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Abstract: The evolution of some epidemics, as influenza, shows common patterns both in different 1

regions and from year to year. On the contrary, epidemics like the novel COVID-19 show quite 2

heterogeneous dynamics and are extremely susceptible to the measures taken to mitigate their spread. 3

In this paper we propose empirical dynamic modeling to predict the evolution of influenza in Spain’s 4

regions. It is a non-parametric method that looks into the past for coincidences with the present to 5

make the forecasts. Here we extend the method to predict the evolution of other epidemics at any 6

other starting territory and we test also this procedure with Spanish COVID-19 data. We finally build 7

influenza and COVID-19 networks to check possible coincidences in the geographical distribution of 8

both diseases. With this, we grasp the uniqueness of the geographical dynamics of COVID-19. 9

Keywords: non-parametric modeling; flu; influenza; COVID-19; SARS-CoV-2; Empirical Dynamic 10

Modeling; forecasting 11

1. Introduction 12

Influenza (or flu) is an infectious respiratory disease caused by the influenza virus. 13

It results in an estimated 250 000 to 650 000 deaths annually [1]. Until 2020, influenza 14

epidemics showed a seasonal recurrence (Figure 1a), with a yearly pattern of exponential 15

growth of infections, a marked peak, and a similarly prompt decay of new cases (Figure 16

1b). The width and magnitude of each outbreak varied moderately across years. These 17

overall regularities [2] allowed a moderate success of different modeling approaches in 18

forecasting outbreak magnitude and duration [3–6] . 19

In late 2019 the emergence of the COVID-19 (the infectious respiratory disease caused 20

by the SARS-CoV-2 virus) global pandemics disrupted the seasonal influenza pattern [7]. 21

The fast spread and severity of the disease led to the enforcement of strong distancing 22

measures around the globe, which halted the propagation of other, less aggressive respira- 23

tory viruses such as influenza’s [8]. Contrary to the regularities observed in flu epidemics, 24

COVID-19 data is very erratic. On the one hand, we do not know yet whether it will 25

become a stationary disease – with patterns of infection growth and decay similar to those 26

of Flu. If that were the case eventually, we have not observed the new epidemics for a 27

sufficiently long time yet as to infer repeated trends. On the other hand, while influenza is 28

dealt with casually, the countermeasures to tackle COVID-19 have disrupted its natural 29

cycle. When these counter-measurements were relaxed, new outbreaks emerged. This 30

resulted in an irregular train of waves that often overlapped in time. As measures were 31

dictated by an array of authorities (from local to supra-national), these waves differed 32

wildly across regions – even within a same country (Figure 1c). Some biological aspects of 33

SARS-CoV-2 contributed to the disarray: it presents a long incubation period [9] during 34

Version May 28, 2022 submitted to Mathematics https://www.mdpi.com/journal/mathematics

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2022                   doi:10.20944/preprints202206.0086.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.3390/math1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0003-0872-5017
https://orcid.org/0000-0001-8202-6578
https://orcid.org/0000-0002-6024-6294
https://www.mdpi.com/journal/mathematics
https://doi.org/10.20944/preprints202206.0086.v1
http://creativecommons.org/licenses/by/4.0/


Version May 28, 2022 submitted to Mathematics 2 of 15

Basque Country

Community of Madrid

Catalonia

Oct. 2000 Oct. 2005 Jan. 2010 Jan. 2015 Jan. 2020

Date

0

200

400

600

W
ee

kl
y 

in
ci

de
nc

e

Jan. 1, 2020 May 20, 2020 Oct 7, 2020 Feb 25, 2021

Date

0

20

40

60

80

D
ai

ly
 in

ci
de

nc
e

0 10 20 30

Week

0

100

200

300

400

W
ee

kl
y 

in
ci

de
nc

e

a b c

Figure 1. Empirical time series of the influenza and SARS-CoV-2 epidemics. a Examples of historical
time series of flu over 20 years in three Spanish regions: Basque Country (black), Community of
Madrid (red), Catalonia (blue). Data from each year (spanning from week 40 of a given year to week
20 of the next year) have been concatenated omitting the warm season (during which incidence is
negligible). The gray area is expanded in b to show the yearly exponential raise, peak, and fall that
characterizes the influenza cycle. Here, data from 2015/16. c Evolution of the SARS-CoV-2 pandemics
in the same three regions shows the pattern of waves within a single year, which are not always in
phase across regions.

which an infected person does not show symptoms; a large fraction of people suffer an 35

asymptomatic version of the disease, but they can propagate the virus [10]; and, also, large 36

outbreaks have been attributed to single super-spreaders who infected up to hundreds of 37

people during a single event [11]. Under such conditions, tracking the exact timing of each 38

infection is difficult – which resulted in unreliable epidemiological time series. 39

The very mathematical nature of epidemic dynamics also hinders its forecasting. A 40

popular approach to this problem are compartmental models. In them, a population is 41

coarse-grained into broad classes (e.g. Susceptible, Infected, and Recovered) and simple 42

rules are established to regulate the flows between compartments. Typically, Infected peo- 43

ple move into the Recovered class at a given rate, while they infect Susceptible individuals 44

