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Abstract

In this paper, we unify and extend the linear quadratic pursuit-evasion games to dynamic equations
on time scales. Here we seek to a mixed strategy for a pair of linear players. We show that when the
final state is fixed, these (open–loop) strategies can be written in terms of a zero-input state difference.
On the other hand, when the final states are free, we find closed-loop strategies in terms of an extended
state.
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1. Introduction
The theory of deterministic pursuit-evasion games can single-handedly be attributed to Isaacs

in the 1950s [1,2]. Here, Isaacs first considered differential games as two-player zero-sum games.
One early application was formulation of missile guidance systems during his time with the RAND
Corporation. Shortly thereafter, Kalman among others initiated the linear quadratic regulator and
tracking (LQR) and (LQT) in the continuous and discrete cases (see [3–6]). Since then, the concept of
pursuit-evasion games and optimal control have been closely related, each playing a fundamental role
in control engineering and economics. One breakout paper to combine these concepts was written
by Ho, Bryson, and Baron. Together, they studied linear quadratic pursuit-evasion games (LQPEG)
as regulator problems [7,8]. In particular, this work included a three-dimensional target interception
problem. Since then, there have been a number of papers that have extended these results in the
continuous and discrete cases. One of the issues that researchers have faced in the past is the discrete
nature of these mixed strategies.

In 1988, Stefan Hilger initiated the theory of dynamic equations of time scales, which seeks
to unify and extend discrete and continuous analysis [9]. As a result, we can generalize a process
to account for both cases, or any combination of the two provided we restrict ourselves to closed,
nonempty subsets of the reals (a time scale). From a numerical viewpoint, this theory can be thought
of a generalized sampling technique that allows a researcher to evaluate processes with continuous,
discrete, or uneven measurements. Since its inception, this area of mathematics has gained a great deal
of international attention. Researchers have since found applications of time scales to include heat
transfer, population dynamics, as well as economics. For a more in depth study of time scales, it is
suggested that one see Bohner and Peterson’s books [10,11].

There have been a number of researchers who have sought to combine this field with the theory
of control. A number of authors have contributed to generalizing the basic notions of controllability
and observability (see [12–16]). Bohner first provided the conditions for optimality for dynamic control
processes in [17]. DaCunha unified the theory of Lyapunov and Floquet theory in his dissertation
[18]. Hilscher along with Zeidan have studied optimal control for sympletic systems [19]. Additional
contributions can be found in [20–25], among several others.
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In this paper, we study a natural extension of the LQR and LQT previously generalized to
dynamics equations on time scales (see [26,27]). Here, we consider the following separable dynamic
systems

x∆
P (t) = APxP(t) + BPu(t), xP(t0) = xP

0
x∆

E (t) = AExE(t) + BEv(t), xE(t0) = xE
0,

(1.1)

where xi ∈ Rn represent our states and u, v ∈ Rm represent our controls. Note that the subscripts P
and E to stand for the pursuer and the evader respectively. The pursuing state seeks to intercept the
evading state at time tf while the latter state seeks to do the opposite. For simplicity, we make the
following assumptions. First, we assume the given systems are linear-time invariant (although the
strategies for the time-varying case can be determined in a similar fashion). Second, we assume that
both states are controllable and are being evaluated on the same time scale. Finally, we assume our
state equations are associated with the cost functional

J(u, v) =
1
2
||xP − xE||M(tf) +

1
2

∫ tf

t0

(||xP − xE||Q + ||u||RP − ||v||RE)(τ)∆τ (1.2)

=
1
2

(
(xP − xE)

T(tf)M(xP − xE)
)
(tf)

+
1
2

∫ tf

t0

(
(xP − xE)

TQ(xP − xE) + uT RPu − vT REv
)
(τ)∆τ,

where M ≥ 0 and diagonal, Q ≥ 0 and RP, RE > 0. Note that the goal of the pursuing state is to
minimize (1.2) while the evading state seeks to maximize it. Since these states represent opposing
players, evaluating this cost can be thought of as a minimax problem.

The pursuit-evasion framework remains an active area across multiple disciplines, as found in
[28–34]. It should be noted that there have been other excursions in combining dynamic games with
time scales calculus. Libich and Stehlík introduced macroeconomic policy games on times scales with
inefficient equilibria in [35]. Martins and Torres considered n−player games where each player sought
to minimize a shared cost functional. Mozhegova and Petrov introduced a simple pursuit problem in
[36] and a dynamic analogue to the “Cossacks-robbers” in [37]. Minh and Phuong have previously
studied linear pursuit-evasion games on time scales in [38]. However, these results do include a
regulator/saddle point framework, nor are they complete when compared to this manuscript.

The organization of this paper is as follows. Section 2 presents core definitions and concepts
of the time scales calculus. We offer the variational properties needed such that an optimal strategy
exists in Section 3. In Section 4, we seek a mixed strategy when the final states are both fixed. In this
setting, we can rewrite our cost functional (1.2) in terms of the difference in Gramians of each system.
For Section 5, we find a pair of a controls in terms of an extended state. In Section 6, we offer some
examples including a numerical result. Finally, we provide some concluding remarks and future plans
in Section 7.

2. Time Scales Preliminaries
Here we offer a brief introduction to the theory of dynamic equations on time scales. For a more

in-depth study of time scales, see Bohner and Peterson’s books [10,11].

