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Article 

Description of the Electron in the Electromagnetic 

Field: The Dirac Type Equation and the Equation for 

the Wave Function in Spinor Coordinate Space 

Pavel Gorev 

Candidate of Technical Sciences, Nizhny Novgorod, Russia; pppay7733@yahoo.com 

Abstract: Physical processes are usually described using four-dimensional vector quantities - 

coordinate vector, momentum vector, current vector. But at the fundamental level they are 

characterized by spinors - coordinate spinors, momentum spinors, spinor wave functions. The 

propagation of fields and their interaction takes place at the spinor level, and since each spinor 

uniquely corresponds to a certain vector, the results of physical processes appear before us in vector 

form. For example, the relativistic Schrödinger equation and the Dirac equation are formulated by 

means of coordinate vectors, momentum vectors and quantum operators corresponding to them. In 

the Dirac equation a step forward is taken and the wave function is a spinor with complex 

components, but still coordinates and momentum are vectors. For a closed description of nature using 

only spinor quantities, it is necessary to have an equation similar to the Dirac equation in which 

momentum, coordinates and operators are spinors. It is such an equation that is presented in this 

paper. Using the example of the interaction between an electron and an electromagnetic field, we can 

see that the spinor equation contains more detailed information about the interaction than the vector 

equations. This is not new for quantum mechanics, since it describes interactions using complex wave 

functions, which cannot be observed directly, and only when measured goes to probabilities in the 

form of squares of the moduli of the wave functions. In the same way spinor quantities are not 

observable, but they completely determine observable vectors. In Section 2 of the paper, we analyze 

the quadratic form for an arbitrary four-component complex vector based on Pauli matrices. The form 

is invariant with respect to Lorentz transformations including any rotations and boosts. The 

invariance of the form allows us to construct on its basis an equation for a free particle combining the 

properties of the relativistic wave equation and the Dirac equation. For an electron in the presence of 

an electromagnetic potential it is shown that taking into account the commutation relations between 

the momentum and coordinate components allows us to obtain from this equation the known results 

describing the interactions of the electron spin with the electric and magnetic field. In the presence of 

a potential the momentum components cease to commute with each other. To neutralize this effect, 

the Schrödinger equation is supplemented by several equations with mixed derivatives on 

coordinates. In section 3 of the paper this quadratic form is expressed through momentum spinors, 

which makes it possible to obtain an equation for the spinor wave function in spinor coordinate space 

by replacing the momentum spinor components by partial derivative operators on the corresponding 

coordinate spinor component. Section 4 presents a modification of the theory of the path integral, 

which consists in considering the path integral in the spinor coordinate space. The Lagrangian 

densities for the scalar field and for the electron field, along with their corresponding propagators, 

are presented. An equation of motion for the electron is proposed that is relativistically invariant, in 

contrast to the Dirac equation, which lacks this invariance. This novel equation permitted the 

construction of an actually invariant procedure for the second quantization of the fermion field in 

spinor coordinate space. Furthermore, it is demonstrated that the field operators are a combination 

of plane waves in spinor or vector space, with the coefficients of which being pseudospinors or 

pseudovectors. Each of these pseudovectors or pseudospinors corresponds to one of the particles 

presented in the theory of electrodynamics. Furthermore, each plane wave possesses an additional 

coefficient in the form of a birth or annihilation operator. In vector space, these operators commute, 

whereas in spinor space they anticommutate. The paper presents the spinor and vector 
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representations of the field operators in explicit form, comprising sets of 16 pseudospinors or 4 

pseudovectors corresponding to particles represented in electrodynamics. 

Keywords: Dirac equation; Pauli matrices; Schrödinger equation; second quantization; path integral 

 

1. Introduction 

Nowadays, the interest to study applications of the Dirac equation to different situations and to 

find out the conditions of its generalization is not weakening. In particular, in [1] new versions of an 

extended Dirac equation and the associated Clifford algebra are presented. In [2] a study of the 

Schrödinger-Dirac covariant equation in the presence of gravity, where the non-commuting gamma 

matrices become space-time-dependent, is carried out. In [3] an idea is discussed that the visible 

properties of the electron, including rest mass and magnetic moment, are determined by a massless 

charge spinning at light speed within a Compton domain. In [4] some aspects of conformal rescaling 

in detail are explored and the role of the "quantum" potential is discussed as a natural consequence 

of non-inertial motion and is not exclusive to the quantum domain. Author establishes the 

fundamental importance of conformal symmetry, in which rescaling of the rest mass plays a vital 

role. Thus, the basis for a radically new theory of quantum phenomena based on the process of mass-

energy flow is proposed. In [5] author has derived the covariant fourth-order/one-function equivalent 

of the Dirac equation for the general case of an arbitrary set of γ-matrices. 

Supporting these search aspirations, in our work we propose a deeper understanding of the 

Dirac equation with an emphasis on the direct use of the principles of symmetry and invariance to 

Lorentz transformations. For the first time we present a formulation of the Dirac and Schrödinger 

equations in spinor coordinate space. 

2. Generalized Dirac Type Equation 

Let us introduce notations, which will be used further on. The speed of light and the rationalized 

Planck’s constant will be considered as unity. 

Pauli matrices 

𝜎0 = (
1 0
0 1

)     𝜎1 = (
0 1
1 0

)     𝜎2 = (
0 −𝑖
𝑖 0

)     𝜎3 = (
1 0
0 −1

) 

Matrices constructed from Pauli matrices 

𝑆0 = (
𝜎0 0
0 𝜎0 

)   𝑆1 = (
𝜎1 0
0 𝜎1 

)   𝑆2 = (
𝜎2 0
0 𝜎2 

)   𝑆3 = (
𝜎3 0
0 𝜎3 

) 

A vector of matrices 

𝐒⃗𝑇 ≡ (𝑆1, 𝑆2, 𝑆3) 

A set of arbitrary complex numbers and a vector of its three components 

𝐗𝑇 ≡ (𝑋0, 𝑋1, 𝑋2, 𝑋3) 

𝐗⃗⃗⃗𝑇 ≡ (𝑋1, 𝑋2, 𝑋3) 

Let us define a 2×2 matrix of Lorentz transformations given by the set of real rotation angles 

(𝛼1, 𝛼2, 𝛼3) and boosts (𝛽1, 𝛽2, 𝛽3) 

𝑛 = 𝑒𝑥𝑝 (−
1

2
𝑖𝛼1𝜎1) 𝑒𝑥𝑝 (

1

2
𝛽1𝜎1) 𝑒𝑥𝑝 (−

1

2
𝑖𝛼2𝜎2) 𝑒𝑥𝑝 (

1

2
𝛽2𝜎2) 𝑒𝑥𝑝 (−

1

2
𝑖𝛼3𝜎3) 𝑒𝑥𝑝 (

1

2
𝛽3𝜎3) 

and a similar 4×4 transformation matrix 

𝑁 = 𝑒𝑥𝑝 (−
1

2
𝑖𝛼1𝑆1) 𝑒𝑥𝑝 (

1

2
𝛽1𝑆1) 𝑒𝑥𝑝 (−

1

2
𝑖𝛼2𝑆2) 𝑒𝑥𝑝 (

1

2
𝛽2𝑆2) 𝑒𝑥𝑝 (−

1

2
𝑖𝛼3𝑆3) 𝑒𝑥𝑝 (

1

2
𝛽3𝑆3) 

We also define a 4×4 matrix of Lorentz transformations 𝛬, where μ and ν take values 0,1,2,3  

𝛬 𝜈
𝜇
=
1

2
Tr[𝜎𝜇𝑛𝜎𝜈𝑛

†]  

which can also be written explicitly using the 4×4 matrices of turn generators (𝑅1, 𝑅2, 𝑅3) and boosts 

(𝐾1, 𝐾2, 𝐾3) 

𝛬 = 𝑒𝑥𝑝(𝛼1𝑅1)𝑒𝑥𝑝(𝛽1𝐾1)𝑒𝑥𝑝(𝛼2𝑅2)𝑒𝑥𝑝(𝛽2𝐾2)𝑒𝑥𝑝(𝛼3𝑅3)𝑒𝑥𝑝(𝛽3𝐾3) 
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Let's define a 4×4 matrix 

𝑀2 = (𝑆0𝑋0 − 𝑆1𝑋1 − 𝑆2𝑋2 − 𝑆3𝑋3)(𝑆0𝑋0 + 𝑆1𝑋1 + 𝑆2𝑋2 + 𝑆3𝑋3) = 

(𝑆0𝑋0 − 𝐒⃗
𝑇 𝐗⃗⃗⃗)(𝑆0𝑋0 + 𝐒⃗

𝑇 𝐗⃗⃗⃗) = 

𝑆0𝑋0𝑆0𝑋0 − 𝑆1𝑋1𝑆1𝑋1 − 𝑆2𝑋2𝑆2𝑋2 − 𝑆3𝑋3𝑆3𝑋3 + 

𝑆0𝑋0(𝑆1𝑋1 + 𝑆2𝑋2 + 𝑆3𝑋3) − 𝑆1𝑋1(𝑆0𝑋0 + 𝑆2𝑋2 + 𝑆3𝑋3) − 

𝑆2𝑋2(𝑆0𝑋0 + 𝑆1𝑋1 + 𝑆3𝑋3) − 𝑆3𝑋3(𝑆0𝑋0 + 𝑆1𝑋1 + 𝑆2𝑋2) 

In fact, we consider a quaternion with complex coefficients, which we multiply by its conjugate 

quaternion (due to the complexity of the coefficients, these are biquaternions, but we still use 

quaternionic conjugation, without complex conjugation). 

Let us subject the set of complex numbers to the Lorentz transformation 

𝐗′ = 𝛬𝐗 

Let us write a relation whose validity for an arbitrary set of complex numbers can be checked 

directly 

(𝑆0𝑋0
′ − 𝑆1𝑋1

′ − 𝑆2𝑋2
′ − 𝑆3𝑋3

′)(𝑆0𝑋0
′ + 𝑆1𝑋1

′ + 𝑆2𝑋2
′ + 𝑆3𝑋3

′)

= (𝑆0𝑋0 − 𝑆1𝑋1 − 𝑆2𝑋2 − 𝑆3𝑋3)(𝑆0𝑋0 + 𝑆1𝑋1 + 𝑆2𝑋2 + 𝑆3𝑋3) = 𝑀2 

The matrix 𝑀2 in the simplest case is diagonal with equal complex elements on the diagonal 

equal to the square of the length of the vector 𝐗 in the metric of Minkowski space, which we denote 

𝑚2. Both 𝑀2 and 𝑚2 do not change under any rotations and boosts, in physical applications the 

invariance of 𝑚2  is usually used, in particular, for the four-component momentum vector this 

quantity is called the square of mass. 

Since the matrices 𝑆𝜇  anticommutate with each other, for a vector 𝐗  whose components 

commute with each other, we have just the simplest case with a diagonal matrix with 𝑚2 on the 

diagonal. But if the components of vector 𝐗 do not commute, the matrix 𝑀2 already has a more 

complex structure and carries additional physical information compared to 𝑚2. For example, the 

vector 𝐗 may include the electron momentum vector and the electromagnetic potential vector. The 

four-component potential vector is a function of the four-dimensional coordinates of Minkowski 

space. The components of the four-component momentum do not commute with the components of 

the coordinate vector, respectively, and the coordinate function does not commute with the 

momentum components, and their commutator is expressed through the partial derivative of this 

function by the corresponding coordinate. If the components of the vector 𝐗 do not commute, the 

matrix 𝑀2 will no longer be invariant with respect to Lorentz transformations. 

Suppose that the complex numbers we consider commute with all matrices, and note that the 

squares of all matrices are equal to the unit 4×4 matrix I  

𝑀2 = (𝑋0𝑋0 − 𝑋1𝑋1 − 𝑋2𝑋2 − 𝑋3𝑋3)𝐼 + (𝑆1𝑋0𝑋1 + 𝑆2𝑋0𝑋2 + 𝑆3𝑋0𝑋3)

− (𝑆1𝑋1𝑋0 + 𝑆1𝑆2𝑋1𝑋2 + 𝑆1𝑆3𝑋1𝑋3) − (𝑆2𝑋2𝑋0 + 𝑆2𝑆1𝑋2𝑋1 + 𝑆2𝑆3𝑋2𝑋3)

− (𝑆3𝑋3𝑋0 + 𝑆3𝑆1𝑋3𝑋1 + 𝑆3𝑆2𝑋3𝑋2)

= (𝑋0𝑋0 − 𝑋1𝑋1 − 𝑋2𝑋2 − 𝑋3𝑋3)𝐼 + 𝑆1(𝑋0𝑋1 − 𝑋1𝑋0) + 𝑆2(𝑋0𝑋2 − 𝑋2𝑋0) + 𝑆3(𝑋0𝑋3
− 𝑋3𝑋0) − (𝑆1𝑆2𝑋1𝑋2 + 𝑆1𝑆3𝑋1𝑋3) − (𝑆2𝑆1𝑋2𝑋1 + 𝑆2𝑆3𝑋2𝑋3) − (𝑆3𝑆1𝑋3𝑋1 + 𝑆3𝑆2𝑋3𝑋2)

= (𝑋0𝑋0 − 𝑋1𝑋1 − 𝑋2𝑋2 − 𝑋3𝑋3)𝐼 + 𝑆1(𝑋0𝑋1 − 𝑋1𝑋0) + 𝑆2(𝑋0𝑋2 − 𝑋2𝑋0) + 𝑆3(𝑋0𝑋3
− 𝑋3𝑋0) − (𝑆1𝑆2𝑋1𝑋2 + 𝑆2𝑆1𝑋2𝑋1) − (𝑆2𝑆3𝑋2𝑋3 + 𝑆3𝑆2𝑋3𝑋2) − (𝑆3𝑆1𝑋3𝑋1 + 𝑆1𝑆3𝑋1𝑋3)

= (𝑋0𝑋0 − 𝑋1𝑋1 − 𝑋2𝑋2 − 𝑋3𝑋3)𝐼 + 𝑆1(𝑋0𝑋1 − 𝑋1𝑋0) + 𝑆2(𝑋0𝑋2 − 𝑋2𝑋0) + 𝑆3(𝑋0𝑋3
− 𝑋3𝑋0) − (𝑆1𝑆2𝑋1𝑋2 + 𝑆2𝑆1𝑋1𝑋2 + 𝑆2𝑆1(𝑋2𝑋1 − 𝑋1𝑋2))

− (𝑆2𝑆3𝑋2𝑋3 + 𝑆3𝑆2𝑋2𝑋3 + 𝑆3𝑆2(𝑋3𝑋2 − 𝑋2𝑋3))

− (𝑆3𝑆1𝑋3𝑋1 + 𝑆1𝑆3𝑋3𝑋1 + 𝑆1𝑆3(𝑋1𝑋3 − 𝑋3𝑋1)) 

Taking into account anticommutative properties of matrices and expressions for their pairwise 

products we obtain  
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𝑀2 = (𝑋0𝑋0 − 𝑋1𝑋1 − 𝑋2𝑋2 − 𝑋3𝑋3)𝐼 + 𝑆1(𝑋0𝑋1 − 𝑋1𝑋0) + 𝑆2(𝑋0𝑋2 − 𝑋2𝑋0) + 𝑆3(𝑋0𝑋3 − 𝑋3𝑋0)

− 𝑆2𝑆1(𝑋2𝑋1 − 𝑋1𝑋2) − 𝑆3𝑆2(𝑋3𝑋2 − 𝑋2𝑋3) − 𝑆1𝑆3(𝑋1𝑋3 − 𝑋3𝑋1)

= (𝑋0𝑋0 − 𝑋1𝑋1 − 𝑋2𝑋2 − 𝑋3𝑋3)𝐼 + 𝑆1(𝑋0𝑋1 − 𝑋1𝑋0) + 𝑆2(𝑋0𝑋2 − 𝑋2𝑋0) + 𝑆3(𝑋0𝑋3
− 𝑋3𝑋0) + 𝑖𝑆3(𝑋2𝑋1 − 𝑋1𝑋2) + 𝑖𝑆1(𝑋3𝑋2 − 𝑋2𝑋3) + 𝑖𝑆2(𝑋1𝑋3 − 𝑋3𝑋1)

= (𝑋0𝑋0 − 𝑋1𝑋1 − 𝑋2𝑋2 − 𝑋3𝑋3)𝐼 + 𝑆1(𝑋0𝑋1 − 𝑋1𝑋0) + 𝑖𝑆1(𝑋3𝑋2 − 𝑋2𝑋3) + 𝑆2(𝑋0𝑋2
− 𝑋2𝑋0) + 𝑖𝑆2(𝑋1𝑋3 − 𝑋3𝑋1) + 𝑆3(𝑋0𝑋3 − 𝑋3𝑋0) + 𝑖𝑆3(𝑋2𝑋1 − 𝑋1𝑋2) 

Consider the case when 𝐗 is the sum of the momentum vector and the electromagnetic potential 

vector, which is a function of coordinates 

𝐗 = 𝐏 + 𝐀 

𝐏𝑇 ≡ (𝑃0, 𝑃1, 𝑃2, 𝑃3) 

𝐀𝑇 ≡ (𝐴0, 𝐴1, 𝐴2, 𝐴3) 

𝐏⃗⃗⃗𝑇 ≡ (𝑃1, 𝑃2, 𝑃3) 

𝐀⃗⃗⃗𝑇 ≡ (𝐴1, 𝐴2, 𝐴3) 

 𝑀2 = 𝐼[(𝑃0 + 𝐴0)(𝑃0 + 𝐴0) − (𝑃1 + 𝐴1)(𝑃1 + 𝐴1) − (𝑃2 + 𝐴2)(𝑃2 + 𝐴2) − (𝑃3 + 𝐴3)(𝑃3 + 𝐴3)] +

𝑆1[(𝑃0 + 𝐴0)(𝑃1 + 𝐴1) − (𝑃1 + 𝐴1)(𝑃0 + 𝐴0)] + 𝑖𝑆1[(𝑃3 + 𝐴3)(𝑃2 + 𝐴2) − (𝑃2 + 𝐴2)(𝑃3 + 𝐴3)] +

𝑆2[(𝑃0 + 𝐴0)(𝑃2 + 𝐴2) − (𝑃2 + 𝐴2)(𝑃0 + 𝐴0)] + 𝑖𝑆2[(𝑃1 + 𝐴1)(𝑃3 + 𝐴3) − (𝑃3 + 𝐴3)(𝑃1 + 𝐴1)] +

𝑆3[(𝑃0 + 𝐴0)(𝑃3 + 𝐴3) − (𝑃3 + 𝐴3)(𝑃0 + 𝐴0)] + 𝑖𝑆3[(𝑃2 + 𝐴2)(𝑃1 + 𝐴1) − (𝑃1 + 𝐴1)(𝑃2 + 𝐴2)] 

For now, we'll stick with the Heisenberg approach, that is, we will consider the components of 

the momentum vector 𝑃0, 𝑃1 , 𝑃2, 𝑃3  as operators for which there are commutation relations with 

coordinates or coordinate functions such as 𝐴0, 𝐴1, 𝐴2, 𝐴3. In this approach, the operators do not have 

to act on any wave function.  

Taking into account the commutation relations of the components of the momentum vector and 

the coordinate vector, the commutator of the momentum component and the coordinate function is 

expressed through the derivative of this function by the corresponding coordinate, e.g. 

[(𝑃2 + 𝐴2)(𝑃1 + 𝐴1) − (𝑃1 + 𝐴1)(𝑃2 + 𝐴2)] = 𝑃2𝐴1 − 𝐴1𝑃2 − (𝑃1𝐴2 − 𝐴2𝑃1) = −𝑖
𝜕𝐴1
𝜕𝑥2

− (−𝑖
𝜕𝐴2
𝜕𝑥1

) 

As a result, we obtain 

𝑀2 = 𝐼[(𝑃0 + 𝐴0)(𝑃0 + 𝐴0) − (𝑃1 + 𝐴1)(𝑃1 + 𝐴1) − (𝑃2 + 𝐴2)(𝑃2 + 𝐴2) − (𝑃3 + 𝐴3)(𝑃3 + 𝐴3)]

+ 𝑆1 [−𝑖
𝜕𝐴1
𝜕𝑥0

+ 𝑖
𝜕𝐴0
𝜕𝑥1

] + 𝑖𝑆1 [−𝑖
𝜕𝐴2
𝜕𝑥3

+ 𝑖
𝜕𝐴3
𝜕𝑥2

] + 𝑆2 [−𝑖
𝜕𝐴2
𝜕𝑥0

+ 𝑖
𝜕𝐴0
𝜕𝑥2

]

+ 𝑖𝑆2 [−𝑖
𝜕𝐴3
𝜕𝑥1

+ 𝑖
𝜕𝐴1
𝜕𝑥3

] + 𝑆3 [−𝑖
𝜕𝐴3
𝜕𝑥0

+ 𝑖
𝜕𝐴0
𝜕𝑥3

] + 𝑖𝑆3 [−𝑖
𝜕𝐴1
𝜕𝑥2

+ 𝑖
𝜕𝐴2
𝜕𝑥1

]

= 𝐼[(𝑃0 + 𝐴0)(𝑃0 + 𝐴0) − (𝑃1 + 𝐴1)(𝑃1 + 𝐴1) − (𝑃2 + 𝐴2)(𝑃2 + 𝐴2)

− (𝑃3 + 𝐴3)(𝑃3 + 𝐴3)] − 𝑖𝑆1 [
𝜕𝐴1
𝜕𝑥0

−
𝜕𝐴0
𝜕𝑥1

] + 𝑆1 [
𝜕𝐴2
𝜕𝑥3

−
𝜕𝐴3
𝜕𝑥2

] − 𝑖𝑆2 [
𝜕𝐴2
𝜕𝑥0

−
𝜕𝐴0
𝜕𝑥2

]

+ 𝑆2 [
𝜕𝐴3
𝜕𝑥1

−
𝜕𝐴1
𝜕𝑥3

] − 𝑖𝑆3 [
𝜕𝐴3
𝜕𝑥0

−
𝜕𝐴0
𝜕𝑥3

] + 𝑆3 [
𝜕𝐴1
𝜕𝑥2

−
𝜕𝐴2
𝜕𝑥1

]

=  𝐼[(𝑃0 + 𝐴0)(𝑃0 + 𝐴0) − (𝑃1 + 𝐴1)(𝑃1 + 𝐴1) − (𝑃2 + 𝐴2)(𝑃2 + 𝐴2)

− (𝑃3 + 𝐴3)(𝑃3 + 𝐴3)] − 𝑖𝑆1𝐹01 + 𝑆1𝐹32 − 𝑖𝑆2𝐹02 + 𝑆2𝐹13 − 𝑖𝑆3𝐹03 + 𝑆3𝐹21
=  𝐼[(𝑃0 + 𝐴0)(𝑃0 + 𝐴0) − (𝑃1 + 𝐴1)(𝑃1 + 𝐴1) − (𝑃2 + 𝐴2)(𝑃2 + 𝐴2)

− (𝑃3 + 𝐴3)(𝑃3 + 𝐴3)] − 𝑖𝑆1𝐸𝑥 + 𝑆1𝐵𝑥 − 𝑖𝑆2𝐸𝑦 + 𝑆2𝐵𝑦 − 𝑖𝑆3𝐸𝑧 + 𝑆3𝐵𝑧  

where 

𝐹𝜇𝜈 ≡ 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 

𝜕𝜇 ≡
𝜕

𝜕𝑥𝜇
 

𝐹𝜇𝜈 =

(

 
 

0  𝐸𝑥
−𝐸𝑥   0

𝐸𝑦 𝐸𝑧
−𝐵𝑧 𝐵𝑦

−𝐸𝑦   𝐵𝑧
−𝐸𝑧  −𝐵𝑦

0 −𝐵𝑥
𝐵𝑥 0

)

 
 

 

As a result, we have the expression 

 𝑀2 = 𝐼[(𝑃0 + 𝐴0)(𝑃0 + 𝐴0) − (𝑃1 + 𝐴1)(𝑃1 + 𝐴1) − (𝑃2 + 𝐴2)(𝑃2 + 𝐴2) − (𝑃3 + 𝐴3)(𝑃3 + 𝐴3)] +

𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗ 

𝐁⃗⃗⃗𝑇 ≡ (𝐵𝑥, 𝐵𝑦 , 𝐵𝑧) ≡ (𝐵1 , 𝐵2, 𝐵3) 
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𝐄⃗⃗𝑇 ≡ (𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧)  ≡ (𝐸1, 𝐸2, 𝐸3) 

Similarly, it can be shown that 

(𝑆0𝑃0 − 𝑆1𝑃1 − 𝑆2𝑃2 − 𝑆3𝑃3)(𝑆0𝐴0 + 𝑆1𝐴1 + 𝑆2𝐴2 + 𝑆3𝐴3)

+ (𝑆0𝐴0 − 𝑆1𝐴1 − 𝑆2𝐴2 − 𝑆3𝐴3)(𝑆0𝑃0 + 𝑆1𝑃1 + 𝑆2𝑃2 + 𝑆3𝑃3)

= 2𝐼(𝑃0𝐴0 − 𝑃1𝐴1 − 𝑃2𝐴2 − 𝑃3𝐴3) + 𝐒⃗
𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗ 

The matrix 

 𝑀2 − {𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗} = 𝐼{(𝑃0 + 𝐴0)(𝑃0 + 𝐴0) − (𝑃1 + 𝐴1)(𝑃1 + 𝐴1) − (𝑃2 + 𝐴2)(𝑃2 + 𝐴2) − (𝑃3 +

𝐴3)(𝑃3 + 𝐴3)} ≡ 𝐼𝑑2 

does not change under Lorentz transformations involving any rotations and boosts. 

𝐼𝑑2 = (𝑆0(𝑃0 + 𝐴0) − 𝑆1(𝑃1 + 𝐴1) − 𝑆2(𝑃2 + 𝐴2) − 𝑆3(𝑃3 + 𝐴3))(𝑆0(𝑃0 + 𝐴0) + 𝑆1(𝑃1 + 𝐴1)

+ 𝑆2(𝑃2 + 𝐴2) + 𝑆3(𝑃3 + 𝐴3)) − {𝐒⃗
𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗}

= (𝑆0(𝑃0 + 𝐴0) − 𝐒⃗
𝑇(𝐏⃗⃗⃗ + 𝐀⃗⃗⃗)) (𝑆0(𝑃0 + 𝐴0) + 𝐒⃗

𝑇(𝐏⃗⃗⃗ + 𝐀⃗⃗⃗)) − {𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗} 

Taking into account the electron charge we have 

𝐗 = 𝐏 − 𝑒𝐀 

𝐼𝑑2 = (𝑆0(𝑃0 − 𝑒𝐴0) − 𝐒⃗
𝑇(𝐏⃗⃗⃗ + 𝐀⃗⃗⃗)) (𝑆0(𝑃0 − 𝑒𝐴0) + 𝐒⃗

𝑇(𝐏⃗⃗⃗ + 𝐀⃗⃗⃗)) + 𝑒{𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗} 

Let us summarize our consideration. There is a correlation 

𝐼𝑑2 = 𝑀2 + 𝑒{𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗} 

where 

𝑀2 ≡ (𝑆0(𝑃0 − 𝑒𝐴0) − 𝐒⃗
𝑇(𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)) (𝑆0(𝑃0 − 𝑒𝐴0) + 𝐒⃗

𝑇(𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)) 

𝐼𝑑2 ≡ 𝐼{(𝑃0 − 𝑒𝐴0)
2 − (𝑃1 − 𝑒𝐴1)

2 − (𝑃2 − 𝑒𝐴2)
2 − (𝑃3 − 𝑒𝐴3)

2}

=  𝐼[(𝑃0 − 𝑒𝐴0)(𝑃0 − 𝑒𝐴0) − (𝑃1 − 𝑒𝐴1)(𝑃1 − 𝑒𝐴1) − (𝑃2 − 𝑒𝐴2)(𝑃2 − 𝑒𝐴2)

− (𝑃3 − 𝑒𝐴3)(𝑃3 − 𝑒𝐴3)] =  𝐼 [(𝑃0 − 𝑒𝐴0)(𝑃0 − 𝑒𝐴0) − (𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)
𝑇
(𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)]

= 𝐼 {(𝑃0 − 𝑒𝐴0)
2 − (𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)

2
} 

Let's analyze the obtained equality 

𝑀2 = 𝐼𝑑2 − 𝑒{𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗} 

Note that the quantity 𝑑2 is invariant to the Lorentz transformations irrespective of whether 

the momentum and field components commute or not. To solve this equation, we have to make 

additional simplifications. For example, to arrive at an equation similar to the Dirac equation, we 

must equate 𝑀2 with the matrix 𝐼𝑚2, where 𝑚2 is the square of the mass of a free electron. Then 

𝐼𝑚2 = 𝐼𝑑2 − 𝑒{𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗} 

𝐼𝑑2 − 𝐼𝑚2 − 𝑒{𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗} = 0 

𝐼 {(𝑃0 − 𝑒𝐴0)
2 − (𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)

2
} −  𝐼𝑚2 − 𝑒{𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗} = 0 

With this substitution the generalized equation almost coincides with the equation [[6], formula 

(43.25)], the difference is that there is a plus sign before 𝑒𝐒⃗𝑇 𝐁⃗⃗⃗, and instead of 𝑖𝐒⃗𝑇 𝐄⃗⃗ there is 𝑖𝛂⃗⃗⃗𝑇 𝐄⃗⃗, in 

which the matrices 𝛂 have the following form 

𝛂⃗⃗⃗𝑇 ≡ (𝛼1, 𝛼2, 𝛼3) 

𝛼1 = (
0 𝜎1
𝜎1 0 

)   𝛼2 = (
0 𝜎2
𝜎2 0 

)   𝛼3 = (
0 𝜎3
𝜎3 0 

) 

A similar equation is given by Dirac in [[7], Paragraph 76, Equation 24]; he does not use the 

matrices 𝛂⃗⃗⃗, only the matrices 𝐒⃗, but the signs of the contributions of the magnetic and electric fields 

are the same.  

Along with the original form  

𝑀2 = (𝑆0(𝑃0 − 𝑒𝐴0) − 𝐒⃗
𝑇(𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)) (𝑆0(𝑃0 − 𝑒𝐴0) + 𝐒⃗

𝑇(𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)) = 𝑑2 − 𝑒{𝐒⃗𝑇 𝐁⃗⃗⃗ − 𝑖𝐒⃗𝑇 𝐄⃗⃗} 

it is possible to consider the form with a different order of the factors. It can be shown that this 

leads to a change in the sign of the electric field contribution 

𝑀2 = (𝑆0(𝑃0 − 𝑒𝐴0) + 𝐒⃗
𝑇(𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)) (𝑆0(𝑃0 − 𝑒𝐴0) − 𝐒⃗

𝑇(𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)) = 𝑑2 − 𝑒{𝐒⃗𝑇 𝐁⃗⃗⃗ + 𝑖𝐒⃗𝑇 𝐄⃗⃗} 

Since 𝐼𝑑2, unlike 𝑀2, is invariant to Lorentz transformations, it would be logical to replace it by 

𝐼𝑚2. At least both these matrices are diagonal, and in the case of a weak field their diagonal elements 
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are close. Nevertheless, the approach based on the Dirac equation leads to solutions consistent with 

experiment. 

The matrix 𝑀2 in the general case has complex elements and is not diagonal, and in the Dirac 

equations instead of it is substituted the product of the unit matrix by the square of mass 𝑚2, the 

physical meaning of such a substitution is not obvious. Apparently it is implied that it is the square 

of the mass of a free electron. But the square of the length of the sum of the lengths of the electron 

momentum vectors and the electromagnetic potential vector is not equal to the sum of the squares of 

the lengths of these vectors, that is, it is not equal to the square of the mass of the electron, even if the 

square of the length of the potential vector were zero. But, for example, in the case of an electrostatic 

central field, even the square of the length of one potential vector is not equal to zero. Therefore, it is 

difficult to find a logical justification for using the mass of a free electron in the Dirac equation in the 

presence of an electromagnetic field. Due to the noted differences, the solutions of the generalized 

equation can differ from the solutions arising from the Dirac equation. 

In the case when there is a constant magnetic field directed along the z-axis, we can write down 

𝐴0 = 0        𝐴1 = −
1

2
𝐵3𝑥2         𝐴2 =

1

2
𝐵3𝑥1      𝐴3 = 0 

(𝑆0𝑃0)
2 −𝑀2 − (𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)

𝑇
(𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)𝐼 − 𝑒𝑆3𝐵3 = 0 

(𝑆0𝑃0)
2 −𝑀2 − (𝑃1 − 𝑒𝐴1)(𝑃1 − 𝑒𝐴1)𝐼 − (𝑃2 − 𝑒𝐴2)(𝑃2 − 𝑒𝐴2)𝐼 − 𝑒𝑆3𝐵3 = 0 

(𝑆0𝑃0)
2 −𝑀2 − 𝑃0

2𝐼 − 𝑃3
2𝐼 − 𝑃1

2 − (𝑒𝐴1)
2 − 𝑃2

2 − (𝑒𝐴2)
2 +

𝑒

2
𝐵3(𝑥1 𝑃2 − 𝑥2𝑃1 + 𝑥1 𝑃2 − 𝑥2𝑃1) − 𝑒𝑆3𝐵3

= 0 

𝑃0
2𝐼 − 𝑀2 − 𝑃0

2𝐼 − 𝑃3
2𝐼 − 𝑃1

2𝐼 − (𝑒𝐴1)
2𝐼 − 𝑃2

2𝐼 − (𝑒𝐴2)
2𝐼 + 𝑒𝐵3(𝑥1 𝑃2 − 𝑥2𝑃1)𝐼 − 𝑒𝑆3𝐵3 = 0 

𝐼(−𝑃1
2 − 𝑃2

2 − 𝑃3
2 − (𝑒𝐴1)

2 − (𝑒𝐴2)
2) − 𝑀2 − 𝑒𝐵3 (

𝐿3 + 1 0
0 𝐿3 − 1

0          0
0          0

0           0
0           0

𝐿3 + 1 0
0 𝐿3 − 1

) = 0 

Here (𝑥1 𝑃2 − 𝑥2𝑃1) ≡ 𝐿3 . Only when the field is directed along the z-axis, the matrix 𝑀2  is 

diagonal and real because the third Pauli matrix is diagonal and real. And if the field is weak, 𝑀2 

can be approximated by the 𝑚2𝐼  matrix. This is probably why it is customary to illustrate the 

interaction of electron spin with the magnetic field by choosing its direction along the z-axis. In any 

other direction 𝑀2 is not only non-diagonal, but also complex, so that it is difficult to justify the use 

of 𝑚2𝐼. 

When the influence of the electromagnetic field was taken into account, no specific 

characteristics of the electron were used. When deriving a similar result using the Dirac equation, it 

is assumed that since the electron equation is used, the result is specific to the electron. In our case 

Pauli matrices and commutation relations are used, apparently these two assumptions or only one of 

them characterize the properties of the electron, distinguishing it from other particles with non-zero 

masses. 

The proposed equation echoes the Dirac equation, at least from it one can obtain the same 

formulas for the interaction of spin and electromagnetic field as with the Dirac equation, and in the 

absence of a field the proposed equation is invariant to the Lorentz transformations. In contrast, to 

prove the invariance of the Dirac equation even in the absence of a field, the infinitesimal Lorentz 

transformations are used, but the invariance at finite angles of rotations and boosts is not 

demonstrated. The proof of invariance of the Dirac equation is based on the claim that a combination 

of rotations at finite angles can be represented as a combination of infinitesimal rotations. But this is 

true only for rotations or boosts around one axis, and if there are at least two axes, this statement is 

not true because of non-commutability of Pauli matrices, which are generators of rotations, so that 

the exponent of the sum is not equal to the product of exponents if the sum includes generators of 

rotations or boosts around different axes. By a direct check we can verify that the invariance of the 

Dirac equation takes place at any combination of rotations, but only under the condition of zero 

boosts, i.e., only in a rest frame of reference, any boost violates the invariance. 

A test case for any theory is the model of the central electrostatic field used in the description of 

the hydrogen atom, in which the components of the vector potential are zero 
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(𝑆0(𝑃0 − 𝑒𝐴0) − 𝐒⃗
𝑇 𝐏⃗⃗⃗)(𝑆0(𝑃0 − 𝑒𝐴0) + 𝐒⃗

𝑇 𝐏⃗⃗⃗) = 𝐼[(𝑃0 − 𝑒𝐴0)
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2] + 𝑖𝑒𝐒⃗𝑇 𝐄⃗⃗ 

If again we equate the left part with 𝐼𝑚2, we obtain 

𝐼[(𝑃0 − 𝑒𝐴0)
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2] −  𝐼𝑚2 + 𝑖𝑒𝐒⃗𝑇 𝐄⃗⃗ = 0 

𝐼[(𝑃0 − 𝑒𝐴0)
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 − 𝑚2] − 𝑖𝑒 (𝑆1
𝜕𝐴0
𝜕𝑥1

+ 𝑆2
𝜕𝐴0
𝜕𝑥2

+ 𝑆3
𝜕𝐴0
𝜕𝑥3

) = 0 

Introducing the notations (𝐴0 ≡ 𝜑(𝑟) = 𝑄/𝑟, 𝑃0 ≡ 𝐸, 𝑟 = 1/ √𝑥1 
2 + 𝑥2 

2 + 𝑥3 
2), we obtain 

𝐼 [(𝐸 −
𝑒𝑄

𝑟
)
2

− 𝑃1
2 − 𝑃2

2 − 𝑃3
2 − 𝑚2] − 𝑖𝑒 (𝑆1

𝜕𝜑(𝑟)

𝜕𝑥1
+ 𝑆2

𝜕𝜑(𝑟)

𝜕𝑥2
+ 𝑆3

𝜕𝜑(𝑟)

𝜕𝑥3
) = 0 

𝐼 [(𝐸 −
𝑒𝑄

𝑟
)
2

− 𝑃1
2 − 𝑃2

2 − 𝑃3
2 − 𝑚2] + 𝑖

𝑒𝑄

𝑟3
(𝑆1𝑥1 + 𝑆2𝑥2 + 𝑆3𝑥3 ) = 0 

If we substitute operators acting on the wave function instead of momentum components into 

the equation, we obtain a generalized analog of the relativistic Schrödinger equation, in which the 

wave function has four components and changes as a spinor under Lorentz transformations. Using 

the substitutions 

𝑃0 → 𝑖
𝜕

𝜕𝑡
       𝑃1 → −𝑖

𝜕

𝜕𝑥1
     𝑃2 → −𝑖

𝜕

𝜕𝑥2
      𝑃3 → −𝑖

𝜕

𝜕𝑥3
 

the equation for the four-component wave function 𝛙 before all transformations has the form  

(𝑆0 (
𝜕

𝜕𝑡
− 𝑒𝐴0) + 𝐒⃗

𝑇(𝛁 − 𝑒𝐀⃗⃗⃗)) (𝑆0 (
𝜕

𝜕𝑡
− 𝑒𝐴0) − 𝐒⃗

𝑇(𝛁 − 𝑒𝐀⃗⃗⃗))𝛙 +𝑀2𝛙 = 0 

and after transformations 

{(𝑆0(𝑃0 − 𝑒𝐴0))
2
− (𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)

𝟐
𝐼 − 𝑒𝐒⃗𝑇 𝐁⃗⃗⃗ + 𝑖𝑒𝐒⃗𝑇 𝐄⃗⃗}𝛙 = 𝑀2𝛙 

Once again, note that the matrix 𝑀2 is not diagonal and real. 

All the above deductions are also valid when replacing 4×4 matrices 𝑆𝜇 by 2×2 matrices 𝜎𝜇, 

since their commutative and anticommutative properties are the same. The corresponding 

generalized equation is of the form 

(𝜎0(𝑃0 − 𝑒𝐴0))
2
−𝑀2 − (𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)

𝟐
𝐼 − 𝑒𝛔⃗⃗⃗𝑇 𝐁⃗⃗⃗ + 𝑖𝑒𝛔⃗⃗⃗𝑇 𝐄⃗⃗ = 0 

where  

𝛔⃗⃗⃗𝑇 ≡ (𝜎1, 𝜎2, 𝜎3) 

and the equation for the now two-component wave function looks like 

(𝜎0 (
𝜕

𝜕𝑡
− 𝑒𝐴0) + 𝛔⃗⃗⃗

𝑇(𝛁 − 𝑒𝐀⃗⃗⃗)) (𝜎0 (
𝜕

𝜕𝑡
− 𝑒𝐴0) − 𝛔⃗⃗⃗

𝑇(𝛁 − 𝑒𝐀⃗⃗⃗))𝛙 +𝑀2𝛙 = 0 

In deriving his equation, Dirac [[7], Paragraph 74] noted that as long as we are dealing with 

matrices with two rows and columns, we cannot obtain a representation of more than three 

anticommuting quantities; to represent four anticommuting quantities, he turned to matrices with 

four rows and columns. In our case, however, three anticommuting matrices are sufficient, so the 

wave function can also be two-component. Dirac also explains that the presence of four components 

results in twice as many solutions, half of which have negative energy. In the case of a two-component 

wave function, however, no negative energy solutions are obtained. Particles with negative energy 

in this case also exist, but they are described by the same equation in which the signs of all four 

matrices 𝑆 or 𝜎 are reversed. 

One would seem to expect similar results from other representations of the momentum operator, 

e.g., [6, formula (24.15)] 

𝜔0 = (
1 0 0
0 1 0
0 0 1

)     𝜔1 =
1

√2
(
0 1 0
1 0 1
0 1 0

)     𝜔2 =
1

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

)     𝜔3 = (
1 0 0
0 0 0
0 0 −1

) 

under the assumption that this representation can describe a particle with spin one. But this 

expectation is not justified, since the last three matrices do not anticommutate, and therefore the 

quadratic form constructed on their basis is not invariant under Lorentz transformations. 

If one consistently adheres to the Heisenberg approach and does not involve the notion of wave 

function, it is not very clear how to search for solutions of the presented equations. The Schrödinger 
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approach with finding the eigenvalues of the 𝑀2matrix and their corresponding eigenfunctions can 

help here.  

{(𝑆0(𝑃0 − 𝑒𝐴0))
2
− (𝐏⃗⃗⃗ − 𝑒𝐀⃗⃗⃗)

𝟐
𝐼 − 𝑒𝐒⃗𝑇 𝐁⃗⃗⃗ + 𝑖𝑒𝐒⃗𝑇 𝐄⃗⃗}𝛙 = 𝑀2𝛙 

In the left-hand side are the operators acting on the wave function, and in the right-hand side is 

a constant matrix on which the wave function is simply multiplied. This equality must be satisfied 

for all values of the four-dimensional coordinates (𝑡, 𝑥1, 𝑥2, 𝑥3) at once. Then 𝑀2 is not fixed but can 

take a set of possible values, finding all these values is the goal of solving the equation. 

Thus, we have arrived at an equation containing a matrix 𝑀2 which is non-diagonal, complex 

and in general depends on the coordinates (𝑡, 𝑥1, 𝑥2, 𝑥3). After the standard procedure of separating 

the time and space variables, we can go to a stationary equation in which there will be no time 

dependence, but the dependence the matrix 𝑀2  on the coordinates will remain. It is possible to 

ignore the dependence of 𝑀2 on the coordinates and its non-diagonality and simply replace this 

matrix by a unit matrix with a coefficient in the form of the square of the free electron mass. Then the 

equation will give solutions coinciding with those of the Dirac equation. But this solution can be 

considered only approximate and the question remains how far we depart from strict adherence to 

the principle of invariance with respect to Lorentz transformations and how far we deviate from the 

hypothetical true solution, which is fully consistent with this principle. To find this solution, we need 

to approach this equation without simplifying assumptions and look for a set of solutions, each of 

which represents an eigenvalue matrix 𝑀2 of arbitrary form and its corresponding four-component 

eigenfunction. 