(moving them to the Infected compartment) with some probability. These rates and prob- 45

abilities can be empirical model parameters inferred from the data. Such simple models 46

can correctly capture broad qualitative aspects – e.g. a phase of exponential growth or the 47

existence of herd-immunity thresholds (when such critical fraction of the population has 48

been infected, the outbreak remits spontaneously). However, these models are notably bad 49

at forecasting real-life scenarios. On top of all the troubles affecting data quality mentioned 50

above, the phase of exponential growth in epidemic dynamics constitutes an important 51

limiting factor. As it happens in deterministic chaos [12], small errors or uncertainties 52

in the data are magnified exponentially by the epidemic dynamics themselves. Unlike 53

chaotic systems, epidemic peaks can be fairly stereotypical; but the effect of exponentially 54

magnified errors is enough to prevent a systematic and precise forecast of an outbreak’s 55

magnitude and duration [13]. This exponential factor in epidemic dynamics results in 56

broad ranges or parameters that can fit correctly past data, but that are compatible with 57

wildly diverging future behaviors. 58

In this framework, we have turned our attention to Empirical Dynamic Modeling 59

(EDM) [14], a form of non-parametric modeling that looks at past examples of how a 60

dynamical process (e.g. an epidemic) looked like, and uses them to forecast how it might 61

unfold. Traditional EDM applications take a specific historic time-series (e.g. epidemic data 62

of influenza in a French region [15]), then look at more recent data (say, the last 5 weeks of 63

influenza cases in that same region) and find instances of the past series that resemble the 64

new data. The known progress of the closest historical matches is used as an estimate for 65

the evolution of the current situation. This avoids fitting empirical data to highly sensitive 66

exponential dynamics that magnify small errors. Instead, it relies on bounded, repeated 67

trends of a same kind. 68

Because of the issues around SARS-CoV-2 data outlined above, EDM seems still an 69

unfit technique for the ongoing pandemic. The strong regularities seen in influenza mitigate 70

some of these problems, making it an excellent test-bench for this approach. In an attempt 71

to improve forecasting for the current pandemics, we expanded the classical functioning 72
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Figure 2. Illustration of different data pools for EDM. In grey, the example we want to forecast, the
testing series. In blue, the method we call classic, which uses as library of patterns all the examples of
the same region. In pink, the method annual, which uses as library all the examples from the same
year. In green, the method pool, where we use the biggest library, taking all the series that are not
from the same region or the same year.

of EDM to leverage geographically distributed data. Instead of using a single historic 73

time series to predict what might happen in a specific region, we studied a set of areas 74

on which epidemics unfolded simultaneously, and allowed historical series from each- 75

other to serve as examples of how the dynamics might progress. We first used influenza 76

data from different Spanish regions to study a controlled scenario of known regularity. 77

Through this controlled case, we quantified how much of an improvement our approach 78

is with respect to earlier applications of EDM that did not leverage similar dynamics in 79

geographically distributed data. We explore briefly the more difficult case of SARS-CoV- 80

2, in which data remains scarce and heterogeneity across regions is more pronounced. 81

Our approach is moderately successful in capturing some features of the epidemics in 82

different Spanish regions, while it fails in some important aspects. We propose that pooling 83

geographically distributed data might speed up the gathering of recurring patterns, thus 84

enhancing forecasting methods (beyond EDM) if COVID-19 becomes a seasonal disease. 85

Finally, we turned EDM on its head to infer relationships between epidemic dynamics 86

across different Spanish regions and over time. Since EDM uses past examples to forecast 87

future dynamics, we quantified how often dynamical patterns from a region and year 88

served as an estimate for each other’s unfolding. Thus, we derive networks that illustrate 89

epidemiological patterns across regions and correlations between flu strains from different 90

years. These might offer relevant information to track which are the closest patterns that 91

new epidemics follow. 92

2. Materials and Methods 93

2.1. Data and data preprocessing 94

We obtained time series of influenza cases from the Spanish National Center for 95

Epidemiology (Instituto de Salud Carlos III). Out of 19 Spanish regions, we gathered data 96

for 17 (which include 15 autonomous communities and the autonomous cities of Ceuta and 97

Melilla). Data spans from 2000 to 2020, with some regions starting off at different times 98

(as summarized in Table A1). Each time series starts at week 40 of a year and ends on 99

week 20 of the next year – thus skipping the warm season in which influenza is uncommon. 100
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Raw data consists of weekly incidence per 100 000 inhabitants. This was smoothed with a 101

3-week moving average to mitigate sampling effects. 102

We obtained COVID-19 time series from the same Instituto de Salud Carlos III. This 103

data spans from the beginning of the epidemic to April 19 2021. Raw data consists of the 104

cumulative cases of COVID-19 in each Spanish region (all the Autonomous Communities, 105

and the independent cities Ceuta and Melilla). We smooth the data with a 7-days moving 106

average to mitigate sampling effects. From here, we derive daily incidence for each region 107

and report it as number of cases per 100 000 inhabitants. 108

Let us note the time series of weekly (for flu) or daily (for COVID-19) new cases as 109

x(t), where t ∈ {T0, . . . , Tend} is a discrete index in units of weeks or days respectively. 110