Definition 1. A time scale T is an arbitrary nonempty closed subset of the real numbers. We let
Tκ = T \ {maxT} if maxT exists; otherwise Tκ = T.

Example 2. The most common examples of time scales are T = R, T = Z, T = hZ for h > 0, and
T = qN0 for q > 1.

Definition 3. We define the forward jump operator σ : T → T and the graininess function µ : T → [0, ∞)

by
σ(t) := inf{s ∈ T : s > t} and µ(t) = σ(t)− t.

Definition 4. For any function f : T → R, we define the function f σ : T → R by f σ = f ◦ σ.
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Next, we define the delta (or Hilger) derivative as follows.

Definition 5. Assume f : T → R and let t ∈ Tκ . The delta derivative f ∆(t) is the number (when it exists)
such that given any ε > 0, there is a neighborhood U of t such that∣∣∣[ f (σ(t))− f (s)]− f ∆(t)[σ(t)− s]

∣∣∣ ≤ ε|σ(t)− s| for all s ∈ U.

In the next two theorems, we consider some properties of the delta derivative.

Theorem 6 (See Theorem 1.16 [10]). Suppose f : T → R is a function and let t ∈ Tκ . Then we have the
following:

a. If f is differentiable at t, then f is continuous at t.
b. If f is continuous at t, where t is right-scattered, then f is differentiable at t and

f ∆(t) =
f (σ(t))− f (t)

µ(t)
.

c. If f is differentiable at t, where t is right-dense, then

f ∆(t) = lim
s→t

f (t)− f (s)
t − s

.

d. If f is differentiable at t, then
f (σ(t)) = f (t) + µ(t) f ∆(t). (2.1)

Note that (2.1) is sometimes called the “simple useful formula."

Example 7. Note the following examples.

a. When T = R, then (if the limit exists)

f ∆(t) = lim
s→t

f (t)− f (s)
t − s

= f ′(t).

b. When T = Z, then
f ∆(t) = f (t + 1)− f (t) =: ∆ f (t).

c. When T = hZ for h > 0, then

f ∆(t) =
f (t + h)− f (t)

h
=: ∆h f (t).

d. When T = qZ for q > 1, then

f ∆(t) =
f (qt)− f (t)
(q − 1)t

=: Dq f (t).

Next we consider the linearity property as well as the product rules.

Theorem 8 (See Theorem 1.20 [10]). Let f , g : T → R be differentiable at t ∈ Tκ . Then we have the following:

a. For any constants α and β, the sum (α f + βg) : T → R is differentiable at t with

(α f + βg)∆(t) = α f ∆(t) + βg∆(t).

b. The product f g : T → R is differentiable at t with

( f g)∆(t) = f ∆(t)g(t) + f σ(t)g∆(t) = f (t)g∆(t) + f ∆(t)gσ(t).
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Definition 9. A function f : T → R is said to be rd-continuous on T when f is continuous in points
t ∈ T with σ(t) = t and it has finite left-sided limits in points t ∈ T with sup{s ∈ T : s < t} = t.
The class of rd-continuous functions f : T → R is denoted by Crd = Crd(T) = Crd(T,R). The set of
functions f : T → R that are differentiable and whose derivative is rd-continuous is denoted by C1

rd.

Theorem 10 (See Theorem 1.74[10]). Any rd-continuous function f : T → R has an antiderivative F, i.e.,
F∆ = f on Tκ .

Definition 11. Let f ∈ Crd and let F be any function such that F∆(t) = f (t) for all t ∈ Tκ . Then the
Cauchy integral of f is defined by

∫ b

a
f (t)∆t = F(b)− F(a) for all a, b ∈ T.

Example 12. Let a, b ∈ T with a < b and assume that f ∈ Crd.

a. When T = R, then ∫ b

a
f (t)∆t =

∫ b

a
f (t)dt.

b. When T = Z, then ∫ b

a
f (t)∆t =

b−1

∑
t=a

f (t).

c. When T = hZ for h > 0, then ∫ b

a
f (t)∆t = h

b/h−1

∑
t=a/h

f (th).

d. When T = qN0 for q > 1, then

∫ b

a
f (t)∆t =

∫ b

a
f (t)dq(t) := (q − 1) ∑

t∈[a,b)∩T
t f (t).

Next, we present the matrix exponential and some of its properties.

Definition 13. An m × n matrix-valued function A on T is rd-continuous if each of its entries are
rd-continuous. Furthermore, if m = n, A is said to be regressive (we write A ∈ R) if

I + µ(t)A(t) is invertible for all t ∈ Tκ .

Theorem 14 (See Theorem 5.8 [10]). Suppose that A is regressive and rd-continuous. Then the initial value
problem

X∆(t) = A(t)X(t), X(t0) = I,

where I is the identity matrix, has a unique n × n matrix-valued solution X.

Definition 15. The solution X from Theorem 14 is called the matrix exponential function on T and is
denoted by eA(·, t0).

Theorem 16 (See Theorem 5.21 [10]). Let A be regressive and rd-continuous. Then for r, s, t ∈ T,

a. eA(t, s)eA(s, r) = eA(t, r), hence eA(t, t) = I,
b. eA(σ(t), s) = (I + µ(t)A(t))eA(t, s),
c. eA(t, σ(s)) = eA(t, s)(I + µ(s)A(s))−1,
d. (eA(·, s))∆ = AeA(·, s),
e. (eA(t, ·))∆ = −eσ

A(t, ·)A(s) = −eA(t, ·)(I + µ(s)A(s))−1 A(s).
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Next we give the solution (state response) to our linear system using variation of parameters.