Let us return to the question of Lorentz invariance of the expression 

(𝑆0𝑋0 − 𝑆1𝑋1 − 𝑆2𝑋2 − 𝑆3𝑋3)(𝑆0𝑋0 + 𝑆1𝑋1 + 𝑆2𝑋2 + 𝑆3𝑋3) = 𝑀2 

As it was noted, this expression does not change at rotations and boosts in Minkowski space 

only if the components of (𝑋0, 𝑋1, 𝑋2, 𝑋3) commute with each other. If they do not commute, the 

matrix 𝑀2 changes under Lorentz transformations. Two parts can be distinguished in this matrix 

𝑀2 = (𝑋0𝑋0 − 𝑋1𝑋1 − 𝑋2𝑋2 − 𝑋3𝑋3)𝐼 

+𝑆1(𝑋0𝑋1 − 𝑋1𝑋0) + 𝑖𝑆1(𝑋3𝑋2 − 𝑋2𝑋3) + 𝑆2(𝑋0𝑋2 − 𝑋2𝑋0) 

+𝑖𝑆2(𝑋1𝑋3 − 𝑋3𝑋1) + 𝑆3(𝑋0𝑋3 − 𝑋3𝑋0) + 𝑖𝑆3(𝑋2𝑋1 − 𝑋1𝑋2) 

The first row represents the unit matrix multiplied by a value that still does not change under 

Lorentz transformations. All changes occur in the last two rows. In the particular case of 

electrodynamics, we have   

𝑀2 = 𝐼[(𝑃0 + 𝐴0)(𝑃0 + 𝐴0) − (𝑃1 + 𝐴1)(𝑃1 + 𝐴1) − (𝑃2 + 𝐴2)(𝑃2 + 𝐴2) − (𝑃3 + 𝐴3)(𝑃3 + 𝐴3)] 

+𝑆1[(𝑃0 + 𝐴0)(𝑃1 + 𝐴1) − (𝑃1 + 𝐴1)(𝑃0 + 𝐴0)] + 𝑖𝑆1[(𝑃3 + 𝐴3)(𝑃2 + 𝐴2) − (𝑃2 + 𝐴2)(𝑃3 + 𝐴3)] 

+𝑆2[(𝑃0 + 𝐴0)(𝑃2 + 𝐴2) − (𝑃2 + 𝐴2)(𝑃0 + 𝐴0)] + 𝑖𝑆2[(𝑃1 + 𝐴1)(𝑃3 + 𝐴3) − (𝑃3 + 𝐴3)(𝑃1 + 𝐴1)] 

+𝑆3[(𝑃0 + 𝐴0)(𝑃3 + 𝐴3) − (𝑃3 + 𝐴3)(𝑃0 + 𝐴0)] + 𝑖𝑆3[(𝑃2 + 𝐴2)(𝑃1 + 𝐴1) − (𝑃1 + 𝐴1)(𝑃2 + 𝐴2)] 

Here the first line is invariant, but the last three are not. The only way to ensure complete 

invariance of 𝑀2 is to require these three lines to be zero. Let us again consider the commutation 

relations, but now we will not assume that the momentum components commute with each other, 

only the potential components still commute with each other. Now we can write the relations of the 

form 

[(𝑃2 + 𝐴2)(𝑃1 + 𝐴1) − (𝑃1 + 𝐴1)(𝑃2 + 𝐴2)] 

= 𝑃2(𝑃1 + 𝐴1) − (𝑃1 + 𝐴1)𝑃2 − (𝑃1(𝑃2 + 𝐴2) − 𝐴2(𝑃1 + 𝐴1)) 

= −𝑖
𝜕(𝑃1 + 𝐴1)

𝜕𝑥2
− (−𝑖

𝜕(𝑃2 + 𝐴2)

𝜕𝑥1
) 

Such values as 
𝜕𝑃1
𝜕𝑥0

−
𝜕𝑃0
𝜕𝑥1

 

always enter 𝑀2 as a sum with the component of the field, in this case the electric one 

(
𝜕𝑃1
𝜕𝑥0

−
𝜕𝑃0
𝜕𝑥1

) + (
𝜕𝐴1
𝜕𝑥0

−
𝜕𝐴0
𝜕𝑥1

) = (
𝜕𝑃1
𝜕𝑥0

−
𝜕𝑃0
𝜕𝑥1

) + 𝐸𝑥 

If we formally define a new value  
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𝑉1 ≡
𝑃1
𝑚

 

and suppose that m does not change at rotations and boosts, and also to take into account the presence 

of charge at the electron, it is possible to require for this and all other similar sums the fulfilment of 

the condition   

𝑚(
𝜕𝑉1
𝜕𝑥0

−
𝜕𝑉0
𝜕𝑥1

) + 𝑒𝐸𝑥 = 0 

The value 𝑉1 can be regarded as a component of velocity, and velocity not in the usual sense, 

as a derivative of the spatial coordinate by time, but simply as a component of momentum divided 

by the inertial mass m. Then the above equality can be interpreted in the spirit of Newton's law, 

namely, that the acceleration multiplied by the mass is equal to the force acting on the side of the 

electric field. If all such equalities are fulfilled, only the first line will remain in the quantity 𝑀2, and 

it will be invariant under Lorentz transformations. It is possible to go further, and to assume equality 

of the masses appearing here, namely 

𝑀2 = 𝐼𝑚2 

As a result, we obtain a system of equations 

(𝑃0 + 𝑒𝐴0)(𝑃0 + 𝑒𝐴0) − (𝑃1 + 𝑒𝐴1)(𝑃1 + 𝑒𝐴1) − (𝑃2 + 𝑒𝐴2)(𝑃2 + 𝑒𝐴2) − (𝑃3 + 𝑒𝐴3)(𝑃3 + 𝑒𝐴3) = 𝑚
2 

(𝜕𝜇𝑃𝜈 − 𝜕𝜈𝑃𝜇) + 𝑒(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) = 0 

It is the fulfilment of these equations that causes the mass 𝑀2 and 𝑚2 to have the meaning we 

are accustomed to, that is, not only invariant under Lorentz transformations, but also unchanged by 

changes in momentum. We can introduce tensor notations  

𝐺𝜇𝜈 + 𝑒𝐹𝜇𝜈 = 0 

where 

𝐺𝜇𝜈 ≡ 𝜕𝜇𝑃𝜈 − 𝜕𝜈𝑃𝜇 

The resulting system of equations describes not only uniform but also accelerated motion. The 

presence of an external field leads to a change in momentum, and vice versa, any change in 

momentum perturbs the potential and generates an electromagnetic field. 

For quantum mechanics we can replace the momentum components in all equations by the 

derivative operators 

𝑃0 → 𝑖
𝜕

𝜕𝑥0
       𝑃1 → −𝑖

𝜕

𝜕𝑥1
     𝑃2 → −𝑖

𝜕

𝜕𝑥2
      𝑃3 → −𝑖

𝜕

𝜕𝑥3
 

This also applies to equations from the second group, where mixed derivatives arise 

𝜕𝜇𝑃0 → 𝑖
𝜕

𝜕𝑥𝜇

𝜕

𝜕𝑥0
       𝜕𝜇𝑃1 → − 𝑖

𝜕

𝜕𝑥𝜇

𝜕

𝜕𝑥1
    

  𝜕𝜇𝑃2 → − 𝑖
𝜕

𝜕𝑥𝜇

𝜕

𝜕𝑥2
      𝜕𝜇𝑃3 → − 𝑖

𝜕

𝜕𝑥𝜇

𝜕

𝜕𝑥3
 

As a result, we obtain for the wave function a system of equations with second order derivatives, 

the innovation compared to the commonly used equations is the presence in the equations of mixed 

derivatives on all components of the coordinate vector.  

The equations proposed here initially take into account the non-commutability of momentum 

components, their derivation relies only on the unconditional fulfilment (even in coupled systems) 

of the requirement of invariance to Lorentz transformations for the product of conjugate quaternions 

with arbitrary coefficients 

(𝑆0𝑋0 − 𝑆1𝑋1 − 𝑆2𝑋2 − 𝑆3𝑋3)(𝑆0𝑋0 + 𝑆1𝑋1 + 𝑆2𝑋2 + 𝑆3𝑋3) = 𝑀2 

Putting all equations together, we write a truly relativistic system of equations 

(𝜎0 (
𝜕

𝜕𝑥0
− 𝑒𝐴0) + 𝛔⃗⃗⃗

𝑇(𝛁 − 𝑒𝐀⃗⃗⃗)) (𝜎0 (
𝜕

𝜕𝑥0
− 𝑒𝐴0) − 𝛔⃗⃗⃗

𝑇(𝛁 − 𝑒𝐀⃗⃗⃗))𝛙 +𝑀2𝛙 = 0 

(𝑖
𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥0
+ 𝑖

𝜕

𝜕𝑥0

𝜕

𝜕𝑥𝑗
)𝛙 + 𝑒 (

𝜕

𝜕𝑥𝑗
𝐴0 −

𝜕

𝜕𝑥0
𝐴𝑗)𝛙 = 0 

(− 𝑖
𝜕

𝜕𝑥0

𝜕

𝜕𝑥𝑗
− 𝑖

𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥0
)𝛙 + 𝑒 ( 

𝜕

𝜕𝑥0
𝐴𝑗 −

𝜕

𝜕𝑥𝑗
𝐴0)𝛙 = 0 
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This system is a generalization of the relativistic Schrödinger equation. The essence of the 

generalization consists not only in taking into account the spin of the electron, which takes place 

already in the Dirac equation, but also takes into account the non-commutability of the momentum 

components. It can be assumed that the solutions of this generalized system will give exact values for 

stationary electron energy levels in the atom, for which no radiative corrections will be needed. 

If not to substitute the coordinate derivative instead of the momentum component and to remain 

in the framework of classical physics, the system of equations   

(𝑃0 + 𝑒𝐴0)
2 − (𝑃1 + 𝑒𝐴1)

2 − (𝑃2 + 𝑒𝐴2)
2 − (𝑃3 + 𝑒𝐴3)

2 = 𝑚2 

(𝜕𝜇𝑃𝜈 − 𝜕𝜈𝑃𝜇) + 𝑒(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) = 0 

describes the motion of a macroscopic charged particle in the presence of an electromagnetic or other 

potential field, for example, gravitational field. Let us note the nontrivial fact that even in classical 

physics, when an electric field acts on a charge, one should use the combination of derivatives 
𝜕𝑃𝑖

𝜕𝑥0
−

𝜕𝑃0

𝜕𝑥𝑖
 instead of the simple acceleration 

𝜕𝑃𝑖

𝜕𝑥0
.  

By means of the antisymmetric Levy-Civita symbol we transform antisymmetric tensors into 

dual tensors 

𝐹̆𝜇𝜈 =
1

2
𝜀𝜇𝜈𝜌𝜎𝐹𝜌𝜎          𝐺̆

𝜇𝜈 =
1

2
𝜀𝜇𝜈𝜌𝜎𝐺𝜌𝜎  

and we use Maxwell's equations written in compact form 

𝜕𝜇𝐹
𝜇𝜈 = 𝑗𝜈             𝜕𝜇𝐹̆

𝜇𝜈 = 0 

Let us apply the derivative operator to our proposed equations  

𝜕𝜇𝐺
𝜇𝜈 + 𝑒𝜕𝜇𝐹

𝜇𝜈 = 0           𝜕𝜇𝐺̆
𝜇𝜈 + 𝑒𝜕𝜇𝐹̆

𝜇𝜈 = 0 

then taking into account Maxwell's equations we obtain 

𝜕𝜇𝐺̆
𝜇𝜈 = 0 

𝜕𝜇𝐺
𝜇𝜈 + 𝑒𝑗𝜈 = 0 

𝜕𝜇(𝜕
𝜇𝑃𝜈 − 𝜕𝜈𝑃𝜇) + 𝑒𝑗𝜈 = 0 

𝑚𝜕𝜇(𝜕
𝜇𝑉𝜈 − 𝜕𝜈𝑉𝜇) + 𝑒𝑗𝜈 = 0 

𝑚

𝑒
𝜕𝜇(𝜕

𝜇𝑉𝜈 − 𝜕𝜈𝑉𝜇) = −𝑗𝜈 

These formulas describe the behavior of field and charge that results from their mutual 

influence. 

If in the presence of an arbitrary potential there is no particle in the moving point, then our 

equations are the homogeneous Maxwell equations for an arbitrarily moving point. In the particular 

case of uniform motion, they transform into the ordinary Maxwell equations. If a charge is placed in 

the point, we obtain inhomogeneous Maxwell equations for an arbitrarily moving source. 

The equations we propose can even be considered as a derivation of Maxwell's equations. Taking 

our equations as a basis and equating all derivatives of momentum to zero, we obtain as a residue 

exactly Maxwell's equations for a stationary or uniformly moving point. 

The conditions expressed by the second line of our equations may be too strong, since they 

require that each pair of brackets with derivatives is zero. But invariance can also be achieved with a 

weaker requirement that only their sum as a whole is zero. That is, each pair of brackets can deviate 

from zero; the main thing is that these deviations are compensated in the total sum. This can work 

both in classical and quantum mechanics. A hint on the validity of this approach is given by 

Maxwell's equations, in which conditions are imposed not on individual derivatives, but on their 

sums. In addition, it is intuitively clear that the components having similarity to velocity should be 

considered in the sum in order not to depend on the rotations of the coordinate system. 

3. Equation for the Spinor Coordinates Space 

Let us consider the set of arbitrary complex numbers, for simplicity we will call it a 

vector 

𝖃𝐓 ≡ (𝔛0, 𝔛1, 𝔛2, 𝔛3) 

and let us consider arbitrary four-component complex spinors 
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𝐩𝐓 ≡ (𝑝0, 𝑝1 , 𝑝2, 𝑝3) 

𝖝𝟏𝐓 ≡ (𝔵10, 𝔵11, 𝔵12, 𝔵13) 

𝖝𝟐𝐓 ≡ (𝔵20, 𝔵21, 𝔵22, 𝔵23) 

Among all possible vectors, let us select a set of such vectors for which there is a representation 

of components through arbitrary complex spinors 

𝔛𝜇 =
1

2
𝖝𝟏†𝑆𝜇𝖝𝟐  

and there is another way to calculate them 

𝔛𝜇 =
1

2
𝑇𝑟[𝖝𝟏𝖝𝟐†𝑆𝜇]  

Further we will assume that both spinors are identical, then the vector constructed from them is 

𝐏𝐓 ≡ (𝑃0, 𝑃1, 𝑃2, 𝑃3) 

has real components, and we will assume that this is the electron momentum vector constructed from 

the complex momentum spinor 𝐩   

𝑃𝜇 =
1

2
𝐩†𝑆𝜇𝐩  

𝑃𝜇 =
1

2
𝑇𝑟[𝐩𝐩†𝑆𝜇]  

Consider the complex quantity 

(𝐩, 𝐱) ≡ 𝐩𝑻𝛴𝑀𝑀𝐱 = (𝑝0, 𝑝1, 𝑝2, 𝑝3) (

0 1
−1 0

 
0 0
0 0

  
0  0
0 0

0 1
−1 0

)(

𝑥0
𝑥1
𝑥2
𝑥3

) = (𝑝0, 𝑝1, 𝑝2, 𝑝3)(

𝑥1
−𝑥0
𝑥3
−𝑥2

)

= 𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2 

where we introduce one more complex spinor, which in the future we will give the meaning of the 

complex coordinate spinor 

𝐱𝐓 ≡ (𝑥0, 𝑥1, 𝑥2, 𝑥3) 

and 

𝛴𝑀𝑀 = (
𝜎𝑀  0
0 𝜎𝑀  

) = (

0 1
−1 0

 
0 0
0 0

  
0  0
0 0

0 1
−1 0

)   𝜎𝑀 = (
0 1
−1 0

) 

Coordinate vector of the four-dimensional Minkowski space  

𝐗𝐓 ≡ (𝑋0, 𝑋1, 𝑋2, 𝑋3) 

is obtained from the coordinate spinor by the same formulas 

𝑋𝜇 =
1

2
𝐱†𝑆𝜇𝐱  

𝑋𝜇 =
1

2
𝑇𝑟[𝐱𝐱†𝑆𝜇]  

Thus, the vector in the Minkowski space is not a set of four arbitrary real numbers, but only such 

that are the specified bilinear combinations of components of completely arbitrary complex spinors 

𝑋0 =
1

2
(𝑥0̅̅ ̅𝑥0 + 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3) 

𝑋1 =
1

2
(𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2) 

𝑋2 =
1

2
(−𝑖𝑥0̅̅ ̅𝑥1 + 𝑖𝑥1̅̅̅𝑥0 − 𝑖𝑥2̅̅ ̅𝑥3 + 𝑖𝑥3̅̅ ̅𝑥2) 

𝑋3 =
1

2
(𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3) 

Accordingly, the components of the vector in Minkowski space are interdependent, from this 

dependence automatically follow the relations of the special theory of relativity between space and 

time. For the same reason, the coordinates of Minkowski space cannot serve as independent variables 

in the equations.  From the commutative properties of 𝑆𝜇  matrices, which are generators of 

rotations and boosts with respect to which the length of vectors is invariant, quantum mechanics 

automatically follows. Indeed, the commutation relations between the components of momenta are 

related to the noncommutativity of rotations in some way, and from them the commutation relations 
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between the components of coordinates and momenta are directly deduced. And from these relations 

the differential equations are derived. 

And since we do not doubt the truth of the theory of relativity and quantum mechanics, we 

cannot doubt the reality of spinor space, which by means of the simplest arithmetic operations 

generates our space and time. 

The quantity 𝐩𝑻𝛴𝑀𝑀𝐱 is invariant under the Lorentz transformation simultaneously applied to 

the momentum and coordinate spinor, which automatically transforms both corresponding vectors 

as well 

𝐩′ = 𝑁𝐩 

𝑃′𝜇 =
1

2
𝑇𝑟[𝐩′𝐩′

†
𝑆𝜇]  

𝑃′𝜇 =
1

2
𝐩′
†
𝑆𝜇𝐩

′  

𝐏′ = 𝛬𝐏 

𝐱′ = 𝑁𝐱 

𝑋′𝜇 =
1

2
𝑇𝑟[𝐱′𝐱′

†
𝑆𝜇]  

𝑋′𝜇 =
1

2
𝐱′
†
𝑆𝜇𝐱

′  

𝐗′ = 𝛬𝐗 

This quantity does not change for any combination of turns and boosts 

𝐩′
𝑻
𝛴𝑀𝑀x

′ = 𝐩𝑻𝛴𝑀𝑀𝐱 

Accordingly, the exponent     

𝑒𝑥𝑝(𝐩𝑻𝛴𝑀𝑀𝐱) = 𝑒𝑥𝑝(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2) 

characterizes the propagation process of a plane wave in spinor space with phase invariant to Lorentz 

transformations. 

Let us apply the differential operator to the spinor analog of a plane wave 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) 𝑒𝑥𝑝(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2)

= (𝑝0(−𝑝3) − (−𝑝1)𝑝2) 𝑒𝑥𝑝(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2) =

= (𝑝1𝑝2 − 𝑝0𝑝3) 𝑒𝑥𝑝(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2) 

Applying this operator at another definition of the phase gives the same eigenvalue 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) 𝑒𝑥𝑝(𝑝0𝑥0 + 𝑝1𝑥1 + 𝑝2𝑥2 + 𝑝3𝑥3) = (𝑝1𝑝2 − 𝑝0𝑝3) 𝑒𝑥𝑝(𝑝0𝑥0 + 𝑝1𝑥1 + 𝑝2𝑥2 + 𝑝3𝑥3) 

that is, two different eigenfunctions correspond to this eigenvalue, but in the second case the phase 

in the exponent is not invariant with respect to the Lorentz transformation, so we will use the first 

definition.  

Since    

(𝑝0, 𝑝1)
𝐓   and   (𝑝2, 𝑝3)

𝐓    

are complex spinors, which, under the transformation 

𝐩′ = 𝑁𝐩 = (
𝑛 0
0 𝑛

) 𝐩 

is affected by the same matrix 𝑛, then the complex quantity 

𝑚 ≡ 𝑝1𝑝2 − 𝑝0𝑝3 

is invariant under the action on the momentum spinor 𝐩  of the transformation 𝑁 . 𝑚  is an 

eigenvalue of the differential operator, and the plane wave is the corresponding m eigenfunction, 

which is a solution of the equation 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
)𝜓(𝑥0, 𝑥1, 𝑥2 , 𝑥3) = 𝑚 𝜓(𝑥0, 𝑥1, 𝑥2, 𝑥3) 
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Here 𝜓(𝑥0, 𝑥1, 𝑥2, 𝑥3) denotes the complex function of complex spinor coordinates.  

When substantiating the Schrödinger equation for a plane wave in four-dimensional vector 

space, an assumption is made (further confirmed in the experiment) about its applicability to an 

arbitrary wave function. Let us make a similar assumption about the applicability of the reduced 

spinor equation to an arbitrary function of spinor coordinates, that is, we will consider this equation 

as universal and valid for all physical processes. 

Let us clarify that by the derivative on a complex variable from a complex function we here 

understand the derivative from an arbitrary stepped complex function using the formula that is valid 

at least for any integer degrees 

𝜕𝑧𝑘

𝜕𝑧
 = 𝑘𝑧𝑘−1 

In particular, this is true for the exponential function, which is an infinite power series. 

It is very important to emphasize that we consider the complex variable and the variable 

conjugate to it to be independent, so when finding the derivative of a complex variable from some 

function, we treat all the quantities which are conjugate to our variable and which are included in 

this function, as ordinary constants.  

It is not by chance that we denote the eigenvalue by the symbol m, because if we form the 

momentum vector from the momentum spinor 𝐩 included in the expression for the plane wave 

𝑃𝜇 =
1

2
𝐩†𝑆𝜇𝐩  

then for the square of its length the following equality will be satisfied 

𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 = 𝑚̅𝑚 = 𝑚2 

That is the square of the modulus m has the sense of the square of the mass of a free particle, 

which is described by a plane wave in spinor space as well as by a plane wave in vector space. For 

the momentum spinor of a fermionic type particle having in the rest frame the following form   

𝐩𝑇 = (𝑝0, 𝑝1, 𝑝1̅̅̅, −𝑝0̅̅ ̅) 

quantity  

𝑚 = 𝑝1𝑝2 − 𝑝0𝑝3 = 𝑝1𝑝1̅̅̅ + 𝑝0𝑝0̅̅ ̅ 

is real and not equal to zero, and for the bosonic-type momentum spinor having in the rest frame the 

following form 

𝐩𝑇 = (𝑝0, 𝑝1, 𝑝0, 𝑝1) 
it is zero 

𝑚 = 𝑝1𝑝2 − 𝑝0𝑝3 = 𝑝1𝑝0 − 𝑝0𝑝1 = 0 

i.e., the boson satisfies the plane wave equation in spinor space with zero eigenvalue. 

For the momentum spinor of a fermion-type particle we can consider another form in the rest 

system 

𝐩𝑇 = (𝑝0, 𝑝1, −𝑝1̅̅̅, 𝑝0̅̅ ̅) 

then the mass will be real and negative 

𝑚 = 𝑝1𝑝2 − 𝑝0𝑝3 = −𝑝1𝑝1̅̅̅ − 𝑝0𝑝0̅̅ ̅ 

This particle with negative mass can be treated as an antiparticle, and in the rest frame its energy 

is equal to its mass modulo, but it is always positive 

𝑃0 =
1

2
𝐩†𝑆0𝐩 =

1

2
(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + (−𝑝1)(−𝑝1̅̅̅) + 𝑝0𝑝0̅̅ ̅)

=
1

2
(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝1𝑝1̅̅̅ + 𝑝0𝑝0̅̅ ̅) 

To describe the behavior of an electron in the presence of an external electromagnetic field, it is 

common practice to add the electromagnetic potential vector to its momentum vector. We use the 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2025 doi:10.20944/preprints202401.1032.v6

https://doi.org/10.20944/preprints202401.1032.v6


 14 of 101 

 

same approach at the spinor level and to each component of the momentum spinor of the electron 

we add the corresponding component of the electromagnetic potential spinor. For simplicity, the 

electron charge is equal to unity. 

Further we need an expression for the commutation relation between the components of the 

momentum spinor, to which is added the corresponding component of the electromagnetic potential 

spinor, which is a function of the spinor coordinates 

(𝑝0 + 𝑎0(𝑥1, 𝑥2))(𝑝1 + 𝑎1(𝑥1, 𝑥2)) − (𝑝1 + 𝑎1(𝑥1, 𝑥2))(𝑝0 + 𝑎0(𝑥1, 𝑥2)) 

Let us replace the momenta by differential operators  

𝑝0 →
𝜕

𝜕𝑥1
      𝑝1 → −

𝜕

𝜕𝑥0
      𝑝2 →

𝜕

𝜕𝑥3
       𝑝3 → −

𝜕

𝜕𝑥2
 

and find the commutation relation 

{(
𝜕

𝜕𝑥1
+ 𝑎0(𝑥0, 𝑥1, 𝑥2, 𝑥3)) (−

𝜕

𝜕𝑥0
+ 𝑎1(𝑥0, 𝑥1, 𝑥2, 𝑥3))

− (−
𝜕

𝜕𝑥0
+ 𝑎1(𝑥0, 𝑥1, 𝑥2, 𝑥3))(

𝜕

𝜕𝑥1
+ 𝑎0((𝑥0, 𝑥1, 𝑥2, 𝑥3)))}𝜓(𝑥0, 𝑥1, 𝑥2, 𝑥3)

=
𝜕

𝜕𝑥1
(𝑎1𝜓) − 𝑎0

𝜕𝜓

𝜕𝑥0
+

𝜕

𝜕𝑥0
(𝑎0𝜓) − 𝑎1

𝜕𝜓

𝜕𝑥1

=
𝜕𝑎1
𝜕𝑥1

𝜓 + 𝑎1
𝜕𝜓

𝜕𝑥1
− 𝑎0

𝜕𝜓

𝜕𝑥0
+
𝜕𝑎0
𝜕𝑥0

𝜓 + 𝑎0
𝜕𝜓

𝜕𝑥0
− 𝑎1

𝜕𝜓

𝜕𝑥1
=
𝜕𝑎1
𝜕𝑥1

𝜓 +
𝜕𝑎0
𝜕𝑥0

𝜓

= {
𝜕𝑎1(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜕𝑥1
+
𝜕𝑎0(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜕𝑥0
}  𝜓(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

Thus 

(𝑝0 + 𝑎0)(𝑝1 + 𝑎1) − (𝑝1 + 𝑎1)(𝑝0 + 𝑎0) =
𝜕𝑎1
𝜕𝑥1

+
𝜕𝑎0
𝜕𝑥0

 

Let us apply the proposed equation to analyze the wave function of the electron in a centrally 

symmetric electric field, this model is used to describe the hydrogen-like atom. For the components 

of the vector potential of a centrally symmetric electric field it is true that 

𝐴0 =
1

2
𝐚†𝑆0𝐚 =

1

2
(𝑎0̅̅ ̅𝑎0 + 𝑎1̅̅ ̅𝑎1 + 𝑎2̅̅ ̅𝑎2 + 𝑎3̅̅ ̅𝑎3) =

1

𝑅
 

𝐴1 =
1

2
𝐚†𝑆1𝐚 =

1

2
(𝑎0̅̅̅𝑎1 + 𝑎1̅̅̅𝑎0 + 𝑎2̅̅̅𝑎3 + 𝑎3̅̅̅𝑎2) = 0 

𝐴2 =
1

2
𝐚†𝑆2𝐚 =

1

2
(−𝑖𝑎0̅̅̅𝑎1 + 𝑖𝑎1̅̅̅𝑎0 − 𝑖𝑎2̅̅̅𝑎3 + 𝑖𝑎3̅̅̅𝑎2) = 0 

𝐴3 =
1

2
𝐚†𝑆3𝐚 =

1

2
(𝑎0̅̅̅𝑎0 − 𝑎1̅̅̅𝑎1 + 𝑎2̅̅̅𝑎2 − 𝑎3̅̅̅𝑎3) = 0 

𝑎0̅̅̅𝑎0 + 𝑎2̅̅̅𝑎2 = 𝑎1̅̅̅𝑎1 + 𝑎3̅̅̅𝑎3 

𝑎0̅̅̅𝑎0 + 𝑎2̅̅̅𝑎2 =
1

𝑅
 

𝑎0̅̅̅𝑎1 + 𝑎2̅̅̅𝑎3 = 𝑎1̅̅̅𝑎0 + 𝑎3̅̅̅𝑎2 

1

2
(𝑎0̅̅̅𝑎1 + 𝑎1̅̅̅𝑎0 + 𝑎2̅̅̅𝑎3 + 𝑎3̅̅̅𝑎2) = 𝑎0̅̅̅𝑎1 + 𝑎2̅̅̅𝑎3 = 0 

𝑎0̅̅̅𝑎1 = −𝑎2̅̅̅𝑎3 

𝑎0̅̅̅ = 𝑖𝑎2̅̅̅ 

𝑎0 = −𝑖𝑎2 

𝑎0̅̅̅𝑎0 + 𝑎2̅̅̅𝑎2 =  𝑖𝑎2̅̅̅ ∗ (−𝑖𝑎2) + 𝑎2̅̅̅𝑎2 = 2𝑎2̅̅̅𝑎2 = 2𝑎2
2 =

1

𝑅
 

As a result, it is possible to accept 

𝑎0 = −
𝑖

√2𝑅
          𝑎1 =

1

√2𝑅
          𝑎2 =

1

√2𝑅
           𝑎3 = −

𝑖

√2𝑅
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𝑎0̅̅̅𝑎1 =  𝑖
1

√2𝑅

1

√2𝑅
=

𝑖

2𝑅
 

𝑎2̅̅̅𝑎3 =
1

√2𝑅
(−𝑖

1

√2𝑅
) = −

𝑖

2𝑅
 

 

𝑅 = √𝑋1
2 + 𝑋2

2 + 𝑋3
2 =

√(
1

2
(𝑥0̅𝑥1 + 𝑥1̅𝑥0 + 𝑥2̅𝑥3 + 𝑥3̅𝑥2))

2

+ (
1

2
(−𝑖𝑥0̅𝑥1 + 𝑖𝑥1̅𝑥0 − 𝑖𝑥2̅𝑥3 + 𝑖𝑥3̅𝑥2))

2

+ (
1

2
(𝑥0̅𝑥0 − 𝑥1̅𝑥1 + 𝑥2̅𝑥2 − 𝑥3̅𝑥3))

2

=

√(
1

2
(𝑥0̅𝑥1 + 𝑥1̅𝑥0 + 𝑥2̅𝑥3 + 𝑥3̅𝑥2))

2

− (
1

2
(−𝑥0̅𝑥1 + 𝑥1̅𝑥0 − 𝑥2̅𝑥3 + 𝑥3̅𝑥2))

2

+ (
1

2
(𝑥0̅𝑥0 − 𝑥1̅𝑥1 + 𝑥2̅𝑥2 − 𝑥3̅𝑥3))

2

 

We are looking for a solution of the spinor equation; we do not consider the electron's spin yet 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
)𝜑(𝑥0, 𝑥1, 𝑥2 , 𝑥3) = 𝑚 𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

This equation can be interpreted in another way. Let us take the invariant expression 

(𝑝1𝑝2 − 𝑝0𝑝3) = 𝑚 

And let's do the substitution 

𝑝0 →
𝜕

𝜕𝑥1
+ 𝑎0(𝑥0, 𝑥1, 𝑥2, 𝑥3)       𝑝1 → −

𝜕

𝜕𝑥0
+ 𝑎1(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

𝑝2 →
𝜕

𝜕𝑥3
+ 𝑎2(𝑥0, 𝑥1, 𝑥2, 𝑥3)        𝑝3 → −

𝜕

𝜕𝑥2
+ 𝑎3(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

{(−
𝜕

𝜕𝑥0
+ 𝑎1) (

𝜕

𝜕𝑥3
+ 𝑎2) − (

𝜕

𝜕𝑥1
+ 𝑎0) (−

𝜕

𝜕𝑥2
+ 𝑎3)} 𝜑 = 𝑚𝜑 

We will consider this equation as an equation for determining the eigenvalues of 𝑚 and the 

corresponding eigenfunctions 

−
𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
 𝜑 +

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
 𝜑 + (−

𝜕𝑎2
𝜕𝑥0

−
𝜕𝑎3
𝜕𝑥1

)𝜑 − 𝑎2
𝜕𝜑

𝜕𝑥0
+ 𝑎1

𝜕𝜑

𝜕𝑥3
− 𝑎3

𝜕𝜑

𝜕𝑥1
+ 𝑎0

𝜕𝜑

𝜕𝑥2
+ (𝑎1𝑎2 − 𝑎0𝑎3)𝜑

= 𝑚𝜑 

𝑎0 = −
𝑖

√2𝑅
          𝑎1 =

1

√2𝑅
          𝑎2 =

1

√2𝑅
           𝑎3 = −

𝑖

√2𝑅
 

𝑎1𝑎2 − 𝑎0𝑎3 =
1

2𝑅
+
1

2𝑅
=
1

𝑅
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−
𝜕𝑎2
𝜕𝑥0

−
𝜕𝑎3
𝜕𝑥1

= −
1

√2

𝜕

𝜕𝑥0
(
1

√𝑅
) + 𝑖

1

√2

𝜕

𝜕𝑥1
(
1

√𝑅
) = −

1

√2

𝜕

𝜕𝑥0
(
1

√𝑅2
4 ) + 𝑖

1

√2

𝜕

𝜕𝑥1
(
1

√𝑅2
4 )

= −
1

√2
(−

1

4

1

(𝑅2)
5
4

)
𝜕

𝜕𝑥0
(𝑅2) + 𝑖

1

√2
(−

1

4

1

(𝑅2)
5
4

)
𝜕

𝜕𝑥1
(𝑅2) =

=
1

√2
(
1

4

1

(𝑅2)
5
4

) [
𝜕

𝜕𝑥0
(𝑅2) − 𝑖

𝜕

𝜕𝑥1
(𝑅2)] =

1

(√2𝑅)
5 [

𝜕

𝜕𝑥0
(𝑅2) − 𝑖

𝜕

𝜕𝑥1
(𝑅2)] 

𝑅 = √𝑋1
2 + 𝑋2

2 + 𝑋3
2 = 

√(
1

2
(𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2))

2

− (
1

2
(−𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 − 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2))

2

+ (
1

2
(𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3))

2

 

𝜕

𝜕𝑥0
(𝑅2) =

𝜕

𝜕𝑥0
((
1

2
(𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2))

2

− (
1

2
(−𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 − 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2))

2

+ (
1

2
(𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3))

2

)

=
1

4
(2(𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)

𝜕

𝜕𝑥0
(𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)

− 2(−𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 − 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)
𝜕

𝜕𝑥0
(−𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 − 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)

+ 2(𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)
𝜕

𝜕𝑥0
(𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)) 

=
1

4
(2(𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)𝑥1̅̅̅ − 2(−𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 − 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)𝑥1̅̅̅

+ 2(𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅) 

=
1

2
((𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)𝑥1̅̅̅ − (−𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 − 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)𝑥1̅̅̅

+ (𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅) 

=
1

2
((𝑥0̅̅ ̅𝑥1 + 𝑥2̅̅ ̅𝑥3)𝑥1̅̅̅ − (−𝑥0̅̅ ̅𝑥1 − 𝑥2̅̅ ̅𝑥3)𝑥1̅̅̅ + (𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅) 

=
1

2
((𝑥0̅̅ ̅𝑥1 + 𝑥2̅̅ ̅𝑥3)𝑥1̅̅̅ + (𝑥0̅̅ ̅𝑥1 + 𝑥2̅̅ ̅𝑥3)𝑥1̅̅̅ + (𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅) 

=
1

2
((𝑥0̅̅ ̅𝑥1 + 𝑥2̅̅ ̅𝑥3)𝑥1̅̅̅ + (𝑥2̅̅ ̅𝑥3)𝑥1̅̅̅ + (𝑥0̅̅ ̅𝑥0 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅) 

=
1

2
(𝑥0̅̅ ̅𝑥1𝑥1̅̅̅ + 2𝑥2̅̅ ̅𝑥3𝑥1̅̅̅ + (𝑥0̅̅ ̅𝑥0 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅) 

=
1

2
(2𝑥2̅̅ ̅𝑥3𝑥1̅̅̅ − 2𝑥3̅̅ ̅𝑥3𝑥0̅̅ ̅ + (𝑥0̅̅ ̅𝑥0 + 𝑥1𝑥1̅̅̅ + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅) 

=
1

2
(2𝑥3(𝑥2̅̅ ̅𝑥1̅̅̅ − 𝑥3̅̅ ̅𝑥0̅̅ ̅) + (𝑥0̅̅ ̅𝑥0 + 𝑥1𝑥1̅̅̅ + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅) 

=
1

2
(2𝑥3(𝑥2̅̅ ̅𝑥1̅̅̅ − 𝑥3̅̅ ̅𝑥0̅̅ ̅) + (𝑥0̅̅ ̅𝑥0 + 𝑥1𝑥1̅̅̅ + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅) 
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𝜕

𝜕𝑥1
(𝑅2) =

1

2
((𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)𝑥0̅̅ ̅ + (−𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 − 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2)𝑥0̅̅ ̅

− (𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)𝑥1̅̅̅)

=
1

2
((𝑥1̅̅̅𝑥0 + 𝑥3̅̅ ̅𝑥2)𝑥0̅̅ ̅ + (𝑥1̅̅̅𝑥0 + 𝑥3̅̅ ̅𝑥2)𝑥0̅̅ ̅ − (𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3)𝑥1̅̅̅)

=
1

2
(𝑥1̅̅̅𝑥0𝑥0̅̅ ̅ + 2𝑥3̅̅ ̅𝑥2𝑥0̅̅ ̅ + (𝑥1̅̅̅𝑥1 − 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3)𝑥1̅̅̅)

=
1

2
(2𝑥2(𝑥3̅̅ ̅𝑥0̅̅ ̅ − 𝑥2̅̅ ̅𝑥1̅̅̅) + (𝑥0𝑥0̅̅ ̅ + 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3)𝑥1̅̅̅) 

Let's introduce the notations 

𝑥2̅𝑥1̅ − 𝑥3̅𝑥0̅ ≡ 𝑙 

this quantity does not change under rotations and boosts and is some analog of the interval defined 

for Minkowski space and 

1

2
(𝑥0𝑥0̅̅ ̅ + 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3) ≡ 𝑡 

this quantity represents time in four-dimensional vector space.  

An interesting fact is that time is always a positive quantity. As an assumption it can be noted 

that since we observe that time value goes forward, i.e. the value of t grows, and it is possible only 

due to scaling of all components of spinor space, such scaling leads to increase of distance between 

any two points of Minkowski space. As a result, with the passage of time the Minkowski space should 

expand, herewith at first relatively quickly, and then more and more slowly. 

[
𝜕

𝜕𝑥0
(𝑅2) − 𝑖

𝜕

𝜕𝑥1
(𝑅2)]

=
1

2
(2𝑥3(𝑥2̅̅ ̅𝑥1̅̅̅ − 𝑥3̅̅ ̅𝑥0̅̅ ̅) + (𝑥0̅̅ ̅𝑥0 + 𝑥1𝑥1̅̅̅ + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅)

− 𝑖
1

2
(2𝑥2(𝑥3̅̅ ̅𝑥0̅̅ ̅ − 𝑥2̅̅ ̅𝑥1̅̅̅) + (𝑥0𝑥0̅̅ ̅ + 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3)𝑥1̅̅̅)

= 𝑥3(𝑥2̅̅ ̅𝑥1̅̅̅ − 𝑥3̅̅ ̅𝑥0̅̅ ̅) +
1

2
(𝑥0̅̅ ̅𝑥0 + 𝑥1𝑥1̅̅̅ + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3)𝑥0̅̅ ̅ − 𝑖𝑥2(𝑥3̅̅ ̅𝑥0̅̅ ̅ − 𝑥2̅̅ ̅𝑥1̅̅̅)

− 𝑖
1

2
(𝑥0𝑥0̅̅ ̅ + 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3)𝑥1̅̅̅ = 𝑥3𝑙 + 𝑡𝑥0̅̅ ̅ + 𝑖𝑥2𝑙 − 𝑖𝑡𝑥1̅̅̅

= 𝑙(𝑥3 + 𝑖𝑥2) + 𝑡(𝑥0̅̅ ̅ − 𝑖𝑥1̅̅̅) 

As a result, we have an equation for determining the eigenvalues of m and their corresponding 

eigenfunctions 𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

(−
𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
+

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
)𝜑 +

1

√2𝑅
(−

𝜕𝜑

𝜕𝑥0
+
𝜕𝜑

𝜕𝑥3
+ 𝑖

𝜕𝜑

𝜕𝑥1
− 𝑖

𝜕𝜑

𝜕𝑥2
) +

1

(√2𝑅)
5
(𝑙(𝑥3 + 𝑖𝑥2) + 𝑡(𝑥0̅̅ ̅ − 𝑖𝑥1̅̅̅))𝜑

+
1

𝑅
𝜑 = 𝑚𝜑 

Instead of looking for solutions to this equation directly, we can first try substituting already 

known solutions to the Schrödinger equation for the hydrogen-like atom. If 𝜑(𝑋0, 𝑋1, 𝑋2, 𝑋3) is one 

of these solutions, we need to find its derivatives over all spinor components  

𝜕𝜑

𝜕𝑥µ
=
𝜕𝜑

𝜕𝑋𝜈

𝜕𝑋𝜈
𝜕𝑥µ

 

𝑋0 =
1

2
(𝑥0̅̅ ̅𝑥0 + 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 + 𝑥3̅̅ ̅𝑥3) 
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𝑋1 =
1

2
(𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2) 

𝑋2 =
1

2
(−𝑖𝑥0̅̅ ̅𝑥1 + 𝑖𝑥1̅̅̅𝑥0 − 𝑖𝑥2̅̅ ̅𝑥3 + 𝑖𝑥3̅̅ ̅𝑥2) 

𝑋3 =
1

2
(𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3) 

For example 

𝜕𝜑

𝜕𝑥0
=
𝜕𝜑

𝜕𝑋0

𝑥0̅̅ ̅

2
+
𝜕𝜑

𝜕𝑋1

𝑥1̅̅̅

2
+
𝜕𝜑

𝜕𝑋2

𝑖𝑥1̅̅̅

2
+
𝜕𝜑

𝜕𝑋3

𝑥0̅̅ ̅

2
 

Let’s pay attention to the shift in priorities. In the Schrödinger equation one looks for energy 

eigenvalues, while here it is proposed to look for mass eigenvalues, it seem more natural to us. The 

mass of a free particle is an invariant of the Lorentz transformations, and in the bound state the mass 

of the particle has a discrete series of allowed values, each of which corresponds to an energy 

eigenvalue, and the eigenfunction of these eigenvalues is the same. But these energy eigenvalues are 

not the same as the energy eigenvalues of the Schrödinger equation, because the equations are 

different. When an electron absorbs a photon, their spinors sum up and the mass of the electron 

changes. If the new mass coincides with some allowed value, the electron enters a new state. The kay 

idea here is the assumption that the interaction of spinors occurs simply by summing them. 

The advantages of considering physical processes in spinor coordinate space may not be limited 

to electrodynamics. It may turn out, for example, that the spinor space is not subject to curvature 

under the influence of matter, as it takes place in the general theory of relativity for the vector 

coordinate space. On the contrary, it can be assumed that it is when the components of vector 

coordinate space are computed from the coordinate spinor that the momentum spinor with a 

multiplier of the order of the gravitational constant is added to this spinor. This results in a warp that 

affects other massive bodies. 

To account for the electron spin, we will further represent the electron wave function as a four-

component spinor function of four-component spinor coordinates 

𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) =

(

 

𝜓0(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓1(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓2(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓3(𝑥0, 𝑥1, 𝑥2, 𝑥3))

 = (

𝑢0
𝑢1
𝑢2
𝑢3

)𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

where the coefficients 𝑢𝜇 are complex quantities independent of coordinates. In fact, as shown at the 

end of the paper, the wave function is a linear combination of such right-hand sides with operator 

coefficients. 