Given data up to some time t, our task is to attempt a forecast for x(t′ > t). Following the 111

literature on EDM (our tool of choice), we will work with the discrete derivative of x(t): 112

∆x(t) ≡ x(t)− x(t − ∆t). (1)

We will base our forecast on this variable instead of on x(t). This choice removes the effect 113

of short-term linear auto-correlations [14]. 114

2.2. Empirical Dynamic Modeling 115

Two approaches to forecasting stand out in the literature. On the one hand, modeling 116

based on agents or equations try to capture the underlying causal processes behind a 117

phenomenon (in our case, epidemic dynamics). Such causality is encoded by parameters – 118

e.g. the likelihood that a contagious person infects someone else, or that he/she recovers 119

from the disease. This approach allows us to understand a process and to test hypotheses 120

to control it, but it is very sensitive to the array of problems discussed in the introduction. 121

Non-parametric modeling, on the other hand, foregoes any attempt at understanding the 122

mechanisms behind a phenomenon. These methods are more pragmatic – blindly seeking 123

to extract as much useful information as possible to predict future scenarios. Little care is 124

put on distilling this information into simple operating principles. 125

Empirical Dynamic Modeling (EDM) [14] is a non-parametric forecasting technique. 126

EDM builds a library of dynamical patterns observed in the past history of a time series. 127

Then, an ongoing situation is matched to examples from this library. The evolution of the 128

matching examples becomes an estimator of how the current situation might progress. This 129

method has been used in epidemiology under alternative names, such as the “Method of 130

Analogues” [15]. 131

To the best of our knowledge, all applications of EDM base their forecast for an 132

ongoing time series on examples drawn from its own past history. This does not help 133

much for the current SARS-CoV-2 global pandemics, for which at most one year of very 134

irregular data exists. However, the epidemics has unfolded simultaneously throughout the 135

world, effectively generating parallel samples of the same process. Can we leverage this 136

geographically distributed information? To do so, we expand EDM’s library of examples 137

not only to the past of some ongoing dynamics, but to ongoing processes across different 138

regions. 139

Let there be a short time series: 140

Y ≡ [y(t − nL + 1), y(t − nL + 2), . . . , y(t)]. (2)

This usually consists of the last nL data points of an ongoing process, of which we wish 141

to forecast the immediate future. The length of this short series (nL) will be chosen as 142

explained below. Additionally, let there be a set of longer time series: 143

Ỹr ≡ [ỹr(Tr
0), . . . , ỹr(Tr

end)]; (3)

where the superscript r labels all available regions, and each corresponding series runs 144

between times Tr
0 and Tr

end (which might differ between regions). Let us call Ỹ ≡ {Ỹr} 145
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to the collection of all such series from all regions. Ỹ constitutes our library of dynamic 146

patterns, upon which we will base our forecast for the future of Y. 147

To build this forecast, we first search for dynamical patterns in Ỹ that resemble Y. We 148

compute the Euclidean distance between Y and each stretch of length nL within Ỹ: 149

dr
t′ =

√
nL

∑
i=1

(
y(t − nL + i)− ỹr(t′ − nL + i)

)2
, (4)

where we have selected each suitable stretch from region r and labeled it with its ending 150

time t′. Note that both Y and each stretch of length nL within the library are a point in an 151

nL-dimensional space. Equation 4 tells us how close to Y each point in the library is in this 152

abstract space. Of all the examples available we select the nB closest neighbors to Y. In this 153

paper (and following suit with EDM literature [14]) we take 154

nB ≡ nL + 1. (5)

We note the selected neighbors as {Ŷi; i = 1, . . . , nB}. Alongside these examples we 155

store h time steps into their future, such that: 156

Ŷi ≡
{

ŷi(t′i − nL + 1), . . . , ŷi(t′i), ŷi(t′i + 1), . . . , ŷi(t′i + h)
}

. (6)

Note that the index t′i labels time differently within each selected example. We estimate 157

the future h time steps ahead of the last point in Y as a weighted sum over the nearest 158

neighbors: 159

ŷ(t + h) ≡ 1
Z

nB

∑
i=1

ωi ŷi(t′i + h); (7)

where: 160

Z ≡
nB

∑
i=1

ωi (8)

and: 161

ωi ≡ e(−βdi/d0), (9)

with di the Euclidean distance (as per Equation 4) to the i-th neighbor, d0 the distance of 162

the closest neighbor, and β a meta-parameter to be set as indicated below. Note that if 163

β = 0, equation 7 renders just the mean of the evolutions, while for β > 0 we assign more 164

importance to points closer to Y. In the limit β
∞−→ only the closest neighbor contributes. 165