Theorem 17 (See Theorem 5.24 [10]). Let A ∈ R be an n × n matrix-valued function on T and suppose that
f : T → Rn is rd-continuous. Let t0 ∈ T and x0 ∈ Rn. Then the solution of the initial value problem

x∆(t) = A(t)x(t) + f (t), x(t0) = x0

is given by

x(t) = eA(t, t0)x0 +
∫ t

t0

eA(t, σ(τ)) f (τ)∆τ.

3. Optimization of Linear Systems on Time Scales
In this section, we make use of variational methods on time scales as introduced by Bohner in

[17]. First, note that the state equations in (1.1) are uncoupled. For convenience, we rewrite (1.1) as

z∆(t) = Âz(t) + B̂u(t) + Ĉv(t), z(t0) = z0, (3.1)

where z represents an extended state given by z =
[

xP xE

]T
, Â =

[
AP 0
0 AE

]
, B̂ =

[
BP 0

]T
, and

Ĉ =
[
0 BE

]T
. Associated with (3.1) is the quadratic cost functional

J(u, v) =
1
2

zT(tf)M̂z(tf) +
1
2

∫ tf

t0

(zTQ̂z + uT RPu − vT REv)(τ)∆τ, (3.2)

where M̂, Q̂ ≥ 0 and RP, RE > 0. To minimize (3.2), we introduce the augmented cost functional

J+(u, v) =
1
2

zT(tf)M̂z(tf) +
∫ tf

t0

[H(x, u, v, λσ)− (λσ)Tz∆](τ)∆τ,

where the so-called Hamiltonian H is given by

H(x, u, v, λ) =
1
2
(zTQ̂z + uT RPu − vT REv) + λT(Âz + B̂u + Ĉv) (3.3)

and λ =
[
λP λE

]T
represents a multiplier to be determined later.

Remark 18. Our treatment of (1.1) differs from the argument used by Ho, Bryson, and Baron in [7]. In
their paper, they appealed to state estimates of the pursuer and evader to evaluate the cost functional.
Their motivation for their argument is due to notion that when they studied pursing and evading
missiles, they considered difference in altitude as negligible. As a result of our rewriting of (1.1), we
are not required to make such a restriction.

Next, we provide necessary conditions for an optimal control. We assume that

d
dε

∫ tf

t0

f (τ, ε)∆τ =
∫ tf

t0

∂

∂ε
f (τ, ε)∆τ (3.4)

for all f : T×R → R such that f (·, ε), ∂ f (·, ε)/∂ε ∈ Crd(T).
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Lemma 19. Let (3.2) be the cost functional associated with (3.1). Assume (3.4) holds. Then the first variation,
Φ̇(0), is zero provided that z, λ, u, and v satisfy

z∆ = Âz + B̂u + Ĉv, (3.5a)

−λ∆ = Q̂z + ÂTλσ, (3.5b)

0 = RPu + B̂Tλσ, (3.5c)

0 = −REv + ĈTλσ. (3.5d)

Proof. First note that

Φ(ε) = J ((z, u, v, λ) + ε(η1, η2, η3, η4))

=
1
2
(z + εη1)

T(tf)M̂(z + εη1)(tf) +
1
2

∫ tf

t0

[(z + εη1)
TQ̂(z + εη1)](τ)∆τ

+
1
2

∫ tf

t0

[(u + εη2)
T RP(u + εη2)](τ)∆τ − 1

2

∫ tf

t0

[(v + εη3)
T RE(v + εη3)](τ)∆τ

+
∫ tf

t0

{
(λσ + εησ

4 )
T [Â(z + εη1) + B̂(u + εη2)

}
(τ)∆τ

+
∫ tf

t0

{
(λσ + εησ

4 )
T [Ĉ(v + εη3)− (z + εη1)

∆]
}
(τ)∆τ.

Then

Φ̇(ε) = ηT
1 (tf)M̂(z + εη1)(tf) +

∫ tf

t0

[ηT
1 Q̂(z + εη1)](τ)∆τ

+
∫ tf

t0

[ηT
2 RP(u + εη2)− ηT

3 RE(v + εη3)](τ)∆τ

+
∫ tf

t0

{
(ησ

4 )
T [Â(z + εη1) + B̂(u + εη2)]

}
(τ)∆τ

+
∫ tf

t0

{
(ησ

4 )
T [Ĉ(v + εη3)− (z + εη1)

∆]
}
(τ)∆τ

+
∫ tf

t0

{
(λσ + εησ

4 )
T [Âη1 + B̂η2 + Ĉη3 − η∆

1 ]
}
(τ)∆τ.

Then after rearranging terms, the first variation can be written as

Φ̇(0) = [M̂z(tf)− λ(tf)]
Tη1(tf) + λT(t0)η1(t0)

+
∫ tf

t0

[(ÂTλσ + Q̂z + λ∆)Tη1 + (RPu + B̂Tλσ)Tη2](τ)∆τ

+
∫ tf

t0

[(−REv + ĈTλσ)Tη3 + (Âz + B̂u + Ĉv − z∆)Tησ
4 ](τ)∆τ.