We will search for the solution of the wave equation considered in the first part of this paper 

(𝑆0𝑃0 − 𝑆1𝑃1 − 𝑆2𝑃2 − 𝑆3𝑃3)(𝑆0𝑃0 + 𝑆1𝑃1 + 𝑆2𝑃2 + 𝑆3𝑃3)𝛙 = 𝑀2𝛙 

Let's express the left part through the components of the momentum spinor 

𝑃𝜇 =
1

2
𝐩†𝑆𝜇𝐩  

𝑃0 =
1

2
𝐩†𝑆0𝐩 =

1

2
(𝑝0̅̅ ̅, 𝑝1̅̅̅, 𝑝2̅̅ ̅, 𝑝3̅̅ ̅) (

1   0
0   1

 
0   0
0   0

  
0   0
0   0

1   0
0   1

) (

𝑝0
𝑝1
𝑝2
𝑝3

) =
1

2
(𝑝0̅̅ ̅, 𝑝1̅̅̅, 𝑝2̅̅ ̅, 𝑝3̅̅ ̅)  (

𝑝0
𝑝1
𝑝2
𝑝3

)

=
1

2
(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3) 
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𝑃1 =
1

2
𝐩†𝑆1𝐩 =

1

2
(𝑝0̅̅ ̅, 𝑝1̅̅̅, 𝑝2̅̅ ̅, 𝑝3̅̅ ̅) (

0   1
1    0

 
0   0
0   0

  
0   0
0   0

0   1
1    0

) (

𝑝0
𝑝1
𝑝2
𝑝3

) =
1

2
(𝑝0̅̅ ̅, 𝑝1̅̅̅, 𝑝2̅̅ ̅, 𝑝3̅̅ ̅)  (

𝑝1
𝑝0
𝑝3
𝑝2

)

=
1

2
(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2) 

𝑃2 =
1

2
𝐩†𝑆2𝐩 =

1

2
(𝑝0̅̅ ̅, 𝑝1̅̅̅, 𝑝2̅̅ ̅, 𝑝3̅̅ ̅) (

0 −𝑖
𝑖    0

 
0   0
0   0

  
0   0
0   0

0 −𝑖
𝑖    0

) (

𝑝0
𝑝1
𝑝2
𝑝3

) =
1

2
(𝑝0̅̅ ̅, 𝑝1̅̅̅, 𝑝2̅̅ ̅, 𝑝3̅̅ ̅) (

−𝑖𝑝1
𝑖𝑝0
−𝑖𝑝3
𝑖𝑝2

)

=
1

2
(−𝑖𝑝0̅̅ ̅𝑝1 + 𝑖𝑝1̅̅̅𝑝0 − 𝑖𝑝2̅̅ ̅𝑝3 + 𝑖𝑝3̅̅ ̅𝑝2) 

𝑃3 =
1

2
𝐩†𝑆3𝐩 =

1

2
(𝑝0̅̅ ̅, 𝑝1̅̅̅, 𝑝2̅̅ ̅, 𝑝3̅̅ ̅) (

1   0
0   −1

 
0   0
0   0

  
0   0
0   0

1   0
0  −1

) (

𝑝0
𝑝1
𝑝2
𝑝3

) =
1

2
(𝑝0̅̅ ̅, 𝑝1̅̅̅, 𝑝2̅̅ ̅, 𝑝3̅̅ ̅) (

𝑝0
−𝑝1
𝑝2
−𝑝3

)

=
1

2
(𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 − 𝑝3̅̅ ̅𝑝3) 

𝑃0 − 𝑃3 =
1

2
(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3) −

1

2
(𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 − 𝑝3̅̅ ̅𝑝3)

=
1

2
(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3 − 𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 − 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3)

=
1

2
(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3 + 𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) = 𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3 

𝑃0 + 𝑃3 =
1

2
(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3) +

1

2
(𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 − 𝑝3̅̅ ̅𝑝3) = 𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2 

−𝑃1 + 𝑖𝑃2 = −
1

2
(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2) + 𝑖

1

2
(−𝑖𝑝0̅̅ ̅𝑝1 + 𝑖𝑝1̅̅̅𝑝0 − 𝑖𝑝2̅̅ ̅𝑝3 + 𝑖𝑝3̅̅ ̅𝑝2)

=
1

2
(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2 + 𝑝0̅̅ ̅𝑝1 − 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 − 𝑝3̅̅ ̅𝑝2)

=
1

2
(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3 + 𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3) = 𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3 

−𝑃1 − 𝑖𝑃2 = −
1

2
(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2) − 𝑖

1

2
(−𝑖𝑝0̅̅ ̅𝑝1 + 𝑖𝑝1̅̅̅𝑝0 − 𝑖𝑝2̅̅ ̅𝑝3 + 𝑖𝑝3̅̅ ̅𝑝2)

=
1

2
(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2 − 𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 − 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2)

=
1

2
(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2 + 𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) = 𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2 
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𝑆0𝑃0 − 𝑆1𝑃1 − 𝑆2𝑃2 − 𝑆3𝑃3

= (

1   0
0    1

 
0   0
0   0

  
0   0
0   0

1   0
0   1

)𝑃0 − (

0   1
1    0

 
0   0
0   0

  
0   0
0   0

0   1
1    0

)𝑃1 − (

0 −𝑖
𝑖    0

 
0   0
0   0

  
0   0
0   0

0 −𝑖
𝑖    0

)𝑃2

− (

1   0
0   −1

 
0   0
0   0

  
0   0
0   0

1   0
0  −1

)𝑃3 = (

𝑃0 − 𝑃3  −𝑃1 + 𝑖𝑃2
−𝑃1 − 𝑖𝑃2    𝑃0 + 𝑃3

 
0   0
0   0

  
0   0
0   0

𝑃0 − 𝑃3  −𝑃1 + 𝑖𝑃2
−𝑃1 − 𝑖𝑃2   𝑃0 + 𝑃3

) =

= (

𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3 𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3
𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2    𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2

 
0   0
0   0

  
0   0
0   0

𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3 𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3
𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2    𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2

) 

𝑆0𝑃0 + 𝑆1𝑃1 + 𝑆2𝑃2 + 𝑆3𝑃3

= (

1   0
0    1

 
0   0
0   0

  
0   0
0   0

1   0
0   1

)𝑃0 + (

0   1
1    0

 
0   0
0   0

  
0   0
0   0

0   1
1    0

)𝑃1 + (

0 −𝑖
𝑖    0

 
0   0
0   0

  
0   0
0   0

0 −𝑖
𝑖    0

)𝑃2

+ (

1   0
0   −1

 
0   0
0   0

  
0   0
0   0

1   0
0  −1

)𝑃3 = (

𝑃0 + 𝑃3 𝑃1 − 𝑖𝑃2
𝑃1 + 𝑖𝑃2    𝑃0 − 𝑃3

 
0   0
0   0

  
0   0
0   0

𝑃0 + 𝑃3 𝑃1 − 𝑖𝑃2
𝑃1 + 𝑖𝑃2    𝑃0 − 𝑃3

)

= (

𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2 −𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3
−𝑝1̅̅̅𝑝0 − 𝑝3̅̅ ̅𝑝2    𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3

 
0   0
0   0

  
0   0
0   0

𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2 −𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3
−𝑝1̅̅̅𝑝0 − 𝑝3̅̅ ̅𝑝2    𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3

) 

Let's distinguish the direct products of vectors in these matrices 

𝑆0𝑃0 + 𝑆1𝑃1 + 𝑆2𝑃2 + 𝑆3𝑃3 = (

𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2 −𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3
−𝑝1̅̅̅𝑝0 − 𝑝3̅̅ ̅𝑝2    𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3

 
0   0
0   0

  
0   0
0   0

𝑃0 + 𝑃3 𝑃1 − 𝑖𝑃2
𝑃1 + 𝑖𝑃2   𝑃0 − 𝑃3

)

= (

𝑝0̅̅ ̅𝑝0 −𝑝0̅̅ ̅𝑝1
−𝑝1̅̅̅𝑝0    𝑝1̅̅̅𝑝1

 
0   0
0   0

  
0   0
0   0

𝑝0̅̅ ̅𝑝0 −𝑝0̅̅ ̅𝑝1
−𝑝1̅̅̅𝑝0    𝑝1̅̅̅𝑝1

)+ (

𝑝2̅̅ ̅𝑝2 −𝑝2̅̅ ̅𝑝3
−𝑝3̅̅ ̅𝑝2    𝑝3̅̅ ̅𝑝3

 
0   0
0   0

  
0   0
0   0

𝑝2̅̅ ̅𝑝2 −𝑝2̅̅ ̅𝑝3
−𝑝3̅̅ ̅𝑝2    𝑝3̅̅ ̅𝑝3

) 

= (

−𝑝0̅̅ ̅
𝑝1̅̅̅
0
0

) (−𝑝0, 𝑝1, 0,0) + (

0
 0
−𝑝0̅̅ ̅
𝑝1̅̅̅

) (0,0, −𝑝0, 𝑝1) + (

−𝑝2̅̅ ̅
𝑝3̅̅ ̅
0
0

) (−𝑝2, 𝑝3, 0,0) + (

0
 0
−𝑝2̅̅ ̅
𝑝3̅̅ ̅

) (0,0, −𝑝2, 𝑝3) 

𝑆0𝑃0 − 𝑆1𝑃1 − 𝑆2𝑃2 − 𝑆3𝑃3 = (

𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3  𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3
𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2    𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2

 
0   0
0   0

  
0   0
0   0

𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3  𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3
𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2    𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2

)

= (

𝑝1̅̅̅𝑝1  𝑝0̅̅ ̅𝑝1
𝑝1̅̅̅𝑝0   𝑝0̅̅ ̅𝑝0

 
0   0
0   0

  
0   0
0   0

𝑝1̅̅̅𝑝1  𝑝0̅̅ ̅𝑝1
𝑝1̅̅̅𝑝0   𝑝0̅̅ ̅𝑝0

)+ (

𝑝3̅̅ ̅𝑝3  𝑝2̅̅ ̅𝑝3
𝑝3̅̅ ̅𝑝2   𝑝2̅̅ ̅𝑝2

 
0   0
0   0

  
0   0
0   0

𝑝3̅̅ ̅𝑝3  𝑝2̅̅ ̅𝑝3
𝑝3̅̅ ̅𝑝2   𝑝2̅̅ ̅𝑝2

) 

=

(

 

𝑝1𝑝1̅̅̅ − [𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1] 𝑝1𝑝0̅̅ ̅ − [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

𝑝0𝑝1̅̅̅  − [𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   𝑝0𝑝0̅̅ ̅ − [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0]
 
0   0
0   0

  
0   0
0   0

𝑝1𝑝1̅̅̅ − [𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1] 𝑝1𝑝0̅̅ ̅ − [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

𝑝0𝑝1̅̅̅  − [𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   𝑝0𝑝0̅̅ ̅ − [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0])

 

+

(

 

𝑝3𝑝3̅̅ ̅ − [𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3] 𝑝3𝑝2̅̅ ̅ − [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

𝑝2𝑝3̅̅ ̅  − [𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   𝑝2𝑝2̅̅ ̅ − [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2]
 
0   0
0   0

  
0   0
0   0

𝑝3𝑝3̅̅ ̅ − [𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3] 𝑝3𝑝2̅̅ ̅ − [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

𝑝2𝑝3̅̅ ̅  − [𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   𝑝2𝑝2̅̅ ̅ − [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2])
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= (

𝑝1
 𝑝0
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) + (

0
 0
𝑝1
𝑝0

)(0,0, 𝑝1̅̅̅, 𝑝0̅̅ ̅)

−

(

 

[𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1] [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

[𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0]
 
0   0
0   0

  
0   0
0   0

[𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1] [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

[𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0])

 

+ (

𝑝3
 𝑝2
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) + (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝3̅̅ ̅, 𝑝2̅̅ ̅)

−

(

 

[𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3] [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

[𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2]
 
0   0
0   0

  
0   0
0   0

[𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3] [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

[𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2])

  

Let's introduce the notations 

(

−𝑝0̅̅ ̅
𝑝1̅̅̅
0
0

) (−𝑝0, 𝑝1, 0,0) + (

0
 0
−𝑝0̅̅ ̅
𝑝1̅̅̅

) (0,0, −𝑝0, 𝑝1) + (

−𝑝2̅̅ ̅
𝑝3̅̅ ̅
0
0

) (−𝑝2, 𝑝3, 0,0) + (

0
 0
−𝑝2̅̅ ̅
𝑝3̅̅ ̅

) (0,0, −𝑝2, 𝑝3) ≡ 𝑆
+ 

(

𝑝1
 𝑝0
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) + (

0
 0
𝑝1
𝑝0

) (0,0, 𝑝1̅̅̅, 𝑝0̅̅ ̅) + (

𝑝3
 𝑝2
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) + (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝3̅̅ ̅, 𝑝2̅̅ ̅) ≡ 𝑆
− 

(

 

[𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1] [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

[𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0]
 
0   0
0   0

  
0   0
0   0

[𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1] [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

[𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0])

 

+

(

 

[𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3] [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

[𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2]
 
0   0
0   0

  
0   0
0   0

[𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3] [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

[𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2])

 ≡ 𝐾 

Let us substitute differential operators instead of spinor components 

𝑝0 →
𝜕

𝜕𝑥1
 ≡ 𝜕1     𝑝1 → −

𝜕

𝜕𝑥0
≡ −𝜕0      𝑝2 →

𝜕

𝜕𝑥3
 ≡ 𝜕3      𝑝3 → −

𝜕

𝜕𝑥2
≡ −𝜕2 

𝑝0̅̅ ̅ →
𝜕[ ]̅

𝜕𝑥1̅̅̅
≡ 𝜕1̅      𝑝1̅̅̅ → −

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
≡ −𝜕0̅̅ ̅      𝑝2̅̅ ̅ →

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
≡ 𝜕3̅̅ ̅       𝑝3̅̅ ̅ → −

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
≡ −𝜕2̅̅ ̅ 

Then the quantities included in the wave equation  

(𝑆− − 𝐾)𝑆+𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑀2𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

will have the form 

𝑆− = (

−𝜕0
𝜕1
0
0

) (−𝜕0̅̅ ̅, 𝜕1̅, 0,0) + (

0
 0
−𝜕0
𝜕1

)(0,0, −𝜕0̅̅ ̅, 𝜕1̅) + (

−𝜕2
 𝜕3
0
0

) (−𝜕2̅̅ ̅, 𝜕3̅̅ ̅, 0,0) + (

0
 0
−𝜕2
𝜕3

)(0,0, −𝜕2̅̅ ̅, 𝜕3̅̅ ̅) 
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𝑆+ = (

−𝜕1̅
−𝜕0̅̅ ̅

0
0

) (−𝜕1, −𝜕0, 0,0) + (

0
 0
−𝜕1̅
−𝜕0̅̅ ̅

) (0,0, −𝜕1, −𝜕0) + (

−𝜕3̅̅ ̅

−𝜕2̅̅ ̅

0
0

) (−𝜕3, −𝜕2, 0,0)

+ (

0
 0
−𝜕3̅̅ ̅

−𝜕2̅̅ ̅

) (0,0, −𝜕3, −𝜕2) 

𝐾 =

=

(

 
 

𝜕0𝜕0̅̅ ̅ − 𝜕0̅̅ ̅𝜕0 (−𝜕0)𝜕1̅ − 𝜕1̅(−𝜕0)

𝜕1(−𝜕0̅̅ ̅) − (−𝜕0̅̅ ̅)𝜕1  𝜕1𝜕1̅ − 𝜕1̅𝜕1
 
0   0
0   0

  
0   0
0   0

𝜕0𝜕0̅̅ ̅ − 𝜕0̅̅ ̅𝜕0 (−𝜕0)𝜕1̅ − 𝜕1̅(−𝜕0)

𝜕1(−𝜕0̅̅ ̅) − (−𝜕0̅̅ ̅)𝜕1  𝜕1𝜕1̅ − 𝜕1̅𝜕1 )

 
 

+

(

 
 

𝜕2𝜕2̅̅ ̅ − 𝜕2̅̅ ̅𝜕2 (−𝜕2)𝜕3̅̅ ̅ − 𝜕3̅̅ ̅(−𝜕2)

𝜕3(−𝜕2̅̅ ̅) − (−𝜕2̅̅ ̅)𝜕3  𝜕3𝜕3̅̅ ̅ − 𝜕3̅̅ ̅𝜕3
 
0   0
0   0

  
0   0
0   0

𝜕2𝜕2̅̅ ̅ − 𝜕2̅̅ ̅𝜕2 (−𝜕2)𝜕3̅̅ ̅ − 𝜕3̅̅ ̅(−𝜕2)

𝜕3(−𝜕2̅̅ ̅) − (−𝜕2̅̅ ̅)𝜕3  𝜕3𝜕3̅̅ ̅ − 𝜕3̅̅ ̅𝜕3 )

 
 

 

Let us consider the case of a free particle and represent the electron field as a four-component 

spinor function of four-component spinor coordinates 

𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) =

(

 

𝜓0(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓1(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓2(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓3(𝑥0, 𝑥1, 𝑥2, 𝑥3))

 = (

𝑢0
𝑢1
𝑢2
𝑢3

)𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

For a free particle, the components of the momentum spinor commute with each other, so all 

components of the matrix 𝐾 are zero.  

Let us use the model of a plane wave in spinor space  

𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑒𝑥𝑝(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2) 

Substituting the plane wave solution into the differential equation, we obtain the algebraic 

equation 

𝑆−𝑆+(

𝑢0
𝑢1
𝑢2
𝑢3

)𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑀
2 (

𝑢0
𝑢1
𝑢2
𝑢3

)𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

𝑆− {(

−𝑝0̅̅ ̅
𝑝1̅̅̅
0
0

) (−𝑝0𝑢0 + 𝑝1𝑢1) + (

0
 0
−𝑝0̅̅ ̅
𝑝1̅̅̅

) (−𝑝0𝑢2 + 𝑝1𝑢3) + (

−𝑝2̅̅ ̅
𝑝3̅̅ ̅
0
0

) (−𝑝2𝑢0 + 𝑝3𝑢1)

+ (

0
 0
−𝑝2̅̅ ̅
𝑝3̅̅ ̅

) (−𝑝2𝑢2 + 𝑝3𝑢3)}𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑚2 (

𝑢0
𝑢1
𝑢2
𝑢3

)𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

{(

𝑝1
 𝑝0
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) + (

0
 0
𝑝1
𝑝0

)(0,0, 𝑝1̅̅̅, 𝑝0̅̅ ̅) + (

𝑝3
 𝑝2
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) + (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝3̅̅ ̅, 𝑝2̅̅ ̅)} 
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{(

−𝑝0̅̅ ̅
𝑝1̅̅̅
0
0

) (−𝑝0𝑢0 + 𝑝1𝑢1) + (

0
 0
−𝑝0̅̅ ̅
𝑝1̅̅̅

) (−𝑝0𝑢2 + 𝑝1𝑢3) + (

−𝑝2̅̅ ̅
𝑝3̅̅ ̅
0
0

) (−𝑝2𝑢0 + 𝑝3𝑢1)

+ (

0
 0
−𝑝2̅̅ ̅
𝑝3̅̅ ̅

) (−𝑝2𝑢2 + 𝑝3𝑢3)}𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑀2 (

𝑢0
𝑢1
𝑢2
𝑢3

)𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

{(

𝑝1
 𝑝0
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) + (

0
 0
𝑝1
𝑝0

)(0,0, 𝑝1̅̅̅, 𝑝0̅̅ ̅) + (

𝑝3
 𝑝2
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) + (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝3̅̅ ̅, 𝑝2̅̅ ̅)} 

{(

−𝑝0̅̅ ̅
𝑝1̅̅̅
0
0

) (−𝑝0𝑢0 + 𝑝1𝑢1) + (

0
 0
−𝑝0̅̅ ̅
𝑝1̅̅̅

) (−𝑝0𝑢2 + 𝑝1𝑢3) + (

−𝑝2̅̅ ̅
𝑝3̅̅ ̅
0
0

) (−𝑝2𝑢0 + 𝑝3𝑢1)

+ (

0
 0
−𝑝2̅̅ ̅
𝑝3̅̅ ̅

) (−𝑝2𝑢2 + 𝑝3𝑢3)} = 𝑀
2 (

𝑢0
𝑢1
𝑢2
𝑢3

) 

(

𝑝1
 𝑝0
0
0

) (−𝑝1̅̅̅𝑝0̅̅ ̅ + 𝑝0̅̅ ̅𝑝1̅̅̅)(−𝑝0𝑢0 + 𝑝1𝑢1) + (

𝑝3
 𝑝2
0
0

) (−𝑝3̅̅ ̅𝑝0̅̅ ̅ + 𝑝2̅̅ ̅𝑝1̅̅̅)(−𝑝0𝑢0 + 𝑝1𝑢1) + 

(

0
 0
𝑝1
𝑝0

)(−𝑝1̅̅̅𝑝0̅̅ ̅ + 𝑝0̅̅ ̅𝑝1̅̅̅)(−𝑝0𝑢2 + 𝑝1𝑢3) + (

0
 0
𝑝3
𝑝2

)(−𝑝3̅̅ ̅𝑝0̅̅ ̅ + 𝑝2̅̅ ̅𝑝1̅̅̅)(−𝑝0𝑢2 + 𝑝1𝑢3) + 

(

𝑝1
 𝑝0
0
0

) (−𝑝1̅̅̅𝑝2̅̅ ̅ + 𝑝0̅̅ ̅𝑝3̅̅ ̅)(−𝑝2𝑢0 + 𝑝3𝑢1) + (

𝑝3
 𝑝2
0
0

) (−𝑝3̅̅ ̅𝑝2̅̅ ̅ + 𝑝2̅̅ ̅𝑝3̅̅ ̅)(−𝑝2𝑢0 + 𝑝3𝑢1) + 

(

0
 0
𝑝1
𝑝0

)(−𝑝1̅̅̅𝑝2̅̅ ̅ + 𝑝0̅̅ ̅𝑝3̅̅ ̅)(−𝑝2𝑢2 + 𝑝3𝑢3) + (

0
 0
𝑝3
𝑝2

) (−𝑝3̅̅ ̅𝑝2̅̅ ̅ + 𝑝2̅̅ ̅𝑝3̅̅ ̅)(−𝑝2𝑢2 + 𝑝3𝑢3) = 

= 𝑀2 (

𝑢0
𝑢1
𝑢2
𝑢3

) 

Let us take into account the commutativity of the momentum components, besides, let us 

introduce the notations 

−𝑝3̅̅ ̅𝑝0̅̅ ̅ + 𝑝2̅̅ ̅𝑝1̅̅̅ ≡ 𝑚̅        − 𝑝1̅̅̅𝑝2̅̅ ̅ + 𝑝0̅̅ ̅𝑝3̅̅ ̅ ≡ −𝑚̅       

for the quantities which are invariant under any rotations and boosts, then we obtain 

{(

𝑝3
 𝑝2
0
0

) 𝑚̅(−𝑝0𝑢0 + 𝑝1𝑢1) + (

0
 0
𝑝3
𝑝2

) 𝑚̅(−𝑝0𝑢2 + 𝑝1𝑢3) + (

𝑝1
 𝑝0
0
0

) (−𝑚̅)(−𝑝2𝑢0 + 𝑝3𝑢1)

+ (

0
 0
𝑝1
𝑝0

)(−𝑚̅)(−𝑝2𝑢2 + 𝑝3𝑢3)} = 𝑀
2 (

𝑢0
𝑢1
𝑢2
𝑢3

) 
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{𝑢0(−(

𝑝3
 𝑝2
0
0

) 𝑚̅𝑝0 + (

𝑝1
 𝑝0
0
0

) 𝑚̅𝑝2) + 𝑢1

(

 (

𝑝3
 𝑝2
0
0

) 𝑚̅𝑝1 − (

𝑝1
 𝑝0
0
0

) 𝑚̅𝑝3

)

 + 𝑢2 (−(

0
 0
𝑝3
𝑝2

) 𝑚̅𝑝0 + (

0
 0
𝑝1
𝑝0

)𝑚̅𝑝2)

+ 𝑢3

(

 (

0
 0
𝑝3
𝑝2

) 𝑚̅𝑝1 − (

0
 0
𝑝1
𝑝0

)𝑚̅𝑝3

)

 } = 𝑀2 (

𝑢0
𝑢1
𝑢2
𝑢3

) 

{𝑢0𝑚̅ (

𝑝1𝑝2 − 𝑝3𝑝0
 𝑝0𝑝2 − 𝑝2𝑝0

0
0

) + 𝑢1𝑚̅ (

𝑝3𝑝1 − 𝑝1𝑝3
 𝑝2𝑝1 − 𝑝0𝑝3

0
0

) + 𝑢2𝑚̅ (

0
 0

𝑝1𝑝2−𝑝3𝑝0
𝑝0𝑝2 − 𝑝2𝑝0

) + 𝑢3𝑚̅ (

0
 0

𝑝3𝑝1 − 𝑝1𝑝3
𝑝2𝑝1 − 𝑝0𝑝3

)}

= 𝑀2 (

𝑢0
𝑢1
𝑢2
𝑢3

) 

Additionally, introducing notation for Lorentz invariant quantities 

𝑝1𝑝2 − 𝑝3𝑝0 ≡ 𝑚      𝑝2𝑝1 − 𝑝0𝑝3 ≡ 𝑚 

we obtain 

{𝑢0𝑚̅ (

𝑚
0
0
0

) + 𝑢1𝑚̅ (

0
 𝑚
0
0

) + 𝑢2𝑚̅ (

0
 0
𝑚
0

) + 𝑢3𝑚̅ (

0
 0
0
𝑚

)} = 𝑚2 (

𝑢0
𝑢1
𝑢2
𝑢3

) 

{𝑢0(

𝑚2

0
0
0

) + 𝑢1 (

0
 𝑚2

0
0

) + 𝑢2(

0
 0
𝑚2

0

) + 𝑢3(

0
 0
0
𝑚2

)} = 𝑚2 (

𝑢0
𝑢1
𝑢2
𝑢3

) 

(

𝑚2  0
 0   𝑚2  

0     0
 0        0

  
0    0
 0      0

 𝑚2   0
 0   𝑚2

)(

𝑢0
𝑢1
𝑢2
𝑢3

) = 𝑀2 (

𝑢0
𝑢1
𝑢2
𝑢3

) 

We see that in the case of a plane wave in spinor space, the matrix in the left part of the equation 

is diagonal and remains so at any rotations and boosts, the diagonal element also does not change. 

In this case we can consider the matrix 𝑀2  in the right part to be diagonal with the same 

elements on the diagonal 𝑚2, then the equation can be rewritten as an equation for the problem of 

finding eigenvalues and eigenfunctions 

𝑆−𝑆+𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑚
2𝐼𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

𝑆−𝑆+𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑚2𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

Let us compare our equation with the Dirac equation [6, formula (43.16)] 

(

𝑃0 +𝑀  0
 0    𝑃0 +𝑀

 
𝑃3   𝑃1 − 𝑖𝑃2

𝑃1 + 𝑖𝑃2   −𝑃3

  
𝑃3   𝑃1 − 𝑖𝑃2

𝑃1 + 𝑖𝑃2   −𝑃3

𝑃0 −𝑀  0
0   𝑃0 −𝑀

)(

𝑢0
𝑢1
𝑢2
𝑢3

) = 0 

In the rest frame of reference, the three components of momentum are zero and the equation is 

simplified 

(

𝑃0 +𝑀      0
 0    𝑃0 +𝑀

 
0              0
0               0

  
0              0
0               0

 
𝑃0 −𝑀      0
0   𝑃0 −𝑀

)(

𝑢0
𝑢1
𝑢2
𝑢3

) = 0 

That is, in the rest frame the Dirac equation and the spinor equation analyzed by us look 

identically and contain a diagonal matrix. The corresponding problem on eigenvalues and 

eigenvectors of these matrices has degenerate eigenvalues, which correspond to the linear space of 
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eigenfunctions. In this space, one can choose an orthogonal basis of linearly independent functions, 

and this choice is quite arbitrary. For example, in [[8], formula (2.127)], solutions in the form of plane 

waves in the vector space have been proposed for the Dirac equation in the rest frame 

𝑢𝑖(0) 𝑒𝑥𝑝(−𝑖𝑀𝑡) 

𝑣𝑖(0) 𝑒𝑥𝑝(+𝑖𝑀𝑡) 

and the following spinors are chosen as basis vectors 

𝑢1(0) = (

1
0
0
0

)    𝑢2(0) = (

0
1
0
0

)     𝑣1(0) = (

0
0
1
0

)      𝑣2(0) = (

0
0
0
1

) 

For transformation to a moving coordinate system in [[8], formula (2.133)] the following formula 

is used 

𝜓𝑖(𝑋) = 𝑢𝑖(𝑃) 𝑒𝑥𝑝(−𝑖𝑃𝑋) 

𝜓𝑖(𝑋) = 𝑣𝑖(𝑃) 𝑒𝑥𝑝(+𝑖𝑃𝑋) 

where 

𝑢1(𝑃) = √
𝑃0 +𝑀

2𝑀

(

 
 
 

1
0
𝑃3

𝑃0 +𝑀
𝑃1 + 𝑖𝑃2
𝑃0 +𝑀)

 
 
 

   𝑢2(𝑃) = √
𝑃0 +𝑀

2𝑀

(

 
 
 

1
0

𝑃1 − 𝑖𝑃2
𝑃0 +𝑀
−𝑃3
𝑃0 +𝑀)

 
 
 

   𝑣1(𝑃) = √
𝑃0 +𝑀

2𝑀

(

 
 
 

𝑃3
𝑃0 +𝑀
𝑃1 + 𝑖𝑃2
𝑃0 +𝑀
1
0 )

 
 
 

     

𝑣2(𝑃) = √
𝑃0 +𝑀

2𝑀

(

 
 
 

𝑃1 − 𝑖𝑃2
𝑃0 +𝑀
−𝑃3
𝑃0 +𝑀
0
1 )

 
 
 

 

The basis spinors form a complete system, that is, any four-component complex spinor can be 

represented as their linear combination and this arbitrary spinor will be a solution to the problem on 

eigenvalues and eigenfunctions in a resting coordinate system. The choice of the given particular 

basis has disadvantages, because if to find a four-dimensional current vector from any of these basis 

functions 

𝑗𝜇 =
1

2
(𝑢1(0))

†
𝑆𝜇𝑢

1(0)  

then this current in the rest frame of reference 

𝐣𝐓 = (
1

2
, 0,0,

1

2
) 

has non-zero components, and the square of the length of the current vector is zero. It turns out that 

a resting electron creates a current, which contradicts physical common sense.  

Since we have freedom of choice of the basis, it is reasonable to choose the spinor for the wave 

function as some set of momentum spinor components, for example 

𝑢(0) = √
𝑒

𝑚
(

𝑝2
−𝑝3
𝑝0
−𝑝1

) 

An exhaustive list of 16 spinors of this kind, each corresponding to some particle of the fermionic 

field, is given in the last section of the paper. The proportionality factor is chosen so that in the rest 

frame the zero component of the current is equal to the charge of, for example, an electron or a 

positron.  

The mass of electron 𝑚 = 𝑝1𝑝2 − 𝑝3𝑝0 and the phase of the plane spinor wave 
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𝑒𝑥𝑝(𝐩𝑻𝛴𝑀𝑀𝐱) = 𝑒𝑥𝑝(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2) 

do not change at rotations and boosts. The matrix on the left side of the equation does not change 

either, remaining diagonal with 𝑚2 on the diagonal. 

For a fermion, which can be an electron or a positron in the rest frame takes place pT =

(p0, p1, p1̅̅ ̅, −p0̅̅ ̅), so the quantity  

𝑚 = 𝑝1𝑝2 − 𝑝3𝑝0 = 𝑝1𝑝1̅̅̅ + 𝑝0̅̅ ̅𝑝0 

which, unlike the mass M in the Dirac equation, is complex in the general case, is also real for the 

fermion and can be positive or negative. For simplicity it is possible to consider the mass of the 

electron as negative and that of the positron as positive. 

For the momentum spinor of a boson, such as a photon, it is true that 𝐩𝐓 = (𝑝0, 𝑝1 , 𝑝0, 𝑝1), so its 

mass is zero 

𝑚 = 𝑝1𝑝2 − 𝑝3𝑝0 = 𝑝1𝑝0 − 𝑝1𝑝0 = 0 

The given constructions are not abstract, but describe the physical reality, since the results of the 

processes occurring in the spinor space are displayed in the Minkowski vector space. In particular, 

the momentum vector corresponding to the momentum spinor has the following parameters    

𝑃𝜇 =
1

2
𝑇𝑟[𝐩𝐩†𝑆𝜇]  

the square of the length is equal to the square of the mass of the electron or positron  

𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 = 𝑚2 

A spinor wave function 𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3)  at some point in spinor space can be given a 

probabilistic interpretation by establishing its correspondence with the vector wave function 

𝚿(𝑋0, 𝑋1, 𝑋2, 𝑋3) 

𝛹𝜇 =
1

2
𝑇𝑟[𝛙𝛙†𝑆𝜇]  

taking its values in the corresponding point of physical space with coordinates 

𝑋𝜇 =
1

2
𝑇𝑟[𝐱𝐱†𝑆𝜇]  

We act within the classical concepts of quantum mechanics, simply to describe the state of a 

physical system we use spinor coordinate and momentum representations along with vector 

coordinate and momentum representations. Both types of representations equally have the right to 

be more substantial and in principle there is no need to express the wave function in one 

representation through the wave function in the other, both wave functions equally describe the same 

physical state. Moreover, since vector coordinates and momenta are simply expressed through spinor 

analogues, we would prioritize the spinor representations as the more fundamental ones. 

Let us summarize the relations between quantum-mechanical quantities for the spinor space 

𝐱𝐓 ≡ (𝑥0, 𝑥1, 𝑥2, 𝑥3)        𝐱̂
𝐓 ≡ (𝑥̂0, 𝑥̂1, 𝑥̂2, 𝑥̂3) 

𝐩𝐓 ≡ (𝑝0, 𝑝1, 𝑝2, 𝑝3)        𝐩
𝐓 ≡ (𝑝̂0, 𝑝̂1, 𝑝̂2, 𝑝̂3) 

(𝐩, 𝐱) = 𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2 

(𝐩, 𝐱)̅̅ ̅̅ ̅̅ ̅ = 𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0 ̅̅ ̅̅ ̅̅ ̅ + 𝑝2𝑥3 ̅̅ ̅̅ ̅̅ ̅ − 𝑝3𝑥2 ̅̅ ̅̅ ̅̅ ̅ 

The complete orthonormalzed system of eigenvectors of the momentum operator 

𝐩|𝐩⟩ = 𝐩|𝐩⟩ 

𝑝̂𝛼|𝐩⟩ = 𝑝𝛼|𝐩⟩ 
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⟨𝐩|𝐩′⟩ = (2𝜋)4𝛿(𝐩 − 𝐩′) 

∫
𝑑4𝑝

(2𝜋)4
|𝐩⟩(𝐱) ⟨𝐩|(𝐱′) = 𝟙(𝐱)(𝐱′) 

𝐩(𝐱)(𝐱′) = ∫
𝑑4𝑝

(2𝜋)4
|𝐩⟩(𝐱)𝐩⟨𝐩|(𝐱′) 

𝑝̂𝛼(𝐱)(𝐱′) = ∫
𝑑4𝑝

(2𝜋)4
|𝐩⟩(𝐱)𝑝𝛼⟨𝐩|(𝐱′) 

|𝛗⟩ = ∫
𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)|𝐩⟩ 

𝛗(𝐩) = ⟨𝐩|𝛗⟩ 

The complete orthonormalzed system of eigenvectors of the coordinate operator 

𝐱̂|𝐱⟩ = 𝐱|𝐱⟩ 

𝑥̂𝛼|𝐱⟩ = 𝑥𝛼|𝐱⟩ 

⟨𝐱|𝐱′⟩ = 𝛿(𝐱 − 𝐱′) 

∫𝑑4𝑥 |𝐱⟩(𝐩) ⟨𝐱|(𝐩′) = 𝟙(𝐩)(𝐩′) 

𝐱̂(𝐩)(𝐩′) = ∫𝑑
4𝑥 |𝐱⟩(𝐩)𝐱⟨𝐱|(𝐩′) 

𝑥̂𝛼(𝐩)(𝐩′) = ∫𝑑
4𝑥 |𝐱⟩(𝐩)𝑥𝛼⟨𝐱|(𝐩′) 

|𝛗⟩ = ∫𝑑4𝑥 𝛗(𝐱)|𝐱⟩ 

𝛗(𝐱) = ⟨𝐱|𝛗⟩ 

The relation between wave function in momentum and coordinate representations and the 

relation between eigenvectors of the coordinate operator and the momentum operator 

𝛗(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)𝑒𝑖

((𝐩,𝐱)+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)
 

|𝛗⟩ = ∫𝑑4𝑥 𝛗(𝐱)|𝐱⟩ = ∫𝑑4𝑥 (∫
𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)𝑒𝑖

((𝐩,𝐱)+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)
) |𝐱⟩

= ∫
𝑑4𝑝

(2𝜋)4
 𝛗(𝐩) (∫𝑑4𝑥 𝑒𝑖

((𝐩,𝐱)+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)
|𝐱⟩) 

|𝛗⟩ = ∫
𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)|𝐩⟩ 

|𝐩⟩ = ∫𝑑4𝑥 𝑒𝑖
((𝐩,𝐱)+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)

|𝐱⟩ 

⟨𝐱|𝐩⟩ = 𝑒𝑖
((𝐩,𝐱)+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)
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The arbitrary choice of the basis of the linear space of the eigenvectors of the matrix takes place 

only for a free particle. In the general case the matrix K is not zero, the wave equation has no solution 

in the form of plane waves in spinor space and ceases to be invariant with respect to Lorentz 

transformations, and the eigenvalues become nondegenerate. 

We propose to extend the scope of applicability of the presented equation consisting of 

differential operators in the form of partial derivatives on the components of coordinate spinors to 

case of a nonzero matrix K 

(𝑆− − 𝐾)𝑆+𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑀2𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

that is not only to the case of a plane wave, but to any situation in general. This transition is analogous 

to the transition from the application of the Schrödinger equation to a plane wave in vector space to 

its application in a general situation. The legitimacy of such transitions should be confirmed by the 

results of experiments. 

This equation will be called the equation for the spinor wave function defined on the spinor 

coordinate space. Here the matrix 𝑀2 is, generally speaking, neither diagonal nor real, but it does 

not depend on the coordinates and is determined solely by the parameters of the electromagnetic 

field. Only in the case of a plane wave it is diagonal and has on the diagonal the square of the mass 

of the free particle. We can try to simplify the problem and require that the matrix 𝑀2 is diagonal 

with the same elements on the diagonal 𝑚2, then the equation can be rewritten in the form of the 

equation for the problem of search of eigenvalues and eigenfunctions for any quantum states 

(𝑆− − 𝐾)𝑆+𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑚
2𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

This approach is pleasant in the Dirac equation, where the mass is fixed and equated to the mass 

of a free particle, and at the same time results giving good agreement with experiment are obtained. 

We are of the opinion that the spinor equation is more fundamental than the relativistic 

Schrödinger and Dirac equations, it is not a generalization of them, it is a refinement of them, because 

it describes nature at the spinor level, and hence is more precise and detailed than the equations for 

the wave function defined on the vector space.  

Let us consider the proposed equation for the special case when the particle is in an external 

electromagnetic field, which we will also represent by a four-component spinor function at a point of 

the spinor coordinate space 

𝐚(𝑥0, 𝑥1, 𝑥2, 𝑥3) =

(

 

𝑎0(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝑎1(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝑎2(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝑎3(𝑥0, 𝑥1, 𝑥2, 𝑥3))

  

We will apply to the wave function of the electron the operators corresponding to the 

components of the momentum spinor, putting for simplicity the electron charge equal to unity 

𝑝0 →
𝜕

𝜕𝑥1
+ 𝑎0(𝑥0, 𝑥1, 𝑥2, 𝑥3)               𝑝1 → −

𝜕

𝜕𝑥0
+ 𝑎1(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

𝑝2 →
𝜕

𝜕𝑥3
+ 𝑎2(𝑥0, 𝑥1, 𝑥2, 𝑥3)               𝑝3 → −

𝜕

𝜕𝑥2
+ 𝑎3(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

𝑝0̅̅ ̅ →
𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0(𝑥0, 𝑥1, 𝑥2, 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                    𝑝1̅̅̅ → −

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1(𝑥0, 𝑥1, 𝑥2, 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       

𝑝2̅̅ ̅ →
𝜕[ ]̅

𝜕𝑥3̅̅ ̅
+ 𝑎2(𝑥0, 𝑥1, 𝑥2, 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                     𝑝3̅̅ ̅ → −

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
+ 𝑎3(𝑥0, 𝑥1, 𝑥2, 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       

Note that the electromagnetic potential vector can be calculated from the electromagnetic 

potential spinor by the standard formula 

𝐴𝜇 =
1

2
𝐚†𝑆𝜇𝐚  
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The advantage of the spinor description over the vector description is that instead of summing 

up the components of the momentum and electromagnetic potential vectors as is usually done 

𝑃𝜇 + 𝐴𝜇 =
1

2
𝐩†𝑆𝜇𝐩 +

1

2
𝐚†𝑆𝜇𝐚  

now we sum the spinor components and then the resulting vector is  

1

2
(𝐩 + 𝐚)†𝑆𝜇(𝐩 + 𝐚) =

1

2
𝐩†𝑆𝜇𝐩 +

1

2
𝐩†𝑆𝜇𝐚 +

1

2
𝐚†𝑆𝜇𝐩 +

1

2
𝐚†𝑆𝜇𝐚 

in addition to the usual momentum and field vectors, contains an additional term 

1

2
𝐩†𝑆𝜇𝐚 +

1

2
𝐚†𝑆𝜇𝐩 

taking real values and describing the mutual influence of the fields of the electron and photon. 

After the addition of the electromagnetic field the components of the momentum spinor do not 

commute, the corresponding commutators are found above 

{(
𝜕

𝜕𝑥1
+ 𝑎0) (−

𝜕

𝜕𝑥0
+ 𝑎1) − (−

𝜕

𝜕𝑥0
+ 𝑎1) (

𝜕

𝜕𝑥1
+ 𝑎0)}𝜑 = {

𝜕𝑎1
𝜕𝑥1

+
𝜕𝑎0
𝜕𝑥0

} 𝜑 

{(
𝜕

𝜕𝑥3
+ 𝑎2) (−

𝜕

𝜕𝑥2
+ 𝑎3) − (−

𝜕

𝜕𝑥2
+ 𝑎3) (

𝜕

𝜕𝑥3
+ 𝑎2)}𝜑 = {

𝜕𝑎3
𝜕𝑥3

+
𝜕𝑎2
𝜕𝑥2

} 𝜑 

Let's find commutators for other operators 

{(
𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) − (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (

𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅)} 𝜑 = 

(
𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) 𝜑 − (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (

𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) 𝜑 = 

(
𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) (−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅𝜑) − (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (

𝜕𝜑̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅𝜑) = 

𝜕[ ]̅

𝜕𝑥1̅̅̅
(−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) + 𝑎0̅̅ ̅𝑎1̅̅ ̅𝜑 +

𝜕[ ]̅

𝜕𝑥1̅̅̅
(𝑎1̅̅ ̅𝜑) + 𝑎0̅̅ ̅ (−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) +

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
(
𝜕𝜑̅

𝜕𝑥1̅̅̅
) − 𝑎1̅̅ ̅𝑎0̅̅ ̅𝜑 +

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
(𝑎0̅̅ ̅𝜑) − 𝑎1̅̅ ̅

𝜕𝜑̅

𝜕𝑥1̅̅̅
= 

𝜕[ ]̅

𝜕𝑥1̅̅̅
(𝑎1̅̅ ̅𝜑) + 𝑎0̅̅ ̅ (−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) +

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
(𝑎0̅̅ ̅𝜑) − 𝑎1̅̅ ̅

𝜕𝜑̅

𝜕𝑥1̅̅̅
= 

𝜕𝜑̅

𝜕𝑥1̅̅̅
𝑎1̅̅ ̅ +

𝜕𝑎1̅̅ ̅̅̅ ̅

𝜕𝑥1̅̅̅
𝜑 + 𝑎0̅̅ ̅ (−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) +

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
𝑎0̅̅ ̅ +

𝜕𝑎0̅̅ ̅̅̅ ̅

𝜕𝑥0̅̅ ̅
𝜑 − 𝑎1̅̅ ̅

𝜕𝜑̅

𝜕𝑥1̅̅̅
= 

𝜕𝑎1̅̅ ̅̅̅ ̅

𝜕𝑥1̅̅̅
𝜑 +

𝜕𝑎0̅̅ ̅̅̅ ̅

𝜕𝑥0̅̅ ̅
𝜑 = {

𝜕𝑎1
𝜕𝑥1̅̅̅

+
𝜕𝑎0
𝜕𝑥0̅̅ ̅

} 𝜑 

{(
𝜕

𝜕𝑥1
+ 𝑎0) (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) − (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (

𝜕

𝜕𝑥1
+ 𝑎0)}𝜑 = 

(
𝜕

𝜕𝑥1
+ 𝑎0) (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) 𝜑 − (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (

𝜕

𝜕𝑥1
+ 𝑎0)𝜑 = 

(
𝜕

𝜕𝑥1
+ 𝑎0) (−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅𝜑) − (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (

𝜕𝜑

𝜕𝑥1
+ 𝑎0𝜑) = 

𝜕

𝜕𝑥1
(−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) + 𝑎0𝑎1̅̅ ̅𝜑 +

𝜕

𝜕𝑥1
(𝑎1̅̅ ̅𝜑) + 𝑎0 (−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) +

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
(
𝜕𝜑

𝜕𝑥1
) − 𝑎1̅̅ ̅𝑎0𝜑 +

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
(𝑎0𝜑) − 𝑎1̅̅ ̅

𝜕𝜑

𝜕𝑥1
= 

𝜕

𝜕𝑥1
(𝑎1̅̅ ̅𝜑) + 𝑎0 (−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) +

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
(𝑎0𝜑) − 𝑎1̅̅ ̅

𝜕𝜑

𝜕𝑥1
= 
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𝜕𝜑

𝜕𝑥1
𝑎1̅̅ ̅ +

𝜕𝑎1̅̅ ̅

𝜕𝑥1
𝜑 + 𝑎0 (−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) +

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
𝑎0 +

𝜕𝑎0̅̅ ̅

𝜕𝑥0̅̅ ̅
𝜑 − 𝑎1̅̅ ̅

𝜕𝜑̅

𝜕𝑥1̅̅̅
= 

𝜕𝑎1̅̅ ̅

𝜕𝑥1
𝜑 +

𝜕𝑎0̅̅ ̅

𝜕𝑥0̅̅ ̅
𝜑 = {

𝜕𝑎1̅̅ ̅

𝜕𝑥1
+
𝜕𝑎0̅̅ ̅

𝜕𝑥0̅̅ ̅
} 𝜑 

Further we will use these and analogous relations 

{(
𝜕

𝜕𝑥1
+ 𝑎0) (−

𝜕

𝜕𝑥0
+ 𝑎1) − (−

𝜕

𝜕𝑥0
+ 𝑎1) (

𝜕

𝜕𝑥1
+ 𝑎0)}𝜑 = {

𝜕𝑎1
𝜕𝑥1

+
𝜕𝑎0
𝜕𝑥0

} 𝜑 

{(
𝜕

𝜕𝑥1
+ 𝑎0) (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) − (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (

𝜕

𝜕𝑥1
+ 𝑎0)} 𝜑 = {

𝜕𝑎1̅̅ ̅

𝜕𝑥1
+
𝜕𝑎0̅̅ ̅

𝜕𝑥0̅̅ ̅
} 𝜑 

{(−
𝜕

𝜕𝑥0
+ 𝑎1) (

𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) − (

𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) (−

𝜕

𝜕𝑥0
+ 𝑎1)} 𝜑 = {−

𝜕𝑎0̅̅ ̅

𝜕𝑥0
−
𝜕𝑎1̅̅ ̅

𝜕𝑥1̅̅̅
} 𝜑 

{(−
𝜕

𝜕𝑥0
+ 𝑎1) (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) − (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (−

𝜕

𝜕𝑥0
+ 𝑎1)}𝜑 = {(−

𝜕𝑎1̅̅ ̅

𝜕𝑥0
) +

𝜕𝑎1̅̅ ̅

𝜕𝑥0̅̅ ̅
} 𝜑 

{(
𝜕

𝜕𝑥1
+ 𝑎0) (

𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) − (

𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) (

𝜕

𝜕𝑥1
+ 𝑎0)}𝜑 = {(

𝜕𝑎0̅̅ ̅

𝜕𝑥1
) −

𝜕𝑎0̅̅ ̅

𝜕𝑥1̅̅̅
} 𝜑 

{(
𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) − (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (

𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅)}𝜑 = {

𝜕𝑎1
𝜕𝑥1̅̅̅

+
𝜕𝑎0
𝜕𝑥0̅̅ ̅

} 𝜑 

(−(−
𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅) (

𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) + (

𝜕[ ]̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅) (−

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅))𝜑 = {

𝜕𝑎1
𝜕𝑥1̅̅̅

̅̅ ̅̅ ̅
+
𝜕𝑎0
𝜕𝑥0̅̅ ̅

̅̅ ̅̅ ̅
} 𝜑 

Earlier, by giving absoluteness to the requirement of invariance of the mass squared to the 

Lorentz transformations, we obtained a system of equations for interacting fields in electrodynamics 

in the case when these fields exist in vector space. But we can apply this approach to interacting fields 

in spinor space as well. Let us analyze again the formula 

(𝑝0 + 𝑎0)(𝑝1 + 𝑎1) − (𝑝1 + 𝑎1)(𝑝0 + 𝑎0) =
𝜕𝑎1
𝜕𝑥1

+
𝜕𝑎0
𝜕𝑥0

 

If we deal with the field of a free particle, then 

𝑝0𝑝1 − 𝑝1𝑝0 = 0 

But since we want to make the invariance principle absolute, we require commutability also in 

the presence of the electromagnetic field 

(𝑝0 + 𝑎0)(𝑝1 + 𝑎1) − (𝑝1 + 𝑎1)(𝑝0 + 𝑎0) = 0 

This can be achieved if we take into account the dependence of the momentum spinor 

components on the coordinates and impose the condition 

𝜕(𝑝1 + 𝑎1)

𝜕𝑥1
+
𝜕(𝑝0 + 𝑎0)

𝜕𝑥0
= (

𝜕𝑝1
𝜕𝑥1

+
𝜕𝑝0
𝜕𝑥0

) + (
𝜕𝑎1
𝜕𝑥1

+
𝜕𝑎0
𝜕𝑥0

) = 0 

As in the case of vector space, we can treat in the spirit of Newton's law equations of the form 

(
𝜕𝑝1
𝜕𝑥1

+
𝜕𝑝0
𝜕𝑥0

) = −(
𝜕𝑎1
𝜕𝑥1

+
𝜕𝑎0
𝜕𝑥0

) 

If an external field is applied, the momentum of the electron field changes, if the momentum of 

the electron changes for some reason, the electromagnetic potential is perturbed and an 

electromagnetic field is generated.  