2.3. Meta-parameters, performance evaluation, and cross-validation 166

Back to our empirical time series, we will base our forecast on the observed ∆x(t) as 167

defined in subsection 2.1 – so our library Ỹ will consist of all such time series for a set of 168

regions. Let us label the time series of region r as ∆Xr(t) ≡ {∆xr(T0), . . . , ∆xr(Tend)}, and 169

say we wish to produce a forecast for this time series from some time t ∈ {T0, . . . , Tend} 170

onwards. First of all, this region will be removed from Ỹ (we would be cheating otherwise). 171

Then, we take the shorter time series Y → {∆x(t − nL + 1), . . . , ∆x(t)} ⊂ ∆Xr(t), and 172

proceed as indicated above. Note that this consists of the last data point before our forecast 173

begins and the nL − 1 previous time-steps. We can repeat this process for all possible t to 174

evaluate repeatedly how well EDM performs on a given region. 175

Before we can do that, EDM presents two meta-parameters, nL and β, that need to be 176

assigned a numerical value to operate. The meta-parameter nL determines the length of 177

Y and that of the patterns within Ỹ that Y is compared to. In principle, we wish to take 178

nL as large as possible to find the most informative matches within Ỹ. In the ideal case 179
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we would find a pattern that completely matches ∆xr(t′) for all t′ < t. In a realistic setup, 180

an informative pattern might match up to a certain window in the past, and then diverge 181

wildly from our ongoing time series. If nL is too large, we risk missing good patterns 182

because of this – so we need to balance a tradeoff. The other meta-parameter, β, determines 183

a non-linearity in weighting the neighbors of Y – as explained above. There is no principled 184

way to set these parameters beforehand, so we tune them using cross-validation on all the 185

data sets. 186

To implement this cross-validation and measure the performance of our method, we 187

use the correlation coefficient between our forecast and the empirical time series. Say 188

we have generated a forecast of how Y will behave h time units (weeks for flu, days for 189

COVID-19) ahead, and that we have done this for all possible t ∈ {T0 + nL, . . . , Tend − h} 190

for a region’s time series. Then: 191

ρr(h) ≡ Cov[y(t + h), ŷ(t + h)]
σ[y(t + h)]σ[ŷ(t + h)]

(10)

measures the correlation coefficient (ρr(h) ∈ [−1, 1]) between the forecast and the actual 192

data in this region; noting that y(t + h) ≡ ∆x(t + h), ŷ(t + h) is given by equation 7, and 193

Cov[·, ·] and σ[·] indicate covariance and standard deviation respectively. We can obtain an 194

average performance: 195

ρ(h) ≡ ⟨ρr(h)⟩r, (11)

where ⟨·⟩r indicates average over regions. 196

We find optimal values of EDM’s meta-parameters by repeatedly evaluating all regions 197

with fixed nL and β (thus obtaining ρr(h; nL, β) and ρ(h; nL, β) ≡ ⟨ρr(h; nL, β)⟩r), and 198

selecting the combination (n∗
L, β∗) that renders a largest correlation. Optima values of 199

the meta-parameters might depend on the forecasting horizon h, thus n∗
L ≡ n∗

L(h) and 200

β∗ ≡ β∗(h). In our experiments, we evaluated EDM’s performance for nL = 1, . . . , 18, and 201

β ∈ {0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 5}. 202

3. Results 203

3.1. Pooling geographically distributed information enhances EDM performance on influenza data 204

We carried out a series of numerical experiments to test the performance of EDM with 205

and without pooling together geographically-distributed information. This subsection 206

reports results for flu data. Each experiment was carried out for a series of conditions that 207

we label pool, classic and annual. 208

In the pool condition we separated our influenza data series by seasons. To build 209

forecasts for a region in a given season, the pattern library Ỹ included past and future 210

seasons from all regions (including the one being forecast), while data from any region and 211

same season was removed from Ỹ. Note, first, that including such future examples of the 212

season being evaluated is standard in EDM [14]. We expect that the causality between a 213

year and the next one is fairly broken. Second, imagine that an important region would 214

present some idiosyncratic dynamics during a season, which is later replicated in some 215

other areas. This trend could serve as an indicator of what might happen in those adjacent 216

regions with some delay. If we would include all data from a given season, EDM could 217

draw the inference in the opposite direction as well (using data of adjacent regions to 218

forecast dynamics that had played out some weeks ahead). This is why, to be on the safe 219

side, we removed all data from all regions for the season being forecast. 220

In condition classic, the library of patterns contained only examples from past and 221

future seasons of a given region – which is how EDM was originally conceived [14], and how 222

it has been applied, e.g., to forecasting flu trends in the past [15]. In condition annual, the 223

library of patterns consisted of all the contemporary examples of a given region, ignoring 224

all the examples from different years. This condition is proposed to measure the similarity 225

