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Abstract: The evolution of some epidemics, as influenza, shows common patterns both in different
regions and from year to year. On the contrary, epidemics like the novel COVID-19 show quite
heterogeneous dynamics and are extremely susceptible to the measures taken to mitigate their spread.
In this paper we propose empirical dynamic modeling to predict the evolution of influenza in Spain’s
regions. It is a non-parametric method that looks into the past for coincidences with the present to
make the forecasts. Here we extend the method to predict the evolution of other epidemics at any
other starting territory and we test also this procedure with Spanish COVID-19 data. We finally build
influenza and COVID-19 networks to check possible coincidences in the geographical distribution of
both diseases. With this, we grasp the uniqueness of the geographical dynamics of COVID-19.
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1. Introduction

Influenza (or flu) is an infectious respiratory disease caused by the influenza virus.
It results in an estimated 250 000 to 650 000 deaths annually [1]. Until 2020, influenza
epidemics showed a seasonal recurrence (Figure 1a), with a yearly pattern of exponential
growth of infections, a marked peak, and a similarly prompt decay of new cases (Figure
1b). The width and magnitude of each outbreak varied moderately across years. These
overall regularities [2] allowed a moderate success of different modeling approaches in
forecasting outbreak magnitude and duration [3-6] .

In late 2019 the emergence of the COVID-19 (the infectious respiratory disease caused
by the SARS-CoV-2 virus) global pandemics disrupted the seasonal influenza pattern [7].
The fast spread and severity of the disease led to the enforcement of strong distancing
measures around the globe, which halted the propagation of other, less aggressive respira-
tory viruses such as influenza’s [8]. Contrary to the regularities observed in flu epidemics,
COVID-19 data is very erratic. On the one hand, we do not know yet whether it will
become a stationary disease — with patterns of infection growth and decay similar to those
of Flu. If that were the case eventually, we have not observed the new epidemics for a
sufficiently long time yet as to infer repeated trends. On the other hand, while influenza is
dealt with casually, the countermeasures to tackle COVID-19 have disrupted its natural
cycle. When these counter-measurements were relaxed, new outbreaks emerged. This
resulted in an irregular train of waves that often overlapped in time. As measures were
dictated by an array of authorities (from local to supra-national), these waves differed
wildly across regions — even within a same country (Figure 1c). Some biological aspects of
SARS-CoV-2 contributed to the disarray: it presents a long incubation period [9] during
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Figure 1. Empirical time series of the influenza and SARS-CoV-2 epidemics. a Examples of historical
time series of flu over 20 years in three Spanish regions: Basque Country (black), Community of
Madrid (red), Catalonia (blue). Data from each year (spanning from week 40 of a given year to week
20 of the next year) have been concatenated omitting the warm season (during which incidence is
negligible). The gray area is expanded in b to show the yearly exponential raise, peak, and fall that
characterizes the influenza cycle. Here, data from 2015/16. ¢ Evolution of the SARS-CoV-2 pandemics
in the same three regions shows the pattern of waves within a single year, which are not always in
phase across regions.

which an infected person does not show symptoms; a large fraction of people suffer an
asymptomatic version of the disease, but they can propagate the virus [10]; and, also, large
outbreaks have been attributed to single super-spreaders who infected up to hundreds of
people during a single event [11]. Under such conditions, tracking the exact timing of each
infection is difficult — which resulted in unreliable epidemiological time series.

The very mathematical nature of epidemic dynamics also hinders its forecasting. A
popular approach to this problem are compartmental models. In them, a population is
coarse-grained into broad classes (e.g. Susceptible, Infected, and Recovered) and simple
rules are established to regulate the flows between compartments. Typically, Infected peo-
ple move into the Recovered class at a given rate, while they infect Susceptible individuals
(moving them to the Infected compartment) with some probability. These rates and prob-
abilities can be empirical model parameters inferred from the data. Such simple models
can correctly capture broad qualitative aspects — e.g. a phase of exponential growth or the
existence of herd-immunity thresholds (when such critical fraction of the population has
been infected, the outbreak remits spontaneously). However, these models are notably bad
at forecasting real-life scenarios. On top of all the troubles affecting data quality mentioned
above, the phase of exponential growth in epidemic dynamics constitutes an important
limiting factor. As it happens in deterministic chaos [12], small errors or uncertainties
in the data are magnified exponentially by the epidemic dynamics themselves. Unlike
chaotic systems, epidemic peaks can be fairly stereotypical; but the effect of exponentially
magnified errors is enough to prevent a systematic and precise forecast of an outbreak’s
magnitude and duration [13]. This exponential factor in epidemic dynamics results in
broad ranges or parameters that can fit correctly past data, but that are compatible with
wildly diverging future behaviors.