Earlier we defined a matrix of switches 
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𝐾 ≡

(

 

[𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1] [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

[𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0]
 
0   0
0   0

  
0   0
0   0

[𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1] [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

[𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0])

 

+

(

 

[𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3] [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

[𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2]
 
0   0
0   0

  
0   0
0   0

[𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3] [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

[𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2])

  

and noted that for a free particle it is equal to the zero-point matrix. We can require that this matrix 

is zero also in the presence of an arbitrary field. Absolutization of this requirement gives us an 

additional set of equations, besides the main one (for example, the Dirac equation), to describe the 

interaction between the field and the charged particle in the presence of spin. It is guaranteed that 

the basic equation remains true both for a free particle and for a particle in an external field. 

We will not use the given considerations further in the paper, leaving them as an idea requiring 

a separate consideration. 

Let's solve the equation 

(𝑆− − 𝐾)𝑆+𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑀2𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

(𝑆− − 𝐾)𝑆+

(

 

𝜓0(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓1(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓2(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓3(𝑥0, 𝑥1, 𝑥2, 𝑥3))

 = 𝑀2

(

 

𝜓0(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓1(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓2(𝑥0, 𝑥1, 𝑥2, 𝑥3)

𝜓3(𝑥0, 𝑥1, 𝑥2, 𝑥3))

  

𝑆− = (

−𝜕0 + 𝑎1
 𝜕1 + 𝑎0

0
0

) ((−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅), (𝜕1̅ + 𝑎0̅̅ ̅), 0,0) + (

0
 0

−𝜕0 + 𝑎1
𝜕1 + 𝑎0

)(0,0, (−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅), (𝜕1̅ + 𝑎0̅̅ ̅)) 

+(

−𝜕2 + 𝑎3
 𝜕3 + 𝑎2

0
0

) ((−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅), (𝜕3̅̅ ̅ + 𝑎2̅̅ ̅), 0,0) + (

0
 0

−𝜕2 + 𝑎3
𝜕3 + 𝑎2

)(0,0(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅)) 

𝑆+ =

(

 

−(𝜕1̅ + 𝑎0̅̅ ̅)

(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅)

0
0 )

 (− (𝜕1 + 𝑎0), (−𝜕0 + 𝑎1), 0,0) +

(

 

0
 0

−(𝜕1̅ + 𝑎0̅̅ ̅)

(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅))

 (0,0, − (𝜕1 + 𝑎0)0, (−𝜕0 + 𝑎1)) 

+

(

 

−(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅)

(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)

0
0 )

 (−(𝜕3 + 𝑎2), (−𝜕2 + 𝑎3), 0,0) +

(

 

0
 0

−(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅)

(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅))

 (0,0, −(𝜕3 + 𝑎2), (−𝜕2 + 𝑎3)) 

𝐾 = 

=

(

 
 

(𝜕0 − 𝑎1)(𝜕0̅̅̅ − 𝑎1̅̅ ̅) − (𝜕0̅̅̅ − 𝑎1̅̅ ̅)(𝜕0 − 𝑎1) (−𝜕0 + 𝑎1)(𝜕1̅ + 𝑎0̅̅ ̅) − (𝜕1̅ + 𝑎0̅̅ ̅)(−𝜕0 + 𝑎1)

(𝜕1 + 𝑎0)(−𝜕0̅̅̅ + 𝑎1̅̅ ̅) − (−𝜕0̅̅̅ + 𝑎1̅̅ ̅)(𝜕1 + 𝑎0)   (𝜕1 + 𝑎0)(𝜕1̅ + 𝑎0̅̅ ̅) − (𝜕1̅ + 𝑎0̅̅ ̅)(𝜕1 + 𝑎0)
 
0   0
0   0

  
0   0
0   0

[𝑝1𝑝1̅ − 𝑝1̅𝑝1] [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

[𝑝0𝑝1̅ − 𝑝1̅𝑝0] [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0])

 
 

+

(

 
 

(𝜕2 − 𝑎3)(𝜕2̅̅̅ − 𝑎3̅̅ ̅) − (𝜕2̅̅̅ − 𝑎3̅̅ ̅)(𝜕2 − 𝑎3) (−𝜕2 + 𝑎3)(𝜕3̅̅̅ + 𝑎2̅̅ ̅) − (𝜕3̅̅̅ + 𝑎2̅̅ ̅)(−𝜕2 + 𝑎3)

(𝜕3 + 𝑎2)(−𝜕2̅̅̅ + 𝑎3̅̅ ̅) − (−𝜕2̅̅̅ + 𝑎3̅̅ ̅)(𝜕3 + 𝑎2)   (𝜕3 + 𝑎2)(𝜕3̅̅̅ + 𝑎2̅̅ ̅) − (𝜕3̅̅̅ + 𝑎2̅̅ ̅)(𝜕3 + 𝑎2)
 
0   0
0   0

  
0   0
0   0

[𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3] [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

[𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2])
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=

(

 
 
 
 
 
 
−
𝜕𝑎1̅̅ ̅

𝜕𝑥0
+
𝜕𝑎1̅̅ ̅

𝜕𝑥0̅̅ ̅
−
𝜕𝑎0̅̅ ̅

𝜕𝑥0
−
𝜕𝑎1̅̅ ̅

𝜕𝑥1̅̅̅
𝜕𝑎1̅̅ ̅

𝜕𝑥1
+
𝜕𝑎0̅̅ ̅

𝜕𝑥0̅̅ ̅
 
𝜕𝑎0̅̅ ̅

𝜕𝑥1
−
𝜕𝑎0̅̅ ̅

𝜕𝑥1̅̅̅

 
0   0
0   0

  
0   0
0   0

−
𝜕𝑎1̅̅ ̅

𝜕𝑥0
+
𝜕𝑎1̅̅ ̅

𝜕𝑥0̅̅ ̅
−
𝜕𝑎0̅̅ ̅

𝜕𝑥0
−
𝜕𝑎1̅̅ ̅

𝜕𝑥1̅̅̅
𝜕𝑎1̅̅ ̅

𝜕𝑥1
+
𝜕𝑎0̅̅ ̅

𝜕𝑥0̅̅ ̅
 
𝜕𝑎0̅̅ ̅

𝜕𝑥1
−
𝜕𝑎0̅̅ ̅

𝜕𝑥1̅̅̅ )

 
 
 
 
 
 

 

+

(

 
 
 
 
 
 
−
𝜕𝑎3̅̅ ̅

𝜕𝑥2
+
𝜕𝑎3̅̅ ̅

𝜕𝑥2̅̅ ̅
−
𝜕𝑎2̅̅ ̅

𝜕𝑥2
−
𝜕𝑎3̅̅ ̅

𝜕𝑥3̅̅ ̅
𝜕𝑎3̅̅ ̅

𝜕𝑥3
+
𝜕𝑎2̅̅ ̅

𝜕𝑥2̅̅ ̅
 
𝜕𝑎2̅̅ ̅

𝜕𝑥3
−
𝜕𝑎2̅̅ ̅

𝜕𝑥3̅̅ ̅

 
0   0
0   0

  
0   0
0   0

−
𝜕𝑎3̅̅ ̅

𝜕𝑥2
+
𝜕𝑎3̅̅ ̅

𝜕𝑥2̅̅ ̅
−
𝜕𝑎2̅̅ ̅

𝜕𝑥2
−
𝜕𝑎3̅̅ ̅

𝜕𝑥3̅̅ ̅
𝜕𝑎3̅̅ ̅

𝜕𝑥3
+
𝜕𝑎2̅̅ ̅

𝜕𝑥2̅̅ ̅
 
𝜕𝑎2̅̅ ̅

𝜕𝑥3
−
𝜕𝑎2̅̅ ̅

𝜕𝑥3̅̅ ̅ )

 
 
 
 
 
 

 

Since the second factor 𝑆+ in the left-hand side of the equation has a simpler structure than the 

first factor, perhaps as a first step we should find the eigenvalues and eigenfunctions of the equation 

𝑆+𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑀2𝛙(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

and use the when solving the equation as a whole. 

𝑆−𝑆+𝛙 =

{
 
 
 

 
 
 
(

−𝜕0 + 𝑎1
 𝜕1 + 𝑎0

0
0

) ((−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅), (𝜕1̅ + 𝑎0̅̅ ̅), 0,0) + (

0
 0

−𝜕0 + 𝑎1
𝜕1 + 𝑎0

)(0,0, (−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅), (𝜕1̅ + 𝑎0̅̅ ̅))

+(

−𝜕2 + 𝑎3
 𝜕3 + 𝑎2

0
0

) ((−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅), (𝜕3̅̅ ̅ + 𝑎2̅̅ ̅), 0,0) + (

0
 0

−𝜕2 + 𝑎3
𝜕3 + 𝑎2

)(0,0, (−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅))

}
 
 
 

 
 
 

 

{
 
 
 
 

 
 
 
 

(

 

−(𝜕1̅ + 𝑎0̅̅ ̅)

(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅)

0
0 )

 (− (
𝜕𝜓0
𝜕𝑥1

+ 𝑎0𝜓0) + (−
𝜕𝜓1
𝜕𝑥0

+ 𝑎1𝜓1)) +

(

 

0
 0

−(𝜕1̅ + 𝑎0̅̅ ̅)

(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅))

 (−(
𝜕𝜓2
𝜕𝑥1

+ 𝑎0𝜓2) + (−
𝜕𝜓3
𝜕𝑥0

+ 𝑎1𝜓3))

+

(

 

−(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅)

(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)

0
0 )

 (−(
𝜕𝜓0
𝜕𝑥3

+ 𝑎2𝜓0) + (−
𝜕𝜓1
𝜕𝑥2

+ 𝑎3𝜓1)) +

(

 

0
 0

−(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅)

(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅))

 (−(
𝜕𝜓2
𝜕𝑥3

+ 𝑎2𝜓2) + (−
𝜕𝜓3
𝜕𝑥2

+ 𝑎3𝜓3))

}
 
 
 
 

 
 
 
 

 

𝑆−𝑆+𝛙 = (

−𝜕0 + 𝑎1
𝜕1 + 𝑎0
0
0

)(
𝜕𝑎1
𝜕𝑥1̅̅̅

+
𝜕𝑎0
𝜕𝑥0̅̅ ̅

) (− (
𝜕𝜓0
𝜕𝑥1

+ 𝑎0𝜓0) + (−
𝜕𝜓1
𝜕𝑥0

+ 𝑎1𝜓1)) 

+(

−𝜕2 + 𝑎3
 𝜕3 + 𝑎2

0
0

) (−(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)(𝜕1̅ + 𝑎0̅̅ ̅) + (𝜕3̅̅ ̅ + 𝑎2̅̅ ̅)(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅)) (− (
𝜕𝜓0
𝜕𝑥1

+ 𝑎0𝜓0) + (−
𝜕𝜓1
𝜕𝑥0

+ 𝑎1𝜓1)) 

+(

0
 0

−𝜕0 + 𝑎1
𝜕1 + 𝑎0

)(
𝜕𝑎1
𝜕𝑥1̅̅̅

+
𝜕𝑎0
𝜕𝑥0̅̅ ̅

) (− (
𝜕𝜓2
𝜕𝑥1

+ 𝑎0𝜓2) + (−
𝜕𝜓3
𝜕𝑥0

+ 𝑎1𝜓3)) 

+(

0
 0

−𝜕2 + 𝑎3
 𝜕3 + 𝑎2

)(−(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)(𝜕1̅ + 𝑎0̅̅ ̅) + (𝜕3̅̅ ̅ + 𝑎2̅̅ ̅)(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅)) (− (
𝜕𝜓2
𝜕𝑥1

+ 𝑎0𝜓2) + (−
𝜕𝜓3
𝜕𝑥0

+ 𝑎1𝜓3)) 
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+(

−𝜕0 + 𝑎1
𝜕1 + 𝑎0
0
0

) (−(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅)(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅) + (𝜕1̅ + 𝑎0̅̅ ̅)(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)) (− (
𝜕𝜓0
𝜕𝑥3

+ 𝑎2𝜓0) + (−
𝜕𝜓1
𝜕𝑥2

+ 𝑎3𝜓1)) 

+(

−𝜕2 + 𝑎3
 𝜕3 + 𝑎2

0
0

)(
𝜕𝑎3
𝜕𝑥3̅̅ ̅

+
𝜕𝑎2
𝜕𝑥2̅̅ ̅

) (− (
𝜕𝜓0
𝜕𝑥3

+ 𝑎2𝜓0) + (−
𝜕𝜓1
𝜕𝑥2

+ 𝑎3𝜓1)) 

+(

0
 0

−𝜕0 + 𝑎1
𝜕1 + 𝑎0

)(−(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅)(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅) + (𝜕1̅ + 𝑎0̅̅ ̅)(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)) (− (
𝜕𝜓2
𝜕𝑥3

+ 𝑎2𝜓2) + (−
𝜕𝜓3
𝜕𝑥2

+ 𝑎3𝜓3)) 

+(

0
 0

−𝜕2 + 𝑎3
 𝜕3 + 𝑎2

)(
𝜕𝑎3
𝜕𝑥3̅̅ ̅

+
𝜕𝑎2
𝜕𝑥2̅̅ ̅

) (− (
𝜕𝜓2
𝜕𝑥3

+ 𝑎2𝜓2) + (−
𝜕𝜓3
𝜕𝑥2

+ 𝑎3𝜓3)) 

Let's calculate the expressions included in the equation 

(−(−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)(𝜕1̅ + 𝑎0̅̅ ̅) + (𝜕3̅̅ ̅ + 𝑎2̅̅ ̅)(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅)) 𝜑 = 

(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅)(−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅)𝜑 − (−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅)(𝜕1̅ + 𝑎0̅̅ ̅)𝜑 = 

(𝜕3̅̅ ̅ + 𝑎2̅̅ ̅) (−
𝜕𝜑̅

𝜕𝑥0̅̅ ̅
+ 𝑎1̅̅ ̅𝜑) − (−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅) (

𝜕𝜑̅

𝜕𝑥1̅̅̅
+ 𝑎0̅̅ ̅𝜑) = 

𝜕3̅̅ ̅ (−
𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) + 𝜕3̅̅ ̅(𝑎1̅̅ ̅𝜑) + 𝑎2̅̅ ̅ (−

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) + 𝑎2̅̅ ̅𝑎1̅̅ ̅𝜑 + 𝜕2̅̅ ̅ (

𝜕𝜑̅

𝜕𝑥1̅̅̅
) − (−𝜕2̅̅ ̅)(𝑎0̅̅ ̅𝜑) − 𝑎3̅̅ ̅

𝜕𝜑̅

𝜕𝑥1̅̅̅
− 𝑎3̅̅ ̅𝑎0̅̅ ̅𝜑 = 

𝜕3̅̅ ̅ (−
𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) +

𝜕𝑎1
𝜕𝑥3̅̅ ̅

𝜑 − 𝑎2̅̅ ̅
𝜕𝜑̅

𝜕𝑥0̅̅ ̅
+ 𝑎2̅̅ ̅𝑎1̅̅ ̅𝜑 + 𝜕2̅̅ ̅ (

𝜕𝜑̅

𝜕𝑥1̅̅̅
) + 𝑎0̅̅ ̅

𝜕𝜑̅

𝜕𝑥2̅̅ ̅
+
𝜕𝑎0
𝜕𝑥2̅̅ ̅

𝜑 − 𝑎3̅̅ ̅
𝜕𝜑̅

𝜕𝑥1̅̅̅
− 𝑎3̅̅ ̅𝑎0̅̅ ̅𝜑 = 

𝜕2̅̅ ̅ (
𝜕𝜑̅

𝜕𝑥1̅̅̅
) − 𝜕3̅̅ ̅ (

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
) + [

𝜕𝑎1
𝜕𝑥3̅̅ ̅

+
𝜕𝑎0
𝜕𝑥2̅̅ ̅

] 𝜑 + 𝑎1̅̅ ̅
𝜕𝜑̅

𝜕𝑥3̅̅ ̅
− 𝑎2̅̅ ̅

𝜕𝜑̅

𝜕𝑥0̅̅ ̅
+ 𝑎0̅̅ ̅

𝜕𝜑̅

𝜕𝑥2̅̅ ̅
− 𝑎3̅̅ ̅

𝜕𝜑̅

𝜕𝑥1̅̅̅
+ (𝑎2̅̅ ̅𝑎1̅̅ ̅ − 𝑎3̅̅ ̅𝑎0̅̅ ̅)𝜑 

It would be interesting in this context to consider for the presented spinor model the case of a 

centrally symmetric electric field and to find solutions of the spinor wave equation for the hydrogen-

like atom, taking into account the presence of spin at the electron. For such a model we can take 

𝑎0 = −𝑖
1

√2𝑅
          𝑎1 =

1

√2𝑅
       𝑎2 =

1

√2𝑅
       𝑎3 = −𝑖

1

√2𝑅
 

𝑅

= √(
1

2
(𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2))

2

− (
1

2
(−𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 − 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2))

2

+ (
1

2
(𝑥0̅̅ ̅𝑥0 − 𝑥1̅̅̅𝑥1 + 𝑥2̅̅ ̅𝑥2 − 𝑥3̅̅ ̅𝑥3))

2

 

As mentioned above, we can substitute into the equation the already known exact solutions of 

the Dirac equation for the hydrogen-like atom by expressing the components of the coordinate vector 

and derivatives on them through the components of the coordinate spinor and derivatives on them. 

It is likely that the solution of the Dirac equation would not make the spinor equation an identity; it 

would be evidence that more arbitrary assumptions are made in the Dirac equation than in the spinor 

equation, and that the latter claims to be a better description of nature. 

We can also consider the case of a constant magnetic field directed along the z-axis 

𝐴0 = 0        𝐴1 = −
1

2
𝐵3𝑋2         𝐴2 =

1

2
𝐵3𝑋1      𝐴3 = 0 

𝑋1 =
1

2
(𝑥0̅̅ ̅𝑥1 + 𝑥1̅̅̅𝑥0 + 𝑥2̅̅ ̅𝑥3 + 𝑥3̅̅ ̅𝑥2) 
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𝑋2 =
1

2
(−𝑖𝑥0̅̅ ̅𝑥1 + 𝑖𝑥1̅̅̅𝑥0 − 𝑖𝑥2̅̅ ̅𝑥3 + 𝑖𝑥3̅̅ ̅𝑥2) 

𝐴1 =
1

2
(𝑎0̅̅ ̅𝑎1 + 𝑎1̅̅ ̅𝑎0 + 𝑎2̅̅ ̅𝑎3 + 𝑎3̅̅ ̅𝑎2) 

𝐴2 =
1

2
(−𝑖𝑎0̅̅ ̅𝑎1 + 𝑖𝑎1̅̅ ̅𝑎0 − 𝑖𝑎2̅̅ ̅𝑎3 + 𝑖𝑎3̅̅ ̅𝑎2) 

𝐴0 =
1

2
(𝑎0̅̅ ̅𝑎0 + 𝑎1̅̅ ̅𝑎1 + 𝑎2̅̅ ̅𝑎2 + 𝑎3̅̅ ̅𝑎3) 

𝐴3 =
1

2
(𝑎0̅̅ ̅𝑎0 − 𝑎1̅̅ ̅𝑎1 + 𝑎2̅̅ ̅𝑎2 − 𝑎3̅̅ ̅𝑎3) 

Let's say 

𝑎0 = 𝑖𝑥1̅̅̅√𝐵3/2          𝑎1 = −𝑥0̅̅ ̅√𝐵3/2 

𝑎2 = 𝑖𝑥3̅̅ ̅√𝐵3/2          𝑎3 = −𝑥2̅̅ ̅√𝐵3/2 

𝐴1 =
1

4
𝐵3(𝑖𝑥1𝑥0̅̅ ̅ − 𝑖𝑥0̅̅ ̅𝑥1 + 𝑖𝑥3̅̅ ̅𝑥2 − 𝑖𝑥2̅̅ ̅𝑥3) = −

1

2
𝐵3𝑋2 

𝐴2 =
1

4
𝐵3(𝑥1̅̅̅𝑥0 + 𝑥0̅̅ ̅𝑥1 + 𝑥3̅̅ ̅𝑥2 + 𝑥2̅̅ ̅𝑥3) =

1

2
𝐵3𝑋1  

𝐴0 =
1

4
𝐵3(𝑥1𝑥1̅̅̅ + 𝑥0𝑥0̅̅ ̅ + 𝑥3𝑥3̅̅ ̅ + 𝑥2𝑥2̅̅ ̅) =

1

2
𝐵3𝑡 

𝐴3 =
1

4
𝐵3(𝑥1𝑥1̅̅̅ − 𝑥0𝑥0̅̅ ̅ + 𝑥3𝑥3̅̅ ̅ − 𝑥2𝑥2̅̅ ̅) =

1

2
𝐵3𝑋3  

We see that the scalar potential 𝐴0 grows with time, but does not depend on spatial coordinates, 

and the vector potential does not depend on time, so that there is no electric field. In this case 

𝐾 =

(

 
 
 
 
 
 
−
𝜕𝑎1̅̅ ̅

𝜕𝑥0
+
𝜕𝑎1̅̅ ̅

𝜕𝑥0̅̅ ̅
−
𝜕𝑎0̅̅ ̅

𝜕𝑥0
−
𝜕𝑎1̅̅ ̅

𝜕𝑥1̅̅̅
𝜕𝑎1̅̅ ̅

𝜕𝑥1
+
𝜕𝑎0̅̅ ̅

𝜕𝑥0̅̅ ̅
 
𝜕𝑎0̅̅ ̅

𝜕𝑥1
−
𝜕𝑎0̅̅ ̅

𝜕𝑥1̅̅̅

 
0   0
0   0

  
0   0
0   0

−
𝜕𝑎1̅̅ ̅

𝜕𝑥0
+
𝜕𝑎1̅̅ ̅

𝜕𝑥0̅̅ ̅
−
𝜕𝑎0̅̅ ̅

𝜕𝑥0
−
𝜕𝑎1̅̅ ̅

𝜕𝑥1̅̅̅
𝜕𝑎1̅̅ ̅

𝜕𝑥1
+
𝜕𝑎0̅̅ ̅

𝜕𝑥0̅̅ ̅
 
𝜕𝑎0̅̅ ̅

𝜕𝑥1
−
𝜕𝑎0̅̅ ̅

𝜕𝑥1̅̅̅ )

 
 
 
 
 
 

 

+

(

 
 
 
 
 
 
−
𝜕𝑎3̅̅ ̅

𝜕𝑥2
+
𝜕𝑎3̅̅ ̅

𝜕𝑥2̅̅ ̅
−
𝜕𝑎2̅̅ ̅

𝜕𝑥2
−
𝜕𝑎3̅̅ ̅

𝜕𝑥3̅̅ ̅
𝜕𝑎3̅̅ ̅

𝜕𝑥3
+
𝜕𝑎2̅̅ ̅

𝜕𝑥2̅̅ ̅
 
𝜕𝑎2̅̅ ̅

𝜕𝑥3
−
𝜕𝑎2̅̅ ̅

𝜕𝑥3̅̅ ̅

 
0   0
0   0

  
0   0
0   0

−
𝜕𝑎3̅̅ ̅

𝜕𝑥2
+
𝜕𝑎3̅̅ ̅

𝜕𝑥2̅̅ ̅
−
𝜕𝑎2̅̅ ̅

𝜕𝑥2
−
𝜕𝑎3̅̅ ̅

𝜕𝑥3̅̅ ̅
𝜕𝑎3̅̅ ̅

𝜕𝑥3
+
𝜕𝑎2̅̅ ̅

𝜕𝑥2̅̅ ̅
 
𝜕𝑎2̅̅ ̅

𝜕𝑥3
−
𝜕𝑎2̅̅ ̅

𝜕𝑥3̅̅ ̅ )

 
 
 
 
 
 

= 

= √
𝐵3
2
(

1 0
0 −𝑖

 
0   0
0   0

  
0   0
0   0

1    0
0 −𝑖

) + √𝐵3/2(

1 0
0 −𝑖

 
0   0
0   0

  
0   0
0   0

1 0
0 −𝑖

) = √2𝐵3 (

1 0
0 −𝑖

 
0   0
0   0

  
0   0
0   0

1    0
0 −𝑖

) 

The equation considered up to now is rather cumbersome, therefore we would like to have a 

simpler and compact relativistic invariant equation for the fermion, taking into account the presence 

of a half-integer spin. Such equation really exists; its derivation is given in section 4 of the paper. Here 

we will give its form for the electron in the presence of the electromagnetic field 
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(𝑆𝑅 + 𝑆𝑅̅̅ ̅ + 𝑆𝑅 + 𝑆𝑅̅̅ ̅ − 4(𝑚 + 𝑚̅)𝐼)𝛗(𝐱) = 0 

where 

𝑆𝑅 =

(

 

−(−𝜕2 + 𝑎3)

−(𝜕3 + 𝑎2)

(−𝜕0 + 𝑎1)

(𝜕1 + 𝑎0) )

 ((𝜕1 + 𝑎0), −(−𝜕0 + 𝑎1), (𝜕3 + 𝑎2), −(−𝜕2 + 𝑎3))

− (

−(−𝜕0 + 𝑎1)

−(𝜕1 + 𝑎0)
(−𝜕2 + 𝑎3)

(𝜕3 + 𝑎2)

) ((𝜕3 + 𝑎2), −(−𝜕2 + 𝑎3), (𝜕1 + 𝑎0), −(−𝜕0 + 𝑎1)) 

+(

(−𝜕0 + 𝑎1)

(𝜕1 + 𝑎0)
(−𝜕2 + 𝑎3)

(𝜕3 + 𝑎2)

) ((𝜕3 + 𝑎2), −(−𝜕2 + 𝑎3), −(𝜕1 + 𝑎0), (−𝜕0 + 𝑎1))

− (

(−𝜕2 + 𝑎3)

(𝜕3 + 𝑎2)
(−𝜕0 + 𝑎1)

(𝜕1 + 𝑎0)

) ((𝜕1 + 𝑎0), −(−𝜕0 + 𝑎1), −(𝜕3 + 𝑎2), (−𝜕2 + 𝑎3)) 

𝑆𝑅 =

(

 

(𝜕1 + 𝑎0)

−(−𝜕0 + 𝑎1)

(𝜕3 + 𝑎2)

−(−𝜕2 + 𝑎3))

 (−(−𝜕2 + 𝑎3), −(𝜕3 + 𝑎2), (−𝜕0 + 𝑎1), (𝜕1 + 𝑎0))

− (

(𝜕3 + 𝑎2)

−(−𝜕2 + 𝑎3)
(𝜕1 + 𝑎0)

−(−𝜕0 + 𝑎1)

) (−(−𝜕0 + 𝑎1), −(𝜕1 + 𝑎0), (−𝜕2 + 𝑎3), (𝜕3 + 𝑎2)) 

+(

(𝜕3 + 𝑎2)

−(−𝜕2 + 𝑎3)
−(𝜕1 + 𝑎0)

(−𝜕0 + 𝑎1)

) ((−𝜕0 + 𝑎1), (𝜕1 + 𝑎0), (−𝜕2 + 𝑎3), (𝜕3 + 𝑎2))

− (

(𝜕1 + 𝑎0)

−(−𝜕0 + 𝑎1)
−(𝜕3 + 𝑎2)

(−𝜕2 + 𝑎3)

) ((−𝜕2 + 𝑎3), (𝜕3 + 𝑎2), (−𝜕0 + 𝑎1), (𝜕1 + 𝑎0)) 

In general case electric and magnetic fields are expressed through partial derivatives of 

components of the vector potential by components of the space vector. We also can find the 

expression through these fields for the derivatives of the spinor components of the electromagnetic 

potential by the components of the coordinate spinor. To do this, we first find all derivatives  

𝜕𝐴𝛾

𝜕𝑥µ
=
𝜕𝐴𝛾

𝜕𝑋𝜈

𝜕𝑋𝜈
𝜕𝑥µ

 

then express the components of the vector potential through the components of the spinor potential, 

substitute the components of the electric and magnetic fields instead of the derivatives of the 

components of the vector potential by the components of the coordinate vector, and then find the 

required derivatives from the resulting system of linear equations. 

From general considerations taking into account the substitutions 

𝑝0̅̅ ̅ →
𝜕[ ]̅

𝜕𝑥1̅̅̅
          𝑝1̅̅̅ → −

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
 

it is possible to write the commutation relations for the components of the momentum spinor and 

functions from the components of the coordinate spinor 
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𝜕[𝜑]̅̅ ̅̅

𝜕𝑥1̅̅̅
=
1

𝑐
[𝜑, 𝑝0̅̅ ̅] =

1

𝑐
(𝜑𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝜑) 

[𝑥1, 𝑝0̅̅ ̅] = (𝑥1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑥1) = 𝑐
𝜕𝑥1̅̅̅

𝜕𝑥1̅̅̅
= 𝑐 

[𝑥1̅̅̅, 𝑝0] = (𝑥1̅̅̅𝑝0 − 𝑝0𝑥1̅̅̅) = 𝑐̅ 

𝜕[𝜑]̅̅ ̅̅

𝜕𝑥0̅̅ ̅
= −

1

𝑑
[𝜑, 𝑝1̅̅̅] = −

1

𝑑
(𝜑𝑝1̅̅̅ − 𝑝1̅̅̅𝜑) 

[𝑥0, 𝑝1̅̅̅] = (𝑥0𝑝1̅̅̅ − 𝑝1̅̅̅𝑥0) = −𝑑
𝜕𝑥0̅̅ ̅

𝜕𝑥0̅̅ ̅
= −𝑑 

[𝑥0̅̅ ̅, 𝑝1] = (𝑥0̅̅ ̅𝑝1 − 𝑝1𝑥0̅̅ ̅) = −𝑑̅ 

All other combinations commute with each other. The constant coefficients c and d possibly 

include a minus sign, an imaginary unit and some degree of the rationalized Planck’s constant.  

Let's return to the relations 

𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 = 𝑚̅𝑚 = 𝑚2 

𝑝1𝑝2 − 𝑝0𝑝3 = 𝑚           𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅ = 𝑚̅ 

(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅)(𝑝1𝑝2 − 𝑝0𝑝3) = 𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 = 𝑚̅𝑚 = 𝑚2 

In this form they are equivalent, but if an external field is added, a difference arises, since in one 

case the field is added at the vector level and in the other at the spinor level 

(𝑃0 − 𝐴0)
2 − (𝑃1 − 𝐴1)

2 − (𝑃2 − 𝐴2)
2 − (𝑃3 − 𝐴3)

2 = 𝑚2 

((𝑝1 − 𝑎1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑝2 − 𝑎2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑝0 − 𝑎0)(𝑝3 − 𝑎3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )((𝑝1 − 𝑎1)(𝑝2 − 𝑎2) − (𝑝0 − 𝑎0)(𝑝3 − 𝑎3)) = 𝑚2 

These relations correspond to differential equations including the relativistic Schrödinger 

equation 

(
𝜕2

𝜕𝑋0
2 −

𝜕2

𝜕𝑋1
2 −

𝜕2

𝜕𝑋2
2 −

𝜕2

𝜕𝑋3
2)𝜑(𝑋0, 𝑋1, 𝑋2, 𝑋3) = 𝑚

2𝜑(𝑋0, 𝑋1, 𝑋2, 𝑋3) 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
)𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑚 𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

(
𝜕[ ]̅

𝜕𝑥1̅̅̅

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
−
𝜕[ ]̅

𝜕𝑥0̅̅ ̅

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
) 𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑚̅ 𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

(
𝜕[ ]̅

𝜕𝑥1̅̅̅

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
−
𝜕[ ]̅

𝜕𝑥0̅̅ ̅

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
) (

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
)𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑚

2𝜑(𝑥0, 𝑥1, 𝑥2, 𝑥3) 

The corresponding inhomogeneous equation is 

((
𝜕[ ]̅

𝜕𝑥1̅̅̅

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
−
𝜕[ ]̅

𝜕𝑥0̅̅ ̅

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
) (

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) − 𝑚2)𝜑(𝐱) = 𝛿(𝐱) 

where the delta function can be represented as 

𝛿(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

has a solution 

𝜑(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 
𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅)(𝑝1𝑝2 − 𝑝0𝑝3) − 𝑚
2

 

For a free particle the eigenfunctions and eigenvalues solving these equations should coincide, 

but in the presence of an external field the eigenvalues and the corresponding eigenfunctions will 

differ because of the above mentioned difference in summation in one case of vector components and 

in the other case of spinor components. 
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While the Dirac equation is sometimes referred to as extracting the square root of the Klein-

Gordon equation, here we see a different way of doing it. 

Let us check the truth of the relation  

(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅)(𝑝1𝑝2 − 𝑝0𝑝3) = 𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 

 4(𝑃0𝑃0 − 𝑃1𝑃1 − 𝑃2𝑃2 − 𝑃3𝑃3) = 

= (𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3)(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3)

− (𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2)(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2)

+ (−𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 − 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2)(−𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 − 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2)

− (𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 − 𝑝3̅̅ ̅𝑝3)(𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 − 𝑝3̅̅ ̅𝑝3) 

(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3)(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3)

− (𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 − 𝑝3̅̅ ̅𝑝3)(𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 − 𝑝3̅̅ ̅𝑝3) = 

= 𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3) + 𝑝2̅̅ ̅𝑝2(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3)

+ 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2) − 𝑝0̅̅ ̅𝑝0(−𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 − 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2 − 𝑝3̅̅ ̅𝑝3)

− 𝑝2̅̅ ̅𝑝2(𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 − 𝑝3̅̅ ̅𝑝3) + 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2) 

= 𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2)

− 𝑝0̅̅ ̅𝑝0(−𝑝1̅̅̅𝑝1 − 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) − 𝑝2̅̅ ̅𝑝2(−𝑝1̅̅̅𝑝1 − 𝑝3̅̅ ̅𝑝3)

+ 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) 

= 𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2)

+ 𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) 

−(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2)(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2)

+ (−𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 − 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2)(−𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 − 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2) = 

= −𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2) − 𝑝1̅̅̅𝑝0(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2) − 𝑝2̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2)

− 𝑝3̅̅ ̅𝑝2(𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝2̅̅ ̅𝑝3) − 𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 − 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2) + 𝑝1̅̅̅𝑝0(−𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3 + 𝑝3̅̅ ̅𝑝2)

− 𝑝2̅̅ ̅𝑝3(−𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) + 𝑝3̅̅ ̅𝑝2(−𝑝0̅̅ ̅𝑝1 + 𝑝1̅̅̅𝑝0 − 𝑝2̅̅ ̅𝑝3) 

= −𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 𝑝1̅̅̅𝑝0(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3) − 𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 𝑝3̅̅ ̅𝑝2(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3)

− 𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) + 𝑝1̅̅̅𝑝0(−𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3) − 𝑝2̅̅ ̅𝑝3(+𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2)

+ 𝑝3̅̅ ̅𝑝2(−𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3) 

4(𝑃0𝑃0 − 𝑃1𝑃1 − 𝑃2𝑃2 − 𝑃3𝑃3) = 

= 𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2)

+ 𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2)

− 𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 𝑝1̅̅̅𝑝0(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3) − 𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 𝑝3̅̅ ̅𝑝2(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3)

− 𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) + 𝑝1̅̅̅𝑝0(−𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3) − 𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2)

+ 𝑝3̅̅ ̅𝑝2(−𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3) 

To obtain this result, we did not have to make assumptions about commutability of the spinor 

components among themselves. Accordingly, a similar expression takes place for the phase of a plane 

wave in vector space 

4(𝑃0𝑋0 − 𝑃1𝑋1 − 𝑃2𝑋2 − 𝑃3𝑋3) = 

= 𝑝0̅̅ ̅𝑝0(𝑥1̅̅̅𝑥1 + 𝑥3̅̅ ̅𝑥3) + 𝑝1̅̅̅𝑝1(𝑥0̅̅ ̅𝑥0 + 𝑥2̅̅ ̅𝑥2) + 𝑝2̅̅ ̅𝑝2(𝑥1̅̅̅𝑥1 + 𝑥3̅̅ ̅𝑥3) + 𝑝3̅̅ ̅𝑝3(𝑥0̅̅ ̅𝑥0 + 𝑥2̅̅ ̅𝑥2)

+ 𝑝0̅̅ ̅𝑝0(𝑥1̅̅̅𝑥1 + 𝑥3̅̅ ̅𝑥3) + 𝑝1̅̅̅𝑝1(𝑥0̅̅ ̅𝑥0 + 𝑥2̅̅ ̅𝑥2) + 𝑝2̅̅ ̅𝑝2(𝑥1̅̅̅𝑥1 + 𝑥3̅̅ ̅𝑥3) + 𝑝3̅̅ ̅𝑝3(𝑥0̅̅ ̅𝑥0 + 𝑥2̅̅ ̅𝑥2)

− 𝑝0̅̅ ̅𝑝1(𝑥1̅̅̅𝑥0 + 𝑥3̅̅ ̅𝑥2) − 𝑝1̅̅̅𝑝0(𝑥0̅̅ ̅𝑥1 + 𝑥2̅̅ ̅𝑥3) − 𝑝2̅̅ ̅𝑝3(𝑥1̅̅̅𝑥0 + 𝑥3̅̅ ̅𝑥2) − 𝑝3̅̅ ̅𝑝2(𝑥0̅̅ ̅𝑥1 + 𝑥2̅̅ ̅𝑥3)

− 𝑝0̅̅ ̅𝑝1(𝑥1̅̅̅𝑥0 + 𝑥3̅̅ ̅𝑥2) + 𝑝1̅̅̅𝑝0(−𝑥0̅̅ ̅𝑥1 − 𝑥2̅̅ ̅𝑥3) − 𝑝2̅̅ ̅𝑝3(𝑥1̅̅̅𝑥0 + 𝑥3̅̅ ̅𝑥2)

+ 𝑝3̅̅ ̅𝑝2(−𝑥0̅̅ ̅𝑥1 − 𝑥2̅̅ ̅𝑥3) 

Further we assume that the components of the momentum spinor commute, which takes place 

for a free particle, then we obtain 
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4(𝑃0𝑃0 − 𝑃1𝑃1 − 𝑃2𝑃2 − 𝑃3𝑃3) = 

= 𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2)

+ 𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2)

− 𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 𝑝1̅̅̅𝑝0(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3) − 𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 𝑝3̅̅ ̅𝑝2(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3)

− 𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) + 𝑝1̅̅̅𝑝0(−𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3) − 𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2)

+ 𝑝3̅̅ ̅𝑝2(−𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3) 

= 2𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 2𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 2𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 2𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2)

− 𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 𝑝1̅̅̅𝑝0(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3) − 𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 𝑝3̅̅ ̅𝑝2(𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3)

− 𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) + 𝑝1̅̅̅𝑝0(−𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3) − 𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2)

+ 𝑝3̅̅ ̅𝑝2(−𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3) 

= 2𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 2𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 2𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 2𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2)

− 2𝑝0̅̅ ̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 2𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 2𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2)

− 2𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) 

= 2𝑝0̅̅ ̅𝑝0(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 2𝑝1̅̅̅𝑝1(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2) + 2𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3) + 2𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2)

− 2𝑝0̅̅ ̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 2𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) − 2𝑝0̅̅ ̅𝑝1(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2)

− 2𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2) 

= 2𝑝0̅̅ ̅𝑝0(𝑝3̅̅ ̅𝑝3) + 2𝑝1̅̅̅𝑝1(𝑝2̅̅ ̅𝑝2) + 2𝑝2̅̅ ̅𝑝2(𝑝1̅̅̅𝑝1) + 2𝑝3̅̅ ̅𝑝3(𝑝0̅̅ ̅𝑝0) − 2𝑝0̅̅ ̅̅ ̅𝑝1(𝑝3̅̅ ̅𝑝2) − 2𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0)

− 2𝑝0̅̅ ̅𝑝1(𝑝3̅̅ ̅𝑝2) − 2𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0)

= 4𝑝0̅̅ ̅𝑝0(𝑝3̅̅ ̅𝑝3) + 4𝑝1̅̅̅𝑝1(𝑝2̅̅ ̅𝑝2) − 4𝑝0̅̅ ̅𝑝1(𝑝3̅̅ ̅𝑝2) − 4𝑝2̅̅ ̅𝑝3(𝑝1̅̅̅𝑝0) 

On the other hand, we can write 

𝑚̅𝑚 = (𝑝1𝑝2 − 𝑝0𝑝3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑝1𝑝2 − 𝑝0𝑝3) =  𝑝1𝑝2̅̅ ̅̅ ̅̅ 𝑝1𝑝2 − 𝑝1𝑝2̅̅ ̅̅ ̅̅ 𝑝0𝑝3 − 𝑝0𝑝3̅̅ ̅̅ ̅̅ 𝑝1𝑝2 + 𝑝0𝑝3̅̅ ̅̅ ̅̅ 𝑝0𝑝3 

Thus, the results of calculations coincide. 

Let us compare the phases of plane waves in vector and spinor spaces. Let us hypothesize that 

the plane wave in spinor space has a more complicated form than it was supposed earlier in the 

paper, namely, it contains an additional conjugate multiplier 

𝑒𝑥𝑝 (−𝑖 (𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2)) 

The phase of the wave in this form is closer to the generally accepted phase of a plane wave in 

vector space. But the phases calculated by two methods do not coincide with each other, although 

both of them are invariant under Lorentz transformations 

(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2) ≠ 𝑃0𝑋0 − 𝑃1𝑋1 − 𝑃2𝑋2 − 𝑃3𝑋3 

Let us slightly modify the expression for the phase of the plane wave 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) 𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] = 

((−𝑝3)𝑝0(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2) + 𝑝0

− 𝑝2(−𝑝1)(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ ) − 𝑝1) 

𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

= ((−𝑝3)𝑝0𝑓(𝐱)𝑓(𝐱)̅̅ ̅̅ ̅̅ + 𝑝0 − 𝑝2(−𝑝1)𝑓(𝐱)̅̅ ̅̅ ̅̅ 𝑓(𝐱) − 𝑝1) 

𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

= ((𝑝2𝑝1 − 𝑝3𝑝0)𝑓(𝐱)𝑓(𝐱)̅̅ ̅̅ ̅̅ + 𝑝0 − 𝑝1) 
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𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

where 

𝑓(𝐱) ≡ (𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ ) 

Let’s change the order of derivatives 

(
𝜕

𝜕𝑥2

𝜕

𝜕𝑥1
−

𝜕

𝜕𝑥3

𝜕

𝜕𝑥0
) 𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] = 

(𝑝0(−𝑝3)(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ ) − 𝑝3

− (−𝑝1)𝑝2(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2) + 𝑝2) 

𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

= (𝑝0(−𝑝3)𝑓(𝐱)̅̅ ̅̅ ̅̅ 𝑓(𝐱) − 𝑝3 − (−𝑝1)𝑝2𝑓(𝐱)𝑓(𝐱)̅̅ ̅̅ ̅̅ + 𝑝2) 

𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] = 

= ((𝑝1𝑝2 − 𝑝0𝑝3)𝑓(𝐱)𝑓(𝐱)̅̅ ̅̅ ̅̅ − 𝑝3 + 𝑝2) 

𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

and write the difference of the two equations 

((
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) − (

𝜕

𝜕𝑥2

𝜕

𝜕𝑥1
−

𝜕

𝜕𝑥3

𝜕

𝜕𝑥0
)) 

𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] = 

[((𝑝2𝑝1 − 𝑝3𝑝0)𝑓(𝐱)𝑓(𝐱)̅̅ ̅̅ ̅̅ + 𝑝0 − 𝑝1) − ((𝑝1𝑝2 − 𝑝0𝑝3)𝑓(𝐱)𝑓(𝐱)̅̅ ̅̅ ̅̅ − 𝑝3 + 𝑝2)] 

𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

= [𝑝0 − 𝑝2 + 𝑝3 − 𝑝1] 

𝑒𝑥𝑝[(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

Add an imaginary unit to the phase 

((
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) − (

𝜕

𝜕𝑥2

𝜕

𝜕𝑥1
−

𝜕

𝜕𝑥3

𝜕

𝜕𝑥0
)) 

𝑒𝑥𝑝[−𝑖(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] = 

= [(−(𝑝2𝑝1 − 𝑝3𝑝0)𝑓(𝐱)𝑓(𝐱)̅̅ ̅̅ ̅̅ − 𝑖𝑝0 + 𝑖𝑝1) − (−(𝑝1𝑝2 − 𝑝0𝑝3)𝑓(𝐱)𝑓(𝐱)̅̅ ̅̅ ̅̅ + 𝑖𝑝3 − 𝑖𝑝2)] 

𝑒𝑥𝑝[−𝑖(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] = 

= 𝑖[𝑝2 − 𝑝0 + 𝑝1 − 𝑝3] 

𝑒𝑥𝑝[−𝑖(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

Thus, we obtained a differential equation with an eigenvalue independent of coordinates 

𝑖[𝑝2 − 𝑝0 + 𝑝1 − 𝑝3] 

to which corresponds the eigenfunction     

𝑒𝑥𝑝[−𝑖(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

which is a plane wave with imaginary phase and bounded amplitude. 

Now we can define the function 

𝐷(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
𝑒𝑥𝑝[−𝑖(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)]

𝑖[𝑝2 − 𝑝0 + 𝑝1 − 𝑝3]  
 

which satisfies to equation 

((
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) − (

𝜕

𝜕𝑥2

𝜕

𝜕𝑥1
−

𝜕

𝜕𝑥3

𝜕

𝜕𝑥0
))𝐷(𝐱) =  𝛿(𝐱) 

where 
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𝛿(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
𝑒𝑥𝑝[−𝑖(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] 

thus, 𝐷(𝐱) has the properties of the Green's function. 