Now in order for Φ̇(0) = 0, we set each coefficient of independent increments η1, η2, η3, ησ
4 equal to

zero. This yields the necessary conditions for a minimum of (3.2). Using the Hamiltonian (3.3), we
have state and costate equations

z∆ = Hλ(z, u, v, λσ) = Âz + B̂u + Ĉv

and
−λ∆ = Hz(z, u, v, λσ) = Q̂z + ÂTλσ.

Similarly, we have the stationary conditions

0 = Hu(z, u, v, λσ) = RPu + B̂Tλσ
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and
0 = Hv(z, u, v, λσ) = −REv + ĈTλσ

This concludes the proof.

Remark 20. We note that z, λ, u, and v solve (3.5) if and only if they solve

z∆ = Âz − D̂λσ, (3.6a)

−λ∆ = Q̂z + ÂTλσ, (3.6b)

u = −R−1
P B̂Tλσ, (3.6c)

v = R−1
E ĈTλσ, (3.6d)

where D̂ is a “mixing term” given by

D̂ := B̂R−1
P B̂T − ĈR−1

E ĈT .

Throughout this paper, we assume that D̂ is regressive. As a result, we can determine an optimal
strategy if we know the value of the costate.

Finally, we give the sufficient conditions for a local optimal control.

Lemma 21. Let (3.2) be the cost functional associated with (3.1). Assume (3.4) holds. Then the second variation,
Φ̈(0), is positive provided that η1, η2, and η3 satisfy the constraints η∆

1 = Âη1 + B̂η2 + Ĉη3 where η2 ̸= 0
and η3 is fixed.

Proof. Taking the second derivative of Φ(ε), we have

Φ̈(ε) = ηT
1 (tf)M̂η1(tf) +

∫ tf

t0

[ηT
1 Q̂η1 + ηT

2 RPη2 − ηT
3 REη3](τ)∆τ

+2
∫ tf

t0

[(Âη1 + B̂η2 + Ĉη3 − η∆
1 )

Tησ
4 ](τ)∆τ.

If we assume that η1, η2, and η3 satisfy the constraint

η∆
1 = Âη1 + B̂η2 + Ĉη3,

then the second variation is given by

Φ̈(0) = ηT
1 (tf)M̂η1(tf) +

∫ tf

t0

[ηT
1 Q̂η1 + ηT

2 RPη2 − ηT
3 REη3](τ)∆τ.

Note that M̂ and Q̂ ≥ 0 while RP and RE > 0. Thus if η2 ̸= 0 and η3 is fixed, then (3.7) is guaranteed to
be positive.

Definition 22. The pair (u∗, v∗) is a saddle point to the system (3.1) associated with the cost (3.2)
provided

J(u, v∗) ≤ J(u∗, v∗) ≤ J(u∗, v).

Here, the stationary conditions needed to ensure a saddle are Huu = RP > 0 and Hvv = −RE < 0
(see [39]). For our purposes, this pair corresponds to when neither player wishes to deviate from
this compromise without being penalized by the other player. It be understood that this compromise
occurs when we have the natural caveat that the pursuer and evader belong to the same time scale. In
this paper, we do not claim that this saddle point must be unique.
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4. Fixed Final States Case
In this section, we seek an optimal strategy when the final states are fixed. In this setting we write

the equations for the pursuer and evader separately. Here we consider the state and costate equations
for the pursuer

x∆
P (t) = APxP(t)− BPR−1

P BT
P λσ

P (t), xP(t0) = xP
0

−λ∆
P (t) = AT

P λσ
P (t), λP(tf) = M(xP − xE)(tf)

(4.1)

as well as those for the evader

x∆
E (t) = AExE(t)− BER−1

E BT
E λσ

E (t), xE(t0) = xE
0

−λ∆
E (t) = AT

E λσ
E (t), λE(tf) = M(xE − xP)(tf)

(4.2)

associated with the cost functional

J(u, v) =
1
2

(
(xP − xE)

T(tf)M(xP − xE)
)
(tf)

+
1
2

∫ tf

t0

(
(xP − xE)

TQ(xP − xE) + uT RPu − vT REv
)
(τ)∆τ. (4.3)

Definition 23. The initial state difference, d0(·), is the difference between the zero-input pursuing and
evading states, i.e.,

d0(t) := eAP(t, t0)xP(t0)− eAE(t, t0)xE(t0).

Next, we determine an open–loop strategy for both players. Note that the following theorem
mirrors Kalman’s generalized controllability criterion as found in Theorem 3.2 [16].

Theorem 24. Suppose that xP and λP solve (4.1) while xE and λE satisfy (4.2). Let the Gramians for the pursuer
and evader

GP(to, tf) :=
∫ tf

t0

eAP(tf, σ(τ))BPR−1
P BT

P eT
AP

(tf, σ(τ))∆τ (4.4)

and

GE(to, tf) :=
∫ tf

t0

eAE(tf, σ(τ))BER−1
E BT

E eT
AE

(tf, σ(τ))∆τ, (4.5)

respectively, be such that I + (GP − GE)(t0, tf)M is invertible for all t ∈ [t0, tf] ∩ T. Then u and v can be
rewritten as

u(t) = −R−1
P BT

P eT
AP

(tf, σ(t))M[I + (GP − GE)(to, tf)M]−1d0(tf) (4.6)

and
v(t) = −R−1

E BT
E eT

AE
(tf, σ(t))M[I + (GP − GE)(to, tf)M]−1d0(tf). (4.7)

Proof. Solving (4.1) for λP, we have

λP(t) = eT
AP

(tf, t)λP(tf) = eT
AP

(tf, t)M(xP − xE)(tf).