In this framework, we have turned our attention to Empirical Dynamic Modeling
(EDM) [14], a form of non-parametric modeling that looks at past examples of how a
dynamical process (e.g. an epidemic) looked like, and uses them to forecast how it might
unfold. Traditional EDM applications take a specific historic time-series (e.g. epidemic data
of influenza in a French region [15]), then look at more recent data (say, the last 5 weeks of
influenza cases in that same region) and find instances of the past series that resemble the
new data. The known progress of the closest historical matches is used as an estimate for
the evolution of the current situation. This avoids fitting empirical data to highly sensitive
exponential dynamics that magnify small errors. Instead, it relies on bounded, repeated
trends of a same kind.

Because of the issues around SARS-CoV-2 data outlined above, EDM seems still an
unfit technique for the ongoing pandemic. The strong regularities seen in influenza mitigate
some of these problems, making it an excellent test-bench for this approach. In an attempt
to improve forecasting for the current pandemics, we expanded the classical functioning
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Figure 2. Illustration of different data pools for EDM. In grey, the example we want to forecast, the
testing series. In blue, the method we call classic, which uses as library of patterns all the examples of
the same region. In pink, the method annual, which uses as library all the examples from the same
year. In green, the method pool, where we use the biggest library, taking all the series that are not
from the same region or the same year.

of EDM to leverage geographically distributed data. Instead of using a single historic
time series to predict what might happen in a specific region, we studied a set of areas
on which epidemics unfolded simultaneously, and allowed historical series from each-
other to serve as examples of how the dynamics might progress. We first used influenza
data from different Spanish regions to study a controlled scenario of known regularity.
Through this controlled case, we quantified how much of an improvement our approach
is with respect to earlier applications of EDM that did not leverage similar dynamics in
geographically distributed data. We explore briefly the more difficult case of SARS-CoV-
2, in which data remains scarce and heterogeneity across regions is more pronounced.
Our approach is moderately successful in capturing some features of the epidemics in
different Spanish regions, while it fails in some important aspects. We propose that pooling
geographically distributed data might speed up the gathering of recurring patterns, thus
enhancing forecasting methods (beyond EDM) if COVID-19 becomes a seasonal disease.
Finally, we turned EDM on its head to infer relationships between epidemic dynamics
across different Spanish regions and over time. Since EDM uses past examples to forecast
future dynamics, we quantified how often dynamical patterns from a region and year
served as an estimate for each other’s unfolding. Thus, we derive networks that illustrate
epidemiological patterns across regions and correlations between flu strains from different
years. These might offer relevant information to track which are the closest patterns that
new epidemics follow.

2. Materials and Methods
2.1. Data and data preprocessing

We obtained time series of influenza cases from the Spanish National Center for
Epidemiology (Instituto de Salud Carlos III). Out of 19 Spanish regions, we gathered data
for 17 (which include 15 autonomous communities and the autonomous cities of Ceuta and
Melilla). Data spans from 2000 to 2020, with some regions starting off at different times
(as summarized in Table Al). Each time series starts at week 40 of a year and ends on
week 20 of the next year — thus skipping the warm season in which influenza is uncommon.
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Raw data consists of weekly incidence per 100 000 inhabitants. This was smoothed with a
3-week moving average to mitigate sampling effects.

We obtained COVID-19 time series from the same Instituto de Salud Carlos III. This
data spans from the beginning of the epidemic to April 19 2021. Raw data consists of the
cumulative cases of COVID-19 in each Spanish region (all the Autonomous Communities,
and the independent cities Ceuta and Melilla). We smooth the data with a 7-days moving
average to mitigate sampling effects. From here, we derive daily incidence for each region
and report it as number of cases per 100 000 inhabitants.

Let us note the time series of weekly (for flu) or daily (for COVID-19) new cases as
x(t), where t € {Ty,..., Tpuq} is a discrete index in units of weeks or days respectively.
Given data up to some time ¢, our task is to attempt a forecast for x(#' > t). Following the
literature on EDM (our tool of choice), we will work with the discrete derivative of x(f):

Ax(t) = x(t) —x(t — At). 1)

We will base our forecast on this variable instead of on x(t). This choice removes the effect
of short-term linear auto-correlations [14].