4. Path Integral and Second Quantization in Spinor Coordinate Space 

Based on the above, we can modify the theory of the path integral. We will consider it in the 

notations in which it is presented in [9]. For a free scalar field with sources J(X) the path integral has 

the form 

𝑍(𝐽) = ∫𝐷𝜑(𝐗) 𝑒𝑥𝑝(𝑖𝒮(𝜑(𝐗))) = ∫𝐷𝜑(𝐗) 𝑒𝑥𝑝 (𝑖 ∫ 𝑑4𝑋{ℒ(𝜑(𝐗)) + 𝐽(𝐗)𝜑(𝐗)}))

= ∫𝐷𝜑(𝐗) 𝑒𝑥𝑝 (𝑖 ∫𝑑4𝑋 { 
1

2
((
𝜕𝜑

𝜕𝑋0
)
2

− (
𝜕𝜑

𝜕𝑋1
)
2

− (
𝜕𝜑

𝜕𝑋2
)
2

− (
𝜕𝜑

𝜕𝑋3
)
2

−𝑚2𝜑(𝐗)2)

+ 𝐽(𝐗)𝜑(𝐗)}) 

It includes the action of   

𝒮(𝜑(𝐗) = ∫𝑑4𝑋{ℒ(𝜑(𝐗)) + 𝐽(𝐗)𝜑(𝐗)} 

and the Lagrangian density for the free field 

ℒ(𝜑(𝐗) =
1

2
((
𝜕𝜑

𝜕𝑋0
)
2

− (
𝜕𝜑

𝜕𝑋1
)
2

− (
𝜕𝜑

𝜕𝑋2
)
2

− (
𝜕𝜑

𝜕𝑋3
)
2

−𝑚2𝜑(𝐗)2) 

For convenience and clarity, the following notations are introduced 

(𝜕𝜑)2 = 𝜕𝜇𝜑𝜕
𝜇𝜑 = 𝜂𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑 = (𝜕0𝜑)

2 − (𝜕1𝜑)
2 − (𝜕2𝜑)

2 − (𝜕3𝜑)
2

= (
𝜕𝜑

𝜕𝑋0
)
2

− (
𝜕𝜑

𝜕𝑋1
)
2

− (
𝜕𝜑

𝜕𝑋2
)
2

− (
𝜕𝜑

𝜕𝑋3
)
2

 

𝜕𝜇 ≡
𝜕

𝜕𝑋𝜇
 

For the general case the Lagrangian density has the form 

ℒ(𝜑(𝐗)) =
1

2
(𝜕𝜑(𝐗))

2
− 𝑉(𝜑(𝐗)) 

where V(𝜑(𝐗))-polynomial over the field 𝜑(𝐗). 

Substituting the Lagrangian into the Euler equation 

𝜕𝜇
𝛿ℒ

𝛿(𝜕𝜇𝜑)
−
𝛿ℒ

𝛿𝜑
= 0 

the field equation of motion is obtained. 

The free field theory is developed for a special kind of polynomial 

𝑉(𝜑(𝑋)) =
1

2
𝑚2𝜑2 

ℒ(𝜑) =
1

2
[(𝜕𝜑)2 −𝑚2𝜑2]  

𝛿ℒ

𝛿(𝜕𝜇𝜑)
=
1

2

𝛿(𝜕𝜑)2

𝛿(𝜕𝜇𝜑)
=
1

2

𝛿[(𝜕0𝜑)
2 − (𝜕1𝜑)

2 − (𝜕2𝜑)
2 − (𝜕3𝜑)

2]

𝛿(𝜕𝜇𝜑)
= ±

1

2

𝛿(𝜕𝜇𝜑)
2

𝛿(𝜕𝜇𝜑)
= ±𝜕𝜇𝜑 

𝛿ℒ

𝛿𝜑
=
1

2
[−𝑚2

𝛿𝜑2

𝛿𝜑
] = −𝑚2𝜑 

In summary, Euler's equation defines the equation of motion 

𝜕0(𝜕0𝜑) − 𝜕0(𝜕0𝜑) − 𝜕0(𝜕0𝜑) − 𝜕0(𝜕0𝜑) + 𝑚
2𝜑 = 0 
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𝜕0
2𝜑 − 𝜕1

2𝜑 − 𝜕2
2𝜑 − 𝜕3

2𝜑 +𝑚2𝜑 = 0 

𝜕2𝜑 ≡ 𝜕0
2𝜑 − 𝜕1

2𝜑 − 𝜕2
2𝜑 − 𝜕3

2𝜑 

𝜕2𝜑 +𝑚2𝜑 = 0 

(𝜕2 +𝑚2)𝜑 = 0 

The notations used here are 

𝜕2𝜑 ≡ 𝜕0
2𝜑 − 𝜕1

2𝜑 − 𝜕2
2𝜑 − 𝜕3

2𝜑 

𝜕2 ≡ 𝜕0
2 − 𝜕1

2 − 𝜕2
2 − 𝜕3

2 

Thus, there is a correspondence of the Lagrangian and the equation of motion for the free field 

ℒ(𝜑(𝐗)) =
1

2
[(𝜕0𝜑(𝐗))

2
− (𝜕1𝜑(𝐗))

2
− (𝜕2𝜑(𝐗))

2
− (𝜕3𝜑(𝐗))

2
−𝑚2𝜑(𝐗)2] 

ℒ(𝜑) =
1

2
[(𝜕𝜑)2 −𝑚2𝜑2] 

ℒ(𝜑) =
1

2
[(𝜕0𝜑)

2 − (𝜕1𝜑)
2 − (𝜕2𝜑)

2 − (𝜕3𝜑)
2 −𝑚2𝜑2] 

𝜕0
2𝜑(𝐗) − 𝜕1

2𝜑(𝐗) − 𝜕2
2𝜑(𝐗) − 𝜕3

2𝜑(𝐗) + 𝑚2𝜑(𝐗) = 0 

Our proposal is to replace the Lagrangian in vector coordinate space by the Lagrangian in spinor 

coordinate space. For this purpose, we use the equation of motion in spinor coordinate space and we 

want to find the Lagrangian for which the Euler equation defines this equation of motion 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) 𝜑(𝐱) + 𝑚𝜑(𝐱) = 0 

(𝜕1𝜕2 − 𝜕0𝜕3)𝜑(𝐱) + 𝑚𝜑(𝐱) = 0 

𝜕𝜇
𝛿ℒ

𝛿(𝜕𝜇𝜑(𝐱))
−

𝛿ℒ

𝛿𝜑(𝐱)
= 0 

For the sake of clarity, we use the same notation for the spinor coordinate derivative as for the 

vector coordinate derivative; the context allows us to distinguish between them 

𝜕𝜇 ≡
𝜕

𝜕𝑥𝜇
 

et us write the Lagrangian plus sources in the form 

ℒ(𝜑(𝐱)) =
1

2
[𝜕1𝜑(𝐱)𝜕2𝜑(𝐱) − 𝜕0𝜑(𝐱)𝜕3𝜑(𝐱))] − 𝑉(𝜑(𝐱))  + 𝑗(𝐱)𝜑(𝐱) 

And let's substitute the Lagrangian into the Euler equation 

𝜕0
𝛿ℒ

𝛿(𝜕0)
+ 𝜕1

𝛿ℒ

𝛿(𝜕1)
+ 𝜕2

𝛿ℒ

𝛿(𝜕2)
+ 𝜕3

𝛿ℒ

𝛿(𝜕3)
−
𝛿ℒ

𝛿𝜑
= 0 

1

2
[−𝜕0(𝜕3𝜑(𝐱)) +  𝜕1(𝜕2𝜑(𝐱)) + 𝜕2(𝜕1𝜑(𝐱))− 𝜕3(𝜕0𝜑(𝐱))] −

𝛿ℒ

𝛿𝜑
= 0 

For the case of a free field the derivative operators commute, so we can write 

𝜕1𝜕2𝜑(𝐱) − 𝜕0𝜕3𝜑(𝐱) − (
𝛿ℒ

𝛿𝜑
) = 0 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
)𝜑(𝐱) − (

𝛿ℒ

𝛿𝜑
) = 0 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
)𝜑(𝐱) − (

𝛿𝑉(𝜑)

𝛿𝜑
) = 0 

It is pleasant that the Euler equation in invariant form works also in this situation, so that we 

obtain the desired form of the equation of motion in the spinor coordinate space. It is important that 
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the proposed Lagrangian has a relativistically invariant form, even in the general case, and not only 

at commuting derivatives. The polynomial has the form  

𝑉(𝜑) =
1

2
𝑚𝜑(𝐱)2 +

𝑔

3!
𝜑(𝐱)3 +

𝜆

4!
𝜑(𝐱)4 +⋯ 

In the case of a free field we restrict ourselves to the first term of the polynomial 

𝑉(𝜑) =
1

2
 𝑚𝜑(𝐱)2 

Then the Lagrangian density and the equation of motion for the scalar field in spinor coordinate 

space have the form 

ℒ(𝜑(𝐱)) =
1

2
[𝜕1𝜑(𝐱)𝜕2𝜑(𝐱) − 𝜕0𝜑(𝐱)𝜕3𝜑(𝐱))] −

1

2
 𝑚𝜑(𝐱)2 

1

2
(𝜕1𝜕2 + 𝜕2𝜕1 − 𝜕0𝜕3 − 𝜕3𝜕0)𝜑(𝐱) + 𝑚𝜑(𝐱) = 0 

For a free field when the derivative operators commute, we obtain 

(𝜕1𝜕2 − 𝜕0𝜕3)𝜑(𝐱) + 𝑚𝜑(𝐱) = 0 

In the spinor equation of motion there is a plus sign before the mass, although in the rest of the 

paper there was a minus sign. To return to the minus sign it is enough to put a plus sign in front of 

the polynomial 𝑉(𝜑) in the Lagrangian. 

Now we have to find the path integral, which, along with the Lagrangian, includes the sources 

𝑍(𝑗) = ∫𝐷𝜑(𝐱) 𝑒𝑥𝑝 (𝑖 ∫ 𝑑4𝑥{ℒ(𝜑(𝐱)) + 𝑗(𝐱)𝜑(𝐱)})

= ∫𝐷𝜑(𝐱) 𝑒𝑥𝑝 (𝑖 ∫𝑑4𝑥 { 
1

2
[𝜕1𝜑(𝐱)𝜕2𝜑(𝐱) − 𝜕0𝜑(𝐱)𝜕3𝜑(𝐱))] −

1

2
𝑚𝜑(𝐱)2

+ 𝑗(𝐱)𝜑(𝐱)}) 

The components of spinors are complex, and we have already noted that the derivatives on 

complex variables are applied to the degree functions, which, most likely, can describe physical fields, 

respectively, the finding of an indefinite integral for the function of a complex variable can be treated 

similarly, i.e. as an indefinite integral from the degree function.  

It is possible to recover Planck's constant, which provides a transition to the classical limit 

𝑍(𝑗) = ∫𝐷𝜑(𝐱) 𝑒𝑥𝑝 (
𝑖

ℏ
∫𝑑4𝑥ℒ(𝜑(𝐱)) 

One of the steps in computing the path integral in [9] is to find the free propagator from Eq. 

−(𝜕2 +𝑚2)𝐷(𝐗 − 𝐘) = 𝛿(𝐗 − 𝐘) 

the solution of which has the form 

𝐷(𝐗 − 𝐘) = ∫
𝑑4𝑃

(2𝜋)4
𝑒𝑖𝐏(𝐗−𝐘)

  𝑃2 −𝑚2 + 𝑖𝜀  
 

herewith 

𝛿(𝐗 − 𝐘) = ∫
𝑑4𝑃

(2𝜋)4
𝑒𝑖𝐏(𝐗−𝐘) 

In our case, we want to find 

𝑍(𝑗) = ∫𝐷𝜑(𝐱) 𝑒𝑥𝑝 (𝑖 ∫𝑑4𝑥 { 
1

2
[𝜕1𝜑(𝐱)𝜕2𝜑(𝐱) − 𝜕0𝜑(𝐱)𝜕3𝜑(𝐱))] −

1

2
𝑚𝜑(𝐱)2 + 𝑗(𝐱)𝜑(𝐱)}) 
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After integration by parts by analogy with [[9], Chapter 1.3] we obtain for the special case of a 

free field 

𝑍(𝑗) = ∫𝐷𝜑(𝐱) 𝑒𝑥𝑝 (𝑖 ∫𝑑4𝑥 {− 
1

2
𝜑(𝐱)[(𝜕1𝜕2 − 𝜕0𝜕3) + 𝑚]𝜑(𝐱) + 𝑗(𝐱)𝜑(𝐱)}) 

In the process of calculation, it is necessary to find the solution of the equation 

−(𝜕1𝜕2 − 𝜕0𝜕3 +𝑚)𝐷(𝐱 − 𝐲) = 𝛿(𝐱 − 𝐲) 

For this purpose, we pass to the momentum space by means of the integral transformation 

𝜑(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝜑(𝐩)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

The assumed propagator has the form 

𝐷(𝐱 − 𝐲) = ∫
𝑑4𝑝

(2𝜋)4
 
   𝑒𝑖(𝑝0(𝑥1−𝑦1)−𝑝1(𝑥0−𝑦0)+𝑝2(𝑥3−𝑦3)−𝑝3(𝑥2−𝑦2)+(𝐩,𝐱−𝐲)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)   

(𝑝1𝑝2 − 𝑝0𝑝3) − 𝑚
 

which is verified by substitution into Eq. Here it is assumed that the representation of the delta 

function 

𝛿(𝐱 − 𝐲) = ∫
𝑑4𝑝

(2𝜋)4
 𝑒𝑖(𝑝0(𝑥1−𝑦1)−𝑝1(𝑥0−𝑦0)+𝑝2(𝑥3−𝑦3)−𝑝3(𝑥2−𝑦2)+(𝐩,𝐱−𝐲)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

We added a conjugate phase to the exponent 

(𝐩, 𝐱)̅̅ ̅̅ ̅̅ ̅ = 𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0 ̅̅ ̅̅ ̅̅ ̅ + 𝑝2𝑥3 ̅̅ ̅̅ ̅̅ ̅ − 𝑝3𝑥2 ̅̅ ̅̅ ̅̅ ̅ 

which, on the one hand, provides convergence of the integral, and on the other hand, it does not affect 

the result of differentiation on variables 𝑥𝜇. 

We note at once that there is no simple correspondence between the so defined phase of a plane 

wave in spinor space and the phase of a plane wave in vector space, e.g. 

 (𝑝0(𝑥1 − 𝑦1) − 𝑝1(𝑥0 − 𝑦0) + 𝑝2(𝑥3 − 𝑦3) − 𝑝3(𝑥2 − 𝑦2) + (𝐩, 𝐱 − 𝐲)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2
≠ 𝑃0𝑋0 − 𝑃1𝑋1 − 𝑃2𝑋2 − 𝑃3𝑋3 

but both parts of the inequality are invariant under Lorentz transformations. 

One can see the difference between the propagators, since in one case 𝑚2 is real and positive, 

while in spinor space m is complex in general. We can use the relation 

1   

(𝑝1𝑝2 − 𝑝0𝑝3) − 𝑚
=

(𝑝1𝑝2 − 𝑝0𝑝3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑚̅   

((𝑝1𝑝2 − 𝑝0𝑝3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑚̅  )((𝑝1𝑝2 − 𝑝0𝑝3) − 𝑚  )
=

(𝑝1𝑝2 − 𝑝0𝑝3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑚̅  

  𝑃2 −𝑚2 + (𝑚̅ − 𝑚)(𝑝1𝑝2 − 𝑝0𝑝3)

=
(𝑝1𝑝2 − 𝑝0𝑝3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑚̅  

  𝑃2 −𝑚2
 

where 

  𝑃2 ≡ 𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 

in which it is taken into account that the fermion mass is real. Now the propagator has the form 

𝐷(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
(𝑝1𝑝2 − 𝑝0𝑝3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑚̅  

  𝑃2 −𝑚2
𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

The derivatives of the scalar field on spinor coordinates can be expressed through the derivatives 

on vector coordinates 

𝜕0𝜑(𝐱) =
𝜕𝜑(𝐱)

𝜕𝑥0
=
𝜕𝜑(𝐗(𝐱))

𝜕𝑥0

=
𝜕𝜑(𝐗(𝐱))

𝜕𝑋0

𝜕𝑋0(𝐱)

𝜕𝑥0
+
𝜕𝜑(𝐗(𝐱))

𝜕𝑋1

𝜕𝑋1(𝐱)

𝜕𝑥0
+
𝜕𝜑(𝐗(𝐱))

𝜕𝑋2

𝜕𝑋2(𝐱)

𝜕𝑥0
+
𝜕𝜑(𝐗(𝐱))

𝜕𝑋3

𝜕𝑋3(𝐱)

𝜕𝑥0

=
𝜕𝜑

𝜕𝑋0

𝑥0̅̅ ̅

2
+
𝜕𝜑

𝜕𝑋1

𝑥1̅̅̅

2
+
𝜕𝜑

𝜕𝑋2

𝑖𝑥1̅̅̅

2
+
𝜕𝜑

𝜕𝑋3

𝑥0̅̅ ̅

2
 

𝜕0𝜑(𝐱) =
𝜕𝜑

𝜕𝑋0

𝑥0̅̅ ̅

2
+
𝜕𝜑

𝜕𝑋1

𝑥1̅̅̅

2
+
𝜕𝜑

𝜕𝑋2

𝑖𝑥1̅̅̅

2
+
𝜕𝜑

𝜕𝑋3

𝑥0̅̅ ̅

2
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𝜕1𝜑(𝐱) =
𝜕𝜑

𝜕𝑋0

𝑥1̅̅̅

2
+
𝜕𝜑

𝜕𝑋1

𝑥0̅̅ ̅

2
−
𝜕𝜑

𝜕𝑋2

𝑖𝑥0̅̅ ̅

2
−
𝜕𝜑

𝜕𝑋3

𝑥1̅̅̅

2
 

𝜕2𝜑(𝐱) =
𝜕𝜑

𝜕𝑋0

𝑥2̅̅ ̅

2
+
𝜕𝜑

𝜕𝑋1

𝑥3̅̅ ̅

2
+
𝜕𝜑

𝜕𝑋2

𝑖𝑥3̅̅ ̅

2
+
𝜕𝜑

𝜕𝑋3

𝑥2̅̅ ̅

2
 

𝜕3𝜑(𝐱) =
𝜕𝜑

𝜕𝑋0

𝑥3̅̅ ̅

2
+
𝜕𝜑

𝜕𝑋1

𝑥2̅̅ ̅

2
−
𝜕𝜑

𝜕𝑋2

𝑖𝑥2̅̅ ̅

2
−
𝜕𝜑

𝜕𝑋3

𝑥3̅̅ ̅

2
 

If in the right part to represent the wave function as a plane wave in vector space 

𝜑(𝐗) = 𝑒𝑥𝑝(𝑃0𝑋0 − 𝑃1𝑋1 − 𝑃2𝑋2 − 𝑃3𝑋3) 

then in the left part it should be represented as a plane wave of a special form in spinor space 

𝜑(𝐱) = 𝑒𝑥𝑝 ((𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2)) 

Only in this case the left and right parts will be dimensionally consistent, e.g. 

𝜕1𝜑(𝐱) = (𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )𝑝0 

𝜕𝜑

𝜕𝑋0

𝑥0̅̅ ̅

2
= 𝑃0

𝑥0̅̅ ̅

2
=
1

4
(𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3)𝑥0̅̅ ̅ 

In any case, a complete coincidence will not be obtained due to the mismatch of dimensionless 

exponents of the exponents 

(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2) ≠ 𝑃0𝑋0 − 𝑃1𝑋1 − 𝑃2𝑋2 − 𝑃3𝑋3 

Since we call the field under consideration a scalar field, we expect its value to be invariant to 

Lorentz transformations. But how to formalize this statement and to what exactly does this 

transformation apply? We propose to consider that the value of a scalar field is the scalar product of 

the representatives of a spinor field, which is the most fundamental field in nature, and vectors, 

tensors and, among others, scalars are formed from the spinors representing it. The scalar product is 

defined by means of the metric tensor of the spinor space. From any two spinors we can obtain a 

scalar, in general the complex case. But if we want to obtain a scalar with real values, we must impose 

some restrictions on the original spinors. For example, to any spinor u we can correspond a scalar U 

taking real values, whose value does not change under the action of the Lorentz transformation on 

the spinor and the action of the same transformation on the conjugate spinor 

𝑈 = −𝑖(𝐮𝑻𝛴𝑀𝑀𝐮̅) = 𝐮𝑻𝑆2𝐮̅ = (𝑁 ∗ 𝐮)𝑻𝑆2(𝑁 ∗ 𝐮̅) 

𝑈 = −𝑖(𝑢0 ∗ 𝑢1̅̅ ̅ − 𝑢1 ∗ 𝑢0̅̅ ̅ + 𝑢2 ∗ 𝑢3̅̅ ̅ − 𝑢3 ∗ 𝑢2̅̅ ̅) 

When a spinor and its conjugate spinor are simultaneously rotated or boosted by some angle, 

the scalar undergoes a rotation or boost by zero angle.  

We can find the derivatives of the scalar by the components of the coordinate spinor 

𝜕𝑈(𝐱)

𝜕𝑥𝜇
= (

𝜕𝐮(𝐱)

𝜕𝑥𝜇
)

𝑻

𝑆2 𝐮̅ + 𝐮(𝐱)
𝑻𝑆2 (

𝜕𝐮(𝐱)̅̅ ̅̅ ̅̅

𝜕𝑥𝜇
) 

The components of the coordinate spinor are complex quantities, the derivative on them is taken 

formally, since physical fields can be represented by power functions of the components of the 

coordinate spinor and its conjugate.  

What are the advantages of the transition from path integral in vector space to path integral in 

spinor space? A possible answer is that there are new conditions for working with divergent integrals. 

Now integration is performed over spinor space, so that in the numerator there is a four-dimensional 
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differential element 𝑑4𝑝 instead of element 𝑑4𝑃 in the case of vector space. The spinor element has 

the order of magnitude 𝑃2  instead of 𝑃4  for the vector element, whish decreases the order of 

magnitude of the numerator, while the order of magnitude  of the denominator does not change. 

If the spinor coordinate space is indeed more fundamental, and the vector coordinate space is 

an offspring of it, then we ma y benefit from this transition in any case. 

Now let us move from the scalar field to the field of an electron, that is, the field of a particle 

with half-integer spin. We will use gamma matrices in the Weyl basis 

𝛾0
𝑉 = (

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

)                𝛾1
𝑉 = (

0 0
0 0

0 1
1 0

0 −1
−1 0

0 0
0 0

) 

  𝛾2
𝑉 = (

0 0
0 0

0 −𝑖
𝑖 0

0 𝑖
−𝑖 0

0 0
0 0

)             𝛾3
𝑉 = (

0 0
0 0

1 0
0 −1

−1 0
0 1

0 0
0 0

) 

Let us consider the linear combination of these matrices with components of the momentum 

vector as coefficients, substituting the expressions of the vector components through the components 

of the momentum spinor 

𝛾0
𝑉𝑃0 + 𝛾1

𝑉𝑃1 + 𝛾2
𝑉𝑃2 + 𝛾3

𝑉𝑃3 = 

(

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

)𝑃0 + (

0    0
0    0

0 1
1 0

0 −1
−1    0

0 0
0 0

)𝑃1 + (

0    0
0    0

0 −𝑖
𝑖 0

0 𝑖
−𝑖    0

0 0
0 0

)𝑃2 + (

0   0
0   0

1   0
0 −1

−1 0
0 1

0   0
0   0

)𝑃3 = 

(

0    0
0    0

 
𝑃0 + 𝑃3   𝑃1 − 𝑖𝑃2
𝑃1 + 𝑖𝑃2   𝑃0 − 𝑃3

  
𝑃0 − 𝑃3   −𝑃1 + 𝑖𝑃2
−𝑃1 − 𝑖𝑃2   𝑃0 + 𝑃3

0    0
0    0

) = 

(

0    0
0    0

 
   𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2 −𝑝0̅̅ ̅𝑝1 − 𝑝2̅̅ ̅𝑝3
−𝑝1̅̅̅𝑝0 − 𝑝3̅̅ ̅𝑝2   𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3

  
𝑝1̅̅̅𝑝1 + 𝑝3̅̅ ̅𝑝3   𝑝0̅̅ ̅𝑝1 + 𝑝2̅̅ ̅𝑝3
𝑝1̅̅̅𝑝0 + 𝑝3̅̅ ̅𝑝2   𝑝0̅̅ ̅𝑝0 + 𝑝2̅̅ ̅𝑝2

0    0
0    0

) = 

(

0    0
0    0

 
𝑝0̅̅ ̅𝑝0   −𝑝0̅̅ ̅𝑝1
−𝑝1̅̅̅𝑝0   𝑝1̅̅̅𝑝1

  
𝑝1̅̅̅𝑝1   𝑝0̅̅ ̅𝑝1
𝑝1̅̅̅𝑝0   𝑝0̅̅ ̅𝑝0

0    0
0    0

) + (

0    0
0    0

 
𝑝2̅̅ ̅𝑝2   −𝑝2̅̅ ̅𝑝3
−𝑝3̅̅ ̅𝑝2   𝑝3̅̅ ̅𝑝3

  
𝑝3̅̅ ̅𝑝3   𝑝2̅̅ ̅𝑝3
𝑝3̅̅ ̅𝑝2   𝑝2̅̅ ̅𝑝2

0    0
0    0

) = 

(

0    0
0    0

 
𝑝0̅̅ ̅𝑝0   −𝑝0̅̅ ̅𝑝1
−𝑝1̅̅̅𝑝0   𝑝1̅̅̅𝑝1

  
𝑝1𝑝1̅̅̅ − [𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1]   𝑝1𝑝0̅̅ ̅ − [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

𝑝0𝑝1̅̅̅ − [𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   𝑝0𝑝0̅̅ ̅ − [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0]
0    0
0    0

) + 

(

0    0
0    0

 
𝑝2̅̅ ̅𝑝2   −𝑝2̅̅ ̅𝑝3
−𝑝3̅̅ ̅𝑝2   𝑝3̅̅ ̅𝑝3

  
𝑝3𝑝3̅̅ ̅ − [𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3]   𝑝3𝑝2̅̅ ̅ − [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

𝑝2𝑝3̅̅ ̅ − [𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   𝑝2𝑝2̅̅ ̅ − [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2]
0    0
0    0

) = 

(

0    0
0    0

 
𝑝0̅̅ ̅𝑝0   −𝑝0̅̅ ̅𝑝1
−𝑝1̅̅̅𝑝0   𝑝1̅̅̅𝑝1

  
𝑝1𝑝1̅̅̅   𝑝1𝑝0̅̅ ̅
𝑝0𝑝1̅̅̅   𝑝0𝑝0̅̅ ̅

0    0
0    0

) + (

0    0
0    0

 
𝑝2̅̅ ̅𝑝2   −𝑝2̅̅ ̅𝑝3
−𝑝3̅̅ ̅𝑝2   𝑝3̅̅ ̅𝑝3

  
𝑝3𝑝3̅̅ ̅   𝑝3𝑝2̅̅ ̅
𝑝2𝑝3̅̅ ̅   𝑝2𝑝2̅̅ ̅

0    0
0    0

) = 

−(

0    0
0    0

 
0    0
0    0

  
[𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1]   [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

[𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0]
0    0
0    0

) − (

0    0
0    0

 
0    0
0    0

  
[𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3]   [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

[𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2]
0    0
0    0

) 

≡ 𝑆𝑉(𝐩) − 𝐾𝑉(𝐩) 
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Let us represent the matrix 𝑆𝑉(𝐩) as a sum of direct products of spinors 

𝑆𝑉(𝐩) = (

0
 0
𝑝1
𝑝0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) + (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (0,0, 𝑝0, −𝑝1) + (

0
 0
𝑝3
𝑝2

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) + (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (0,0, 𝑝2, −𝑝3) 

For a free field the components of the momentum spinor commute, therefore 

𝛾0
𝑉𝑃0 + 𝛾1

𝑉𝑃1 + 𝛾2
𝑉𝑃2 + 𝛾3

𝑉𝑃3 = 𝑆𝑉(𝐩) 

Complex mass 

𝑚 = 𝑝1𝑝2 − 𝑝0𝑝3 

does not change at rotations and boosts for an arbitrary complex spinor. Moreover, by a direct check 

it is possible to check that for an arbitrary spinor 

𝑆𝑉(𝐩)𝑆𝑉(𝐩) = 𝑚̅𝑚𝐼 = 𝑚2𝐼 

For a free field, when all components of the momentum spinor commute, we can write the 

relativistic equation of motion of the fermionic field 

𝑆𝑉𝑆𝑉𝛗(𝐱) = 𝑚̅𝑚𝐼𝛗(𝐱) 

Where the matrix of derivatives 𝑆𝑉 is obtained from the matrix 𝑆𝑉(𝐩) by substitutions 

𝑝1 → −𝜕0        𝑝0 → 𝜕1       𝑝3 → −𝜕2         𝑝2 → 𝜕3 

𝑝1̅̅̅ → −𝜕0̅̅ ̅        𝑝0̅̅ ̅ → 𝜕1̅       𝑝3̅̅ ̅ → −𝜕2̅̅ ̅        𝑝2̅̅ ̅ → 𝜕3̅̅ ̅ 

𝜕𝜇̅̅ ̅𝜑(𝐱) ≡
𝜕𝜑(𝐱)̅̅ ̅̅ ̅̅

𝜕𝑥𝜇̅̅ ̅
 

𝑆𝑉 = (

0
 0
−𝜕0
𝜕1

)(−𝜕0̅̅ ̅, 𝜕1̅, 0,0) + (

𝜕1̅
𝜕0̅̅ ̅

0
0

) (0,0, 𝜕1, 𝜕0) + (

0
 0
−𝜕2
𝜕3

)(−𝜕2̅̅ ̅, 𝜕3̅̅ ̅, 0,0) + (

𝜕3̅̅ ̅

𝜕2̅̅ ̅

0
0

) (0,0, 𝜕3, 𝜕2) 

However, it is generally accepted to write for this field another equation, the Dirac equation, 

which does not possess the invariance property anymore 

(𝑆𝑉 −𝑚𝐼)𝛗(𝐱) = 0 

And for the more general case, when the momentum components do not commute, we need to 

write the equation  

(𝑆𝑉 − 𝐾𝑉 −𝑚𝐼)𝛗(𝐱) = 0 

𝐾𝑉(𝐩) = (

0    0
0    0

 
0    0
0    0

  
[𝑝1𝑝1̅̅̅ − 𝑝1̅̅̅𝑝1]   [𝑝1𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝1]

[𝑝0𝑝1̅̅̅ − 𝑝1̅̅̅𝑝0]   [𝑝0𝑝0̅̅ ̅ − 𝑝0̅̅ ̅𝑝0]
0    0
0    0

) + (

0    0
0    0

 
0    0
0    0

  
[𝑝3𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝3]   [𝑝3𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝3]

[𝑝2𝑝3̅̅ ̅ − 𝑝3̅̅ ̅𝑝2]   [𝑝2𝑝2̅̅ ̅ − 𝑝2̅̅ ̅𝑝2]
0    0
0    0

) 

𝐾𝑉 =

(

 

0    0
0    0

 
0    0
0    0

  
[𝜕0𝜕0̅̅ ̅ − 𝜕0̅̅ ̅𝜕0]   [−𝜕0𝜕1̅ + 𝜕1̅𝜕0]

[−𝜕1𝜕0̅̅ ̅ + 𝜕0̅̅ ̅𝜕1]   [𝜕1𝜕1̅ − 𝜕1̅𝜕1]

0    0
0    0)

 

+

(

 

0    0
0    0

 
0    0
0    0

  
[𝜕2𝜕2̅̅ ̅ − 𝜕2̅̅ ̅𝜕2]   [−𝜕2𝜕3̅̅ ̅ + 𝜕3̅̅ ̅𝜕2]

[−𝜕3𝜕2̅̅ ̅ + 𝜕2̅̅ ̅𝜕3]   [𝜕3𝜕3̅̅ ̅ − 𝜕3̅̅ ̅𝜕3]

0    0
0    0)

  

Further we will consider the equation of motion for a free field 

(𝑆𝑉 −𝑚𝐼)𝛗(𝐱) = 0 
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We again want to find the path integral 

𝑍(𝑗) = ∫𝐷𝜑(𝐱) 𝑒𝑥𝑝 (𝑖 ∫𝑑4𝑥{ℒ(𝜑(𝐱)) + 𝑗(𝐱)𝜑(𝐱)}) 

for which we need the Lagrangian, from which the Euler equation is derived equation of motion 

(𝑆𝑉 −𝑚𝐼)𝛗(𝐱) = 0 

It is suggested to use the Lagrangian 

ℒ =
1

2
𝛗(𝐱)𝑇𝑆𝑉𝛗(𝐱) −

1

2
𝑚𝛗(𝐱)𝑇𝛗(𝐱) 

Let us substitute the Lagrangian into the Euler equation and obtain the equation of motion 

𝜕0
𝛿ℒ

𝛿(𝜕0)
+ 𝜕1

𝛿ℒ

𝛿(𝜕1)
+ 𝜕2

𝛿ℒ

𝛿(𝜕2)
+ 𝜕3

𝛿ℒ

𝛿(𝜕3)
−
𝛿ℒ

𝛿𝜑
= 0 

1

2
𝑆𝑉𝛗(𝐱) + 𝑚𝛗(𝐱) = 0 

Since the Lagrangian includes, along with the derivatives of 𝜕𝜇, the derivatives of 𝜕𝜇̅̅ ̅, it is logical 

to use a different definition of Euler's equation 

𝜕0
𝛿ℒ

𝛿(𝜕0)
+ 𝜕0̅̅ ̅

𝛿ℒ

𝛿(𝜕0̅̅ ̅)
+ 𝜕1

𝛿ℒ

𝛿(𝜕1)
+ 𝜕1̅

𝛿ℒ

𝛿(𝜕1̅)
+ 𝜕2

𝛿ℒ

𝛿(𝜕2)
+ 𝜕2̅̅ ̅

𝛿ℒ

𝛿(𝜕2̅̅ ̅)
+ 𝜕3

𝛿ℒ

𝛿(𝜕3)
+ 𝜕3̅̅ ̅

𝛿ℒ

𝛿(𝜕3̅̅ ̅)
−
𝛿ℒ

𝛿𝜑
= 0 

Then for the free field case when the derivative operators commute with each other, we obtain 

the equation of motion 

𝑆𝑉𝛗(𝐱) + 𝑚𝛗(𝐱) = 0 

If the derivative operators do not commute, additional terms will appear in the equation of 

motion in the form of matrices similar to the 𝐾𝑉  matrix, and these additional terms will not 

necessarily coincide with 𝐾𝑉. In this connection it is necessary to consider the Lagrangian as more 

fundamental notion than the equation of motion and to derive the equation of motion from the 

Lagrangian, i.e. to take as a basis not the derivation of the equation of motion in momentum space, 

with what we started, but to take as an axiom the form of the Lagrangian in the form of field 

derivatives in the relativistically invariant form. Then, if to follow the invariance principle quite 

strictly, we should start from the product of two matrices, i.e. to use the Lagrangian 

ℒ =
1

2
[𝛗(𝐱)𝑇𝑆𝑉𝑆𝑉𝛗(𝐱) − 𝑚2𝛗(𝐱)𝑇𝛗(𝐱)] 

Or, not limited to fermions, 

ℒ =
1

2
[𝛗(𝐱)𝑇𝑆𝑉𝑆𝑉𝛗(𝐱) − 𝑚𝑚̅𝛗(𝐱)𝑇𝛗(𝐱)] 

Nevertheless, further we will search for the path integral in the simplest case with the originally 

proposed Lagrangian and in addition assume commutativity of all derivative operators 

𝑍(𝑗) = ∫𝐷𝜑(𝐱) 𝑒𝑥𝑝 (𝑖 ∫ 𝑑4𝑥 { 
1

2
𝛗(𝐱)𝑇𝑆𝑉𝛗(𝐱) −

1

2
𝑚𝛗(𝐱)𝑇𝛗(𝐱) + 𝐣(𝐱)𝑇𝛗(𝐱)}) 

After integration by parts, we presumably obtain 

𝑍(𝑗) = ∫𝐷𝜑(𝐱) 𝑒𝑥𝑝 (𝑖 ∫𝑑4𝑥 {− 
1

2
𝛗(𝐱)𝑇[𝑆𝑉 +𝑚𝐼]𝛗(𝐱) + 𝑗(𝐱)𝛗(𝐱)}) 

Then it is necessary to find the solution of the equation 

−(𝑆𝑉 +𝑚𝐼)𝐃(𝐱) = 𝐼𝛿(𝐱) 

For this purpose, we pass to the momentum space by means of the integral transformation 
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𝛗(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

We get the equation 

(𝑆𝑉(𝐩) − 𝑚𝐼)𝐷𝑉(𝐩) = 𝐼 

with the decision 

𝐷𝑉(𝐩) =
𝑆𝑉(𝐩) + 𝑚̅𝐼

  𝑃2 − 𝑚̅𝑚
 

Indeed 
(𝑆𝑉(𝐩) − 𝑚𝐼)(𝑆𝑉(𝐩) + 𝑚̅𝐼)

  𝑃2 − 𝑚̅𝑚
=
(𝑃2 − 𝑚̅𝑚)𝐼

  𝑃2 − 𝑚̅𝑚
= 𝐼 

Here we use the equality, which is valid for an arbitrary complex spinor 𝐩 

(𝑆𝑉(𝐩) − 𝑚𝐼)(𝑆𝑉(𝐩) + 𝑚̅𝐼) = 𝑃2𝐼 − (𝑚 − 𝑚̅)𝑆𝑉(𝐩) − 𝑚̅𝑚𝐼 = (𝑃2 −𝑚2)𝐼 

𝑃𝜇 =
1

2
𝐩†𝑆𝜇𝐩  

  𝑃2 = 𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 

It is based on the correlation verified earlier in our work 

(𝑝1𝑝2 − 𝑝0𝑝3)(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅) = 𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 

it is also taken into account that we consider fermions whose mass is real. 

As a result, the propagator has the form 

𝐷𝑉(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 
𝑆𝑉(𝐩) + 𝑚̅𝐼

  𝑃2 − 𝑚̅𝑚
𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

here we assume the validity of the relation 

𝛿(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

In the case of a fermion, the mass in integration is a fixed real quantity, and it can be considered 

negative for the electron and positive for the positron. Theoretically, the mass can be complex or 

purely imaginary. If we put mass equal to zero, it may be possible to apply this Lagrangian to describe 

massless particles. I wonder if there are particles with complex or purely imaginary mass. In the latter 

case, the square of the mass will still be positive and the particle will satisfy the Klein-Gordon 

equation. Such particles can interact among themselves, but not with particles whose mass is real. 

Let's return to the question about the use of completely relativistically invariant Lagrangian 

ℒ =
1

2
[𝛗(𝐱)𝑇𝑆𝑉𝑆𝑉𝛗(𝐱) − 𝑚2𝛗(𝐱)𝑇𝛗(𝐱)] 

Let's find the product of matrices 

𝑆𝑉(𝐩)𝑆𝑉(𝐩) = 

(

 
 
(

0
 0
𝑝1
𝑝0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) + (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (0,0, 𝑝0, −𝑝1) + (

0
 0
𝑝3
𝑝2

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) + (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (0,0, 𝑝2, −𝑝3)

)

 
 

 

(

 
 
(

0
 0
𝑝1
𝑝0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) + (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (0,0, 𝑝0, −𝑝1) + (

0
 0
𝑝3
𝑝2

)(𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) + (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (0,0, 𝑝2, −𝑝3)

)

 
 
= 

(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅) (

0
 0
𝑝1
𝑝0

)(0,0, 𝑝2, −𝑝3) + (𝑝0𝑝3 − 𝑝1𝑝2)(

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) + 

(𝑝3̅̅ ̅𝑝0̅̅ ̅ − 𝑝2̅̅ ̅𝑝1̅̅̅) (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1) + (𝑝2𝑝1 − 𝑝3𝑝0) (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) = 
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𝑚̅ (

0
 0
𝑝1
𝑝0

) (0,0, 𝑝2, −𝑝3) − 𝑚(

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) − 𝑚̅ (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1) + 𝑚(

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) = 

𝑚{(

0
 0
𝑝1
𝑝0

) (0,0, 𝑝2, −𝑝3) − (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) − (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1) + (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0)} 

≡ 𝑚𝑆𝑉𝑉(𝐩) 

The assumption that the following equalities hold is used 

𝑝1𝑝2 − 𝑝0𝑝3 = 𝑝2𝑝1 − 𝑝3𝑝0 = 𝑚 

𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅ = 𝑝2̅̅ ̅𝑝1̅̅̅ − 𝑝3̅̅ ̅𝑝0̅̅ ̅ = 𝑚̅ 

𝑚̅ = 𝑚 

Further we find the product of matrices 

𝑆𝑉𝑉(𝐩)𝑆𝑉𝑉(𝐩) = 

{(

0
 0
𝑝1
𝑝0

) (0,0, 𝑝2, −𝑝3) − (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) − (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1) + (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0)} 

{(

0
 0
𝑝1
𝑝0

) (0,0, 𝑝2, −𝑝3) − (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) − (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1) + (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0)} 

= (𝑝2𝑝1−𝑝3𝑝0)(

0
 0
𝑝1
𝑝0

) (0,0, 𝑝2, −𝑝3) + (𝑝3̅̅ ̅𝑝0̅̅ ̅ − 𝑝2̅̅ ̅𝑝1̅̅̅) (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) 

+(𝑝0𝑝3 − 𝑝1𝑝2)(

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1) + (𝑝2̅̅ ̅𝑝1̅̅̅ − 𝑝3̅̅ ̅𝑝0̅̅ ̅) (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0)

= 𝑚{(

0
 0
𝑝1
𝑝0

) (0,0, 𝑝2, −𝑝3) − (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1)}

+ 𝑚̅ {(

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) − (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0)} 

=  𝑚{(

0 0
0 0

0 0
0 0

0 0
0 0

𝑝1𝑝2 −𝑝1𝑝3
𝑝0𝑝2 −𝑝0𝑝3

) − (

0 0
0 0

0 0
0 0

0 0
0 0

𝑝3𝑝0 −𝑝3𝑝1
𝑝2𝑝0 −𝑝2𝑝1

)} 

+ 𝑚̅ {(

𝑝2̅̅ ̅𝑝1̅̅̅ 𝑝2̅̅ ̅𝑝0̅̅ ̅
−𝑝3̅̅ ̅𝑝1̅̅̅ −𝑝3̅̅ ̅𝑝0̅̅ ̅

0 0
0 0

0 0
0 0

0 0
0 0

) − (

𝑝0̅̅ ̅𝑝3̅̅ ̅ 𝑝0̅̅ ̅𝑝2̅̅ ̅
−𝑝1̅̅̅𝑝3̅̅ ̅ −𝑝1̅̅̅𝑝2̅̅ ̅

0 0
0 0

0 0
0 0

0 0
0 0

)} 

= 𝑚{(

0 0
0 0

0 0
0 0

0 0
0 0

𝑝1𝑝2 − 𝑝3𝑝0 0
0 −𝑝0𝑝3 + 𝑝2𝑝1

)} + 𝑚̅ {(

𝑝2̅̅ ̅𝑝1̅̅̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅ 0
0 −𝑝3̅̅ ̅𝑝0̅̅ ̅ + 𝑝1̅̅̅𝑝2̅̅ ̅

0 0
0 0

0 0
0 0

0 0
0 0

)} 

= (

𝑚̅𝑚̅ 0
0 𝑚̅𝑚̅

0 0
0 0

0 0
0 0

𝑚𝑚 0
0 𝑚𝑚

) 
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Again we use the equality 

(𝑝1𝑝2 − 𝑝0𝑝3)(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅) = 𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 = 𝑃2 

and consider that the mass of the fermion is real, i.e. 