between series from different regions in the same year, as the dominant flu strain will be 226
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Figure 3. Pooling geographically distributed information for influenza forecast. a-e Results of
different numerical experiments for conditions pool (solid black curves, with shading indicating
standard deviation), classic (solid red) and annual (dashed red). Filled circles in a-b mark the location
of optimal meta-parameters for each protocol. The optima for pool are also marked by vertical solid
lines. Solid horizontal lines in c-f mark the 0 of the vertical axis. Solid vertical lines in c-e mark the
location of the peak in time. Dotted horizontal line in f marks ρ∗(h) = 0.5. a EDM performance (as
measured by correlation between data and forecast) as a function of nL with fixed, optimal β∗. b
EDM performance as a function of β with fixed, optimal nL. c Average error in forecasting the peak
magnitude. d Average error in forecasting the peak location. e EDM performance as we attempt to
predict more time ahead. f-g Examples of how forecast become worst as we attempt to predict with
more anticipation. Real data (solid red curves) is compared to forecasts derived with one week (solid
black), three weeks (dashed black), or five weeks (dotted black) of anticipation. The various shadings
indicate standard deviation of the estimated quantity. f Forecasts for the Community of Madrid. g
Forecasts for the Community of València.

the same and there may the effect of a region could be transmitted to a neighboring one 227

within the same season. In Figure 2 we represent the three conditions. 228

In Figure 3 we show EDM performance under the different conditions in a series of 229

numerical experiments. If we keep h = 1 fixed, we are simply trying to predict the next 230

amount of new cases following the available data. We see the performance on this task with 231

optimal β∗ and varying nL in Figure 3a; and for optimal n∗
L and varying β in Figure 3b. In 232

both plots, condition pool outperforms all others in almost all the ranges explored and, most 233

importantly, it does so for the optimal n∗
L = 15 and β∗ = 2 (even for the optima derived 234

independently for all other conditions, marked by filled red circles). Such optima would 235

be the meta-parameters with which we should operate if we tried to forecast new time 236

series not present in our data set – and in all cases the results suggest that we should use 237

condition pool. Condition annual performs slightly better than the classic EDM, and both fall 238

below pool. This demonstrates an overall advantage of pooling together epidemiological 239

data across regions. This result might have been expected, since the pool protocol provides 240

us with more data in our training set. But it is not trivial that dynamics across regions 241

(and, notably, having discarded series of a same season) would be informative to each 242
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other – each could have been affected by idiosyncratic factors such as population density, 243

demographic structure, differences between urban and rural dynamics, etc. 244

The most important features that we would like to predict of an epidemic episode 245

are how many people will be affected and how long it will last. The maximum height and 246

location in time of the peak are a first proxy. To study how well we can forecast this, in a 247

second experiment we aligned the data from all seasons taking each peak as a temporal 248

reference. Then, we looked at how good the forecast of this peak was if EDM only had data 249

until τ time units (weeks in the case of flu) before. 250

Figure 3c shows the average error (as relative and absolute magnitudes) that EDM 251

makes in predicting the peak’s height. Figure 3d shows the error (in weeks) in predicting 252

when the epidemics will reach its maximum. We appreciate that all protocols present quite 253

similar curves. Thus, while pool produces better forecasts in average (as shown above), our 254

results suggest that the uncertainty in predicting the magnitude and end of an epidemic 255

process cannot be alleviated by more abundant data. This is in line with recent research [13] 256

that shows how behind epidemic processes lie mathematical mechanisms that make them 257

inherently unpredictable. Unfortunately, our non-parametric method cannot circumvent 258

such problems. 259

Looking at these plots with greater detail, we see how errors become smaller as we 260

get closer to the actual peak – as might be expected (but see the case for COVID-19). 261

The smallest average error in magnitude happens as the data up to the very time of the 262

peak is considered (τ = 0), while location is better predicted a week before the peak 263

happens (τ = −1). Error changes signs from negative to positive, meaning that EDM 264

progresses (in average) from underestimating to overestimating. The forecast at τ = −5 265

(which is the furthest from the peak that we can study with the available data) is more 266

accurate than some others for peak magnitude and than many others for peak location. 267

This effect is noteworthy for estimating peak location: this forecast degrades notably before 268

becoming better – perhaps because the steepest phase of the exponential dynamics happens 269

somewhere between τ = −5 and τ = −1. It is noteworthy, though, that this does not 270

impact magnitude estimation as much. 271

With time series aligned with respect to their peaks as in the previous experiment, we 272

also measured EDM performance (as captured by correlation between data and estimate) 273

as a function of τ. This way we quantify how well our method works given that it is τ 274

time units before or after the peak. Again, all protocols perform quite similarly in this 275

experiment, with pool being notably worst than others in some cases. Figure 3e shows 276

ρ∗(h = 1; τ), which starts and ends close to 0 (i.e. forecast is of poor quality further away 277

from the peak). Performance raises up to ρ∗(h = 1; τ) ∼ 0.5 as the peak is approached, and 278

remains at a similar level right after the peak before starting to decline gently. The dent at 279

τ = 0 (performance becomes factually nil) is explained because the slope of the data series 280

changes around the peak. Unless both data and prediction are perfectly synchronized 281

(which, Figure 3d proves, is not the case), this leads to an average correlation of zero at that 282

point. 283

Finally, it is relevant to establish for how long a forecast remains informative. Figure 284