2.2. Empirical Dynamic Modeling

Two approaches to forecasting stand out in the literature. On the one hand, modeling
based on agents or equations try to capture the underlying causal processes behind a
phenomenon (in our case, epidemic dynamics). Such causality is encoded by parameters —
e.g. the likelihood that a contagious person infects someone else, or that he/she recovers
from the disease. This approach allows us to understand a process and to test hypotheses
to control it, but it is very sensitive to the array of problems discussed in the introduction.
Non-parametric modeling, on the other hand, foregoes any attempt at understanding the
mechanisms behind a phenomenon. These methods are more pragmatic — blindly seeking
to extract as much useful information as possible to predict future scenarios. Little care is
put on distilling this information into simple operating principles.

Empirical Dynamic Modeling (EDM) [14] is a non-parametric forecasting technique.
EDM builds a library of dynamical patterns observed in the past history of a time series.
Then, an ongoing situation is matched to examples from this library. The evolution of the
matching examples becomes an estimator of how the current situation might progress. This
method has been used in epidemiology under alternative names, such as the “Method of
Analogues” [15].

To the best of our knowledge, all applications of EDM base their forecast for an
ongoing time series on examples drawn from its own past history. This does not help
much for the current SARS-CoV-2 global pandemics, for which at most one year of very
irregular data exists. However, the epidemics has unfolded simultaneously throughout the
world, effectively generating parallel samples of the same process. Can we leverage this
geographically distributed information? To do so, we expand EDM’s library of examples
not only to the past of some ongoing dynamics, but to ongoing processes across different
regions.

Let there be a short time series:

Y = [y(t—np+1), y(t—np +2), ..., y(b)]. @)

This usually consists of the last 1], data points of an ongoing process, of which we wish
to forecast the immediate future. The length of this short series (1) will be chosen as
explained below. Additionally, let there be a set of longer time series:

Vo= (T, e, T (Tl ®)

where the superscript r labels all available regions, and each corresponding series runs
between times T} and T’ , (which might differ between regions). Let us call ¥ = {Y"}
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to the collection of all such series from all regions. Y constitutes our library of dynamic
patterns, upon which we will base our forecast for the future of Y.

To build this forecast, we first search for dynamical patterns in Y that resemble Y. We
compute the Euclidean distance between Y and each stretch of length 1) within Y:

nr 5
:/ = Z(y(t—nL+i)fy~r(t/fnL+i)) , 4)
i=1

where we have selected each suitable stretch from region r and labeled it with its ending
time #'. Note that both Y and each stretch of length 1, within the library are a point in an
np-dimensional space. Equation 4 tells us how close to Y each point in the library is in this
abstract space. Of all the examples available we select the np closest neighbors to Y. In this
paper (and following suit with EDM literature [14]) we take

ng =np + 1. (5)

We note the selected neighbors as {?i ;i=1,...,np}. Alongside these examples we
store h time steps into their future, such that:

Vi = {gi(ti—no+1), .., 5:(t), 9i(ti +1), ..., 9i(ti + 1)} (6)

Note that the index ] labels time differently within each selected example. We estimate
the future & time steps ahead of the last point in Y as a weighted sum over the nearest

neighbors:
N 18,
g(t+h) = sziyi(ti—i—h); 7)
i=1
where:
ng
i=1
and:
w; = el~Pdi/do) 9)

with d; the Euclidean distance (as per Equation 4) to the i-th neighbor, dj the distance of
the closest neighbor, and  a meta-parameter to be set as indicated below. Note that if
B = 0, equation 7 renders just the mean of the evolutions, while for § > 0 we assign more
importance to points closer to Y. In the limit 8 = only the closest neighbor contributes.

2.3. Meta-parameters, performance evaluation, and cross-validation

Back to our empirical time series, we will base our forecast on the observed Ax(t) as
defined in subsection 2.1 — so our library Y will consist of all such time series for a set of
regions. Let us label the time series of region r as AX"(t) = {Ax"(Ty), ..., Ax"(T,,4) }, and
say we wish to produce a forecast for this time series from some time t € {Ty,..., T,4}
onwards. First of all, this region will be removed from Y (we would be cheating otherwise).
Then, we take the shorter time series Y — {Ax(t —np +1),...,Ax(t)} C AX"(t), and
proceed as indicated above. Note that this consists of the last data point before our forecast
begins and the n1;, — 1 previous time-steps. We can repeat this process for all possible ¢ to
evaluate repeatedly how well EDM performs on a given region.