𝑝1𝑝2 − 𝑝0𝑝3 = 𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅ 

(𝑝1𝑝2 − 𝑝0𝑝3)(𝑝1𝑝2 − 𝑝0𝑝3) = (𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅)(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅) = 𝑃
2 

therefore, the relations are valid 

𝑆𝑉𝑉(𝐩)𝑆𝑉𝑉(𝐩) = (

𝑃2 0
0 𝑃2

0 0
0 0

0 0
0 0

𝑃2 0
0 𝑃2

) = 𝑃2𝐼 

(𝑆𝑉𝑉(𝐩) − 𝑚𝐼)(𝑆𝑉𝑉(𝐩) + 𝑚𝐼) = 𝑃2𝐼 − 𝑚2𝐼 = (𝑃2 −𝑚2)𝐼 

(𝑆𝑉𝑉(𝐩) − 𝑚𝐼)(𝑆𝑉𝑉(𝐩) + 𝑚𝐼)

𝑃2 −𝑚2
= 𝐼 

But the main advantage of the obtained matrix is the following 

𝑆𝑉𝑉(𝐩) = (

0
 0
𝑝1
𝑝0

) (0,0, 𝑝2, −𝑝3) − (

𝑝0̅
−𝑝1̅
0
0

)(𝑝3̅, 𝑝2̅, 0,0) − (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1) + (

𝑝2̅
−𝑝3̅
0
0

) (𝑝1̅, 𝑝0̅, 0,0) = 

(

0 0
0 0

0 0
0 0

0 0
0 0

𝑝1𝑝2 −𝑝1𝑝3
𝑝0𝑝2 −𝑝0𝑝3

) − (

0 0
0 0

0 0
0 0

0 0
0 0

𝑝3𝑝0 −𝑝3𝑝1
𝑝2𝑝0 −𝑝2𝑝1

) 

+(

𝑝2̅𝑝1̅ 𝑝2̅𝑝0̅
−𝑝3̅𝑝1̅ −𝑝3̅𝑝0̅

0 0
0 0

0 0
0 0

0 0
0 0

)− (

𝑝0̅𝑝3̅ 𝑝0̅𝑝2̅
−𝑝1̅𝑝3̅ −𝑝1̅𝑝2̅

0 0
0 0

0 0
0 0

0 0
0 0

) 

= (

0 0
0 0

0 0
0 0

0 0
0 0

𝑝1𝑝2 − 𝑝3𝑝0 0
0 −𝑝0𝑝3 + 𝑝2𝑝1

) + (

𝑝2̅𝑝1̅ − 𝑝0̅𝑝3̅ 0
0 −𝑝3̅𝑝0̅ + 𝑝1̅𝑝2̅

0 0
0 0

0 0
0 0

0 0
0 0

) 

= (

𝑚̅ 0
0 𝑚̅

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

) 

This matrix does not change at rotations and boosts, so it can be stated that the equation of 

motion, e.g., in the form of 

(

 𝑆𝑉𝑉 − (

𝑚̅ 0
0 𝑚̅

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

)

)

 𝛗(𝐱) = 0 

where 

𝑆𝑉𝑉 = (

0
 0
−𝜕0
𝜕1

)(0,0, 𝜕3, 𝜕2) − (

𝜕1̅
𝜕0̅̅ ̅

0
0

) (−𝜕2̅̅ ̅, 𝜕3̅̅ ̅, 0,0) − (

0
 0
−𝜕2
𝜕3

)(0,0, 𝜕1, 𝜕0) + (

𝜕3̅̅ ̅

𝜕2̅̅ ̅

0
0

) (−𝜕0̅̅ ̅, 𝜕1̅, 0,0) 

is truly relativistically invariant, respectively we can use the invariant Lagrangian 

ℒ =
1

2
[𝛗(𝐱)𝑇𝑆𝑉𝑉𝛗(𝐱) − 𝑚𝛗(𝐱)𝑇𝛗(𝐱)] 

to which corresponds the relativistically invariant propagator of the boson having a real mass, which 

is negative for the electron and positive for the positron 
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𝐷𝑉𝑉(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 
𝑆𝑉𝑉(𝐩) + 𝑚𝐼

  𝑃2 −𝑚2
𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

Let us compare the propagator in spinor space with the propagator of the fermion given in [[9], 

formula II.2.22 and formula II.5.18] 

𝐷(𝐗) = ∫
𝑑4𝑃

(2𝜋)4
𝑒−𝑖𝐏𝐗

  𝛾𝜇𝑃𝜇 −𝑚𝐼
= ∫

𝑑4𝑃

(2𝜋)4
𝛾𝜇𝑃𝜇 +𝑚𝐼

    𝑃2 −𝑚2
𝑒−𝑖𝐏𝐗 

In [9] this formula is obtained by applying the second quantization procedure or using 

Grassmann integrals. The results are similar, but the integration here is performed in the vector 

momentum space. The Dirac equation and the corresponding Lagrangian are not relativistically 

invariant. Besides, here the mass is considered always real and positive, but then it is not clear how 

electron and positron differ from the point of view of this formula. 

Let us consider in detail the derivation of the expression for the fermion propagator in [[9], Sec. 

II.2]. It is based on the assumption of relativistic invariance of the Dirac equation and therefore the 

calculations are carried out in the rest frame, and then the result is extended to an arbitrary frame of 

reference. Thus for the field spinor u the spinor u_≡ 𝒖†𝛾0 is defined and it is asserted that the value 

of 

𝒖†𝛾0𝑢 = 𝒖† (

1 0
0 1

0 0
0 0

0 0
0 0

−1 0
0 −1

)𝑢 

is a Lorentz scalar. But it is not so, since in the spinor space the scalar is formed exclusively by the 

scalar product of two spinors, where the metric tensor of the spinor space is included     

𝒖†𝛴𝑀𝑀𝑢 = 𝒖† (

0 1
−1 0

0 0
0 0

0 0
0 0

0 1
−1 0

)𝑢 

there are no other ways to construct a scalar in the spinor space. 

Nevertheless, this fact and the fact of non-invariance of the Dirac equation itself do not cancel 

the value of the second quantization procedure and the final form of the fermion propagator, which 

allows to make accurate predictions of the experimental results. 

We hope that the proposed Lagrangian for the spinor coordinate space can find application in 

the calculation of the path integral, but already in the spinor space. Whether such a calculation in 

spinor space has an advantage over the calculation of the path integral in vector space can be shown 

by their real comparison. 

By analogy with the propagator of a photon, more precisely of a massive vector meson, given in 

[[9], formula I.5.3] 

𝐷𝜈𝜆(𝐗) = ∫
𝑑4𝑃

(2𝜋)4
   −𝜂𝜈𝜆 + 𝑃𝜈𝑃𝜆/𝑚

2  

𝑃2 −𝑚2
𝑒𝑖𝐏𝐗 

we can assume the propagator form in the spinor space without revealing for compactness the 

expression of the momentum vector components through the momentum spinor components 

𝐷𝜈𝜆(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
−𝜂𝜈𝜆 + 𝑃𝜈𝑃𝜆/𝑚

2

    𝑃2 − 𝑚̅𝑚  
𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

Among other things, the equation 

(

 𝑆𝑉𝑉 − (

𝑚̅ 0
0 𝑚̅

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

)

)

 𝛗(𝐱) = 0 

can be modified to take into account the electromagnetic potential, the electron charge is taken as a 

unit 
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𝑝0 → 𝜕1 + 𝑎0           𝑝1 → −𝜕0 + 𝑎1           𝑝2 → 𝜕3 + 𝑎2          𝑝3 → −𝜕2 + 𝑎3 

𝑝0̅̅ ̅ → 𝜕1̅ + 𝑎0̅̅ ̅         𝑝1̅̅̅ → −𝜕0̅̅ ̅ + 𝑎1̅̅ ̅          𝑝2̅̅ ̅ → 𝜕3̅̅ ̅ + 𝑎2̅̅ ̅         𝑝3̅̅ ̅ → −𝜕2̅̅ ̅ + 𝑎3̅̅ ̅ 

𝑆𝑉𝑉 = (

0
 0

−𝜕0 + 𝑎1
𝜕1 + 𝑎0

) (0,0, 𝜕3 + 𝑎2, 𝜕2 − 𝑎3) − (

𝜕1̅ + 𝑎0̅̅ ̅

𝜕0̅̅ ̅ − 𝑎1̅̅ ̅
0
0

) (−𝜕2̅̅ ̅ + 𝑎3̅̅ ̅, 𝜕3̅̅ ̅ + 𝑎2̅̅ ̅, 0,0)

− (

0
 0

−𝜕2 + 𝑎3
𝜕3 + 𝑎2

)(0,0, 𝜕1 + 𝑎0, 𝜕0 − 𝑎1) + (

𝜕3̅̅ ̅ + 𝑎2̅̅ ̅

𝜕2̅̅ ̅ − 𝑎3̅̅ ̅
0
0

) (−𝜕0̅̅ ̅ + 𝑎1̅̅ ̅, 𝜕1̅ + 𝑎0̅̅ ̅, 0,0) 

and apply, in particular, to analyze the radiation spectrum of a hydrogen-like atom.  

Let us formulate again the difference between the equations, the second of which is derived from 

the Dirac equation with gamma matrices in the Weyl basis 

(

 𝑆𝑉𝑉 − (

𝑚̅ 0
0 𝑚̅

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

)

)

 𝛗(𝐱) = 0 

(𝑆𝑉 −𝑚𝐼)𝛗(𝐱) = 0 

The difference is, the matrix 𝑆𝑉𝑉(𝐩) (p) remains unchanged under any rotations and boosts 

applied to the spinor 𝐩, while the matrix 𝑆𝑉(𝐩) (p) changes under any rotations and boosts. 

𝑆𝑉 = (

0
 0
−𝜕0
𝜕1

)(−𝜕0̅̅ ̅, 𝜕1̅, 0,0) + (

𝜕1̅
𝜕0̅̅ ̅

0
0

) (0,0, 𝜕1, 𝜕0) + (

0
 0
−𝜕2
𝜕3

)(−𝜕2̅̅ ̅, 𝜕3̅̅ ̅, 0,0) + (

𝜕3̅̅ ̅

𝜕2̅̅ ̅

0
0

) (0,0, 𝜕3, 𝜕2) 

𝑆𝑉𝑉 = (

0
 0
−𝜕0
𝜕1

)(0,0, 𝜕3, 𝜕2) − (

𝜕1̅
𝜕0̅̅ ̅

0
0

) (−𝜕2̅̅ ̅, 𝜕3̅̅ ̅, 0,0) − (

0
 0
−𝜕2
𝜕3

)(0,0, 𝜕1, 𝜕0) + (

𝜕3̅̅ ̅

𝜕2̅̅ ̅

0
0

) (−𝜕0̅̅ ̅, 𝜕1̅, 0,0) 

Equally radically different are the corresponding Lagrangians and propagators. 

By analogy with [9, Chapter II.2] we will carry out the procedure of second quantization of the 

fermion field. Let us write the equation 

(

 𝑆𝑉𝑉 − (

𝑚̅ 0
0 𝑚̅

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

)

)

 𝛗(𝐱) = 0 

in the momentum space, for which we apply the integral transformation 

𝛗(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2) 

Let's substitute the wave function into the equation and obtain 

(

 𝑆𝑉𝑉(𝐩) − (

𝑚̅ 0
0 𝑚̅

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

)

)

 𝛗(𝐩) = 0 

𝑆𝑉𝑉(𝐩) = (

0
 0
𝑝1
𝑝0

) (0,0, 𝑝2, −𝑝3) − (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) − (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1) + (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0) 

Let us define two sets of four reference spinors 

     𝐮𝟏 = (

0
 0
𝑝1
𝑝0

)      𝐮𝟐 = (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

)       𝐮𝟑 = (

0
 0
𝑝3
𝑝2

)      𝐮𝟒 = (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) 
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     𝐯𝟏 = (

𝑝1
𝑝0
0
0

)      𝐯𝟐 = (

0
0
𝑝0̅̅ ̅
−𝑝1̅̅̅

)       𝐯𝟑 = (

𝑝3
𝑝2
0
0

)      𝐯𝟒 = (

0
0
𝑝2̅̅ ̅
−𝑝3̅̅ ̅

) 

𝐯𝟏 = 𝛾0
𝑉𝐮𝟏       𝐯𝟐 = 𝛾0

𝑉𝐮𝟐       𝐯𝟑 = 𝛾0
𝑉𝐮𝟑       𝐯𝟒 = 𝛾0

𝑉𝐮𝟒 

where 

𝛾0
𝑉 = (

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

) 

And let's express the matrix through them 

𝑆𝑉𝑉(𝐩) = (

0
 0
𝑝1
𝑝0

) (0,0, 𝑝2, −𝑝3) − (

𝑝0̅̅ ̅
−𝑝1̅̅̅
0
0

) (𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 0,0) − (

0
 0
𝑝3
𝑝2

) (0,0, 𝑝0, −𝑝1) + (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
0
0

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 0,0)

= 𝐮𝟏(𝐩)𝐯𝟒+(𝐩) − 𝐮𝟐(𝐩)𝐯𝟑+(𝐩) − 𝐮𝟑(𝐩)𝐯𝟐+(𝐩) + 𝐮𝟒(𝐩)𝐯𝟏+(𝐩) 

Developing the idea of invariance, we pass to the set of reference spinors with wider filling, but 

continuing to form matrices possessing the invariance property 

     𝐮𝟏 = (

−𝑝3
−𝑝2
𝑝1
𝑝0

)      𝐮𝟐 = (

𝑝2
−𝑝3
𝑝0
−𝑝1

)       𝐮𝟑 = (

−𝑝1
−𝑝0
𝑝3
𝑝2

)      𝐮𝟒 = (

𝑝0
−𝑝1
𝑝2
−𝑝3

) 

     𝐯𝟏 = (

𝑝1
𝑝0
𝑝3
𝑝2

)        𝐯𝟐 = (

𝑝0
−𝑝1
−𝑝2
𝑝3

)        𝐯𝟑 = (

𝑝3
𝑝2
𝑝1
𝑝0

)        𝐯𝟒 = (

𝑝2
−𝑝3
−𝑝0
𝑝1

) 

Let's express through the reference spinors the matrix 

𝑆𝑅(𝐩) = (

−𝑝3
−𝑝2
𝑝1
𝑝0

)(𝑝0, −𝑝1, 𝑝2, −𝑝3) − (

−𝑝1
−𝑝0
𝑝3
𝑝2

)(𝑝2, −𝑝3, 𝑝0, −𝑝1) 

+(

𝑝1
𝑝0
𝑝3
𝑝2

) (𝑝2, −𝑝3, −𝑝0, 𝑝1) − (

𝑝3
𝑝2
𝑝1
𝑝0

) (𝑝0, −𝑝1, −𝑝2, 𝑝3) 

= 𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) − 𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) + 𝐯𝟏(𝐩)𝐯𝟒𝑻(𝐩) − 𝐯𝟑(𝐩)𝐯𝟐𝑻(𝐩) 

𝑆𝑅(𝐩) = (

−𝑝3
−𝑝2
𝑝1
𝑝0

)(𝑝0, −𝑝1, 𝑝2, −𝑝3) − (

−𝑝1
−𝑝0
𝑝3
𝑝2

)(𝑝2, −𝑝3, 𝑝0, −𝑝1) 

+(

𝑝1
𝑝0
𝑝3
𝑝2

) (𝑝2, −𝑝3, −𝑝0, 𝑝1) − (

𝑝3
𝑝2
𝑝1
𝑝0

) (𝑝0, −𝑝1, −𝑝2, 𝑝3) 

= (

−𝑝3𝑝0 𝑝3𝑝1
−𝑝2𝑝0 𝑝2𝑝1

−𝑝3𝑝2 𝑝3𝑝3
−𝑝2𝑝2 𝑝2𝑝3

𝑝1𝑝0 −𝑝1𝑝1
𝑝0𝑝0 −𝑝0𝑝1

𝑝1𝑝2 −𝑝1𝑝3
𝑝0𝑝2 −𝑝0𝑝3

) − (

−𝑝1𝑝2 𝑝1𝑝3
−𝑝0𝑝2 𝑝0𝑝3

−𝑝1𝑝0 𝑝1𝑝1
−𝑝0𝑝0 𝑝0𝑝1

𝑝3𝑝2 −𝑝3𝑝3
𝑝2𝑝2 −𝑝2𝑝3

𝑝3𝑝0 −𝑝3𝑝1
𝑝2𝑝0 −𝑝2𝑝1

) 

+(

𝑝1𝑝2 −𝑝1𝑝3
𝑝0𝑝2 −𝑝0𝑝3

−𝑝1𝑝0 𝑝1𝑝1
−𝑝0𝑝0 𝑝0𝑝1

𝑝3𝑝2 −𝑝3𝑝3
𝑝2𝑝2 −𝑝2𝑝3

−𝑝3𝑝0 𝑝3𝑝1
−𝑝2𝑝0 𝑝2𝑝1

) − (

𝑝3𝑝0 −𝑝3𝑝1
𝑝2𝑝0 −𝑝2𝑝1

−𝑝3𝑝2 𝑝3𝑝3
−𝑝2𝑝2 𝑝2𝑝3

𝑝1𝑝0 −𝑝1𝑝1
𝑝0𝑝0 −𝑝0𝑝1

−𝑝1𝑝2 𝑝1𝑝3
−𝑝0𝑝2 𝑝0𝑝3

) 
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= (

−𝑝3𝑝0 + 𝑝1𝑝2 0
0 𝑝2𝑝1 − 𝑝0𝑝3

0 0
0 0

0 0
0 0

𝑝1𝑝2 − 𝑝3𝑝0 0
0 −𝑝0𝑝3 + 𝑝2𝑝1

) 

+(

𝑝1𝑝2 − 𝑝3𝑝0 0
0 −𝑝0𝑝3 + 𝑝2𝑝1

0 0
0 0

0 0
0 0

−𝑝3𝑝0+𝑝1𝑝2 0
0 𝑝2𝑝1 − 𝑝0𝑝3

) 

= (

𝑚 +𝑚 0
0 𝑚 +𝑚

0 0
0 0

0 0
0 0

𝑚 +𝑚 0
0 𝑚 +𝑚

) 

and matrix 

𝑆𝑅(𝐩) = (

𝑝0
−𝑝1
𝑝2
−𝑝3

)(−𝑝3, −𝑝2, 𝑝1 , 𝑝0) − (

𝑝2
−𝑝3
𝑝0
−𝑝1

)(−𝑝1, −𝑝0, 𝑝3, 𝑝2) 

+(

𝑝2
−𝑝3
−𝑝0
𝑝1

) (𝑝1, 𝑝0, 𝑝3, 𝑝2) − (

𝑝0
−𝑝1
−𝑝2
𝑝3

) (𝑝3, 𝑝2, 𝑝1, 𝑝0) 

= 𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩) − 𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) + 𝐯𝟒(𝐩)𝐯𝟏𝑻(𝐩) − 𝐯𝟐(𝐩)𝐯𝟑𝑻(𝐩) 

𝑆𝑅(𝐩) = (

𝑝0
−𝑝1
𝑝2
−𝑝3

)(−𝑝3, −𝑝2, 𝑝1 , 𝑝0) − (

𝑝2
−𝑝3
𝑝0
−𝑝1

)(−𝑝1, −𝑝0, 𝑝3, 𝑝2) 

+(

𝑝2
−𝑝3
−𝑝0
𝑝1

) (𝑝1 , 𝑝0, 𝑝3, 𝑝2) − (

𝑝0
−𝑝1
−𝑝2
𝑝3

)(𝑝3, 𝑝2, 𝑝1, 𝑝0) = 

= (

−𝑝0𝑝3 −𝑝0𝑝2
𝑝1𝑝3 𝑝1𝑝2

𝑝0𝑝1 𝑝0𝑝0
−𝑝1𝑝1 −𝑝1𝑝0

−𝑝2𝑝3 −𝑝2𝑝2
𝑝3𝑝3 𝑝3𝑝2

𝑝2𝑝1 𝑝2𝑝0
−𝑝3𝑝1 −𝑝3𝑝0

) − (

−𝑝2𝑝1 −𝑝2𝑝0
𝑝3𝑝1 𝑝3𝑝0

𝑝2𝑝3 𝑝2𝑝2
−𝑝3𝑝3 −𝑝3𝑝2

−𝑝0𝑝1 −𝑝0𝑝0
𝑝1𝑝1 𝑝1𝑝0

𝑝0𝑝3 𝑝0𝑝2
−𝑝1𝑝3 −𝑝1𝑝2

) 

+(

𝑝2𝑝1 𝑝2𝑝0
−𝑝3𝑝1 −𝑝3𝑝0

𝑝2𝑝3 𝑝2𝑝2
−𝑝3𝑝3 −𝑝3𝑝2

−𝑝0𝑝1 −𝑝0𝑝0
𝑝1𝑝1 𝑝1𝑝0

−𝑝0𝑝3 −𝑝0𝑝2
𝑝1𝑝3 𝑝1𝑝2

) − (

𝑝0𝑝3 𝑝0𝑝2
−𝑝1𝑝3 −𝑝1𝑝2

𝑝0𝑝1 𝑝0𝑝0
−𝑝1𝑝1 −𝑝1𝑝0

−𝑝2𝑝3 −𝑝2𝑝2
𝑝3𝑝3 𝑝3𝑝2

−𝑝2𝑝1 −𝑝2𝑝0
𝑝3𝑝1 𝑝3𝑝0

) 

= (

−𝑝0𝑝3 + 𝑝2𝑝1 0
0 𝑝1𝑝2 − 𝑝3𝑝0

0 0
0 0

0 0
0 0

𝑝2𝑝1 − 𝑝0𝑝3 0
0 −𝑝3𝑝0 + 𝑝1𝑝2

) 

+(

𝑝2𝑝1 − 𝑝0𝑝3 0
0 −𝑝3𝑝0 + 𝑝1𝑝2

0 0
0 0

0 0
0 0

−𝑝0𝑝3 + 𝑝2𝑝1 0
0 𝑝1𝑝2 − 𝑝3𝑝0

) 

= (

𝑚 +𝑚 0
0 𝑚 +𝑚

0 0
0 0

0 0
0 0

𝑚 +𝑚 0
0 𝑚 +𝑚

) 

here 

𝑚 = 𝑝1𝑝2 − 𝑝0𝑝3 

Let us decompose the fermion field into plane waves with operator coefficients  
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𝛗(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

+[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒(𝐩)
] 𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

Let's impose the anticommutation conditions on the operator coefficients 

𝑏1(𝐩)𝑏1
∗(𝐩′) + 𝑏1

∗(𝐩′)𝑏1(𝐩) = 𝛿(𝐩 − 𝐩′)       𝑏1
∗(𝐩′)𝑏1(𝐩) + 𝑏1(𝐩)𝑏1

∗(𝐩′) = 𝛿(𝐩′ − 𝐩) 

𝑑1(𝐩)𝑑1
∗(𝐩′) + 𝑑1

∗(𝐩′)𝑑1(𝐩) = 𝛿(𝐩 − 𝐩′)       𝑑1
∗(𝐩)𝑑1(𝐩

′) + 𝑑1(𝐩
′)𝑑1

∗(𝐩) = 𝛿(𝐩′ − 𝐩) 

𝑑2(𝐩)𝑑2
∗(𝐩′) + 𝑑2

∗(𝐩′)𝑑2(𝐩) = 𝛿(𝐩 − 𝐩′)       𝑑2
∗(𝐩)𝑑2(𝐩

′) + 𝑑2(𝐩
′)𝑑2

∗(𝐩) = 𝛿(𝐩′ − 𝐩) 

𝑏2(𝐩)𝑏2
∗(𝐩′) + 𝑏2

∗(𝐩′)𝑏2(𝐩) = 𝛿(𝐩 − 𝐩′)       𝑏2
∗(𝐩)𝑏2(𝐩

′) + 𝑏2(𝐩
′)𝑏2

∗(𝐩) = 𝛿(𝐩′ − 𝐩) 

𝑑3(𝐩)𝑑3
∗(𝐩′) + 𝑑3

∗(𝐩′)𝑑3(𝐩) = 𝛿(𝐩 − 𝐩′)       𝑑3
∗(𝐩)𝑑3(𝐩

′) + 𝑑3(𝐩
′)𝑑3

∗(𝐩) = 𝛿(𝐩 − 𝐩′) 

𝑏3(𝐩)𝑏3
∗(𝐩′) + 𝑏3

∗(𝐩′)𝑏3(𝐩) = 𝛿(𝐩 − 𝐩′)       𝑏3
∗(𝐩)𝑏3(𝐩

′) + 𝑏3(𝐩
′)𝑏3

∗(𝐩) = 𝛿(𝐩′ − 𝐩) 

𝑏4(𝐩)𝑏4
∗(𝐩′) + 𝑏4

∗(𝐩′)𝑏4(𝐩) = 𝛿(𝐩 − 𝐩′)       𝑏4
∗(𝐩)𝑏4(𝐩

′) + 𝑏4(𝐩
′)𝑏4

∗(𝐩) = 𝛿(𝐩′ − 𝐩) 

𝑑4(𝐩)𝑑4
∗(𝐩′) + 𝑑4

∗(𝐩′)𝑑4(𝐩) = 𝛿(𝐩 − 𝐩′)       𝑑4
∗(𝐩)𝑑4(𝐩

′) + 𝑑4(𝐩
′)𝑑4

∗(𝐩) = 𝛿(𝐩′ − 𝐩) 

We consider the rest anticommutators to be equal to zero. Then we can write the expression for 

the anticommutator of the field  

{𝜑𝑖(𝐱), 𝜑𝑗(𝐱
′)} = 𝜑𝑖(𝐱)𝜑𝑗(𝐱

′) + 𝜑𝑗(𝐱
′)𝜑𝑖(𝐱) = (𝛗(𝐱)𝛗𝑇(𝐱′) + (𝛗(𝐱′)𝛗𝑇(𝐱))

𝑇
)
𝑖𝑗

 

𝛗(𝐱)𝛗𝑇(𝐱′) + (𝛗(𝐱′)𝛗𝑇(𝐱))
𝑇
= 

∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 = 

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 

[
𝑏1
∗(𝐩′)𝐮𝟏+(𝐩′) + 𝑖𝑏2

∗(𝐩′)𝐮𝟑+(𝐩′) + 𝑖𝑑2
∗(𝐩′)𝐮𝟐𝑻(𝐩′) + 𝑑1

∗(𝐩′)𝐮𝟒𝑻(𝐩′)

+𝑏4
∗(𝐩′)𝐯𝟏+(𝐩′) + 𝑖𝑏3

∗(𝐩′)𝐯𝟑+(𝐩′) + 𝑖𝑑3
∗(𝐩′)𝐯𝟐𝑻(𝐩′) + 𝑑4

∗(𝐩′)𝐯𝟒𝑻(𝐩′)
] 

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅) 

+ 

(

 
 
 
[
𝑑1(𝐩

′)𝐮𝟏(𝐩′) + 𝑖𝑑2(𝐩
′)𝐮𝟑(𝐩′) + 𝑖𝑏2(𝐩

′)𝐮𝟐̅̅̅̅ (𝐩′) +  𝑏1(𝐩
′)𝐮𝟒̅̅̅̅ (𝐩′)

+𝑑4(𝐩
′)𝐯𝟏(𝐩′) + 𝑖𝑑3(𝐩

′)𝐯𝟑(𝐩′) + 𝑖𝑏3(𝐩
′)𝐯𝟐̅̅̅̅ (𝐩′) + 𝑏4(𝐩

′)𝐯𝟒̅̅̅̅ (𝐩′)
]

[
𝑏1
∗(𝐩)𝐮𝟏+(𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑+(𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐𝑻(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒𝑻(𝐩)

+𝑑4
∗(𝐩)𝐯𝟏+(𝐩) + 𝑖𝑑3

∗(𝐩)𝐯𝟑+(𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐𝑻(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒𝑻(𝐩)
]

𝑒𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) )

 
 
 

𝑇

 

+ 

[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒(𝐩)
] 

[
𝑑1(𝐩

′)𝐮𝟏𝑻(𝐩′) + 𝑖𝑑2(𝐩
′)𝐮𝟑𝑻(𝐩′) + 𝑖𝑏2(𝐩

′)𝐮𝟐+(𝐩′) + 𝑏1(𝐩
′)𝐮𝟒+(𝐩′)

+𝑑4(𝐩
′)𝐯𝟏𝑻(𝐩′) + 𝑖𝑑3(𝐩

′)𝐯𝟑𝑻(𝐩′) + 𝑖𝑏3(𝐩
′)𝐯𝟐+(𝐩′) + 𝑏4(𝐩

′)𝐯𝟒+(𝐩′)
] 

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅) 

+ 
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(

 
 
 
[
𝑏1
∗(𝐩′)𝐮𝟏̅̅̅̅ (𝐩′) + 𝑖𝑏2

∗(𝐩′)𝐮𝟑̅̅̅̅ (𝐩′) + 𝑖𝑑2
∗(𝐩′)𝐮𝟐(𝐩′) + 𝑑1

∗(𝐩′)𝐮𝟒(𝐩′)

+𝑏4
∗(𝐩′)𝐯𝟏̅̅̅̅ (𝐩′) + 𝑖𝑏3

∗(𝐩′)𝐯𝟑̅̅̅̅ (𝐩′) + 𝑖𝑑3
∗(𝐩′)𝐯𝟐(𝐩′) + 𝑑4

∗(𝐩′)𝐯𝟒(𝐩′)
]

[
𝑑1(𝐩)𝐮𝟏

𝑻(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑
𝑻(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐

+(𝐩) + 𝑏1(𝐩)𝐮𝟒
+(𝐩)

+𝑑4(𝐩)𝐯𝟏
𝑻(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑

𝑻(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐
+(𝐩) + 𝑏4(𝐩)𝐯𝟒

+(𝐩)
]

𝑒−𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) )

 
 
 

𝑇

 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 
 [

𝑑1(𝐩)𝑑1
∗(𝐩′)𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩′) + 𝑑1(𝐩

′)𝑑1
∗(𝐩)(𝐮𝟏(𝐩′)𝐮𝟒𝑻(𝐩))

𝑻

−𝑑2(𝐩)𝑑2
∗(𝐩′)𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩′) − 𝑑2(𝐩

′)𝑑2
∗(𝐩)(𝐮𝟑(𝐩′)𝐮𝟐𝑻(𝐩))

𝑻
+⋯

]

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
 𝑏1(𝐩)𝑏1

∗(𝐩′)𝐮𝟒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐩)𝐮𝟏+(𝐩′) +  𝑏1(𝐩
′𝑏1
∗(𝐩))(𝐮𝟒̅̅̅̅ (𝐩′)𝐮𝟏+(𝐩))

𝑻

−𝑏2(𝐩)𝑏2
∗(𝐩′)𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩′) − 𝑏2(𝐩

′)𝑏2
∗(𝐩)(𝐮𝟐̅̅̅̅ (𝐩′)𝐮𝟑+(𝐩))

𝑻
+⋯

]

𝑒𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]

 
 
 
 
 
 
 
 
 

 

+∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 
 [

𝑏1
∗(𝐩)𝑏1(𝐩

′)𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟒+(𝐩′) + 𝑏1
∗(𝐩′)𝑏1(𝐩)(𝐮𝟏̅̅̅̅ (𝐩

′)𝐮𝟒+(𝐩))
𝑻

−𝑏2
∗(𝐩)𝑏2(𝐩

′)𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟐+(𝐩′) − 𝑏2
∗(𝐩′)𝑏2(𝐩)(𝐮𝟑̅̅̅̅ (𝐩

′)𝐮𝟐+(𝐩))
𝑻
+⋯

]

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
𝑑1
∗(𝐩)𝑑1(𝐩

′)𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩′) + 𝑑1
∗(𝐩′)𝑑1(𝐩)(𝐮𝟒(𝐩

′)𝐮𝟏𝑻(𝐩))
𝑻

−𝑑2
∗(𝐩)𝑑2(𝐩

′)𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩′) − 𝑑2
∗(𝐩′)𝑑2(𝐩)(𝐮𝟐(𝐩

′)𝐮𝟑𝑻(𝐩))
𝑻
+⋯

]

𝑒−𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]

 
 
 
 
 
 
 
 
 

 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 [

𝑑1(𝐩)𝑑1
∗(𝐩′)𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩′) + 𝑑1(𝐩

′)𝑑1
∗(𝐩)(𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩′))

−𝑑2(𝐩)𝑑2
∗(𝐩′)𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩′) − 𝑑2(𝐩

′)𝑑2
∗(𝐩)(𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩′)) + ⋯

]

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
 𝑏1(𝐩)𝑏1

∗(𝐩′)𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟏+(𝐩′) +  𝑏1(𝐩
′𝑏1
∗(𝐩))(𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟒+(𝐩′))

−𝑏2(𝐩)𝑏2
∗(𝐩′)𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩′) − 𝑏2(𝐩

′)𝑏2
∗(𝐩)(𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟐+(𝐩′)) + ⋯

]

𝑒𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]

 
 
 
 
 
 
 
 

 

+∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 [

𝑏1
∗(𝐩)𝑏1(𝐩

′)𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟒+(𝐩′) + 𝑏1
∗(𝐩′)𝑏1(𝐩)(𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟏

+(𝐩′))

−𝑏2
∗(𝐩)𝑏2(𝐩

′)𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟐+(𝐩′) − 𝑏2
∗(𝐩′)𝑏2(𝐩)(𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑

+(𝐩′)) + ⋯
]

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
𝑑1
∗(𝐩)𝑑1(𝐩

′)𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩′) + 𝑑1
∗(𝐩′)𝑑1(𝐩)(𝐮𝟏(𝐩)𝐮𝟒

𝑻(𝐩′))

−𝑑2
∗(𝐩)𝑑2(𝐩

′)𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩′) − 𝑑2
∗(𝐩′)𝑑2(𝐩)(𝐮𝟑(𝐩)𝐮𝟐

𝑻(𝐩′)) + ⋯
]

𝑒−𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]

 
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 [

𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) + ⋯

−𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) + ⋯
]

𝑒𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟏+(𝐩) + ⋯

−𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩) + ⋯
]

𝑒−𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )]
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+∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 [

𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟒+(𝐩) + ⋯

−𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟐+(𝐩) + ⋯
]

𝑒−𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩) + ⋯

−𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) + ⋯
]

𝑒𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ]
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 [

𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) − 𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) + ⋯+

𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩) − 𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) + ⋯+
]

𝑒𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟏+(𝐩) − 𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩) + ⋯+

𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟒+(𝐩) − 𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟐+(𝐩) + ⋯+
]

𝑒−𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )]
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 [
𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) − 𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) + 𝐯𝟏(𝐩)𝐯𝟒𝑻(𝐩) − 𝐯𝟑(𝐩)𝐯𝟐𝑻(𝐩) +

𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩) − 𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) + 𝐯𝟒(𝐩)𝐯𝟏𝑻(𝐩) − 𝐯𝟐(𝐩)𝐯𝟑𝑻(𝐩)
]

𝑒𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟏+(𝐩) − 𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩) + 𝐯𝟒̅̅̅̅ (𝐩)𝐯𝟏+(𝐩) − 𝐯𝟐̅̅̅̅ (𝐩)𝐯𝟑+(𝐩) +

𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟒+(𝐩) − 𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟐+(𝐩) + 𝐯𝟏̅̅̅̅ (𝐩)𝐯𝟒+(𝐩) − 𝐯𝟑̅̅̅̅ (𝐩)𝐯𝟐+(𝐩)
]

𝑒−𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ]
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 (𝑆𝑅(𝐩) + 𝑆𝑅(𝐩))𝑒

(𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )) + 

∫
𝑑4𝑝

(2𝜋)4
 (𝑆𝑅̅̅ ̅(𝐩) + 𝑆

𝑅̅̅ ̅(𝐩)) 𝑒−
(𝑖(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

 

= 

∫
𝑑4𝑝

(2𝜋)4
4(

𝑚 0
0 𝑚

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

)𝑒
(𝑖(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )) + 

∫
𝑑4𝑝

(2𝜋)4
4(

𝑚̅ 0
0 𝑚̅

0 0
0 0

0 0
0 0

𝑚̅ 0
0 𝑚̅

) 𝑒−
(𝑖(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

 

= 4𝑚𝐼𝛿(𝐱′ − 𝐱) + 4𝑚̅𝐼𝛿(𝐱 − 𝐱′) 

We will consider this relation as a proof of the anti-symmetry of the fermion wave function 

under the stipulated anticommutation relations.  

It is important that all the above deductions are valid in any frame of reference, while the proof 

of anticommutativity of the fermion field in [9] is carried out for the rest frame. 

Let us calculate the total energy of the fermion field 

𝐸 = 𝑃0 = ∫𝑑
4𝑥 𝛗+(𝐱)𝑆0𝛗(𝐱) 

= ∫𝑑4𝑥 ∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
  

[
 
 
 
 [
𝑑1
∗(𝐩′)𝐮𝟏+(𝐩′) − 𝑖𝑑2

∗(𝐩′)𝐮𝟑+(𝐩′) − 𝑖𝑏2
∗(𝐩′)𝐮𝟐𝑇(𝐩′) + 𝑏1

∗(𝐩′)𝐮𝟒𝑇(𝐩′)

+𝑑4
∗(𝐩′)𝐯𝟏+(𝐩′) − 𝑖𝑑3

∗(𝐩′)𝐯𝟑+(𝐩′) − 𝑖𝑏3
∗(𝐩′)𝐯𝟐𝑇(𝐩′) + 𝑏4

∗(𝐩′)𝐯𝟒𝑇(𝐩′)
] 𝑒−𝑖(𝑝0

′𝑥1−𝑝1
′𝑥0+𝑝2

′𝑥3−𝑝3
′𝑥2+(𝐩′,𝐱)̅̅ ̅̅ ̅̅ ̅̅ )

+[
𝑏1(𝐩

′)𝐮𝟏𝑻(𝐩′) − 𝑖𝑏2(𝐩
′)𝐮𝟑𝑇(𝐩′) − 𝑖𝑑2(𝐩

′)𝐮𝟐+(𝐩′) + 𝑑1(𝐩
′)𝐮𝟒+(𝐩′)

+𝑏4(𝐩
′)𝐯𝟏𝑇(𝐩′) − 𝑖𝑏3(𝐩

′)𝐯𝟑𝑇(𝐩′) − 𝑖𝑑3(𝐩
′)𝐯𝟐+(𝐩′) + 𝑑4(𝐩

′)𝐯𝟒+(𝐩′)
] 𝑒𝑖(𝑝0

′𝑥1−𝑝1
′𝑥0+𝑝2

′𝑥3−𝑝3
′𝑥2+(𝐩′ ,𝐱)̅̅ ̅̅ ̅̅ ̅̅ )

]
 
 
 
 

 

[
 
 
 
 [

𝑑1(𝐩)𝐮𝟏
𝑻(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑

𝑻(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐
+(𝐩) + 𝑏1(𝐩)𝐮𝟒

+(𝐩)

+𝑑4(𝐩)𝐯𝟏
𝑻(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑

𝑻(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐
+(𝐩) + 𝑏4(𝐩)𝐯𝟒

+(𝐩)
] 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅)

+[
𝑏1
∗(𝐩)𝐮𝟏+(𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑+(𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐𝑻(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒𝑻(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏+(𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑+(𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐𝑻(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒𝑻(𝐩)
] 𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅)

]
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= ∫𝑑4𝑥 ∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
  

[
 
 
 
 
 
 
 
 
 
 
 [

𝑑1
∗(𝐩′)𝐮𝟏+(𝐩′) − 𝑖𝑑2

∗(𝐩′)𝐮𝟑+(𝐩′) − 𝑖𝑏2
∗(𝐩′)𝐮𝟐𝑇(𝐩′) + 𝑏1

∗(𝐩′)𝐮𝟒𝑇(𝐩′)

+𝑑4
∗(𝐩′)𝐯𝟏+(𝐩′) − 𝑖𝑑3

∗(𝐩′)𝐯𝟑+(𝐩′) − 𝑖𝑏3
∗(𝐩′)𝐯𝟐𝑇(𝐩′) + 𝑏4

∗(𝐩′)𝐯𝟒𝑇(𝐩′)
]

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) +  𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
]

𝑒−𝑖(𝑝0
′𝑥1−𝑝1

′𝑥0+𝑝2
′𝑥3−𝑝3

′𝑥2+(𝐩′ ,𝐱)̅̅ ̅̅ ̅̅ ̅̅ )𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)

+[
𝑏1(𝐩

′)𝐮𝟏𝑻(𝐩′) − 𝑖𝑏2(𝐩
′)𝐮𝟑𝑇(𝐩′) − 𝑖𝑑2(𝐩

′)𝐮𝟐+(𝐩′) + 𝑑1(𝐩
′)𝐮𝟒+(𝐩′)

+𝑏4(𝐩
′)𝐯𝟏𝑇(𝐩′) − 𝑖𝑏3(𝐩

′)𝐯𝟑𝑇(𝐩′) − 𝑖𝑑3(𝐩
′)𝐯𝟐+(𝐩′) + 𝑑4(𝐩

′)𝐯𝟒+(𝐩′)
]

[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑𝟒

∗(𝐩)𝐯𝟒(𝐩)
]

𝑒𝑖(𝑝0
′𝑥1−𝑝1

′𝑥0+𝑝2
′𝑥3−𝑝3

′𝑥2+(𝐩′,𝐱)̅̅ ̅̅ ̅̅ ̅̅ )𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]

 
 
 
 
 
 
 
 
 
 
 

 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
  

[
 
 
 
 
 
 
 
 
 
 
 [

𝑑1
∗(𝐩′)𝐮𝟏+(𝐩′) − 𝑖𝑑2

∗(𝐩′)𝐮𝟑+(𝐩′) − 𝑖𝑏2
∗(𝐩′)𝐮𝟐𝑇(𝐩′) + 𝑏1

∗(𝐩′)𝐮𝟒𝑇(𝐩′)

+𝑑4
∗(𝐩′)𝐯𝟏+(𝐩′) − 𝑖𝑑3

∗(𝐩′)𝐯𝟑+(𝐩′) − 𝑖𝑏3
∗(𝐩′)𝐯𝟐𝑇(𝐩′) + 𝑏4

∗(𝐩′)𝐯𝟒𝑇(𝐩′)
]

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) +  𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
]

𝛿(𝐩′ − 𝐩)

+ [
𝑏1(𝐩

′)𝐮𝟏𝑻(𝐩′) − 𝑖𝑏2(𝐩
′)𝐮𝟑𝑇(𝐩′) − 𝑖𝑑2(𝐩

′)𝐮𝟐+(𝐩′) + 𝑑1(𝐩
′)𝐮𝟒+(𝐩′)

+𝑏4(𝐩
′)𝐯𝟏𝑇(𝐩′) − 𝑖𝑏3(𝐩

′)𝐯𝟑𝑇(𝐩′) − 𝑖𝑑3(𝐩
′)𝐯𝟐+(𝐩′) + 𝑑4(𝐩

′)𝐯𝟒+(𝐩′)
]

[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑𝟒

∗(𝐩)𝐯𝟒(𝐩)
]

𝛿(𝐩 − 𝐩′) ]
 
 
 
 
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 
 
𝑑1
∗(𝐩)𝑑1(𝐩)𝐮𝟏

+(𝐩)𝐮𝟏(𝐩) + 𝑑1(𝐩)𝑑1
∗(𝐩)𝐮𝟒+(𝐩)𝐮𝟒(𝐩)

+𝑏1(𝐩)𝑏1
∗(𝐩)𝐮𝟏𝑻(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑏1

∗(𝐩)𝑏1(𝐩)𝐮𝟒
𝑻(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑏2(𝐩)𝑏2
∗(𝐩)𝐮𝟑𝑻(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑏2

∗(𝐩)𝑏2(𝐩)𝐮𝟐
𝑻(𝐩)𝐮𝟐̅̅̅̅ (𝐩)

+𝑑2
∗(𝐩)𝑑2(𝐩)𝐮𝟑

+(𝐩)𝐮𝟑(𝐩) + 𝑑2(𝐩)𝑑2
∗(𝐩)𝐮𝟐+(𝐩)𝐮𝟐(𝐩)

+𝑑4
∗(𝐩)𝑑4(𝐩)𝐯𝟏

+(𝐩)𝐯𝟏(𝐩) + 𝑑4(𝐩)𝑑4
∗(𝐩)𝐯𝟒+(𝐩)𝐯𝟒(𝐩)

+𝑏4(𝐩)𝑏4
∗(𝐩)𝐯𝟏𝑻(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑏4

∗(𝐩)𝑏4(𝐩)𝐯𝟒
𝑻(𝐩)𝐯𝟒̅̅̅̅ (𝐩)

+𝑏3(𝐩)𝑏3
∗(𝐩)𝐯𝟑𝑻(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑏3

∗(𝐩)𝑏3(𝐩)𝐯𝟐
𝑻(𝐩)𝐯𝟐̅̅̅̅ (𝐩)

+𝑑3
∗(𝐩)𝑑3(𝐩)𝐯𝟑

+(𝐩)𝐯𝟑(𝐩) + 𝑑3(𝐩)𝑑3
∗(𝐩)𝐯𝟐+(𝐩)𝐯𝟐(𝐩) ]

 
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 𝑒0(𝐩)

[
 
 
 
𝑏1(𝐩)𝑏1

∗(𝐩) + 𝑏1
∗(𝐩)𝑏1(𝐩) + 𝑑1

∗(𝐩)𝑑1(𝐩) + 𝑑1(𝐩)𝑑1
∗(𝐩)

+𝑏2(𝐩)𝑏2
∗(𝐩) + 𝑏2

∗(𝐩)𝑏2(𝐩) + 𝑑2
∗(𝐩)𝑑2(𝐩) + 𝑑2(𝐩)𝑑2

∗(𝐩)

+𝑏4(𝐩)𝑏4
∗(𝐩) + 𝑏4

∗(𝐩)𝑏4(𝐩) + 𝑑4
∗(𝐩)𝑑4(𝐩) + 𝑑4(𝐩)𝑑4

∗(𝐩)

+𝑏3(𝐩)𝑏3
∗(𝐩) + 𝑏3

∗(𝐩)𝑏3(𝐩) + 𝑑3
∗(𝐩)𝑑3(𝐩) + 𝑑3(𝐩)𝑑3

∗(𝐩)]
 
 
 

 

= 8∫
𝑑4𝑝

(2𝜋)4
 𝑒0(𝐩)𝛿(𝟎) = 8∫

𝑑4𝑥

(2𝜋)4
∫

𝑑4𝑝

(2𝜋)4
 𝑒0(𝐩)  

here 

𝑒0(𝐩) = 𝑝0̅̅ ̅𝑝0 + 𝑝1̅̅̅𝑝1 + 𝑝2̅̅ ̅𝑝2 + 𝑝3̅̅ ̅𝑝3 

Each summand in brackets represents the operator of the number of particles with a certain 

reference spinor. The operator's action consists of consecutive application of the annihilation operator 

and the operator of the birth of a particle. On initial examination, it would appear that the energy 

associated with zero-point fluctuations in the vacuum has been overlooked. However, an 

examination of the final expression reveals that the field always possesses a constant energy, 

regardless of the particles that contribute to it. This constant energy of the field can be interpreted as 

the energy of zero-point fluctuations of the vacuum. 