3e shows the EDM performance, ρ∗(h; n∗
L, β∗), as it tries to predict h time units ahead in 285

time. Correlation remains above 0.5 for predictions up to 7 weeks ahead of the available 286

data, with pool being the preferred protocol in most cases. (Protocol annual becomes better 287

around the time that correlation drops below 0.5.) We show examples of how a relatively 288

worse (Figure 3g) and better (Figure 3h) forecast degrade as we elaborate estimates more 289

time in advance. We see how this forecast degrades rapidly for a specific season of the 290

Autonomous Community of Madrid, while it remains quite stable for some other season 291

in the Community of València. This, together with the large deviations around most of 292

the measures reported in Figure 3 (gray shadings), suggests that the right protocol might 293

depend on the region studied, and that we might rather address this in a case by case basis. 294

Below, we make some efforts to gain some insight about this issue. 295
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Figure 4. Pooling geographically distributed information for COVID-19 forecast. a-e Results of
different numerical experiments for conditions pool (solid black curves, with shading indicating
standard deviation), classic (solid red) and annual (dashed red). Filled circles in a-b mark the location
of optimal meta-parameters for each protocol. The optima for pool are also marked by vertical solid
lines. Solid horizontal lines in c-f mark the 0 of the vertical axis. Solid vertical lines in c-e mark the
location of the peak in time. Dotted horizontal line in f marks ρ∗(h) = 0.5. a EDM performance (as
measured by correlation between data and forecast) as a function of nL with fixed, optimal β∗. b
EDM performance as a function of β with fixed, optimal nL. c Average error in forecasting the peak
magnitude. d Average error in forecasting the peak location. e EDM performance as we attempt to
predict more time ahead. f-g Examples of how forecast become worst as we attempt to predict with
more anticipation. Real data (solid red curves) is compared to forecasts derived with one week (solid
black), three weeks (dashed black), or five weeks (dotted black) of anticipation. The various shadings
indicate standard deviation of the estimated quantity. f Forecasts for the Community of Madrid. g
Forecasts for the Community of València.

3.2. Exploring EDM on COVID-19 data. 296

Data of the COVID-19 epidemic dynamics is affected by the various sources of un- 297

predictability discussed above – some related to the unanticipated emergency caused by 298

the pandemics, some others related to intrinsic properties of this malady and our social 299

interplay with it. We have attempted to use EDM, pooling distributed geographic infor- 300

mation from various sources, to forecast the dynamic unfolding of this crisis. Our success 301

differed between more global (incorporating data from countries around the world) and 302

local (as in our example from Spanish regions) attempts, and it changed over time as the 303

pandemic changed as well. In this section we report a brief example based on the same 304

regions as above, now studying only conditions pool and classic. While far from successful, 305

this attempt at forecasting allows us to quantify some aspects that reveal how the new virus 306

unfolds with dynamics very different from those of seasonal influenza. Our data series in 307

this case give us new infections per day, instead of weeks, so some results do not translate 308

as readily. 309
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Figure 4a shows the average EDM performance as a function of nL with fixed optimum 310

β∗ = 0. We see an optimum n∗
L = 7 (days), which is much smaller than the n∗

L = 15 (weeks) 311

found in the case of flu. This reveals how much more changing are the dynamics for COVID- 312

19, and how informative patterns degrade more promptly as we attempt to compare them 313

during longer stretches of time. This is indicative of a higher number of causal factors 314

taking turns in dominating the dynamics – resulting in a more difficult forecast. Also, the 315

correlation between estimates and prediction does not reach values comparable to those 316

achieved with influenza data. Figure 4b shows EDM performance as a function of β with 317

fixed, optimal n∗
L = 7. Again we see how the pool condition renders better results. 318

We repeated the experiments to estimate the quality of peak forecast, but in this case 319

taking into account that COVID-19 ‘waves’ are much more vaguely defined than seasonal 320

peaks. Also, in some cases, EDM did not forecast the existence of a peak (suggesting, in 321

turn, that the epidemics might grow unstopped within the time-window that we looked 322

ahead). We report only results for cases in which a peak was predicted, and the comparison 323

of its magnitude and location with that of an ongoing wave was possible. 324

Figure 4c shows that the error in magnitude becomes fairly small around 5 days before 325

the epidemic peaks. By that time, EDM can produce an accurate first proxy of what the 326

number of affected people will be. However, Figure 4d shows that the error in location 327

of this peak only grows as we get closer to it. This is opposed to the results for flu, for 328

which both magnitude and location estimates improved as the peak was approached. This 329

indicates that EDM is consistently forecasting maxima that lie each time further away in 330

the future of the approaching target and, in other words, suggests that COVID-19 waves 331

do not show tell-tale signs that they are turning – thus aggravating the unpredictability of 332

this kind of dynamics. 333

The window of acceptable prediction capabilities is also much smaller for COVID-19 334

than for flu. Figure 4e shows how correlation between estimate and data has dropped 335

below 0.5 already if we attempt to predict 5 days ahead. This is an insignificant forecasting 336

window compared to the acceptable 7 weeks that we could look ahead with a similar 337

accuracy in the case of flu. This points, one again, to the dynamical challenge posed by the 338