Before we can do that, EDM presents two meta-parameters, n1;, and 3, that need to be
assigned a numerical value to operate. The meta-parameter 7 determines the length of
Y and that of the patterns within Y that Y is compared to. In principle, we wish to take
ny as large as possible to find the most informative matches within Y. In the ideal case
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we would find a pattern that completely matches Ax”(#') for all ' < t. In a realistic setup,
an informative pattern might match up to a certain window in the past, and then diverge
wildly from our ongoing time series. If nj is too large, we risk missing good patterns
because of this — so we need to balance a tradeoff. The other meta-parameter, , determines
a non-linearity in weighting the neighbors of Y — as explained above. There is no principled
way to set these parameters beforehand, so we tune them using cross-validation on all the
data sets.

To implement this cross-validation and measure the performance of our method, we
use the correlation coefficient between our forecast and the empirical time series. Say
we have generated a forecast of how Y will behave & time units (weeks for flu, days for
COVID-19) ahead, and that we have done this for all possible t € {Ty +np,..., Tpng — h}
for a region’s time series. Then:

L Covly(t+h),g(t+h)
)= ol ) 10

measures the correlation coefficient (0" (h) € [—1,1]) between the forecast and the actual
data in this region; noting that y(t + h) = Ax(t + h), §(t + h) is given by equation 7, and
Cov([-, -] and ¢[-] indicate covariance and standard deviation respectively. We can obtain an
average performance:

p(h) = (o"(h)), (11)

where (-), indicates average over regions.

We find optimal values of EDM’s meta-parameters by repeatedly evaluating all regions
with fixed n; and B (thus obtaining p"(h;ny,p) and p(h;nr, ) = (0" (h;nr,B)),), and
selecting the combination (1}, 8*) that renders a largest correlation. Optima values of
the meta-parameters might depend on the forecasting horizon &, thus n; = nj(h) and
B* = B*(h). In our experiments, we evaluated EDM’s performance for n; = 1,...,18, and
p € {0,0.01,0.05,0.1,0.25,0.5,0.75,1,1.5,2,5}.

3. Results
3.1. Pooling geographically distributed information enhances EDM performance on influenza data

We carried out a series of numerical experiments to test the performance of EDM with
and without pooling together geographically-distributed information. This subsection
reports results for flu data. Each experiment was carried out for a series of conditions that
we label pool, classic and annual.

In the pool condition we separated our influenza data series by seasons. To build
forecasts for a region in a given season, the pattern library Y included past and future
seasons from all regions (including the one being forecast), while data from any region and
same season was removed from Y. Note, first, that including such future examples of the
season being evaluated is standard in EDM [14]. We expect that the causality between a
year and the next one is fairly broken. Second, imagine that an important region would
present some idiosyncratic dynamics during a season, which is later replicated in some
other areas. This trend could serve as an indicator of what might happen in those adjacent
regions with some delay. If we would include all data from a given season, EDM could
draw the inference in the opposite direction as well (using data of adjacent regions to
forecast dynamics that had played out some weeks ahead). This is why, to be on the safe
side, we removed all data from all regions for the season being forecast.

In condition classic, the library of patterns contained only examples from past and
future seasons of a given region — which is how EDM was originally conceived [14], and how
it has been applied, e.g., to forecasting flu trends in the past [15]. In condition annual, the
library of patterns consisted of all the contemporary examples of a given region, ignoring
all the examples from different years. This condition is proposed to measure the similarity
between series from different regions in the same year, as the dominant flu strain will be
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Figure 3. Pooling geographically distributed information for influenza forecast. a-e Results of
different numerical experiments for conditions pool (solid black curves, with shading indicating
standard deviation), classic (solid red) and annual (dashed red). Filled circles in a-b mark the location
of optimal meta-parameters for each protocol. The optima for pool are also marked by vertical solid
lines. Solid horizontal lines in c-f mark the 0 of the vertical axis. Solid vertical lines in c-e mark the
location of the peak in time. Dotted horizontal line in f marks p* () = 0.5. a EDM performance (as
measured by correlation between data and forecast) as a function of n; with fixed, optimal *. b
EDM performance as a function of p with fixed, optimal ny. ¢ Average error in forecasting the peak
magnitude. d Average error in forecasting the peak location. e EDM performance as we attempt to
predict more time ahead. f-g Examples of how forecast become worst as we attempt to predict with
more anticipation. Real data (solid red curves) is compared to forecasts derived with one week (solid
black), three weeks (dashed black), or five weeks (dotted black) of anticipation. The various shadings
indicate standard deviation of the estimated quantity. f Forecasts for the Community of Madrid. g
Forecasts for the Community of Valéncia.

the same and there may the effect of a region could be transmitted to a neighboring one
within the same season. In Figure 2 we represent the three conditions.