Using (2.1) and (3.5a), the state equation becomes

x∆
P (t) = APxP(t)− BPR−1

P BT
P eT

AP
(tf, σ(t))λP(tf). (4.8)

Now solving (4.8) with Theorem 17 at time t = tf, we have

xP(tf) = eAP(tf, t0)xP(t0)

−
∫ tf

t0

eAP(tf, σ(τ))BPR−1
P BT

P eT
AP

(tf, σ(τ))λP(tf)∆τ

= eAP(tf, t0)xP(t0)− GP(t0, tf)M(xP − xE)(tf).
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Similarly, the final state for the pursuer can be written as

xE(tf) = eAE(tf, t0)xE(t0)− GE(to, tf)M(xP − xE)(tf).

Taking the difference in the final states and rearranging, we have

(xP − xE)(tf) = d0(tf)− (GP − GE)(t0, tf)M(xP − xE)(tf)

= [I + (GP − GE)(t0, tf)M]−1d0(tf). (4.9)

Finally, plugging λ into (3.6c) and using (4.9) yields

u(t) = −R−1
P BT

P eT
AP

(tf, σ(t))λP(tf)

= −R−1
P BT

P eT
AP

(tf, σ(t))M(xP − xE)(tf)

= −R−1
P BT

P eT
AP

(tf, σ(t))M[I + (GP − GE)(to, tf)M]−1d0(tf).

The equation for v can be shown similarly. This concludes the proof.

Next, we determine the optimal cost.

Theorem 25. If u and v are given by (4.6) and (4.7), respectively, then the cost functional (4.3) can be rewritten
as

J(u, v) =
1
2

dT
0 (tf)H(t0, tf)MT [I + (GP − GE)(t0, tf)]MH(t0, tf)d0(tf), (4.10)

where H(t0, tf) := [I + (GP − GE)(t0, tf)M]−1.

Proof. First, plugging (4.6), (4.7), and (4.9) into (4.3), we have

J(u, v) =
1
2

dT
0 (tf)H(t0, tf)MH(t0, tf)d0(tf)

+
1
2

dT
0 (tf)H(t0, tf)MT

(∫ tf

t0

eAP(tf, σ(τ))BPR−1
P BT

P eT
AP

(tf, σ(τ))∆τ

)
MH(t0, tf)d0(tf)

− 1
2

dT
0 (tf)H(t0, tf)MT

(∫ tf

t0

eAE(tf, σ(τ))BER−1
E BT

E eT
AE

(tf, σ(τ))∆τ

)
MH(t0, tf)d0(tf)

=
1
2

dT
0 (tf)H(t0, tf)MH(t0, tf)d0(tf)

+
1
2

dT
0 (tf)H(t0, tf)MT(GP − GE)(t0, tf)]MH(t0, tf)d0(tf),

using the gramians (4.4) and (4.5). Since M ≥ 0 is symmetric, we can pull out common factors on the
left and right to obtain our result.

Remark 26. Suppose that the pursuer wants to use a strategy u that intercepts the evader (using strategy
v) with minimal energy. Note that det[I + (GP − GE)(t0, tf)] ̸= 0 if and only if det[(GP − GE)(t0, tf)] ̸= 0.
From the classical definition of controllability, this implies that the pursuer captures the evader when
the pursuer is “more controllable" than the evader. A sufficient condition for the pursuing state to
intercept the evader is given by (GP − GE)(t0, tf) > 0. As a result, this relationship is preserved in the
unification of pursuit-evasion to dynamic equations on time scales.

5. Free Final States Case
In this section, we develop an optimal control law in the form of state feedback. In considering

the boundary conditions, note that z(t0) is known (meaning η1(t0) = 0) while z(tf) is free (meaning
η1(tf) ̸= 0). Thus the coefficient on η1(tf) must be zero. This gives the terminal condition on the costate
to be

λ(tf) = M̂z(tf). (5.1)
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Remark 27. Now in order to solve this two-point boundary value problem, we make the assumption
that z and λ satisfy

λ(t) = S(t)z(t). (5.2)

for all t ∈ [t0, tf]. This condition (5.2) is called a “sweep condition," a term used by Bryson and Ho in
[8]. Since the terminal condition M̂ ≥ 0, it is natural to assume that S ≥ 0 as well.

Theorem 28. Assume that S solves

−S∆ = Q̂ + ÂTSσ + (I + µÂT)Sσ(I + µD̂Sσ)−1(Â − D̂Sσ). (5.3)

If x satisfies
z∆ = (I + µD̂Sσ)−1(A − D̂Sσ)z (5.4)

and λ is given by (5.2), then
−λ∆ = Q̂z + ÂTλσ. (5.5)

Proof. Since λ is as given in (5.2), we may use the product rule, (5.3), (5.4), and (2.1) to arrive at

−λ∆ = −S∆z − Sσz∆

= Q̂z + ÂTSσz + (I + µÂT)Sσz − S∆z

= Q̂z + ÂTSσz + µÂTSσz∆

= Q̂z + ÂTSσzσ

= Q̂z + ÂTλσ,

which gives (5.5) as desired.

Next we offer an alternative form of our Riccati equation.

