC are displayed in Table 1 below.

Table 1. Results on Pseudo Amino Acid Composition (Pse-AAC) Data.

Name of Algorithm Accuracy F1-Score Recall Specificity
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Support Vector Classifier 92~94% 91~92% 91~93% 92~94%
Extreme Gradient Boost 79~85% 63~70% 51~55% 92~94%
Logistic Regression 66~69% 10~20% 6~10% 97~98%
Decision Tree 81~84% 73~76% 74~76% 84~86%
Random Forest 87~91% 85~87% 80~83% 96~97%
K Nearest Neighbor 82~86% 72~74% 61~64% 93~95%

Table 2 presents the results of each machine learning (ML) model concerning the data utilized,
specifically the Pse-AAC data. It also includes the outcomes of additional metrics used in the research,
namely Specificity and Confusion Matrix. These metrics provide insights into the True Positive, True
Negative, False Positive, and False Negative values, contributing to a comprehensive evaluation of
the models' performance.

Table 2. Confusion Matrix.

Name of Algorithm

Confusion Matrix

Support Vector Classifier

Extreme Gradient Boost

Logistic Regression

Decision Tree

True Negative = 424
False Negative = 14
True Negative = 26159
False Negative = 3435
True Negative = 25817
False Negative = 11010
True Negative = 24388
False Negative = 3803
True Negative = 28014

False Positive = 28
True Positive = 211
False Positive = 2271
True Positive = 10890
False Positive = 2849
True Positive = 3445
False Positive = 4278
True Positive = 10652
False Positive = 808

Random Forest

False Negative = 2753 True Positive = 11546

True Negative =419 False Positive = 23
K Nearest Neighbor

False Negative = 95 True Positive = 140

5.2. Accuracy Result on Amino Acid Composition (AAC) Data

The research employs accuracy score, F1-score, recall score, and specificity as metrics on the
AAC data. The outcomes of these metrics are presented in Table 3 below.

Table 3. Result on Amino Acid Composition (AAC) Data.

Name of Algorithm Accuracy F1-Score Recall Specificity
Support Vector Classifier 54.95% 14.3% 0.7% 100%
Extreme Gradient Boost 56.8% 52.9% 45.9% 69%
Logistic Regression 51.1% 27.6% 19.1% 81.7%
Decision Tree 54.4% 52.25% 52.9% 55.8%
Random Forest 50.6% 41.1% 35.4% 64.9%
K Nearest Neighbor 54.2% 54.8% 57% 51%

The following table (Table 4) presents the results of each machine learning (ML) model
concerning the utilized data, namely AAC. Additionally, it showcases the outcomes of other metrics
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employed in the project, such as the Specificity and Confusion Matrix. These matrices provide
essential values, including True Positive, True Negative, False Positive, and False Negative,
contributing to a comprehensive assessment of the models' performance.

Table 4. Confusion Matrix.

Name of Algorithm Confusion Matrix
True Negative =271 False Positive =0
Support Vector Classifier
False Negative =121 True Positive = 62
True Negative = 409 False Positive = 23
Extreme Gradient Boost
False Negative =119 True Positive =103
True Negative = 9028 False Positive = 2022
Logistic Regression
False Negative = 8519 True Positive = 2025
True Negative = 124 False Positive = 98
Decision Tree
False Negative = 95 True Positive = 107
True Negative = 12612 False Positive = 6817
Random Forest
False Negative = 11832 True Positive = 6510
True Negative =112 False Positive = 105
K Nearest Neighbor
False Negative = 89 True Positive =118

5.3. Accuracy Results on Di-Peptide Composition (DPC)

The table below (Table 5) displays the accuracy score, F1-score, and recall score matrices utilized
in the research and their respective outcomes when applied to the DPC data.

Table 5. Results on Pseudo Amino Acid Composition (Pse-AAC) Data.

Name of Algorithm Accuracy F1-Score Recall Specificity
Support Vector Classifier 92~94% 87~88% 91~93% 90~93%
Extreme Gradient Boost 79~84% 66~68% 55~57% 92~94%
Logistic Regression 66~69% 0~0% 6~10% 100%
Decision Tree 81~84% 70~73% 56~59% 96~97%
Random Forest 82~84% 67~68% 57~58% 94~95%
K Nearest Neighbor 72~73% 31~32% 20~21% 95~97%

The performance of each machine learning model is analyzed concerning the DPC data utilized.
Additionally, the Specificity and Confusion Matrix results are presented (Table 6). This matrix
provides essential values such as True Positive, True Negative, False Positive, and False Negative,
contributing to a comprehensive evaluation of the models' performance.

Table 6. Confusion Matrix.

Name of Algorithm Confusion Matrix
True Negative = 416 False Positive = 37
Support Vector Classifier
False Negative = 17 True Positive = 207
True Negative =413 False Positive = 25

Extreme Gradient Boost
False Negative = 105 True Positive =134
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K Nearest Neighbor

Logistic Regression

Decision Tree

Random Forest

True Negative =453
False Negative = 224
True Negative = 433
False Negative = 54
True Negative = 437
False Negative = 93
True Negative =438
False Negative =179

False Positive =0
True Positive =0
False Positive = 16
True Positive = 134
False Positive = 23
True Positive = 124
False Positive = 15

True Positive = 45

5.5. Machine Learning Based Dashboard
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In Figure 4, we provide an overview of the dashboard developed using Streamlit, which is
accessible through Streamlit Cloud. This interactive dashboard enables users to select their preferred
model for analysis. Within this user-friendly interface, individuals are prompted to upload patient
records directly through the web application and select a specific prediction model. Subsequently,
users can review the results to ascertain whether an individual is affected by leukemia. Users can
effortlessly select and upload patient records from their computer by simply clicking the browse
button. Once the data is uploaded, users gain access to both the raw data and predictive outcomes,
as illustrated in Figure 5.

Machine Learning Based Leukemia Cancer

Prediction Using Protein Sequential Data

Figure 4. Screenshot of dashboard.

Figure 5. Prediction on Data.

5. Conclusion

This research is focused on Chronic Myeloid Leukemia (CML), a condition characterized by
genetic mutations leading to abnormal proliferation of white blood cells, red blood cells, and
platelets. While MRI and CT scans have been extensively used in cancer detection, research on protein
sequence data in this domain is limited. By leveraging information from mutated genes like BCL2,
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HSP90, PARP, and RB, the research aims to revolutionize early CML prediction. Through rigorous
data preprocessing and feature extraction techniques, we achieved an impressive accuracy rate of 92—
94%. The proposed approach integrates diverse machine learning algorithms such as SVM, Decision
Trees, XGBoost, Random Forest, and KNN, each offering unique strengths in pattern recognition and
prediction. The resulting dashboard facilitates easy prediction of CML in patients, enhancing clinical
workflows and potentially saving lives. This study sheds light on critical scientific challenges in CML
research, offering insights into disease mechanisms and biomarker identification. we envision
expanding this research to encompass multi-cancer detection, integrating Al and bioinformatics with
healthcare systems for enhanced cancer diagnosis and improved patient outcomes.
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