In Figure 3 we show EDM performance under the different conditions in a series of
numerical experiments. If we keep i = 1 fixed, we are simply trying to predict the next
amount of new cases following the available data. We see the performance on this task with
optimal * and varying np, in Figure 3a; and for optimal 1] and varying 8 in Figure 3b. In
both plots, condition pool outperforms all others in almost all the ranges explored and, most
importantly, it does so for the optimal n; = 15 and * = 2 (even for the optima derived
independently for all other conditions, marked by filled red circles). Such optima would
be the meta-parameters with which we should operate if we tried to forecast new time
series not present in our data set — and in all cases the results suggest that we should use
condition pool. Condition annual performs slightly better than the classic EDM, and both fall
below pool. This demonstrates an overall advantage of pooling together epidemiological
data across regions. This result might have been expected, since the pool protocol provides
us with more data in our training set. But it is not trivial that dynamics across regions
(and, notably, having discarded series of a same season) would be informative to each
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other — each could have been affected by idiosyncratic factors such as population density,
demographic structure, differences between urban and rural dynamics, etc.

The most important features that we would like to predict of an epidemic episode
are how many people will be affected and how long it will last. The maximum height and
location in time of the peak are a first proxy. To study how well we can forecast this, in a
second experiment we aligned the data from all seasons taking each peak as a temporal
reference. Then, we looked at how good the forecast of this peak was if EDM only had data
until T time units (weeks in the case of flu) before.

Figure 3c shows the average error (as relative and absolute magnitudes) that EDM
makes in predicting the peak’s height. Figure 3d shows the error (in weeks) in predicting
when the epidemics will reach its maximum. We appreciate that all protocols present quite
similar curves. Thus, while pool produces better forecasts in average (as shown above), our
results suggest that the uncertainty in predicting the magnitude and end of an epidemic
process cannot be alleviated by more abundant data. This is in line with recent research [13]
that shows how behind epidemic processes lie mathematical mechanisms that make them
inherently unpredictable. Unfortunately, our non-parametric method cannot circumvent
such problems.

Looking at these plots with greater detail, we see how errors become smaller as we
get closer to the actual peak — as might be expected (but see the case for COVID-19).
The smallest average error in magnitude happens as the data up to the very time of the
peak is considered (t = 0), while location is better predicted a week before the peak
happens (t = —1). Error changes signs from negative to positive, meaning that EDM
progresses (in average) from underestimating to overestimating. The forecast at T = —5
(which is the furthest from the peak that we can study with the available data) is more
accurate than some others for peak magnitude and than many others for peak location.
This effect is noteworthy for estimating peak location: this forecast degrades notably before
becoming better — perhaps because the steepest phase of the exponential dynamics happens
somewhere between T = —5 and 7 = —1. It is noteworthy, though, that this does not
impact magnitude estimation as much.

With time series aligned with respect to their peaks as in the previous experiment, we
also measured EDM performance (as captured by correlation between data and estimate)
as a function of 7. This way we quantify how well our method works given that it is T
time units before or after the peak. Again, all protocols perform quite similarly in this
experiment, with pool being notably worst than others in some cases. Figure 3e shows
p*(h = 1; ), which starts and ends close to 0 (i.e. forecast is of poor quality further away
from the peak). Performance raises up to p*(h = 1;T) ~ 0.5 as the peak is approached, and
remains at a similar level right after the peak before starting to decline gently. The dent at
T = 0 (performance becomes factually nil) is explained because the slope of the data series
changes around the peak. Unless both data and prediction are perfectly synchronized
(which, Figure 3d proves, is not the case), this leads to an average correlation of zero at that
point.