Lemma 29. If D̂Sσ is regressive, then S solves (5.3) if and only if it solves

−S∆ = Q̂ + ÂTSσ + (I + µÂT)Sσ Â − (I + µÂT)SσD̂Sσ(I + µD̂Sσ)−1(I + µÂ). (5.6)

Proof. Note that

A − D̂Sσ = A − D̂Sσ(I + µA − µA) = (I + µD̂Sσ)A − D̂Sσ(I + µA).

Plugging the above identity into (5.3) yields (5.6).

Next we define our Kalman gains as follows.

Definition 30. Let D̂Sσ be regressive. Then the matrix-valued functions

KP(t) = R−1
P B̂TSσ(t)(I + µ(t)D̂Sσ(t))−1(I + µ(t)Â) (5.7)

and
KE(t) = R−1

E ĈTSσ(t)(I + µ(t)D̂Sσ(t))−1(I + µ(t)Â) (5.8)

are called the pursuer feedback gain and evader feedback gain, respectively.

Theorem 31. Let D̂Sσ be regressive and suppose that z and λ solve (4.8) such that (5.2) holds. Then

B̂u + Ĉv = −KPz + KEz. (5.9)
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Proof. Using (3.6), (5.2), and (2.1), we have

B̂u + Ĉv = −B̂R−1
P B̂Tλσ + ĈR−1

E ĈTλσ

= −B̂R−1
P B̂TSσ

(
z + µz∆

)
+ ĈR−1

E ĈTSσ
(

z + µz∆
)

= −D̂Sσ[(I + µÂ)z + µ(B̂u + Ĉv)].

Now combining like terms yields

(I + D̂Sσ)(B̂u + Ĉv) = −D̂Sσ(I + µÂ)z

Multiplying both side by the inverse of I + D̂Sσ and rearranging terms, we have

B̂u + Ĉv = −(I + D̂Sσ)−1D̂Sσ(I + µÂ)z

= −D̂Sσ(I + D̂Sσ)−1(I + µÂ)z

= −B̂R−1
P B̂TSσ(I + D̂Sσ)−1(I + µÂ)z + ĈR−1

E ĈTSσ(I + D̂Sσ)−1(I + µÂ)z.

Finally, (5.9) follows using (5.7) and (5.8).

Next we rewrite our extended state equation under the influence of the pursuit-evasion control
laws. This yields the closed-loop plant given by

z∆(t) = (Â − B̂KP(t) + ĈKE(t))z(t), (5.10)

which can be used to find an optimal trajectory for any given z(t0).

Lemma 32. If D̂Sσ is regressive and S is symmetric, then

(I + µÂT)Sσ Â − (I + µÂT)Sσ(I + µD̂Sσ)1D̂Sσ(I + µÂ)

= (I + µ(Â − B̂KP + ĈKE)
T)Sσ(Â − B̂KP + ĈKE)

−KT
P B̂TSσ + KT

E ĈTSσ + KT
P RPKP − KT

E REKE. (5.11)

Moreover, both sides of (5.11) are equal to (I + µÂT)Sσ(Â − B̂KP + ĈKE).

Proof. We can use (5.7) and (5.8) to rewrite the left-hand side of (5.11) as

(I + µÂT)Sσ Â − (I + µÂT)SσD̂Sσ(I + µD̂Sσ)1(I + µÂ)

= (I + µÂT)Sσ Â − (I + µÂT)Sσ(B̂KP − ĈKE)

= (I + µÂT)Sσ(Â − B̂KP + ĈKE).

Using (5.7) and (5.8), the right-hand side of (5.11) can be written as

(I + µÂT)Sσ(Â − B̂KP + ĈKE)− KT
P B̂TSσ(I + µÂ) + KT

E ĈTSσ(I + µÂ)

−µKT
P B̂TSσ(B̂KP + ĈKE) + µKT

E ĈTSσ(B̂KP + ĈKE)

+KT
P RPKP − KT

E REKE

= (I + µÂT)Sσ(Â − B̂KP + ĈKE)− KT
P B̂TSσ(I + µÂ)

+KT
E ĈTSσ(I + µÂ)− µKT

P B̂TSσD̂Sσ(I + µD̂Sσ)−1(I + µÂ)

+µKT
E ĈTSσD̂Sσ(I + µD̂Sσ)−1(I + µÂ) + KT

P RPKP − KT
E REKE

= (I + µÂT)Sσ(Â − B̂KP + ĈKE)− KT
P B̂TSσ(I + µD̂Sσ)−1(I + µÂ)

+KT
E ĈTSσ(I + µD̂Sσ)−1(I + µÂ) + KT

P RPKP − KT
E REKE

= (I + µÂT)Sσ(Â − B̂KP + ĈKE).
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Thus, (5.11) holds.

Now we rewrite the Riccati equation (5.6) in so-called (generalized) Joseph stabilized form (see
[39]).

Theorem 33. If D̂Sσ is regressive and S is symmetric, then S solves the Riccati equation (5.6) if and only if it
solves

−S∆ = Q̂ + (Â − B̂KP + ĈKE)
TSσ

+(I + µ(Â − B̂KP + ĈKE)
T)Sσ(Â − B̂KP + ĈKE)

+KT
P RPKP − KT

E REKE. (5.12)

Proof. The statement follows directly from Lemma 32.

Finally, we rewrite the cost.