The following relations were taken into account in the derivation 

𝑏1(𝐩)𝑏1
∗(𝐩) + 𝑏1

∗(𝐩)𝑏1(𝐩) = 𝛿(𝟎)       𝑏1
∗(𝐩′)𝑏1(𝐩) + 𝑏1(𝐩)𝑏1

∗(𝐩) = 𝛿(𝟎) 

𝑑1(𝐩)𝑑1
∗(𝐩) + 𝑑1

∗(𝐩)𝑑1(𝐩) = 𝛿(𝟎)       𝑑1
∗(𝐩)𝑑1(𝐩) + 𝑑1(𝐩)𝑑1

∗(𝐩) = 𝛿(𝟎) 

𝑑2(𝐩)𝑑2
∗(𝐩) + 𝑑2

∗(𝐩′)𝑑2(𝐩) = 𝛿(𝟎)       𝑑2
∗(𝐩)𝑑2(𝐩) + 𝑑2(𝐩)𝑑2

∗(𝐩) = 𝛿(𝟎) 

𝑏2(𝐩)𝑏2
∗(𝐩) + 𝑏2

∗(𝐩)𝑏2(𝐩) = 𝛿(𝟎)        𝑏2
∗(𝐩)𝑏2(𝐩) + 𝑏2(𝐩)𝑏2

∗(𝐩) = 𝛿(𝟎) 

𝑑3(𝐩)𝑑3
∗(𝐩) + 𝑑3

∗(𝐩)𝑑3(𝐩) = 𝛿(𝟎)       𝑑3
∗(𝐩)𝑑3(𝐩) + 𝑑3(𝐩)𝑑3

∗(𝐩) = 𝛿(𝟎) 
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𝑏3(𝐩)𝑏3
∗(𝐩) + 𝑏3

∗(𝐩)𝑏3(𝐩) = 𝛿(𝟎)       𝑏3
∗(𝐩)𝑏3(𝐩) + 𝑏3(𝐩)𝑏3

∗(𝐩) = 𝛿(𝟎) 

𝑏4(𝐩)𝑏4
∗(𝐩) + 𝑏4

∗(𝐩)𝑏4(𝐩) = 𝛿(𝟎)       𝑏4
∗(𝐩)𝑏4(𝐩) + 𝑏4(𝐩)𝑏4

∗(𝐩) = 𝛿(𝟎) 

𝑑4(𝐩)𝑑4
∗(𝐩) + 𝑑4

∗(𝐩)𝑑4(𝐩) = 𝛿(𝟎)       𝑑4
∗(𝐩)𝑑4(𝐩) + 𝑑4(𝐩)𝑑4

∗(𝐩) = 𝛿(𝟎) 

𝛿(𝟎) = ∫
𝑑4𝑥

(2𝜋)4
  

Other components of the total field momentum are calculated by the formula 

𝑃𝜇 = ∫𝑑
4𝑥 𝛗+(𝐱)𝑆𝜇𝛗(𝐱) 

Total momentum 

𝐏𝐓 ≡ (𝑃0, 𝑃1, 𝑃2, 𝑃3) 

is a vector in Minkowski space. The density of the current as a function of coordinates is 

𝐽𝜇 = ±
𝑒

𝑚𝑒

𝛗+(𝐱)𝑆𝜇𝛗(𝐱) = ±
𝑒

𝑚𝑒

𝐹𝜇(𝐱) 

where  

𝐹𝜇(𝐱) = 𝛗+(𝐱)𝑆𝜇𝛗(𝐱) 

is a four-dimensional probability density current, which is transformed as a four-dimensional vector 

by Lorentz transformations. Multiplication by ±
𝑒

𝑚𝑒
 transforms it into a four-dimensional current 

density.  

Let us perform a series of transformations analogous to those presented by Dirac in [10, Lecture 

11] 

𝑃0 = ∫
𝑑4𝑥

(2𝜋)4
𝛗+(𝐱)𝑆0𝛗(𝐱) =

1

2𝑚
∫

𝑑4𝑥

(2𝜋)4
𝛗+(𝐱)𝑆0[𝑆

𝑅𝛗(𝐱)] 

=
1

2𝑚
∫

𝑑4𝑥

(2𝜋)4
𝛗+(𝐱)𝑆0 [∫

𝑑4𝑝

(2𝜋)4
 𝑆𝑅(𝐩)𝛗(𝐩)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅)]  

=
1

2𝑚
∫

𝑑4𝑝

(2𝜋)4
 [∫

𝑑4𝑥

(2𝜋)4
𝛗+(𝐱)𝑆0𝑒

𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)] 𝑆𝑅(𝐩)𝛗(𝐩) 

=
1

2𝑚
∫

𝑑4𝑝

(2𝜋)4
 𝛗+(𝐩)𝑆0[𝑆

𝑅(𝐩)𝛗(𝐩)] = ∫
𝑑4𝑝

(2𝜋)4
 𝛗+(𝐩)𝑆0𝛗(𝐩) = ∫

𝑑4𝑝

(2𝜋)4
 𝛗+(𝐩)𝛗(𝐩) 

= ∫
𝑑4𝑝

(2𝜋)4
 [𝜑0

+(𝐩)𝜑0(𝐩) + 𝜑1
+(𝐩)𝜑1(𝐩) + 𝜑2

+(𝐩)𝜑2(𝐩) + 𝜑3
+(𝐩)𝜑3(𝐩)] 

For an arbitrary component of the total momentum we have 

𝑃𝜇 = ∫
𝑑4𝑝

(2𝜋)4
 𝛗+(𝐩)𝑆𝜇𝛗(𝐩) 

Following Dirac's argument in [10], the value of 

𝑃0 = 𝐻 = ∫
𝑑4𝑝

(2𝜋)4
 [𝜑0

+(𝐩)𝜑0(𝐩) + 𝜑1
+(𝐩)𝜑1(𝐩) + 𝜑2

+(𝐩)𝜑2(𝐩) + 𝜑3
+(𝐩)𝜑3(𝐩)] 

can be treated as either a Hamiltonian or a total energy operator, with 𝜑𝜇
+(𝐩) representing the birth 

operator and 𝜑𝜇(𝐩) representing the annihilation operator. 

In [10] the quantization procedure includes the use of one definite Lorentzian reference frame, 

i.e. it is not invariant. In our case all deductions are valid in any reference frame in the spinor space, 

and it means invariance to change of reference frames in the Minkowski space also. 

The following relations are used in the transformations 

𝑆𝑅𝛗(𝐱) = 2𝑚𝛗(𝐱) 

𝛗(𝐱) =
1

2𝑚
𝑆𝑅𝛗(𝐱) 
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𝛗(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅)  

𝛗(𝐩) = ∫
𝑑4𝑥′

(2𝜋)4
 𝛗(𝐱′)𝑒−𝑖(𝑝0𝑥1

′−𝑝1𝑥0
′+𝑝2𝑥3

′−𝑝3𝑥2
′+(𝐩,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ) 

𝛿(𝐩) = ∫
𝑑4𝑥′

(2𝜋)4
 𝑒−𝑖(𝑝0𝑥1

′−𝑝1𝑥0
′+𝑝2𝑥3

′−𝑝3𝑥2
′+(𝐩,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ) 

𝛿(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

𝛗+(𝐩) = ∫
𝑑4𝑥

(2𝜋)4
 𝛗+(𝐱)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

𝑆𝑅𝛗(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝑆𝑅(𝐩)𝛗(𝐩)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

𝑆𝑅(𝐩) = 2𝑚𝐼 

𝑆𝑅 = (

𝜕2
−𝜕3
−𝜕0
𝜕1

)(𝜕1, 𝜕0, 𝜕3, 𝜕2) − (

𝜕0
−𝜕1
−𝜕2
𝜕3

)(𝜕3, 𝜕2, 𝜕1, 𝜕0) 

+(

−𝜕0
𝜕1
−𝜕2
𝜕3

)(𝜕3, 𝜕2, −𝜕1, −𝜕0) − (

−𝜕2
𝜕3
−𝜕0
𝜕1

)(𝜕1, 𝜕0, −𝜕3, −𝜕2) 

𝑆𝑅(𝐩) = (

−𝑝3
−𝑝2
𝑝1
𝑝0

)(𝑝0, −𝑝1, 𝑝2, −𝑝3) − (

−𝑝1
−𝑝0
𝑝3
𝑝2

)(𝑝2, −𝑝3, 𝑝0, −𝑝1) 

+(

𝑝1
𝑝0
𝑝3
𝑝2

) (𝑝2, −𝑝3, −𝑝0, 𝑝1) − (

𝑝3
𝑝2
𝑝1
𝑝0

) (𝑝0, −𝑝1, −𝑝2, 𝑝3) 

The chain of reasoning can be organized in a slightly different way as well 

𝑃0 = ∫
𝑑4𝑥

(2𝜋)4
𝛗+(𝐱)𝑆0𝛗(𝐱) =

1

2𝑚̅

1

2𝑚
∫

𝑑4𝑥

(2𝜋)4
[𝑆𝑅𝛗(𝐱)]+[𝑆𝑅𝛗(𝐱)]

=
1

2𝑚̅

1

2𝑚
∫

𝑑4𝑥

(2𝜋)4
[∫

𝑑4𝑝′

(2𝜋)4
 𝑆𝑅(𝐩′)𝛗(𝐩′)𝑒𝑖(𝑝0

′𝑥1−𝑝1
′𝑥0+𝑝2

′𝑥3−𝑝3
′𝑥2+(𝐩

′ ,𝐱)̅̅ ̅̅ ̅̅ ̅̅ )]

+

 

[∫
𝑑4𝑝

(2𝜋)4
 𝑆𝑅(𝐩)𝛗(𝐩)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅)]

=
1

2𝑚̅

1

2𝑚
∫

𝑑4𝑥

(2𝜋)4
[∫

𝑑4𝑝′

(2𝜋)4
 𝑆𝑅(𝐩′)𝛗(𝐩′)]

+

𝑒−𝑖(𝑝0
′𝑥1−𝑝1

′𝑥0+𝑝2
′𝑥3−𝑝3

′𝑥2+(𝐩
′ ,𝐱)̅̅ ̅̅ ̅̅ ̅̅ ) 

[∫
𝑑4𝑝

(2𝜋)4
 𝑆𝑅(𝐩)𝛗(𝐩)] 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

=
1

2𝑚̅

1

2𝑚
[∫

𝑑4𝑝′

(2𝜋)4
 𝑆𝑅(𝐩′)𝛗(𝐩′)]

+

[∫
𝑑4𝑝

(2𝜋)4
 𝑆𝑅(𝐩)𝛗(𝐩)] 𝛿(𝐩′ − 𝐩) 

=
1

2𝑚̅

1

2𝑚
∫
𝑑4𝑝′

(2𝜋)4
 ∫

𝑑4𝑝

(2𝜋)4
 [𝑆𝑅(𝐩′)𝛗(𝐩′)]+[𝑆𝑅(𝐩)𝛗(𝐩)]𝛿(𝐩′ − 𝐩) 

=
1

2𝑚̅

1

2𝑚
∫

𝑑4𝑝

(2𝜋)4
 [𝑆𝑅(𝐩)𝛗(𝐩)]+[𝑆𝑅(𝐩)𝛗(𝐩)] 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2025 doi:10.20944/preprints202401.1032.v6

https://doi.org/10.20944/preprints202401.1032.v6


 61 of 101 

 

=
1

2𝑚̅

1

2𝑚
∫

𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)+[𝑆𝑅(𝐩)]+[𝑆𝑅(𝐩)𝛗(𝐩)] 

=
1

2𝑚̅

1

2𝑚
∫

𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)+[𝑆𝑅̅̅ ̅(𝐩)]

𝑻
[𝑆𝑅(𝐩)]𝛗(𝐩) 

=
1

2𝑚̅

1

2𝑚
∫

𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)+[2(𝑝1𝑝2 − 𝑝3𝑝0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐼]

𝑻
[2(𝑝1𝑝2 − 𝑝3𝑝0)𝐼]𝛗(𝐩) 

=
1

𝑚̅

1

𝑚
∫

𝑑4𝑝

(2𝜋)4
 𝛗(𝐩)+(𝑝1𝑝2 − 𝑝3𝑝0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑝1𝑝2 − 𝑝3𝑝0)𝛗(𝐩) 

=
1

𝑚̅

1

𝑚
∫

𝑑4𝑝

(2𝜋)4
(𝑃0

2 − 𝑃1
2 − 𝑃2

2 − 𝑃3
2)𝛗(𝐩)+𝛗(𝐩) 

= ∫
𝑑4𝑝

(2𝜋)4
𝛗(𝐩)+𝛗(𝐩) 

Here it is taken into account that 

𝑆𝑅(𝐩) = 2(𝑝1𝑝2 − 𝑝3𝑝0)𝐼 

(𝑝1𝑝2 − 𝑝0𝑝3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑝1𝑝2 − 𝑝0𝑝3) = 𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 = 𝑚̅𝑚 = 

= (𝑆0𝑃0 − 𝑆1𝑃1 − 𝑆2𝑃2 − 𝑆3𝑃3)(𝑆0𝑃0 + 𝑆1𝑃1 + 𝑆2𝑃2 + 𝑆3𝑃3) 

Let us draw an analogy between our approach and the relations given in [[11]], Volume 1, 

Chapter 3, Section 3.3.1]. There it is noted that the birth and annihilation operators of the fermionic 

field must satisfy such commutation relations that the equality expressing translational invariance is 

satisfied 

𝛗(𝐗 + 𝐀) = 𝑒𝑖𝐏
𝑇𝐀 𝛗(𝐗)𝑒−𝑖𝐏

𝑇𝐀 

which in differential form is written as 

𝜕𝜇𝛗(𝐗) = 𝑖[𝑃𝜇 , 𝛗(𝐗)] 

The coordinates here are the components of the Minkowski vector space. On the basis of these 

relations the anticommutation relations between the birth and annihilation operators are derived.  

At substantiation of the Schrödinger equation we have to assume that the zero component of 

momentum, i.e. energy, commutes with the rest of the momentum components, which allows us to 

represent the exponent of the sum as a product of exponents. 

𝑒𝑖(𝑃0𝑋0−𝑃1𝑋1−𝑃2𝑋2−𝑃3𝑋3) = 𝑒𝑖(𝑃0𝑋0)𝑒−𝑖(𝑃1𝑋1+𝑃2𝑋2+𝑃3𝑋3) 

and consider time and energy separately from spatial coordinates and momenta. In this case it is 

possible to independently perform translation in time and space. 

𝛗(𝐗 + 𝐀) = 𝑒𝑖(𝑃0𝐴0)𝑒−𝑖(𝑃1𝐴1+𝑃2𝐴2+𝑃3𝐴3) 𝛗(𝐗)𝑒𝑖(𝑃1𝐴1+𝑃2𝐴2+𝑃3𝐴3) 

= 𝑒−𝑖(𝑃1𝐴1+𝑃2𝐴2+𝑃3𝐴3) [𝑒𝑖(𝑃0𝐴0)𝛗(𝐗)𝑒−𝑖(𝑃0𝐴0)]𝑒−𝑖(𝑃0𝐴0)𝑒𝑖(𝑃1𝐴1+𝑃2𝐴2+𝑃3𝐴3) 

In the spinor coordinate space, we can express the translational invariance of the field operator 

by the relations 

𝛗(𝐱 + 𝐚) = 𝑒𝑖(𝑝0𝑎1−𝑝1𝑎0+𝑝2𝑎3−𝑝3𝑎2+(𝐩,𝐚)
̅̅ ̅̅ ̅̅ ̅) 𝛗(𝐱)𝑒−𝑖(𝑝0𝑎1−𝑝1𝑎0+𝑝2𝑎3−𝑝3𝑎2+(𝐩,𝐚)

̅̅ ̅̅ ̅̅ ̅) 

𝜕0𝛗(𝐱) = 𝑖[−𝑝1, 𝛗(𝐱)]       𝜕1𝛗(𝐱) = 𝑖[𝑝0, 𝛗(𝐱)] 

𝜕2𝛗(𝐱) = 𝑖[−𝑝3, 𝛗(𝐱)]        𝜕3𝛗(𝐱) = 𝑖[𝑝2, 𝛗(𝐱)] 

[𝑝1, 𝑥0] = 𝑖        [𝑝0, 𝑥1] = −𝑖 

[𝑝3, 𝑥2] = 𝑖        [𝑝2, 𝑥3] = −𝑖 

It is interesting to find out in what relation these translational operators are - one operator acts 

in vector space, the other in spinor space. In both cases the following interpretation can be given. 

Suppose we know the result of an operator acting on an arbitrary state at a point in space 1, and we 

want to know the result of its action on a state at point 2. Then we translate the state from point 2 to 

point 1, act on it by the operator, and transfer the obtained result back to point 2. 

Both operators act on the same state, but in one case the state is labeled by spinor coordinates 

and in the other by vector coordinates. The translation mechanism of the operators is essentially the 

same, but it is not possible to replace the action of one translation operator by some combination of 

actions of the other. Because of this, the question arises as to which of these operators better describes 
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nature. Our point of view is that the translation operator in spinor space is primary, and the operator 

in vector space just successfully copies it, without being exact, but being some approximation. It 

attracted the attention of physicists first because vector space is more accessible for investigation. 

When integrating over a four-dimensional vector space in some cases there is a divergence, then use 

renormalization. When integrating over four-dimensional spinor space, the differential element has 

two orders of magnitude of the vector momentum component smaller, while the denominator in the 

integrand remains of the same order as when integrating over vector space. This difference possibly 

affects the convergence.  

Let us calculate the total mass of the fermion field 

𝑀 = ∫𝑑4𝑥 𝛗𝑇(𝐱) 𝛗(𝐱) = 

∫𝑑4𝑥∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
  

[
𝑑1(𝐩

′)𝐮𝟏𝑻(𝐩′) + 𝑖𝑑2(𝐩
′)𝐮𝟑𝑻(𝐩′) + 𝑖𝑏2(𝐩

′)𝐮𝟐+(𝐩′) + 𝑏1(𝐩
′)𝐮𝟒+(𝐩′)

+𝑑4(𝐩
′)𝐯𝟏𝑻(𝐩′) + 𝑖𝑑3(𝐩

′)𝐯𝟑𝑻(𝐩′) + 𝑖𝑏3(𝐩
′)𝐯𝟐+(𝐩′) + 𝑏4(𝐩

′)𝐯𝟒+(𝐩′)
] 

[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒(𝐩)
] 

𝑒𝑖(𝑝0
′𝑥1−𝑝1

′𝑥0+𝑝2
′𝑥3−𝑝3

′𝑥2+(𝐩
′,𝐱)̅̅ ̅̅ ̅̅ ̅̅ )𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

+∫𝑑4𝑥∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
  

[
𝑏1
∗(𝐩′)𝐮𝟏+(𝐩′) + 𝑖𝑏2

∗(𝐩′)𝐮𝟑+(𝐩′) + 𝑖𝑑2
∗(𝐩′)𝐮𝟐𝑻(𝐩′) + 𝑑1

∗(𝐩′)𝐮𝟒𝑻(𝐩′)

+𝑏4
∗(𝐩′)𝐯𝟏+(𝐩′) + 𝑖𝑏3

∗(𝐩′)𝐯𝟑+(𝐩′) + 𝑖𝑑3
∗(𝐩′)𝐯𝟐𝑻(𝐩′) + 𝑑4

∗(𝐩′)𝐯𝟒𝑻(𝐩′)
] 

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 

𝑒−𝑖(𝑝0
′𝑥1−𝑝1

′𝑥0+𝑝2
′𝑥3−𝑝3

′𝑥2+(𝐩
′ ,𝐱)̅̅ ̅̅ ̅̅ ̅̅ )𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
  

[
𝑑1(𝐩

′)𝐮𝟏𝑻(𝐩′) + 𝑖𝑑2(𝐩
′)𝐮𝟑𝑻(𝐩′) + 𝑖𝑏2(𝐩

′)𝐮𝟐+(𝐩′) + 𝑏1(𝐩
′)𝐮𝟒+(𝐩′)

+𝑑4(𝐩
′)𝐯𝟏𝑻(𝐩′) + 𝑖𝑑3(𝐩

′)𝐯𝟑𝑻(𝐩′) + 𝑖𝑏3(𝐩
′)𝐯𝟐+(𝐩′) + 𝑏4(𝐩

′)𝐯𝟒+(𝐩′)
] 

[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒(𝐩)
] 

𝛿(𝐩 − 𝐩′) 

+∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
  

[
𝑏1
∗(𝐩′)𝐮𝟏+(𝐩′) + 𝑖𝑏2

∗(𝐩′)𝐮𝟑+(𝐩′) + 𝑖𝑑2
∗(𝐩′)𝐮𝟐𝑻(𝐩′) + 𝑑1

∗(𝐩′)𝐮𝟒𝑻(𝐩′)

+𝑏4
∗(𝐩′)𝐯𝟏+(𝐩′) + 𝑖𝑏3

∗(𝐩′)𝐯𝟑+(𝐩′) + 𝑖𝑑3
∗(𝐩′)𝐯𝟐𝑻(𝐩′) + 𝑑4

∗(𝐩′)𝐯𝟒𝑻(𝐩′)
] 

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 

𝛿(𝐩′ − 𝐩) 

= ∫  
𝑑4𝑝

(2𝜋)4

[
 
 
 
 
𝑑1(𝐩)𝑑1

∗(𝐩)𝐮𝟏𝑻(𝐩)𝐮𝟒(𝐩) + 𝑏1(𝐩)𝑏1
∗(𝐩)𝐮𝟒+(𝐩)𝐮𝟏̅̅̅̅ (𝐩)

−𝑑2(𝐩)𝑑2
∗(𝐩)𝐮𝟑𝑻(𝐩)𝐮𝟐(𝐩) − 𝑏2(𝐩)𝑏2

∗(𝐩)𝐮𝟐+(𝐩)𝐮𝟑̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝑑4
∗(𝐩)𝐯𝟏𝑻(𝐩)𝐯𝟒(𝐩) + 𝑏4(𝐩)𝑏4

∗(𝐩)𝐯𝟒+(𝐩)𝐯𝟏̅̅̅̅ (𝐩)

−𝑑3(𝐩)𝑑3
∗(𝐩)𝐯𝟑𝑻(𝐩)𝐯𝟐(𝐩) − 𝑏3(𝐩)𝑏3

∗(𝐩)𝐯𝟐+(𝐩)𝐯𝟑̅̅̅̅ (𝐩) ]
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+∫  
𝑑4𝑝

(2𝜋)4

[
 
 
 
 
𝑏1
∗(𝐩) 𝑏1(𝐩)𝐮𝟏

+(𝐩)𝐮𝟒̅̅̅̅ (𝐩) + 𝑑1
∗(𝐩)𝑑1(𝐩)𝐮𝟒

𝑻(𝐩)𝐮𝟏(𝐩)

−𝑏2
∗(𝐩)𝑏2(𝐩)𝐮𝟑

+(𝐩)𝐮𝟐̅̅̅̅ (𝐩) − 𝑑2
∗(𝐩)𝑑2(𝐩)𝐮𝟐(𝐩)𝐮𝟑(𝐩)

+𝑏4
∗(𝐩)𝑏4(𝐩)𝐯𝟏

+(𝐩)𝐯𝟒̅̅̅̅ (𝐩) + 𝑑4
∗(𝐩)𝑑4(𝐩)𝐯𝟒

𝑻(𝐩)𝐯𝟏(𝐩)

−𝑏3
∗(𝐩)𝑏3(𝐩)𝐯𝟑

+(𝐩)𝐯𝟐̅̅̅̅ (𝐩) − 𝑑3
∗(𝐩)𝑑3(𝐩)𝐯𝟐

𝑻(𝐩)𝐯𝟑(𝐩)]
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 (𝑚 + 𝑚̅)

[
 
 
 
𝑑1(𝐩)𝑑1

∗(𝐩) + 𝑏1(𝐩)𝑏1
∗(𝐩) + 𝑑4(𝐩)𝑑4

∗(𝐩) + 𝑏4(𝐩)𝑏4
∗(𝐩)

+𝑏2(𝐩)𝑏2
∗(𝐩) + 𝑑2(𝐩)𝑑2

∗(𝐩) + 𝑑3(𝐩)𝑑3
∗(𝐩) + 𝑏3(𝐩)𝑏3

∗(𝐩)

+𝑏1
∗(𝐩) 𝑏1(𝐩) + 𝑑1

∗(𝐩)𝑑1(𝐩) + 𝑏4
∗(𝐩)𝑏4(𝐩) + 𝑑4

∗(𝐩)𝑑4(𝐩)

+𝑏2
∗(𝐩)𝑏2(𝐩) + 𝑑2

∗(𝐩)𝑑2(𝐩) + 𝑏3
∗(𝐩)𝑏3(𝐩) + 𝑑3

∗(𝐩)𝑑3(𝐩)]
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
8(𝑚 + 𝑚̅) 𝛿(𝟎) = ∫

𝑑4𝑥

(2𝜋)4
∫

𝑑4𝑝

(2𝜋)4
 8(𝑚 + 𝑚̅) 

The ratios used in the derivation are 

𝐮𝟏𝑻(𝐩)𝐮𝟒(𝐩) = −𝑝3𝑝0 + 𝑝2𝑝1 + 𝑝1𝑝2 − 𝑝0𝑝3 = 2𝑚 

𝐮𝟒𝑻(𝐩)𝐮𝟏(𝐩) = −𝑝0𝑝3 + 𝑝1𝑝2 + 𝑝2𝑝1 − 𝑝3𝑝0 = 2𝑚 

𝐮𝟑𝑻(𝐩)𝐮𝟐(𝐩) = −𝑝1𝑝2 + 𝑝0𝑝3 + 𝑝3𝑝0 − 𝑝2𝑝1 = −2𝑚 

𝐮𝟐𝑻(𝐩)𝐮𝟑(𝐩) = −𝑝2𝑝1 + 𝑝3𝑝0 + 𝑝0𝑝3−𝑝1𝑝2 = −2𝑚 

𝐮𝟏𝑻(𝐩)𝐮𝟒(𝐩) = −𝑝3𝑝0 + 𝑝2𝑝1 + 𝑝1𝑝2 − 𝑝0𝑝3 = 2𝑚 

𝐯𝟏𝑻(𝐩)𝐯𝟒(𝐩) = 𝑝1𝑝2 − 𝑝3𝑝0 − 𝑝0𝑝3 + 𝑝2𝑝1 = 2𝑚 

𝐮𝟏+(𝐩)𝐮𝟒̅̅̅̅ (𝐩) = −𝑝3𝑝0 + 𝑝2𝑝1 + 𝑝1𝑝2 − 𝑝0𝑝3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 2𝑚̅ 

𝑏1(𝐩)𝑏1
∗(𝐩) + 𝑏1

∗(𝐩)𝑏1(𝐩) = 𝑏1
∗(𝐩)𝑏1(𝐩) + 𝑏1(𝐩)𝑏1

∗(𝐩) = 𝛿(𝟎) 

𝑑1(𝐩)𝑑1
∗(𝐩) + 𝑑1

∗(𝐩)𝑑1(𝐩) = 𝑑1
∗(𝐩)𝑑1(𝐩) + 𝑑1(𝐩)𝑑1

∗(𝐩) = 𝛿(𝟎) 

𝑑2(𝐩)𝑑2
∗(𝐩) + 𝑑2

∗(𝐩)𝑑2(𝐩) = 𝑏2
∗(𝐩)𝑏2(𝐩) + 𝑏2(𝐩)𝑏2

∗(𝐩) = 𝛿(𝟎) 

𝑏2(𝐩)𝑏2
∗(𝐩) + 𝑏2

∗(𝐩)𝑏2(𝐩) = 𝑑2
∗(𝐩)𝑑2(𝐩) + 𝑑2(𝐩)𝑑2

∗(𝐩) = 𝛿(𝟎) 

𝑑3(𝐩)𝑑3
∗(𝐩) + 𝑑3

∗(𝐩)𝑑3(𝐩) = 𝑏3
∗(𝐩)𝑏3(𝐩) + 𝑏3(𝐩)𝑏3

∗(𝐩) = 𝛿(𝟎) 

𝑏3(𝐩)𝑏3
∗(𝐩) + 𝑏3

∗(𝐩)𝑏3(𝐩) = 𝑑3
∗(𝐩)𝑑3(𝐩) + 𝑑3(𝐩)𝑑3

∗(𝐩) = 𝛿(𝟎) 

𝑏4(𝐩)𝑏4
∗(𝐩) + 𝑏4

∗(𝐩)𝑏4(𝐩) = 𝑏4
∗(𝐩)𝑏4(𝐩) + 𝑏4(𝐩)𝑏4

∗(𝐩) = 𝛿(𝟎) 

𝑑4(𝐩)𝑑4
∗(𝐩) + 𝑑4

∗(𝐩)𝑑4(𝐩) = 𝑑4
∗(𝐩)𝑑4(𝐩) + 𝑑4(𝐩)𝑑4

∗(𝐩) = 𝛿(𝟎) 

𝛿(𝟎) = ∫
𝑑4𝑥

(2𝜋)4
  

Let us give an interpretation of the operator coefficients for this approach 

     𝐮𝟏 = (

−𝑝3
−𝑝2
𝑝1
𝑝0

)      𝐮𝟐 = (

𝑝2
−𝑝3
𝑝0
−𝑝1

)       𝐮𝟑 = (

−𝑝1
−𝑝0
𝑝3
𝑝2

)      𝐮𝟒 = (

𝑝0
−𝑝1
𝑝2
−𝑝3

) 

𝑚𝐮𝟏 = −𝑝2𝑝1 + 𝑝3𝑝0 = −𝑚 

𝑚𝐮𝟐 = −𝑝3𝑝0 + 𝑝2𝑝1 = 𝑚 

𝑚𝐮𝟑 = −𝑝0𝑝3 + 𝑝1𝑝2 = 𝑚 

𝑚𝐮𝟒 = −𝑝1𝑝2 + 𝑝0𝑝3 = −𝑚 

        𝐯𝟏 = (

𝑝1
𝑝0
𝑝3
𝑝2

)      𝐯𝟐 = (

𝑝0
−𝑝1
−𝑝2
𝑝3

)       𝐯𝟑 = (

𝑝3
𝑝2
𝑝1
𝑝0

)      𝐯𝟒 = (

𝑝2
−𝑝3
−𝑝0
𝑝1

) 

𝑚𝐯𝟏 = 𝑝0𝑝3 − 𝑝1𝑝2 = −𝑚 

𝑚𝐯𝟐 = 𝑝1𝑝2 − 𝑝0𝑝3 = 𝑚 
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𝑚𝐯𝟑 = 𝑝2𝑝1 − 𝑝3𝑝0 = 𝑚 

𝑚𝐯𝟒 = 𝑝3𝑝0 − 𝑝2𝑝1 = −𝑚 

𝛗(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

+[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒(𝐩)
] 𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

𝑑1
∗(𝐩)  creates and 𝑑1(𝐩)  destroys a particle 𝐮𝟏(𝐩) = (

−𝑝3
−𝑝2
𝑝1
𝑝0

)  with mass −𝑚 , spin up and 

momentum in the interval 𝑑4𝑝, 𝑑1
∗(𝐩)𝑑1(𝐩) is the operator of the number of such particles 

𝑏1(𝐩)  creates and 𝑏1
∗(𝐩)  destroys a particle 𝐮𝟏̅̅̅̅ (𝐩) = (

−𝑝3̅̅ ̅
−𝑝2̅̅ ̅
𝑝1̅̅̅
𝑝0̅̅ ̅

)  with mass −𝑚̅ , spin up and 

momentum in the interval 𝑑4𝑝, 𝑏1(𝐩)𝑏1
∗(𝐩) is the operator of the number of such particles 

𝑑1(𝐩)  creates and 𝑑1
∗(𝐩)  destroys a particle 𝐮𝟒(𝐩) = (

𝑝0
−𝑝1
𝑝2
−𝑝3

)  with mass −𝑚 , spin up and 

momentum in the interval 𝑑4𝑝, 𝑑1(𝐩)𝑑1
∗(𝐩) is the operator of the number of such particles 

𝑏1
∗(𝐩)  creates and 𝑏1(𝐩)  destroys a particle 𝐮𝟒̅̅̅̅ (𝐩) = (

𝑝0̅̅ ̅
−𝑝1̅̅̅
𝑝2̅̅ ̅
−𝑝3̅̅ ̅

)  with mass −𝑚̅ , spin up and 

momentum in the interval 𝑑4𝑝, 𝑏1
∗(𝐩)𝑏1(𝐩) is the operator of the number of such particles 

Note that 𝐮𝟏(𝐩) and 𝐮𝟒(𝐩)are translated into each other by a linear transformation, this is also 

true for other pairs of spinors 

𝐮𝟒 = (

0  0
0  0

 
0  1
−1  0

  
0  −1
1  0

 
0  0
0 0

)𝐮𝟏 

𝐮𝟏 = (

0  0
0  0

 
0  1
−1  0

  
0  −1
1  0

 
0  0
0 0

)𝐮𝟒 

It is known [[9], formula II.1.30] that the charge conjugation operation transforms an electron 

into a positron with a change of the sign of the charge. Let us apply the charge conjugation to the 

reference spinor  

(

 0 0
 0 0

 
0 −𝑖
𝑖 0

  
0 𝑖
−𝑖 0

 
0 0
0 0

)𝐮𝟏 = (

 0 0
 0 0

 
0 −𝑖
𝑖 0

  
0 𝑖
−𝑖 0

 
0 0
0 0

)(

−𝑝3
−𝑝2
𝑝1
𝑝0

) = −𝑖 (

𝑝0
−𝑝1
𝑝2
−𝑝3

) = −𝑖𝐮𝟒 

As a result 𝐮𝟏 not only transforms to 𝐮𝟒, but also changes a sign of mass due to the imaginary 

unit in the charge conjugation matrix. This confirms our thesis that the charge conjugation 

synchronously changes signs of charge and mass. 

The properties of all particles and operators are summarized in a table 

creates destroys particle spinor  vector number mass spin 
wave 

sign 
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𝑑1
∗(𝐩) 𝑑1(𝐩) 𝐮𝟏(𝐩) = (

−𝑝3
−𝑝2
𝑝1
𝑝0

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 𝑑1
∗(𝐩)𝑑1(𝐩) −𝑚 up + 

𝑑1(𝐩) 𝑑1
∗(𝐩) 𝐮𝟒(𝐩) = (

𝑝0
−𝑝1
𝑝2
−𝑝3

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 𝑑1(𝐩)𝑑1
∗(𝐩) −𝑚 up - 

𝑏1(𝐩) 𝑏1
∗(𝐩) 𝐮𝟏̅̅̅̅ (𝐩) = (

−𝑝3̅̅ ̅
−𝑝2̅̅ ̅
𝑝1̅̅̅
𝑝0̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) 𝑏1(𝐩)𝑏1
∗(𝐩) −𝑚̅ up - 

𝑏1
∗(𝐩) 𝑏1(𝐩) 𝐮𝟒̅̅̅̅ (𝐩) = (

𝑝0̅̅ ̅
−𝑝1̅̅̅
𝑝2̅̅ ̅
−𝑝3̅̅ ̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 𝑏1
∗(𝐩)𝑏1(𝐩) −𝑚̅ up + 

𝑑4
∗(𝐩) 𝑑4(𝐩) 𝐯𝟏(𝐩) = (

𝑝1
𝑝0
𝑝3
𝑝2

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 𝑑4
∗(𝐩)𝑑4 −𝑚 down + 

𝑑4(𝐩) 𝑑4
∗(𝐩) 𝐯𝟒(𝐩) = (

𝑝2
−𝑝3
−𝑝0
𝑝1

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 𝑑4(𝐩)𝑑4
∗(𝐩) −𝑚 down - 

𝑏4(𝐩) 𝑏4
∗(𝐩) 𝐯𝟏̅̅̅̅ (𝐩) = (

𝑝1̅̅̅
𝑝0̅̅ ̅
𝑝3̅̅ ̅
𝑝2̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) 𝑏4(𝐩)𝑏4
∗(𝐩) −𝑚̅ down - 

𝑏4
∗(𝐩) 𝑏4(𝐩) 𝐯𝟒̅̅̅̅ (𝐩) = (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
−𝑝0̅̅ ̅
𝑝1̅̅̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 𝑏4
∗(𝐩)𝑏4(𝐩) −𝑚̅ down + 

𝑑2
∗(𝐩) 𝑑2(𝐩) 𝐮𝟑(𝐩) = (

−𝑝1
−𝑝0
𝑝3
𝑝2

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 𝑑2
∗(𝐩)𝑑2(𝐩) 𝑚 up + 

𝑑2(𝐩) 𝑑2
∗(𝐩) 𝐮𝟐(𝐩) = (

𝑝2
−𝑝3
𝑝0
−𝑝1

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 𝑑2(𝐩)𝑑2
∗(𝐩) 𝑚 up - 

𝑏2(𝐩) 𝑏2
∗(𝐩) 𝐮𝟑̅̅̅̅ (𝐩) = (

−𝑝1̅̅̅
−𝑝0̅̅ ̅
𝑝3̅̅ ̅
𝑝2̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) 𝑏2(𝐩)𝑏2
∗(𝐩) 𝑚̅ up - 

𝑏2
∗(𝐩) 𝑏2(𝐩) 𝐮𝟐̅̅̅̅ (𝐩) = (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
𝑝0̅̅ ̅
−𝑝1̅̅̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 𝑏2
∗(𝐩)𝑏2(𝐩) 𝑚̅ up + 

𝑑3
∗(𝐩) 𝑑3(𝐩) 𝐯𝟑(𝐩) = (

𝑝3
𝑝2
𝑝1
𝑝0

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 𝑑3
∗(𝐩)𝑑3(𝐩) 𝑚 down + 

𝑑3(𝐩) 𝑑3
∗(𝐩) 𝐯𝟐(𝐩) = (

𝑝0
−𝑝1
−𝑝2
𝑝3

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 𝑑3(𝐩)𝑑3
∗(𝐩) 𝑚 down - 

𝑏3(𝐩) 𝑏3
∗(𝐩) 𝐯𝟑̅̅̅̅ (𝐩) = (

𝑝3̅̅ ̅
𝑝2̅̅ ̅
𝑝1̅̅̅
𝑝0̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

)  𝑏3(𝐩)𝑏3
∗(𝐩) 𝑚̅ down - 
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𝑏3
∗(𝐩) 𝑏3(𝐩) 𝐯𝟐̅̅̅̅ (𝐩) = (

𝑝0̅̅ ̅
−𝑝1̅̅̅
−𝑝2̅̅ ̅
𝑝3̅̅ ̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 𝑏3
∗(𝐩)𝑏3(𝐩) 𝑚̅ down + 

Here the column “vector” shows the vector obtained from the corresponding spinor by the 

formula of the form 

𝑈1𝜇 =
1

2
𝐮𝟏†𝑆𝜇𝐮𝟏  

and 

𝑃𝜇 =
1

2
𝐩†𝑆𝜇𝐩  

Although we have used the term vector for quantities like U1, they are not really vectors in the 

sense that if a Lorentz transformation is applied to a coordinate spinor and hence a coordinate vector, 

the true vector must undergo the same transformation. For a momentum vector this is the case, but 

if the sign of one or more components in the momentum vector is changed, it will no longer be 

transformed according to this law. For example, charge conjugation changes the signs of some 

components 

𝐶𝑇𝑆0𝐶 = 𝑆0         𝐶
𝑇𝑆1𝐶 = −𝑆1        𝐶

𝑇𝑆2𝐶 = 𝑆2        𝐶
𝑇𝑆3𝐶 = −𝑆3   

so the electron current and the positron current cannot be vectors at the same time, and in fact, as can 

be seen from the table, neither is a vector. 

By the words 𝑑1(𝐩) destroys the particle 𝐮𝟏(𝐩) it should be understood that this operator 

transforms this particle into the particle  𝐮𝟒(𝐩) , and the operator 𝑑1
∗(𝐩)  performs the reverse 

transformation of 𝐮𝟒(𝐩) into 𝐮𝟏(𝐩). The action of the operator 𝑑1(𝐩) on any other particle gives 

zero. Since both these particles have the same mass, the total mass of the fermionic field does not 

change from these transformations. The mass 𝑚 itself can have any sign or even be complex. 

Although we call the spinors presented in the table particles, they actually describe the same 

particle whose characteristic property is a mass with a certain sign. A particle with mass of opposite 

sign is described by the other sixteen spinors. Let's compare the momenta of two particles with 

different mass signs 

(

𝑝0
𝑝1
𝑝2
𝑝3

)             𝑝1𝑝2 − 𝑝0𝑝3 = 𝑚 

(

𝑝2
𝑝3
𝑝0
𝑝1

)         𝑝3𝑝0 − 𝑝2𝑝1 = −𝑚 

If we add sixteen spinors of the field of one particle with sixteen corresponding spinors of 

another particle, it will look the same as if the momenta of the particles were summed directly. It is 

clear that the momenta themselves cannot be directly summed, but summing the fields does not look 

impossible and leads to the same result as adding the momenta directly. The result can be represented 

as a sum of two other momenta, the mass of each of which is zero 

(

𝑝0
𝑝1
𝑝2
𝑝3

) + (

𝑝2
𝑝3
𝑝0
𝑝1

) = (

𝑝0 + 𝑝2
𝑝1 + 𝑝3
𝑝2 + 𝑝0
𝑝3 + 𝑝1

) = (

𝑝0
𝑝1
𝑝0
𝑝1

) + (

𝑝2
𝑝3
𝑝2
𝑝3

)      

Perhaps, such summation is an adequate model for describing the phenomenon of annihilation 

of particles with different masses. As an illustrative example, consider the case of an electron and a 

positron at rest 

(

𝑝0
𝑝1
𝑝1̅̅̅
−𝑝0̅̅ ̅

)             𝑝1𝑝1̅̅̅ − 𝑝0(−𝑝0̅̅ ̅) = 𝑚 
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(

𝑝1̅̅̅
−𝑝0̅̅ ̅
𝑝0
𝑝1

)         − 𝑝0̅̅ ̅𝑝0 − 𝑝1̅̅̅𝑝1 = −𝑚 

(

𝑝0
𝑝1
𝑝1̅̅̅
−𝑝0̅̅ ̅

) + (

𝑝1̅̅̅
−𝑝0̅̅ ̅
𝑝0
𝑝1

) = (

𝑝0 + 𝑝1̅̅̅
𝑝1 − 𝑝0̅̅ ̅
𝑝1̅̅̅ + 𝑝0
−𝑝0̅̅ ̅ + 𝑝1

) = (

𝑝0
𝑝1
𝑝0
𝑝1

) +(

𝑝1̅̅̅
−𝑝0̅̅ ̅
𝑝1̅̅̅
−𝑝0̅̅ ̅

) 

As a result of addition and separation, two photons with zero mass are obtained, having 

oppositely directed spatial components of the momentum vector, i.e. flying apart. At this interaction 

the total energy, the total momentum and the total mass are conserved. We can also say that the total 

charge is conserved, although in our interpretation the charge is not a numerical characteristic that 

can be calculated, the sign of the charge is determined by the structure of the spinor. In turn, this 

structure is determined precisely by the sign of the mass. Thus, a change in the sign of the mass leads 

ultimately to a change in the sign of the charge. 

In the table below two last columns with a set of spinors and vectors corresponding to the 

particle with opposite sign of mass are added. It is supposed that at annihilation the spinors of the 

particle and antiparticle, which are in the same row of the table, are summed. The set of 16 spinors 

remains the same, but the order of their arrangement changes when the sign of mass changes. 

creates destroys particle spinor  vector mass spin 
wave 

sign 
antiparticle spinor  vector 

𝑑1
∗(𝐩) 𝑑1(𝐩) 𝐮𝟏(𝐩) = (

−𝑝3
−𝑝2
𝑝1
𝑝0

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) −𝑚 up + 𝐮𝟏(𝐩) = (

−𝑝1
−𝑝0
𝑝3
𝑝2

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 

𝑑1(𝐩) 𝑑1
∗(𝐩) 𝐮𝟒(𝐩) = (

𝑝0
−𝑝1
𝑝2
−𝑝3

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) −𝑚 up - 𝐮𝟒(𝐩) = (

𝑝2
−𝑝3
𝑝0
−𝑝1

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 

𝑏1(𝐩) 𝑏1
∗(𝐩) 𝐮𝟏̅̅̅̅ (𝐩) = (

−𝑝3̅̅ ̅
−𝑝2̅̅ ̅
𝑝1̅̅̅
𝑝0̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) −𝑚̅ up - 𝐮𝟏̅̅̅̅ (𝐩) = (

−𝑝1̅̅̅
−𝑝0̅̅ ̅
𝑝3̅̅ ̅
𝑝2̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) 

𝑏1
∗(𝐩) 𝑏1(𝐩) 𝐮𝟒̅̅̅̅ (𝐩) = (

𝑝0̅̅ ̅
−𝑝1̅̅̅
𝑝2̅̅ ̅
−𝑝3̅̅ ̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) −𝑚̅ up + 𝐮𝟒̅̅̅̅ (𝐩) = (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
𝑝0̅̅ ̅
−𝑝1̅̅̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 

𝑑4
∗(𝐩) 𝑑4(𝐩) 𝐯𝟏(𝐩) = (

𝑝1
𝑝0
𝑝3
𝑝2

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) −𝑚 down + 𝐯𝟏(𝐩) = (

𝑝3
𝑝2
𝑝1
𝑝0

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 

𝑑4(𝐩) 𝑑4
∗(𝐩) 𝐯𝟒(𝐩) = (

𝑝2
−𝑝3
−𝑝0
𝑝1

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) −𝑚 down - 𝐯𝟒(𝐩) = (

𝑝0
−𝑝1
−𝑝2
𝑝3

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 

𝑏4(𝐩) 𝑏4
∗(𝐩) 𝐯𝟏̅̅̅̅ (𝐩) = (

𝑝1̅̅̅
𝑝0̅̅ ̅
𝑝3̅̅ ̅
𝑝2̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) −𝑚̅ down - 𝐯𝟏̅̅̅̅ (𝐩) = (

𝑝3̅̅ ̅
𝑝2̅̅ ̅
𝑝1̅̅̅
𝑝0̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) 

𝑏4
∗(𝐩) 𝑏4(𝐩) 𝐯𝟒̅̅̅̅ (𝐩) = (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
−𝑝0̅̅ ̅
𝑝1̅̅̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) −𝑚̅ down + 𝐯𝟒̅̅̅̅ (𝐩) = (

𝑝0̅̅ ̅
−𝑝1̅̅̅
−𝑝2̅̅ ̅
𝑝3̅̅ ̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 

𝑑2
∗(𝐩) 𝑑2(𝐩) 𝐮𝟑(𝐩) = (

−𝑝1
−𝑝0
𝑝3
𝑝2

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 𝑚 up + 𝐮𝟑(𝐩) = (

−𝑝3
−𝑝2
𝑝1
𝑝0

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 
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𝑑2(𝐩) 𝑑2
∗(𝐩) 𝐮𝟐(𝐩) = (

𝑝2
−𝑝3
𝑝0
−𝑝1

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 𝑚 up - 𝐮𝟐(𝐩) = (

𝑝0
−𝑝1
𝑝2
−𝑝3

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 

𝑏2(𝐩) 𝑏2
∗(𝐩) 𝐮𝟑̅̅̅̅ (𝐩) = (

−𝑝1̅̅̅
−𝑝0̅̅ ̅
𝑝3̅̅ ̅
𝑝2̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) 𝑚̅ up - 𝐮𝟑̅̅̅̅ (𝐩) = (

−𝑝3̅̅ ̅
−𝑝2̅̅ ̅
𝑝1̅̅̅
𝑝0̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) 

𝑏2
∗(𝐩) 𝑏2(𝐩) 𝐮𝟐̅̅̅̅ (𝐩) = (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
𝑝0̅̅ ̅
−𝑝1̅̅̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 𝑚̅ up + 𝐮𝟐̅̅̅̅ (𝐩) = (

𝑝0̅̅ ̅
−𝑝1̅̅̅
𝑝2̅̅ ̅
−𝑝3̅̅ ̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 

𝑑3
∗(𝐩) 𝑑3(𝐩) 𝐯𝟑(𝐩) = (

𝑝3
𝑝2
𝑝1
𝑝0

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 𝑚 down + 𝐯𝟑(𝐩) = (

𝑝1
𝑝0
𝑝3
𝑝2

) (

𝑃0
𝑃1
−𝑃2
−𝑃3

) 

𝑑3(𝐩) 𝑑3
∗(𝐩) 𝐯𝟐(𝐩) = (

𝑝0
−𝑝1
−𝑝2
𝑝3

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 𝑚 down - 𝐯𝟐(𝐩) = (

𝑝2
−𝑝3
−𝑝0
𝑝1

) (

𝑃0
−𝑃1
−𝑃2
𝑃3

) 

𝑏3(𝐩) 𝑏3
∗(𝐩) 𝐯𝟑̅̅̅̅ (𝐩) = (

𝑝3̅̅ ̅
𝑝2̅̅ ̅
𝑝1̅̅̅
𝑝0̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) 𝑚̅ down - 𝐯𝟑̅̅̅̅ (𝐩) = (

𝑝1̅̅̅
𝑝0̅̅ ̅
𝑝3̅̅ ̅
𝑝2̅̅ ̅

) (

𝑃0
𝑃1
𝑃2
−𝑃3

) 

𝑏3
∗(𝐩) 𝑏3(𝐩) 𝐯𝟐̅̅̅̅ (𝐩) = (

𝑝0̅̅ ̅
−𝑝1̅̅̅
−𝑝2̅̅ ̅
𝑝3̅̅ ̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 𝑚̅ down + 𝐯𝟐̅̅̅̅ (𝐩) = (

𝑝2̅̅ ̅
−𝑝3̅̅ ̅
−𝑝0̅̅ ̅
𝑝1̅̅̅

) (

𝑃0
−𝑃1
𝑃2
𝑃3

) 

It is possible to assume that the reason and condition of distinction between particles with 

different charge is the presence of their non-zero mass. If the mass is zero, then in the given table 

there are no differences between spinors of the particle and antiparticle, i.e. there is no mechanism 

for formation of the internal degree of freedom, which we treat as charge. 