Finally, it is relevant to establish for how long a forecast remains informative. Figure
3e shows the EDM performance, p*(h; nj, B*), as it tries to predict & time units ahead in
time. Correlation remains above 0.5 for predictions up to 7 weeks ahead of the available
data, with pool being the preferred protocol in most cases. (Protocol annual becomes better
around the time that correlation drops below 0.5.) We show examples of how a relatively
worse (Figure 3g) and better (Figure 3h) forecast degrade as we elaborate estimates more
time in advance. We see how this forecast degrades rapidly for a specific season of the
Autonomous Community of Madrid, while it remains quite stable for some other season
in the Community of Valéncia. This, together with the large deviations around most of
the measures reported in Figure 3 (gray shadings), suggests that the right protocol might
depend on the region studied, and that we might rather address this in a case by case basis.
Below, we make some efforts to gain some insight about this issue.
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Figure 4. Pooling geographically distributed information for COVID-19 forecast. a-e Results of
different numerical experiments for conditions pool (solid black curves, with shading indicating
standard deviation), classic (solid red) and annual (dashed red). Filled circles in a-b mark the location
of optimal meta-parameters for each protocol. The optima for pool are also marked by vertical solid
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location of the peak in time. Dotted horizontal line in f marks p* () = 0.5. a EDM performance (as
measured by correlation between data and forecast) as a function of n; with fixed, optimal *. b
EDM performance as a function of p with fixed, optimal ny. ¢ Average error in forecasting the peak
magnitude. d Average error in forecasting the peak location. e EDM performance as we attempt to
predict more time ahead. f-g Examples of how forecast become worst as we attempt to predict with
more anticipation. Real data (solid red curves) is compared to forecasts derived with one week (solid
black), three weeks (dashed black), or five weeks (dotted black) of anticipation. The various shadings
indicate standard deviation of the estimated quantity. f Forecasts for the Community of Madrid. g
Forecasts for the Community of Valencia.

3.2. Exploring EDM on COVID-19 data.

Data of the COVID-19 epidemic dynamics is affected by the various sources of un-
predictability discussed above — some related to the unanticipated emergency caused by
the pandemics, some others related to intrinsic properties of this malady and our social
interplay with it. We have attempted to use EDM, pooling distributed geographic infor-
mation from various sources, to forecast the dynamic unfolding of this crisis. Our success
differed between more global (incorporating data from countries around the world) and
local (as in our example from Spanish regions) attempts, and it changed over time as the
pandemic changed as well. In this section we report a brief example based on the same
regions as above, now studying only conditions pool and classic. While far from successful,
this attempt at forecasting allows us to quantify some aspects that reveal how the new virus
unfolds with dynamics very different from those of seasonal influenza. Our data series in
this case give us new infections per day, instead of weeks, so some results do not translate
as readily.
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Figure 4a shows the average EDM performance as a function of nj, with fixed optimum
B* = 0. We see an optimum n; = 7 (days), which is much smaller than the nj = 15 (weeks)
found in the case of flu. This reveals how much more changing are the dynamics for COVID-
19, and how informative patterns degrade more promptly as we attempt to compare them
during longer stretches of time. This is indicative of a higher number of causal factors
taking turns in dominating the dynamics — resulting in a more difficult forecast. Also, the
correlation between estimates and prediction does not reach values comparable to those
achieved with influenza data. Figure 4b shows EDM performance as a function of g with
fixed, optimal n; = 7. Again we see how the pool condition renders better results.

We repeated the experiments to estimate the quality of peak forecast, but in this case
taking into account that COVID-19 ‘waves’ are much more vaguely defined than seasonal
peaks. Also, in some cases, EDM did not forecast the existence of a peak (suggesting, in
turn, that the epidemics might grow unstopped within the time-window that we looked
ahead). We report only results for cases in which a peak was predicted, and the comparison
of its magnitude and location with that of an ongoing wave was possible.

Figure 4c shows that the error in magnitude becomes fairly small around 5 days before
the epidemic peaks. By that time, EDM can produce an accurate first proxy of what the
number of affected people will be. However, Figure 4d shows that the error in location
of this peak only grows as we get closer to it. This is opposed to the results for flu, for
which both magnitude and location estimates improved as the peak was approached. This
indicates that EDM is consistently forecasting maxima that lie each time further away in
the future of the approaching target and, in other words, suggests that COVID-19 waves
do not show tell-tale signs that they are turning — thus aggravating the unpredictability of
this kind of dynamics.

The window of acceptable prediction capabilities is also much smaller for COVID-19
than for flu. Figure 4e shows how correlation between estimate and data has dropped
below 0.5 already if we attempt to predict 5 days ahead. This is an insignificant forecasting
window compared to the acceptable 7 weeks that we could look ahead with a similar
accuracy in the case of flu. This points, one again, to the dynamical challenge posed by the
SARS-CoV-2 pandemics.

Examples of forecast for the Community of Madrid (Figure 4f) and Community of
Valeéncia (Figure 4g) show very small deviations from their respective averages. This is due
to the very scarce data available, which at the same time reveals a poverty of dynamical
patterns to draw estimates from.