Theorem 34. Suppose that S solves (5.12). If z, u, and v satisfy (5.10), and (5.9) respectively, then the cost
functional (3.2) can be rewritten as

J(u, v) =
1
2

zT(t0)S(t0)z(t0). (5.13)

Proof. First note that we may use the product rule, (2.1), and (5.10) to find

(zTSz)∆ = (zTS)∆z + (zTS)σz∆

= (z∆)TSσz + zTS∆z + (z + µz∆)TSσz∆

= zT [(Â − B̂KP + ĈKE)
TSσ + S∆]z (5.14)

+zT [I + µ(Â − B̂KP + ĈKE)]
TSσ(Â − B̂KP + ĈKE)z.

Using this and (5.9) in (3.2), we have

J(u, v) =
1
2

zT(t0)S(t0)z(t0) +
1
2

∫ tf

t0

(zTSz)∆(τ)∆τ

+
1
2

∫ tf

t0

[zTQ̂z + uT RPu − vT REv](τ)∆τ

=
1
2

zT(t0)S(t0)z(t0) +
1
2

∫ tf

t0

(zTSz)∆(τ)∆τ

+
1
2

∫ tf

t0

{
zT [Q̂ + KT

P RPKP − KT
E REKE]z

}
(τ)∆τ.

Using (5.14) and (5.12), the cost functional can be rewritten as

J(u, v) =
1
2

zT(t0)S(t0)z(t0).

This concludes the proof.

From Theorem 34, if the current state and S are known, we can determine the optimal cost before
we apply the optimal control or even calculate it. The table below summarizes our results.
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Table 5.1. The LQPEG on T

System:
z∆ = Âz + B̂u + Ĉv

Cost:

J(u, v) =
1
2

zT(tf)M̂z(tf) +
1
2

∫ tf

t0

(zTQ̂z + uT RPu − vT REv)(τ)∆τ

Mixing Term:
D̂ = B̂R−1

P B̂T − ĈR−1
E ĈT

Pursuer Feedback:
KP = R−1

P B̂TSσ(I + µD̂Sσ)−1(I + µÂ)

Evader Feedback:
KE = R−1

E ĈTSσ(I + µD̂Sσ)−1(I + µÂ)

Riccati Equation:
−S∆ = Q + ÂTSσ + (I + µÂT)Sσ Â − (I + µÂT)SσD̂Sσ(I + µD̂Sσ)−1(I + µÂ)

6. Examples
Example 35. (The Continuous LQPEG) Let T = R and consider

z′(t) = Âz(t) + B̂u(t) + Ĉv(t),

associated with the cost functional

J(u, v) =
1
2

zT(tf)M̂z(tf) +
1
2

∫ tf

t0

[zTQ̂z + uT RPu − vT REv](τ)dτ

(observe part (a) of Examples 7 and 12). Then the state, costate, and stationary equations (3.6) are given
by

z′ = Âz − D̂λ,

−λ′ = ÂTλ + Q̂z,

u = −R−1
P B̂Tλ,

v = R−1
E ĈTλ.

In this case, our pursuer-evader feedback gains (5.7) and (5.8) are given as

KP(t) = R−1
P B̂TS(t) and KE(t) = R−1

E ĈTS(t).

Now the pursuer-evader law (5.9) and the closed-loop plant (5.10) can be written as

B̂u(t) + Ĉv(t) = −B̂KP(t)z(t) + ĈKE(t)z(t)

and
z′ = (Â − B̂KP + ĈKE)z.

Similarly, the closed-loop Riccati equation (5.12) can be written as

−S′ = Q̂ + S(Â − B̂KP + ĈKE) + (Â − B̂KP + ĈKE)
TS + KT

P RPKP − KT
E REKE

while the optimal cost is given by (5.13).

Example 36. (The h-difference LQPEG) Let T = hZ and consider

∆hz(t) = Âz(t) + B̂u(t) + Ĉv(t),
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By observing Example 7 (c) and introducing

Ã = I + hÂ, B̃ = hB̂, C̃ = hĈ, Q̃ = hQ̂, R̃i = hRi, D̃ = hD̂,

we can rewrite the system as
z(t + h) = Ãz(t) + B̃u(t) + C̃v(t),

and the associated cost functional takes the form (observe Example 12 (c))

J(u, v) =
1
2

zT(tf)M̂z(tf) +
1
2

tf/h−1

∑
τ=t0/h

[zTQ̃z + uT R̃Pu − vT R̃Ev](τh).

Then the state, costate, and stationary equations (3.6) are given by

z(t + h) = Ãz(t)− D̃λ(t + h),

λ(t) = ÃTλ(t + h) + Q̃z(t),

u(t) = −R̃−1
P B̃Tλ(t + h),

v(t) = R̃−1
E C̃Tλ(t + h).

Now our pursuer and evader feedback gains (5.7) and (5.8) are

KP(t) = R̃−1
P B̃TS(t + h)(I + D̃S(t + h))−1 Ã

and
KE(t) = R̃−1

E C̃TS(t + h)(I + D̃S(t + h))−1 Ã.

Next, the control-tracker law (5.9) and the closed-loop plant (5.10) can be written as

B̃u(t) + C̃v(t) = −B̃KP(t)z(t) + C̃KE(t)z(t)

and
z(t + h) = (Ã − B̃KP(t) + C̃KE(t))z(t),

respectively. Similarly, the closed-loop Riccati equation (5.12) can be written as

S(t) = Q̃ + (Ã − B̃KP(t) + C̃KE(t))TS(t + h)(Ã − B̃KP(t) + C̃KE(t))

+KT
P (t)R̃PKP(t)− KT

E (t)R̃EKE(t)

while the optimal cost is given by (5.13).