SARS-CoV-2 pandemics. 339

Examples of forecast for the Community of Madrid (Figure 4f) and Community of 340

València (Figure 4g) show very small deviations from their respective averages. This is due 341

to the very scarce data available, which at the same time reveals a poverty of dynamical 342

patterns to draw estimates from. 343

3.3. EDM as a tool to characterize the epidemic unfolding 344

Non-parametric forecasting methods are mainly results-oriented. They are often used 345

as black-boxes – foregoing a deeper understanding of the dynamic process as long as 346

forecasting works. This is opposite, e.g., to compartmental modeling, in which causal 347

relationships and meaningful parameters are inferred. With this later approach, insights 348

can be gained about the relevant factors in the unfolding of an epidemic. But we can turn 349

EDM on its head, using its methods not as a predictor, but as a tool for correlating and 350

clustering the dynamics across regions and years. Then: What regions are more informative 351

to each-other? Can we reveal a spatial structure of how the flu or COVID-19 evolved in 352

Spain? Are there idiosyncratic regions in which the dynamics play out rather differently? 353

How do successive influenza seasons resemble each-other? 354

To answer these questions we scored how often each region was within the nearest 355

networks of each other region. 356

There is a question remaining which is related to the fact that we are introducing data 357

from several regions to predict another one, so can we use EDM as a clustering tool? The 358

answer lies on analysing how regions interact with each other -and itself- by checking 359

how many neighbors one region takes from the others’ -or its- time series. This helps us 360

to generate a weighted and directed graph for all regions which may be useful to study 361
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b

a

Figure 5. Influenza and COVID-19 networks. The size of the nodes is directly proportional to how
many times a certain region has taken an example of itself. The darker a node is, the better it can
be described -attending to the correlation coefficient ρ. Connection between generic regions A and
B is plotted if the number of examples A takes from B overlaps 1.25 times the median number of
examples A takes from other regions. a Geographical representation. b Graphical representation.

ongoing dynamics where there are not enough past data to make good predictions using 362

other’s regions data. We applied this technique to both diseases -influenza and COVID-19-. 363

As it can be seen in Figure 5a, northern and central autonomous regions influenza 364

dynamics are pretty well described -with ρ > 0.85-, while the southern ones are one step 365

behind -not so far- with ρ around 0.8 -Andalusia (AN), Canary Islands (CN), Extremadura 366

(EX), Melilla (ML) and Balearic Islands (IB) as well-. Northern regions are also well 367

connected between them and also with Andalusia, which even being at the south keeps a 368

good relationship with other northern autonomous regions. This can be observed at Figure 369

5b, where we plot both influenza and COVID-19 networks with a random display, in order 370

to visualize that well-described regions cluster together. 371

But the main fact is that none of the considered regions takes way more examples from 372

itself than from the other ones. If we have a look to the proportional number of neighbors 373

chosen by the EDM for one region respect from the others, it goes from 2% to 7% of the 374

total examples, with a mean of 4.0% and a standard deviation of 1.6%1. This means these 375

regions’ dynamics may be similar and EDM does not notice any region to be considered 376

“special” from the others, as all of them take examples from other autonomous regions. 377

The final goal of this work was to develop a non-parametric prediction method capable 378

of estimate new dynamics when there is no historical data available, like in the case of 379

1 The maximum 7% is in the confidence interval of two standard deviations, so we can assume it is just a
statistical fluctuation
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COVID-19 pandemic -as it is a new disease with very little information at its start-. We tried 380

to apply this method to COVID-19 data for several regions at worldwide scale -countries 381

incidences- and at Spanish autonomous regions scale, but results were not as good as the 382

ones obtained in influenza case. This bad performance can be explained mainly to the 383

lack of historical data, but also because the incidence over all territories have not been the 384

same and not even comparable, as data cannot be scaled from one region to another and 385

examples taken by EDM might not be true to reality. In addition, the quality of the data 386

acquired from governments have not been the best, as at the pandemic start they were 387

running out of tests and infected people reports were not accurate enough [16]. 388

This led us to compare how Spanish autonomous regions interacted with each other 389

in this EDM approach considering COVID-19 dynamics from the first wave -from March 390

2020 to June 2020-, the second wave -from June 2020 to December 2020- and part of the 391

third wave -from December 2020 to February 2021-, which ensures we have both ascending 392

and descending trends so EDM will be able to choose which one is better in each analysed 393

case. For this reason, we repeated the clustering experiment for these data and what we 394

found out was there were many differences from the influenza epidemic network. 395

Having a look to the proportional number of neighbors chosen by the EDM -as we did 396

in the section before- for one region respect from the others, it goes from 1.7% to 12.6% of 397

the total examples, with a mean of 5.1% and a standard deviation of 3.3%. 398

There are some differences between the influenza and COVID-19 networks, but the 399

most remarkable one is the fact that some regions take a large number of examples of 400

themselves -in particular, Community of Madrid (MD), Valencian Community (VC) and 401