3.3. EDM as a tool to characterize the epidemic unfolding

Non-parametric forecasting methods are mainly results-oriented. They are often used
as black-boxes — foregoing a deeper understanding of the dynamic process as long as
forecasting works. This is opposite, e.g., to compartmental modeling, in which causal
relationships and meaningful parameters are inferred. With this later approach, insights
can be gained about the relevant factors in the unfolding of an epidemic. But we can turn
EDM on its head, using its methods not as a predictor, but as a tool for correlating and
clustering the dynamics across regions and years. Then: What regions are more informative
to each-other? Can we reveal a spatial structure of how the flu or COVID-19 evolved in
Spain? Are there idiosyncratic regions in which the dynamics play out rather differently?
How do successive influenza seasons resemble each-other?

To answer these questions we scored how often each region was within the nearest
networks of each other region.

There is a question remaining which is related to the fact that we are introducing data
from several regions to predict another one, so can we use EDM as a clustering tool? The
answer lies on analysing how regions interact with each other -and itself- by checking
how many neighbors one region takes from the others’ -or its- time series. This helps us
to generate a weighted and directed graph for all regions which may be useful to study
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Figure 5. Influenza and COVID-19 networks. The size of the nodes is directly proportional to how
many times a certain region has taken an example of itself. The darker a node is, the better it can
be described -attending to the correlation coefficient p. Connection between generic regions A and
B is plotted if the number of examples A takes from B overlaps 1.25 times the median number of
examples A takes from other regions. a Geographical representation. b Graphical representation.

ongoing dynamics where there are not enough past data to make good predictions using
other’s regions data. We applied this technique to both diseases -influenza and COVID-19-.

As it can be seen in Figure 5a, northern and central autonomous regions influenza
dynamics are pretty well described -with p > 0.85-, while the southern ones are one step
behind -not so far- with p around 0.8 -Andalusia (AN), Canary Islands (CN), Extremadura
(EX), Melilla (ML) and Balearic Islands (IB) as well-. Northern regions are also well
connected between them and also with Andalusia, which even being at the south keeps a
good relationship with other northern autonomous regions. This can be observed at Figure
5b, where we plot both influenza and COVID-19 networks with a random display, in order
to visualize that well-described regions cluster together.

But the main fact is that none of the considered regions takes way more examples from
itself than from the other ones. If we have a look to the proportional number of neighbors
chosen by the EDM for one region respect from the others, it goes from 2% to 7% of the
total examples, with a mean of 4.0% and a standard deviation of 1.6%'. This means these
regions’ dynamics may be similar and EDM does not notice any region to be considered
“special” from the others, as all of them take examples from other autonomous regions.

The final goal of this work was to develop a non-parametric prediction method capable
of estimate new dynamics when there is no historical data available, like in the case of

1 The maximum 7% is in the confidence interval of two standard deviations, so we can assume it is just a

statistical fluctuation
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COVID-19 pandemic -as it is a new disease with very little information at its start-. We tried
to apply this method to COVID-19 data for several regions at worldwide scale -countries
incidences- and at Spanish autonomous regions scale, but results were not as good as the
ones obtained in influenza case. This bad performance can be explained mainly to the
lack of historical data, but also because the incidence over all territories have not been the
same and not even comparable, as data cannot be scaled from one region to another and
examples taken by EDM might not be true to reality. In addition, the quality of the data
acquired from governments have not been the best, as at the pandemic start they were
running out of tests and infected people reports were not accurate enough [16].

This led us to compare how Spanish autonomous regions interacted with each other
in this EDM approach considering COVID-19 dynamics from the first wave -from March
2020 to June 2020-, the second wave -from June 2020 to December 2020- and part of the
third wave -from December 2020 to February 2021-, which ensures we have both ascending
and descending trends so EDM will be able to choose which one is better in each analysed
case. For this reason, we repeated the clustering experiment for these data and what we
found out was there were many differences from the influenza epidemic network.

Having a look to the proportional number of neighbors chosen by the EDM -as we did
in the section before- for one region respect from the others, it goes from 1.7% to 12.6% of
the total examples, with a mean of 5.1% and a standard deviation of 3.3%.

There are some differences between the influenza and COVID-19 networks, but the
most remarkable one is the fact that some regions take a large number of examples of
themselves -in particular, Community of Madrid (MD), Valencian Community (VC) and
Andalusia (AN)-. Correlation coefficients also reflect the bad performance of EDM predict-
ing COVID-19 dynamics, as there are less well-described regions -with p over 0.85-.