Example 37. (The q-difference LQPEG) Let T = qN0 with q > 1 and consider

Dqz(t) = Âz(t) + B̂u(t) + Ĉv(t).

By observing Example 7 (d) and introducing

Ã(t) = I + (q − 1)tÂ, B̃(t) = (q − 1)tB̂, C̃(t) = (q − 1)tĈ

Q̃(t) = (q − 1)tQ̂, R̃i(t) = (q − 1)tRi, D̃(t) = (q − 1)tD̂,

we can rewrite the system as

z(qt) = Ã(t)z(t) + B̃(t)u(t) + C̃v(t),
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while the associated cost functional becomes (observe Example 12 (d))

J(u, v) =
1
2

zT(tf)M̂z(tf) +
1
2 ∑

τ∈[t0,tf)∩T
[zTQ̃z + uT R̃Pu − vT R̃Ev](τ).

Then the state, costate, and stationary equations (3.6) are given by

z(qt) = Ã(t)z(t)− D̃(t)λ(qt),

λ(t) = ÃT(t)λ(qt) + Q̃(t)z(t),

u(t) = −R̃−1
P (t)B̃T(t)λ(qt),

v(t) = R̃−1
E (t)C̃T(t)λ(qt).

In this case, our pursuer and evader feedback gains (5.7) and (5.8) are

KP(t) = R̃−1
P (t)B̃T(t)S(qt)(I + D̃S(qt))−1 Ã(t)

and
KE(t) = R̃−1

E (t)C̃T(t)S(qt)(I + D̃S(qt))−1 Ã(t).

Now the control-tracker law (5.9) and the closed-loop plant (5.10) can be written as

B̃(t)u(t) + C̃(t)v(t) = −B̃(t)KP(t)z(t) + C̃(t)KE(t)z(t)

and
z(qt) = (Ã(t)− B̃(t)KP(t) + C̃(t)KE(t))z(t),

respectively. Finally, the closed-loop Riccati equation (5.12) can be written as

S(t) = Q̃(t) + KT
P (t)R̃P(t)KP(t)− KT

E (t)R̃E(t)KE(t)

+(Ã(t)− B̃(t)KP(t) + C̃(t)KE(t))TS(qt)(Ã(t)− B̃(t)KP(t) + C̃(t)KE(t))

while the optimal cost is given by (5.13).

Example 38. In this last example, we provide a numerical of the LQPEG. In this setting, we sample a
two-dimensional pursuer and evader on the same discrete, but uneven time scale

T ={0, 0.03, 0.29, 1.23, 1.49, 1.94, 2.11, 2.51, 2.77, 3.78, 3.87, 4.15, 4.78, 4.81, 4.89,

4.91, 5.49, 5.62, 5.71, 6.15, 6.72, 7.2, 7.4, 7.48, 7.59, 7.66, 7.68, 8.37, 8.55, 8.87,

8.96, 9.4, 9.44, 9.73, 10}.

Next, we consider the theoretical linear dynamic system

x∆
P (t) =

[
2 0
0 1

]
xP(t) +

[
1
3

]
u(t), xP(0) =

[
2
1

]

x∆
E (t) =

[
3 1
1 1

]
xE(t) +

[
2
−2

]
v(t), xE(0) =

[
1
2

]
.

Note that the first component of each player represents its position while the second corresponds
to its velocity. For simplicity, only the position is observed. Here, we set the weights in (3.2) to be
RP = 1, RE = 1.3 and Q = S(tf) = I4. The plots for the pursuer and evader’s positions are given in
Figure 6.1 below.
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Figure 6.1. Two-dimensional LQPEG on an isolated, uneven T

7. Concluding Remarks and Future Work
In this project, we have established the LQPEG where the pursuer and evader belong to the same

arbitrary time scale T. One potential application of this work is when the evader represented by a
drone and the evader represents a missile guidance where their corresponding signals are unevenly
sampled. Here. the cost in part represents the wear and tear on the drone. A saddle point in this
setting would represent a “live and let live” arrangement, where the drone is allowed to spy briefly on
the missile-guidance system and return home, but is not given opportunity to preserve enough of its
battery to outstay its welcome. Similarly, in finance the pursuer and evader can represents competing
companies where a saddle point would correspond to an effort to coexist, where a hostile takeover or
unnecessarily expended resources can be avoided. We have sidestepped the setting where the pursuer
and evader each belong to their own time scale TP and TE, respectively. However, these time scales
can be merged using a sample-and-hold method as found in [40,41].

One potential extension of this work is the introduction of additional pursuers. In this setting,
the cost must be adjusted to account for the closest pursuer, which can vary over the time scale. A
second potential extension is to consider the setting when one player is subject to a delay. Here,
both players can still belong to the same time scale. However, this allows one player to act after
the other, perhaps with some knowledge of the opposing player’s strategy. Finally, a third possible
approach is to such games in a stochastic setting. Here, we can discretize each player’s stochastic linear
time-invariant system to a dynamic system on an isolated time scale, as found in [40,42]. However, the
usual separability property is not preserved in this setting.
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