Andalusia (AN)-. Correlation coefficients also reflect the bad performance of EDM predict- 402

ing COVID-19 dynamics, as there are less well-described regions -with ρ over 0.85-. 403

In terms of connections, we have a more dispersed network, where there is no clear 404

clustering as we had in the influenza network. The northern regions are now more con- 405

nected with the southern ones, so we could think of it as an insight of a different relationship 406

of similarity than in the influenza case -which could be related to the geographical locations 407

and similar weather, leading to comparable incidences due to the way of life people develop- 408

. Now we can observe that dynamics differ from the previous case studied -influenza-, 409

probably related to the differences in autonomous regions pandemic management, as they 410

were mainly independent from the central government and they carried out different 411

measures to stop the propagation of this disease, while influenza has been fought for many 412

years and this leads to more homogeneous actions. Despite this dispersion, we can observe 413

at Figure 5b regions which are best described are centralized, as they are at the influenza 414

network, denoting the potential application of this clustering method. 415

In summary, and taking all of this into account, there are several reasons why EDM is 416

not able to perform well with COVID-19 pandemic data, but we can sum them up in two of 417

them: lack of historical data and inhomogeneous disease incidences, which make regions 418

dynamics be unpredictable from ones to the others. 419

4. Discussion 420

Among the many aspects that the COVID-19 pandemic has taught us, one clear is 421

the need to rethink modeling approaches to predict the spread of this kind of disease 422

in the current world. This requires a diversity of approaches, including the creation of 423

observatories analogous to the ones of meteorologists [17]. In order to do this we need two 424

ingredients: good data and good modeling tools. 425

Over the past century we have learned a lot about the dynamics that epidemics 426

are very likely to follow. These happen to include exponential behaviors, such that the 427

intrinsically correct models turn out to be extremely sensitive to the contingencies of real 428

world data. 429

Real world data happens to have a lot of such contingencies (unknown causal factors 430

that might be missed in the equations, errors in the collection of data, inconsistency of 431

criteria in the recollection of data across time, etc). All of these trigger the sensitivity just 432
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discussed, in effect making it impossible to predict with the equations which, we know, are 433

very likely correct. 434

Non-parametric modeling offers a way forward. If a global observatory is established 435

to track this and future pandemics, we should base it on the methods introduced by 436

Sugihara and May [14] and further studied in this paper. 437

Our addition to these methods, including pooling data from different regions in order 438

to enlarge the library of patterns to look at to make the forecasts, has proven to improve the 439

results for both the cases of influenza and COVID-19. However, the problem of predicting 440

the epidemic peak is still challenging for the new disease, as the new peaks tend to be quite 441

different to the older ones, independently from the region, as COVID-19 strongly depends 442

on different political measures to fight its spread, the initial conditions and dominant 443

strains. 444

The uniqueness of COVID-19 dynamics can be seen in the difference its network 445

presents in comparison with influenza’s. While neighboring regions present similar perfor- 446

mances for the latter, they show a lot more of heterogeneity in COVID-19’s network. 447

All analyses in this paper were based on the dynamics of the influenza and COVID-19 448

diseases independently. In expanding the observatory to potential epidemics in the future, 449

we should contemplate the possibility of using the dynamics of a virus to attempt to predict 450

the dynamics of another one (similarly to how here we use a region to predict another). 451

This would provide very valuable information at the beginning of the pandemics. It might 452

also helps us understand what causal agents are behind an observed contagion process – 453

e.g. does a virus present long incubation periods, etc. 454

Also, such an observatory should make use of other sources of information. For 455

example, we know that SARS-CoV-2 RNA can be located in the feces quite early after 456

infection. Such early warning would be extremely valuable in planning to cope with the 457

epidemics. 458
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Appendix A. Data information 478

Influenza COVID-19
Andalusia (AN) 679 (00-20) 429
Aragon (AR) 615 (00-18) 421
Asturias (AS) 549 (04-20) 412
Balearic Islands (IB) 672 (00-20) 416
Basque Country (PV) 661 (00-20) 429
Canary Islands (CN) 582 (03-20) 419
Cantabria (CB) 539 (05-20) 415
Castile and León (CL) 681 (00-20) 423
Castile-La Mancha (CM) 681 (00-20) 416
Catalonia (CT) 495 (05-20) 442
Ceuta (CE) 489 (05-20) 402
Community of Madrid (MD) 661 (00-20) 457
Extremadura (EX) 582 (03-20) 416
Galicia (GA) - 420
La Rioja (RI) 549 (04-20) 417
Melilla (ML) 356 (09-20) 405
Navarre (NC) 549 (04-20) 418
Region of Murcia (MC) - 415
Valencian Community (VC) 679 (00-20) 429

Table A1. Length (number of data points) of each series. It spans from early 2000’s to the beginning
of 2020, but some series miss data from the beginning or the end. Their span is showed in brackets
(beginning year - last year). Influenza data is weekly and only contains data from September to June.
COVID-19 data is daily, from the beginning of the pandemic until April 19th of 2021.
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