In terms of connections, we have a more dispersed network, where there is no clear
clustering as we had in the influenza network. The northern regions are now more con-
nected with the southern ones, so we could think of it as an insight of a different relationship
of similarity than in the influenza case -which could be related to the geographical locations
and similar weather, leading to comparable incidences due to the way of life people develop-
. Now we can observe that dynamics differ from the previous case studied -influenza-,
probably related to the differences in autonomous regions pandemic management, as they
were mainly independent from the central government and they carried out different
measures to stop the propagation of this disease, while influenza has been fought for many
years and this leads to more homogeneous actions. Despite this dispersion, we can observe
at Figure 5b regions which are best described are centralized, as they are at the influenza
network, denoting the potential application of this clustering method.

In summary, and taking all of this into account, there are several reasons why EDM is
not able to perform well with COVID-19 pandemic data, but we can sum them up in two of
them: lack of historical data and inhomogeneous disease incidences, which make regions
dynamics be unpredictable from ones to the others.

4. Discussion

Among the many aspects that the COVID-19 pandemic has taught us, one clear is
the need to rethink modeling approaches to predict the spread of this kind of disease
in the current world. This requires a diversity of approaches, including the creation of
observatories analogous to the ones of meteorologists [17]. In order to do this we need two
ingredients: good data and good modeling tools.

Over the past century we have learned a lot about the dynamics that epidemics
are very likely to follow. These happen to include exponential behaviors, such that the
intrinsically correct models turn out to be extremely sensitive to the contingencies of real
world data.

Real world data happens to have a lot of such contingencies (unknown causal factors
that might be missed in the equations, errors in the collection of data, inconsistency of
criteria in the recollection of data across time, etc). All of these trigger the sensitivity just
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discussed, in effect making it impossible to predict with the equations which, we know, are
very likely correct.

Non-parametric modeling offers a way forward. If a global observatory is established
to track this and future pandemics, we should base it on the methods introduced by
Sugihara and May [14] and further studied in this paper.

Our addition to these methods, including pooling data from different regions in order
to enlarge the library of patterns to look at to make the forecasts, has proven to improve the
results for both the cases of influenza and COVID-19. However, the problem of predicting
the epidemic peak is still challenging for the new disease, as the new peaks tend to be quite
different to the older ones, independently from the region, as COVID-19 strongly depends
on different political measures to fight its spread, the initial conditions and dominant
strains.

The uniqueness of COVID-19 dynamics can be seen in the difference its network
presents in comparison with influenza’s. While neighboring regions present similar perfor-
mances for the latter, they show a lot more of heterogeneity in COVID-19’s network.

All analyses in this paper were based on the dynamics of the influenza and COVID-19
diseases independently. In expanding the observatory to potential epidemics in the future,
we should contemplate the possibility of using the dynamics of a virus to attempt to predict
the dynamics of another one (similarly to how here we use a region to predict another).
This would provide very valuable information at the beginning of the pandemics. It might
also helps us understand what causal agents are behind an observed contagion process —
e.g. does a virus present long incubation periods, etc.

Also, such an observatory should make use of other sources of information. For
example, we know that SARS-CoV-2 RNA can be located in the feces quite early after
infection. Such early warning would be extremely valuable in planning to cope with the
epidemics.
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Appendix A. Data information

Influenza COVID-19

Andalusia (AN) 679 (00-20) 429
Aragon (AR) 615 (00-18) 421
Asturias (AS) 549 (04-20) 412
Balearic Islands (IB) 672 (00-20) 416
Basque Country (PV) 661 (00-20) 429
Canary Islands (CN) 582 (03-20) 419
Cantabria (CB) 539 (05-20) 415
Castile and Leo6n (CL) 681 (00-20) 423
Castile-La Mancha (CM) 681 (00-20) 416
Catalonia (CT) 495 (05-20) 442
Ceuta (CE) 489 (05-20) 402
Community of Madrid (MD) 661 (00-20) 457
Extremadura (EX) 582 (03-20) 416
Galicia (GA) - 420
La Rioja (RI) 549 (04-20) 417
Melilla (ML) 356 (09-20) 405
Navarre (NC) 549 (04-20) 418
Region of Murcia (MC) 415

Valencian Community (VC) 679 (00-20) 429

Table Al. Length (number of data points) of each series. It spans from early 2000’s to the beginning
of 2020, but some series miss data from the beginning or the end. Their span is showed in brackets
(beginning year - last year). Influenza data is weekly and only contains data from September to June.
COVID-19 data is daily, from the beginning of the pandemic until April 19th of 2021.
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