Let us see what result we get if we apply another definition of anticommutativity of the 

fermionic field. 

𝛗(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

+[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒(𝐩)
] 𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

{𝜑𝑖(𝐱), 𝜑𝑗̅̅ ̅(𝐱
′)} = 𝜑𝑖(𝐱)𝜑𝑗̅̅ ̅(𝐱

′) + 𝜑𝑗̅̅ ̅(𝐱
′)𝜑𝑖(𝐱) = (𝛗(𝐱)𝛗

+(𝐱′) + (𝛗̅(𝐱′)𝛗𝑇(𝐱))
𝑇
)
𝑖𝑗

 

𝛗(𝐱)𝛗+(𝐱′) + (𝛗̅(𝐱′)𝛗𝑇(𝐱))
𝑇
= 

∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
  

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 

[
𝑑1
∗(𝐩′)𝐮𝟏+(𝐩′) − 𝑖𝑑2

∗(𝐩′)𝐮𝟑+(𝐩′) − 𝑖𝑏2
∗(𝐩′)𝐮𝟐𝑇(𝐩′) + 𝑏1

∗(𝐩′)𝐮𝟒𝑇(𝐩′)

+𝑑4
∗(𝐩′)𝐯𝟏+(𝐩′) − 𝑖𝑑3

∗(𝐩′)𝐯𝟑+(𝐩′) − 𝑖𝑏3
∗(𝐩′)𝐯𝟐𝑇(𝐩′) + 𝑏4

∗(𝐩′)𝐯𝟒𝑇(𝐩′)
] 

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅) 

+ 
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(

 
 
 
[
𝑑1
∗(𝐩′)𝐮𝟏̅̅̅̅ (𝐩′) − 𝑖𝑑2

∗(𝐩′)𝐮𝟑̅̅̅̅ (𝐩′) − 𝑖𝑏2
∗(𝐩′)𝐮𝟐(𝐩′) +  𝑏1(𝐩

′)𝐮𝟒(𝐩′)

+𝑑4
∗(𝐩′)𝐯𝟏̅̅̅̅ (𝐩′) − 𝑖𝑑3

∗(𝐩′)𝐯𝟑̅̅̅̅ (𝐩′) − 𝑖𝑏3
∗(𝐩′)𝐯𝟐(𝐩′) + 𝑏4

∗(𝐩′)𝐯𝟒(𝐩′)
]

[
𝑑1(𝐩)𝐮𝟏

𝑻(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑
𝑻(𝐩) + 𝑖𝑏2(𝐩

′)𝐮𝟐+(𝐩′) + 𝑏1
∗(𝐩)𝐮𝟒+(𝐩)

+𝑑4(𝐩)𝐯𝟏
𝑻(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑

𝑻(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐
+(𝐩) + 𝑏4(𝐩)𝐯𝟒

+(𝐩)
]

𝑒−𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) )

 
 
 

𝑇

 

+ 

[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒(𝐩)
] 

[
𝑏1(𝐩

′)𝐮𝟏𝑻(𝐩′) − 𝑖𝑏2(𝐩
′)𝐮𝟑𝑇(𝐩′) − 𝑖𝑑2(𝐩

′)𝐮𝟐+(𝐩′) + 𝑑1(𝐩
′)𝐮𝟒+(𝐩′)

+𝑏4(𝐩
′)𝐯𝟏𝑇(𝐩′) − 𝑖𝑏3(𝐩

′)𝐯𝟑𝑇(𝐩′) − 𝑖𝑑3(𝐩
′)𝐯𝟐+(𝐩′) + 𝑑4(𝐩

′)𝐯𝟒+(𝐩′)
] 

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅) 

+ 

(

 
 
 
[
𝑏1(𝐩

′)𝐮𝟏(𝐩′) − 𝑖𝑏2(𝐩
′)𝐮𝟑(𝐩′) − 𝑖𝑑2(𝐩

′)𝐮𝟐̅̅̅̅ (𝐩′) + 𝑑1(𝐩
′)𝐮𝟒̅̅̅̅ (𝐩′)

+𝑏4(𝐩
′)𝐯𝟏(𝐩′) − 𝑖𝑏3(𝐩

′)𝐯𝟑(𝐩′) − 𝑖𝑑3(𝐩
′)𝐯𝟐̅̅̅̅ (𝐩′) + 𝑑4(𝐩

′)𝐯𝟒̅̅̅̅ (𝐩′)
]

[
𝑏1
∗(𝐩)𝐮𝟏+(𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑+(𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐𝑻(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒𝑻(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏+(𝐩) + 𝑖𝑏𝑖𝑏3

∗
3
(𝐩)𝐯𝟑+(𝐩) + 𝑖𝑑3

∗(𝐩)𝐯𝟐𝑇(𝐩) + 𝑑4
∗(𝐩)𝐯𝟒𝑻(𝐩)

]

𝑒𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) )

 
 
 

𝑻

 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 
 [
𝑑1(𝐩)𝑑1

∗(𝐩′)𝐮𝟏(𝐩)𝐮𝟏+(𝐩′) + (𝑑1
∗(𝐩′)𝑑1(𝐩)𝐮𝟏̅̅̅̅ (𝐩

′)𝐮𝟏𝑻(𝐩))
𝑻
+⋯

+𝑑2(𝐩)𝑑2
∗(𝐩′)𝐮𝟑(𝐩)𝐮𝟑+(𝐩′) + (𝑑2

∗(𝐩′)𝑑2(𝐩)𝐮𝟑̅̅̅̅ (𝐩
′)𝐮𝟑𝑻(𝐩))

𝑻
+⋯

]

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
 𝑏1(𝐩)𝑏1

∗(𝐩′)𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟒𝑇(𝐩′) + (𝑏1
∗(𝐩′)𝑏1(𝐩)𝐮𝟒(𝐩

′)𝐮𝟒+(𝐩))
𝑻
+⋯

+𝑏2(𝐩)𝑏2
∗(𝐩′)𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟐𝑇(𝐩′) + (𝑏2

∗(𝐩′)𝑏2(𝐩
′)𝐮𝟐(𝐩′)𝐮𝟐+(𝐩′))

𝑻
+⋯

]

𝑒𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]

 
 
 
 
 
 
 
 
 

 

+∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 
 [
𝑏1
∗(𝐩)𝑏1(𝐩

′)𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟏𝑻(𝐩′) + (𝑏1(𝐩
′)𝑏1

∗(𝐩)𝐮𝟏(𝐩′)𝐮𝟏+(𝐩))
𝑻
+⋯

+𝑏2
∗(𝐩)𝑏2(𝐩

′)𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟑𝑇(𝐩′) + (𝑏2(𝐩
′)𝑏2

∗(𝐩)𝐮𝟑(𝐩′)𝐮𝟑+(𝐩))
𝑻
+⋯

]

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
𝑑1
∗(𝐩)𝑑1(𝐩

′)𝐮𝟒(𝐩)𝐮𝟒+(𝐩′) + (𝑑1(𝐩
′)𝑑1

∗(𝐩)𝐮𝟒̅̅̅̅ (𝐩′)𝐮𝟒𝑻(𝐩))
𝑻
+⋯

+𝑑2
∗(𝐩)𝑑2(𝐩

′)𝐮𝟐(𝐩)𝐮𝟐+(𝐩′) + (𝑑2(𝐩
′)𝑑2

∗(𝐩)𝐮𝟐̅̅̅̅ (𝐩′)𝐮𝟐𝑻(𝐩))
𝑻
+⋯

]

𝑒−𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]

 
 
 
 
 
 
 
 
 

 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 [
𝑑1(𝐩)𝑑1

∗(𝐩′)𝐮𝟏(𝐩)𝐮𝟏+(𝐩′) + (𝑑1
∗(𝐩′)𝑑1(𝐩)𝐮𝟏(𝐩)𝐮𝟏

+(𝐩′)) + ⋯

+𝑑2(𝐩)𝑑2
∗(𝐩′)𝐮𝟑(𝐩)𝐮𝟑+(𝐩′) + (𝑑2

∗(𝐩′)𝑑2(𝐩)𝐮𝟑(𝐩)𝐮𝟑
+(𝐩′)) + ⋯

]

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
 𝑏1(𝐩)𝑏1

∗(𝐩′)𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟒𝑇(𝐩′) + (𝑏1
∗(𝐩′)𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟒

𝑇(𝐩′)) + ⋯

+𝑏2(𝐩)𝑏2
∗(𝐩′)𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟐𝑇(𝐩′) + (𝑏2

∗(𝐩′)𝑏2(𝐩
′)𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟐𝑇(𝐩′)) + ⋯

]

𝑒𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]
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+∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 [
𝑏1
∗(𝐩)𝑏1(𝐩

′)𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟏𝑻(𝐩′) + (𝑏1(𝐩
′)𝑏1

∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟏𝑻(𝐩′)(𝐩′)) + ⋯

+𝑏2
∗(𝐩)𝑏2(𝐩

′)𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟑𝑇(𝐩′) + (𝑏2(𝐩
′)𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟑𝑇(𝐩′)) + ⋯
]

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
𝑑1
∗(𝐩)𝑑1(𝐩

′)𝐮𝟒(𝐩)𝐮𝟒+(𝐩′) + (𝑑1(𝐩
′)𝑑1

∗(𝐩)𝐮𝟒(𝐩)𝐮𝟒+(𝐩′)) + ⋯

+𝑑2
∗(𝐩)𝑑2(𝐩

′)𝐮𝟐(𝐩)𝐮𝟐+(𝐩′) + (𝑑2(𝐩
′)𝑑2

∗(𝐩)𝐮𝟐(𝐩)𝐮𝟐+(𝐩′)) + ⋯
]

𝑒−𝑖(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′ ,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]

 
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 [

𝐮𝟏(𝐩)𝐮𝟏+(𝐩) + ⋯

+𝐮𝟑(𝐩)𝐮𝟑+(𝐩) + ⋯
]

𝑒𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟒𝑇(𝐩) + ⋯

+𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟐𝑇(𝐩) +⋯
]

𝑒−𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )]
 
 
 
 
 
 
 

 

+∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 [

𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟏𝑻(𝐩) + ⋯

+𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟑𝑇(𝐩) + ⋯
]

𝑒−𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟒(𝐩)𝐮𝟒+(𝐩) + ⋯

+𝐮𝟐(𝐩)𝐮𝟐+(𝐩) + ⋯
]

𝑒𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ]
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 [

𝐮𝟏(𝐩)𝐮𝟏+(𝐩) + 𝐮𝟑(𝐩)𝐮𝟑+(𝐩) +

𝐮𝟒(𝐩)𝐮𝟒+(𝐩) + 𝐮𝟐(𝐩)𝐮𝟐+(𝐩) + ⋯
]

𝑒𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟒𝑇(𝐩) + 𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟐𝑇(𝐩) +

𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟏𝑻(𝐩) + 𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟑𝑇(𝐩) + ⋯
]

𝑒−𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )]
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 [
𝐮𝟏(𝐩)𝐮𝟏+(𝐩) + 𝐮𝟐(𝐩)𝐮𝟐+(𝐩) + 𝐮𝟑(𝐩)𝐮𝟑+(𝐩) + 𝐮𝟒(𝐩)𝐮𝟒+(𝐩) +

𝐯𝟏(𝐩)𝐯𝟏+(𝐩) + 𝐯𝟐(𝐩)𝐯𝟐+(𝐩) + 𝐯𝟑(𝐩)𝐯𝟑+(𝐩) + 𝐯𝟒(𝐩)𝐯𝟒+(𝐩)
]

𝑒𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟏+(𝐩) + 𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟐+(𝐩) + 𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟑+(𝐩) + 𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟒+(𝐩) +

𝐯𝟏̅̅̅̅ (𝐩)𝐯𝟏+(𝐩) + 𝐯𝟐̅̅̅̅ (𝐩)𝐯𝟐+(𝐩) + 𝐯𝟑̅̅̅̅ (𝐩)𝐯𝟑+(𝐩) + 𝐯𝟒̅̅̅̅ (𝐩)𝐯𝟒+(𝐩)
]

𝑒−𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ]
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 (𝑇𝑅(𝐩) + 𝑇𝑅(𝐩))𝑒

(𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))
 

+∫
𝑑4𝑝

(2𝜋)4
 (𝑇𝑅̅̅ ̅(𝐩) + 𝑇

𝑅̅̅̅̅ (𝐩)) 𝑒−
(𝑖(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

 

= ∫
𝑑4𝑝

(2𝜋)4
 4 (

𝑒(𝐩) 0

0 𝑒(𝐩)
0 0
0 0

0 0
0 0

𝑒(𝐩) 0

0 𝑒(𝐩)

) 𝑒
(𝑖(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′))+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

 

+∫
𝑑4𝑝

(2𝜋)4
 4 (

𝑒(𝐩) 0

0 𝑒(𝐩)
0 0
0 0

0 0
0 0

𝑒(𝐩) 0

0 𝑒(𝐩)

) 𝑒−
(𝑖(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

 

= 4𝑒(𝐩)𝐼𝛿(𝐱′ − 𝐱) + 4𝑒(𝐩)𝐼𝛿(𝐱 − 𝐱′) 

where 
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𝑇𝑅(𝐩) = 𝐮𝟏(𝐩)𝐮𝟏+(𝐩) + 𝐮𝟐(𝐩)𝐮𝟐+(𝐩) + 𝐮𝟑(𝐩)𝐮𝟑+(𝐩) + 𝐮𝟒(𝐩)𝐮𝟒+(𝐩) 

𝑇𝑅(𝐩) = 𝐯𝟏(𝐩)𝐯𝟏
+(𝐩) + 𝐯𝟐(𝐩)𝐯𝟐+(𝐩) + 𝐯𝟑(𝐩)𝐯𝟑+(𝐩) + 𝐯𝟒(𝐩)𝐯𝟒+(𝐩) 

𝑇𝑅(𝐩) + 𝑇𝑅(𝐩) + 𝑇
𝑅̅̅̅̅ (𝐩) + 𝑇𝑅̅̅ ̅(𝐩) = 

4(𝑝0𝑝0̅̅ ̅ + 𝑝1𝑝1̅̅̅ + 𝑝2𝑝2̅̅ ̅ + 𝑝3𝑝3̅̅ ̅) (

1    0
0    1

 
0    0
0    0

  
0    0
0    0

1    0
0    1

) = 4𝑒(𝐩)𝐼 

In deriving this result, the following relations are taken into account 

𝑇𝑅(𝐩) + 𝑇𝑅(𝐩) = 𝐮𝟏(𝐩)𝐮𝟏+(𝐩) + 𝐮𝟐(𝐩)𝐮𝟐+(𝐩) + 𝐮𝟑(𝐩)𝐮𝟑+(𝐩) + 𝐮𝟒(𝐩)𝐮𝟒+(𝐩) 

+𝐯𝟏(𝐩)𝐯𝟏+(𝐩) + 𝐯𝟐(𝐩)𝐯𝟐+(𝐩) + 𝐯𝟑(𝐩)𝐯𝟑+(𝐩) + 𝐯𝟒(𝐩)𝐯𝟒+(𝐩) = 

(

−𝑝3
−𝑝2
𝑝1
𝑝0

) (−𝑝3̅̅ ̅, −𝑝2̅̅ ̅, 𝑝1̅̅̅, 𝑝0̅̅ ̅) + (

𝑝2
−𝑝3
𝑝0
−𝑝1

) (𝑝2̅̅ ̅, −𝑝3̅̅ ̅, 𝑝0̅̅ ̅, −𝑝1̅̅̅) 

+(

−𝑝1
−𝑝0
𝑝3
𝑝2

) (−𝑝1̅̅̅, −𝑝0̅̅ ̅, 𝑝3̅̅ ̅, 𝑝2̅̅ ̅) + (

𝑝0
−𝑝1
𝑝2
−𝑝3

) (𝑝0̅̅ ̅, −𝑝1̅̅̅, 𝑝2̅̅ ̅, −𝑝3̅̅ ̅) + 

(

𝑝1
𝑝0
𝑝3
𝑝2

) (𝑝1̅̅̅, 𝑝0̅̅ ̅, 𝑝3̅̅ ̅, 𝑝2̅̅ ̅) + (

𝑝0
−𝑝1
−𝑝2
𝑝3

) (𝑝0̅̅ ̅, −𝑝1̅̅̅, −𝑝2̅̅ ̅, 𝑝3̅̅ ̅) 

+(

𝑝3
𝑝2
𝑝1
𝑝0

)(𝑝3̅̅ ̅, 𝑝2̅̅ ̅, 𝑝1̅̅̅, 𝑝0̅̅ ̅) + (

𝑝2
−𝑝3
−𝑝0
𝑝1

) (𝑝2̅̅ ̅, −𝑝3̅̅ ̅, −𝑝0̅̅ ̅, 𝑝1̅̅̅) = 

(

𝑝3𝑝3̅̅ ̅    𝑝3𝑝2̅̅ ̅
𝑝2𝑝3̅̅ ̅    𝑝2𝑝2̅̅ ̅

 
−𝑝3𝑝1̅̅̅   −𝑝3𝑝0̅̅ ̅
−𝑝2𝑝1̅̅̅   −𝑝2𝑝0̅̅ ̅

  
−𝑝1𝑝3̅̅ ̅  −𝑝1𝑝2̅̅ ̅
−𝑝0𝑝3̅̅ ̅   −𝑝0𝑝2̅̅ ̅

𝑝1𝑝1̅̅̅    𝑝1𝑝0̅̅ ̅
𝑝0𝑝1̅̅̅    𝑝0𝑝0̅̅ ̅

) + (

𝑝2𝑝2̅̅ ̅   −𝑝2𝑝3̅̅ ̅
−𝑝3𝑝2̅̅ ̅    𝑝3𝑝3̅̅ ̅

 
𝑝2𝑝0̅̅ ̅   −𝑝2𝑝1̅̅̅
−𝑝3𝑝0̅̅ ̅   𝑝3𝑝1̅̅̅

  
𝑝0𝑝2̅̅ ̅  −𝑝0𝑝3̅̅ ̅
−𝑝1𝑝2̅̅ ̅   𝑝1𝑝3̅̅ ̅

𝑝0𝑝0̅̅ ̅    −𝑝0𝑝1̅̅̅
−𝑝1𝑝0̅̅ ̅    𝑝1𝑝1̅̅̅

) 

+(

𝑝1𝑝1̅̅̅    𝑝1𝑝0̅̅ ̅
𝑝0𝑝1̅̅̅    𝑝0𝑝0̅̅ ̅

 
−𝑝1𝑝3̅̅ ̅   −𝑝1𝑝2̅̅ ̅
−𝑝0𝑝3̅̅ ̅   −𝑝0𝑝2̅̅ ̅

  
−𝑝3𝑝1̅̅̅  −𝑝3𝑝0̅̅ ̅
−𝑝2𝑝1̅̅̅   −𝑝2𝑝0̅̅ ̅

𝑝3𝑝3̅̅ ̅    𝑝3𝑝2̅̅ ̅
𝑝2𝑝3̅̅ ̅    𝑝2𝑝2̅̅ ̅

) + (

𝑝0𝑝0̅̅ ̅   −𝑝0𝑝1̅̅̅
−𝑝1𝑝0̅̅ ̅    𝑝1𝑝1̅̅̅

 
𝑝0𝑝2̅̅ ̅   −𝑝0𝑝3̅̅ ̅
−𝑝1𝑝2̅̅ ̅   𝑝1𝑝3̅̅ ̅

  
𝑝2𝑝0̅̅ ̅  −𝑝2𝑝1̅̅̅
−𝑝3𝑝0̅̅ ̅   𝑝3𝑝1̅̅̅

𝑝2𝑝2̅̅ ̅    −𝑝2𝑝3̅̅ ̅
−𝑝3𝑝2̅̅ ̅    𝑝3𝑝3̅̅ ̅

) 

+(

𝑝1𝑝1̅̅̅    𝑝1𝑝0̅̅ ̅
𝑝0𝑝1̅̅̅    𝑝0𝑝0̅̅ ̅

 
𝑝1𝑝3̅̅ ̅   𝑝1𝑝2̅̅ ̅
𝑝0𝑝3̅̅ ̅   𝑝0𝑝2̅̅ ̅

  
𝑝3𝑝1̅̅̅  𝑝3𝑝0̅̅ ̅
𝑝2𝑝1̅̅̅   𝑝2𝑝0̅̅ ̅

𝑝3𝑝3̅̅ ̅    𝑝3𝑝2̅̅ ̅
𝑝2𝑝3̅̅ ̅    𝑝2𝑝2̅̅ ̅

) + (

𝑝0𝑝0̅̅ ̅   −𝑝0𝑝1̅̅̅
−𝑝1𝑝0̅̅ ̅    𝑝1𝑝1̅̅̅

 
−𝑝0𝑝2̅̅ ̅   𝑝0𝑝3̅̅ ̅
−𝑝1𝑝2̅̅ ̅   −𝑝1𝑝3̅̅ ̅

  
−𝑝2𝑝0̅̅ ̅  𝑝2𝑝1̅̅̅
𝑝3𝑝0̅̅ ̅   −𝑝3𝑝1̅̅̅

𝑝2𝑝2̅̅ ̅    −𝑝2𝑝3̅̅ ̅
−𝑝3𝑝2̅̅ ̅    𝑝3𝑝3̅̅ ̅

) 

+(

𝑝3𝑝3̅̅ ̅    𝑝3𝑝2̅̅ ̅
𝑝2𝑝3̅̅ ̅    𝑝2𝑝2̅̅ ̅

 
𝑝3𝑝1̅̅̅   𝑝3𝑝0̅̅ ̅
𝑝2𝑝1̅̅̅   𝑝2𝑝0̅̅ ̅

  
𝑝1𝑝3̅̅ ̅  𝑝1𝑝2̅̅ ̅
𝑝0𝑝3̅̅ ̅   𝑝0𝑝2̅̅ ̅

𝑝1𝑝1̅̅̅    𝑝1𝑝0̅̅ ̅
𝑝0𝑝1̅̅̅    𝑝0𝑝0̅̅ ̅

) + (

𝑝2𝑝2̅̅ ̅   −𝑝2𝑝3̅̅ ̅
−𝑝3𝑝2̅̅ ̅    𝑝3𝑝3̅̅ ̅

 
−𝑝2𝑝0̅̅ ̅   𝑝2𝑝1̅̅̅
𝑝3𝑝0̅̅ ̅   −𝑝3𝑝1̅̅̅

  
−𝑝0𝑝2̅̅ ̅  𝑝0𝑝3̅̅ ̅
𝑝1𝑝2̅̅ ̅   −𝑝1𝑝3̅̅ ̅

𝑝0𝑝0̅̅ ̅    −𝑝0𝑝1̅̅̅
−𝑝1𝑝0̅̅ ̅    𝑝1𝑝1̅̅̅

) 

= (

𝑝3𝑝3̅̅ ̅    𝑝3𝑝2̅̅ ̅
𝑝2𝑝3̅̅ ̅    𝑝2𝑝2̅̅ ̅

 
0    0
0    0

  
0    0
0    0

𝑝1𝑝1̅̅̅    𝑝1𝑝0̅̅ ̅
𝑝0𝑝1̅̅̅    𝑝0𝑝0̅̅ ̅

) + (

𝑝2𝑝2̅̅ ̅   −𝑝2𝑝3̅̅ ̅
−𝑝3𝑝2̅̅ ̅    𝑝3𝑝3̅̅ ̅

 
0    0
0    0

  
0    0
0    0

𝑝0𝑝0̅̅ ̅    −𝑝0𝑝1̅̅̅
−𝑝1𝑝0̅̅ ̅    𝑝1𝑝1̅̅̅

) 

+(

𝑝1𝑝1̅̅̅    𝑝1𝑝0̅̅ ̅
𝑝0𝑝1̅̅̅    𝑝0𝑝0̅̅ ̅

 
0    0
0    0

  
0    0
0    0

𝑝3𝑝3̅̅ ̅    𝑝3𝑝2̅̅ ̅
𝑝2𝑝3̅̅ ̅    𝑝2𝑝2̅̅ ̅

) + (

𝑝0𝑝0̅̅ ̅   −𝑝0𝑝1̅̅̅
−𝑝1𝑝0̅̅ ̅    𝑝1𝑝1̅̅̅

 
0    0
0    0

  
0    0
0    0

𝑝2𝑝2̅̅ ̅    −𝑝2𝑝3̅̅ ̅
−𝑝3𝑝2̅̅ ̅    𝑝3𝑝3̅̅ ̅

) 

+(

𝑝1𝑝1̅̅̅    𝑝1𝑝0̅̅ ̅
𝑝0𝑝1̅̅̅    𝑝0𝑝0̅̅ ̅

 
0    0
0    0

  
0    0
0    0

𝑝3𝑝3̅̅ ̅    𝑝3𝑝2̅̅ ̅
𝑝2𝑝3̅̅ ̅    𝑝2𝑝2̅̅ ̅

) + (

𝑝0𝑝0̅̅ ̅   −𝑝0𝑝1̅̅̅
−𝑝1𝑝0̅̅ ̅    𝑝1𝑝1̅̅̅

 
0    0
0    0

  
0    0
0    0

𝑝2𝑝2̅̅ ̅    −𝑝2𝑝3̅̅ ̅
−𝑝3𝑝2̅̅ ̅    𝑝3𝑝3̅̅ ̅

) 
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+(

𝑝3𝑝3̅̅ ̅    𝑝3𝑝2̅̅ ̅
𝑝2𝑝3̅̅ ̅    𝑝2𝑝2̅̅ ̅

 
0    0
0    0

  
0    0
0    0

𝑝1𝑝1̅̅̅    𝑝1𝑝0̅̅ ̅
𝑝0𝑝1̅̅̅    𝑝0𝑝0̅̅ ̅

) + (

𝑝2𝑝2̅̅ ̅   −𝑝2𝑝3̅̅ ̅
−𝑝3𝑝2̅̅ ̅    𝑝3𝑝3̅̅ ̅

 
0    0
0    0

  
0    0
0    0

𝑝0𝑝0̅̅ ̅    −𝑝0𝑝1̅̅̅
−𝑝1𝑝0̅̅ ̅    𝑝1𝑝1̅̅̅

) 

𝑇𝑅(𝐩) + 𝑇𝑅(𝐩) + 𝑇
𝑅̅̅̅̅ (𝐩) + 𝑇𝑅̅̅ ̅(𝐩) = 

4(𝑝0𝑝0̅̅ ̅ + 𝑝1𝑝1̅̅̅ + 𝑝2𝑝2̅̅ ̅ + 𝑝3𝑝3̅̅ ̅) (

1    0
0    1

 
0    0
0    0

  
0    0
0    0

1    0
0    1

) = 4𝑒(𝐩)𝐼 

The last operation of taking the value (𝑝0𝑝0̅̅ ̅ + 𝑝1𝑝1̅̅̅ + 𝑝2𝑝2̅̅ ̅ + 𝑝3𝑝3̅̅ ̅) out from under the sign of 

the integral seems doubtful because of its dependence on the momentum over which the integration 

is performed. If one closes one's eyes to this, as is generally accepted in the literature, in particular in 

[9], this relation is taken to be interpreted as a proof of the anti-symmetry of the fermion wave 

function under the stipulated anticommutation relations. The only situation where this is 

unquestionably true is when considering in a rest system where boosts are excluded, energy is equal 

to mass, and invariant to rotations. 

It is noteworthy that the antisymmetric treatment, whether or not complex conjugation is 

considered, yields a diagonal matrix that is invariant in one case but not in the other. It is encouraging 

to observe that the set of reference spinors remain consistent. 

It is crucial to note that the proposed invariant approach cannot be realized within the 

Minkowski vector space. To achieve this, it is necessary to transition to the spinor space. This 

reiterates the secondary role of the Minkowski space in comparison to the spinor space. 

Dirac's equation can be expressed in both spinor and vector spaces, a fact that led Dirac to 

discover it. In contrast, the invariant equation can be written in spinor space but not in vector space, 

which explains why it was unknown. 

Let us write down the propagator of the fermionic field and the fermionic field invariant 

equation of motion using the proposed matrices 

𝑆𝑅(𝐩) = (

−𝑝3
−𝑝2
𝑝1
𝑝0

)(𝑝0, −𝑝1, 𝑝2, −𝑝3) − (

−𝑝1
−𝑝0
𝑝3
𝑝2

)(𝑝2, −𝑝3, 𝑝0, −𝑝1) 

+(

𝑝1
𝑝0
𝑝3
𝑝2

) (𝑝2, −𝑝3, −𝑝0, 𝑝1) − (

𝑝3
𝑝2
𝑝1
𝑝0

) (𝑝0, −𝑝1, −𝑝2, 𝑝3) 

𝑆𝑅(𝐩) = (

𝑝0
−𝑝1
𝑝2
−𝑝3

)(−𝑝3, −𝑝2, 𝑝1 , 𝑝0) − (

𝑝2
−𝑝3
𝑝0
−𝑝1

)(−𝑝1, −𝑝0, 𝑝3, 𝑝2) 

+(

𝑝2
−𝑝3
−𝑝0
𝑝1

) (𝑝1, 𝑝0, 𝑝3, 𝑝2) − (

𝑝0
−𝑝1
−𝑝2
𝑝3

) (𝑝3, 𝑝2, 𝑝1, 𝑝0) 

The equation of motion has the form 

(𝑆𝑅 + 𝑆𝑅̅̅ ̅ + 𝑆𝑅 + 𝑆𝑅̅̅ ̅ − 4(𝑚 + 𝑚̅)𝐼)𝛗(𝐱) = 0 

where 

𝑝0 →
𝜕

𝜕𝑥1
 ≡ 𝜕1     𝑝1 → −

𝜕

𝜕𝑥0
≡ −𝜕0      𝑝2 →

𝜕

𝜕𝑥3
 ≡ 𝜕3      𝑝3 → −

𝜕

𝜕𝑥2
≡ −𝜕2 

𝑝0̅̅ ̅ →
𝜕[ ]̅

𝜕𝑥1̅̅̅
≡ 𝜕1̅      𝑝1̅̅̅ → −

𝜕[ ]̅

𝜕𝑥0̅̅ ̅
≡ −𝜕0̅̅ ̅      𝑝2̅̅ ̅ →

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
≡ 𝜕3̅̅ ̅       𝑝3̅̅ ̅ → −

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
≡ −𝜕2̅̅ ̅ 
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𝑆𝑅 = (

𝜕2
−𝜕3
−𝜕0
𝜕1

)(𝜕1, 𝜕0, 𝜕3, 𝜕2) − (

𝜕0
−𝜕1
−𝜕2
𝜕3

)(𝜕3, 𝜕2, 𝜕1, 𝜕0) 

+(

−𝜕0
𝜕1
−𝜕2
𝜕3

)(𝜕3, 𝜕2, −𝜕1, −𝜕0) − (

−𝜕2
𝜕3
−𝜕0
𝜕1

)(𝜕1, 𝜕0, −𝜕3, −𝜕2) 

𝑆𝑅 = (

𝜕1
𝜕0
𝜕3
𝜕2

)(𝜕2, −𝜕3, −𝜕0, 𝜕1) − (

𝜕3
𝜕2
𝜕1
𝜕0

)(𝜕0, −𝜕1, −𝜕2, 𝜕3) 

+(

𝜕3
𝜕2
−𝜕1
−𝜕0

)(−𝜕0, 𝜕1, −𝜕2, 𝜕3) − (

𝜕1
𝜕0
−𝜕3
−𝜕2

)(−𝜕2, 𝜕3, −𝜕0, 𝜕1) 

The equation is relativistically invariant, respectively we can use the invariant Lagrangian 

ℒ =
1

2
[𝛗(𝐱)𝑇(𝑆𝑅 + 𝑆𝑅̅̅ ̅ + 𝑆𝑅 + 𝑆𝑅̅̅ ̅)𝛗(𝐱) − 4(𝑚 + 𝑚̅)𝛗(𝐱)𝑇𝛗(𝐱)] 

to which corresponds the relativistically invariant fermion propagator 

𝐃𝑅(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 
𝑆𝑅(𝐩) + 𝑆𝑅̅̅ ̅(𝐩) + 𝑆𝑅(𝐩) + 𝑆𝑅̅̅ ̅(𝐩) + 4(𝑚 + 𝑚̅)𝐼

  𝑃2 −𝑚2
𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

The equation can be modified to take into account the electromagnetic potential, the electron 

charge is taken as a unit 

𝑝0 → 𝜕1 + 𝑎0           𝑝1 → −𝜕0 + 𝑎1           𝑝2 → 𝜕3 + 𝑎2          𝑝3 → −𝜕2 + 𝑎3 

𝑆𝑅 =

(

 

−(−𝜕2 + 𝑎3)

−(𝜕3 + 𝑎2)

(−𝜕0 + 𝑎1)

(𝜕1 + 𝑎0) )

 ((𝜕1 + 𝑎0), −(−𝜕0 + 𝑎1), (𝜕3 + 𝑎2), −(−𝜕2 + 𝑎3)) 

−(

−(−𝜕0 + 𝑎1)

−(𝜕1 + 𝑎0)
(−𝜕2 + 𝑎3)

(𝜕3 + 𝑎2)

) ((𝜕3 + 𝑎2), −(−𝜕2 + 𝑎3), (𝜕1 + 𝑎0), −(−𝜕0 + 𝑎1)) 

+

(

 

(−𝜕0 + 𝑎1)

(𝜕1 + 𝑎0)

(−𝜕2 + 𝑎3)

(𝜕3 + 𝑎2) )

 ((𝜕3 + 𝑎2), −(−𝜕2 + 𝑎3), −(𝜕1 + 𝑎0), (−𝜕0 + 𝑎1)) 

−(

(−𝜕2 + 𝑎3)

(𝜕3 + 𝑎2)
(−𝜕0 + 𝑎1)

(𝜕1 + 𝑎0)

) ((𝜕1 + 𝑎0), −(−𝜕0 + 𝑎1), −(𝜕3 + 𝑎2), (−𝜕2 + 𝑎3)) 

𝑆𝑅 =

(

 

(𝜕1 + 𝑎0)

−(−𝜕0 + 𝑎1)

(𝜕3 + 𝑎2)

−(−𝜕2 + 𝑎3))

 (−(−𝜕2 + 𝑎3), −(𝜕3 + 𝑎2), (−𝜕0 + 𝑎1), (𝜕1 + 𝑎0)) 

−(

(𝜕3 + 𝑎2)

−(−𝜕2 + 𝑎3)
(𝜕1 + 𝑎0)

−(−𝜕0 + 𝑎1)

) (−(−𝜕0 + 𝑎1), −(𝜕1 + 𝑎0), (−𝜕2 + 𝑎3), (𝜕3 + 𝑎2)) 
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+

(

 

(𝜕3 + 𝑎2)

−(−𝜕2 + 𝑎3)

−(𝜕1 + 𝑎0)

(−𝜕0 + 𝑎1) )

 ((−𝜕0 + 𝑎1), (𝜕1 + 𝑎0), (−𝜕2 + 𝑎3), (𝜕3 + 𝑎2)) 

−(

(𝜕1 + 𝑎0)

−(−𝜕0 + 𝑎1)
−(𝜕3 + 𝑎2)

(−𝜕2 + 𝑎3)

) ((−𝜕2 + 𝑎3), (𝜕3 + 𝑎2), (−𝜕0 + 𝑎1), (𝜕1 + 𝑎0)) 

and apply, in particular, to analyze the emission spectrum of the hydrogen-like atom. 

Let us look for a representation of the electromagnetic field operator in vector space without first 

referring to spinor space. Let us define four vectors expressed through the components of the 

momentum vector 

𝐔𝟏 = (

𝑃0
−𝑃1
𝑃2
𝑃3

)           𝐔𝟒 = (

𝑃0
−𝑃1
−𝑃2
𝑃3

)          𝐕𝟏 = (

𝑃0
𝑃1
−𝑃2
−𝑃3

)           𝐕𝟒 = (

𝑃0
𝑃1
𝑃2
−𝑃3

)       

Why we have chosen these 4 vectors out of 8 possible combinations of signs of three spatial 

components? Because they are represented in the previously given table of variants of spinor 

particles. For these vectors the following relations are valid 

𝐕𝟏 ∗ 𝐔𝟏𝑻 − 𝐔𝟏 ∗ 𝐕𝟏𝑻 + 𝐕𝟒 ∗ 𝐕𝟏𝑻 − 𝐕𝟏 ∗ 𝐕𝟒𝑻 + 

𝐔𝟒 ∗ 𝐕𝟒𝑻 − 𝐕𝟒 ∗ 𝐔𝟒𝑻 + 𝐔𝟏 ∗ 𝐔𝟒𝑻 − 𝐔𝟒 ∗ 𝐔𝟏𝑻 = (

 0 0
 0 0

 
0 0
0 0

 
0 0
0 0

 
0 0
0 0

) 

𝐕𝟏 ∗ 𝐔𝟏𝑻 + 𝐔𝟏 ∗ 𝐕𝟏𝑻 + 𝐕𝟒 ∗ 𝐕𝟏𝑻 + 𝐕𝟏 ∗ 𝐕𝟒𝑻 + 

𝐔𝟒 ∗ 𝐕𝟒𝑻 + 𝐕𝟒 ∗ 𝐔𝟒𝑻 + 𝐔𝟏 ∗ 𝐔𝟒𝑻 + 𝐔𝟒 ∗ 𝐔𝟏𝑻 = (

 8𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −8𝑃2
2 0

0 0

) 

𝐕𝟏 ∗ 𝐔𝟏𝑻 + 𝐕𝟒 ∗ 𝐕𝟏𝑻 + 𝐔𝟒 ∗ 𝐕𝟒𝑻 + 𝐔𝟏 ∗ 𝐔𝟒𝑻 = (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

) 

𝐔𝟏 ∗ 𝐕𝟏𝑻 + 𝐕𝟏 ∗ 𝐕𝟒𝑻 + 𝐕𝟒 ∗ 𝐔𝟒𝑻 + 𝐔𝟒 ∗ 𝐔𝟏𝑻 = (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

) 

(𝐔𝟏 ∗ 𝐔𝟏𝑻 + 𝐔𝟒 ∗ 𝐔𝟒𝑻 + 𝐕𝟏 ∗ 𝐕𝟏𝑻 + 𝐕𝟒 ∗ 𝐕𝟒𝑻) + 

(𝐔𝟏 ∗ 𝐕𝟏𝑻 + 𝐕𝟏 ∗ 𝐔𝟏𝑻 + 𝐕𝟒 ∗ 𝐔𝟒𝑻 + 𝐔𝟒 ∗ 𝐕𝟒𝑻) = (

 8𝑃0
2 0

 0 0
 
0   0
0   0

   
0  0
0  0

 
0   0
0   0

) 

8𝑃0
2 = 𝐔𝟏𝑻 ∗ 𝐔𝟏 + 𝐔𝟒𝑻 ∗ 𝐔𝟒 + 𝐕𝟏𝑻 ∗ 𝐕𝟏 + 𝐕𝟒𝑻 ∗ 𝐕𝟒 + 4𝑀2 

(𝐔𝟏𝑻 ∗ 𝐔𝟏 + 𝐔𝟒𝑻 ∗ 𝐔𝟒 + 𝐕𝟏𝑻 ∗ 𝐕𝟏 + 𝐕𝟒𝑻 ∗ 𝐕𝟒) + 

+(𝐔𝟏𝑻 ∗ 𝐕𝟏 + 𝐕𝟏𝑻 ∗ 𝐔𝟏 + 𝐕𝟒𝑻 ∗ 𝐔𝟒 + 𝐔𝟒𝑻 ∗ 𝐕𝟒) = 8𝑃0
2 

𝐔𝟏𝑻 ∗ 𝐕𝟏 + 𝐕𝟏𝑻 ∗ 𝐔𝟏 + 𝐕𝟒𝑻 ∗ 𝐔𝟒 + 𝐔𝟒𝑻 ∗ 𝐕𝟒 = 4𝑀2 

𝐔𝟏𝑻 ∗ 𝐔𝟏 + 𝐔𝟒𝑻 ∗ 𝐔𝟒 + 𝐕𝟏𝑻 ∗ 𝐕𝟏 + 𝐕𝟒𝑻 ∗ 𝐕𝟒 = 8𝑃0
2 − 4𝑀2 

𝐔𝟏𝑻 ∗ 𝐕𝟏 = 𝐕𝟏𝑻 ∗ 𝐔𝟏 = 𝐕𝟒𝑻 ∗ 𝐔𝟒 = 𝐔𝟒𝑻 ∗ 𝐕𝟒 = 𝑀2 
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𝐔𝟏𝑻 ∗ 𝐔𝟏 = 𝐔𝟒𝑻 ∗ 𝐔𝟒 = 𝐕𝟏𝑻 ∗ 𝐕𝟏 = 𝐕𝟒𝑻 ∗ 𝐕𝟒 = 𝐏𝑻 ∗ 𝐏 = 2𝑃0
2 −𝑀2 

𝐔𝟏𝑻𝐺𝐔𝟏 = 𝐔𝟒𝑻𝐺𝐔𝟒 = 𝐕𝟏𝑻𝐺𝐕𝟏 = 𝐕𝟒𝑻𝐺𝐕𝟒 = 𝑀2 

𝑀2 = 𝐏𝑻𝐺𝐏 ≡ (𝐏, 𝐏) 

𝐺 = (

 1 0
 0 −1

 
0   0
0   0

 
0   0
0   0

 
−1 0
0 −1

) 

(𝐔𝟏 − 𝐔𝟒) = (

0
0
2𝑃2
0

)      (𝐕𝟏 − 𝐕𝟒) = (

0
0

−2𝑃2
0

) 

(𝐔𝟏 + 𝐕𝟏) = (

2𝑃0
0
0
0

)      (𝐔𝟒 + 𝐕𝟒) = (

2𝑃0
0
0
0

) 

Let us decompose the field into plane waves with operator coefficients and let's find the 

commutation relations for them. We will use the next notation for the scalar product of vectors 

(𝐏, 𝐗) ≡ 𝐏𝑻𝐺𝐗 

𝛗(𝐗) = ∫
𝑑4𝑃

(2𝜋)4
  

[
𝑑1(𝐏)𝐕𝟏(𝐏) +  𝑏1(𝐏)𝐔𝟒(𝐏)

+𝑑4(𝐏)𝐔𝟏(𝐏) + 𝑏4(𝐏)𝐕𝟒(𝐏)
] 𝑒𝑖(𝐏,𝐗) 

+ 

[
𝑏4
∗(𝐏)𝐕𝟏(𝐏) + 𝑑4

∗(𝐩)𝐔𝟒(𝐏)

+𝑑1
∗(𝐏)𝐔𝟏(𝐏) + 𝑏1

∗(𝐏)𝐕𝟒(𝐩)
] 𝑒−𝑖(𝐏,𝐗) 

𝛗(𝐗′) = ∫
𝑑4𝑃′

(2𝜋)4
  

[
𝑑1(𝐏

′)𝐕𝟏(𝐏′) + 𝑏1(𝐏
′)𝐔𝟒(𝐏′)

+𝑑4(𝐏
′)𝐔𝟏(𝐏′) + 𝑏4(𝐏

′)𝐕𝟒(𝐏′)
] 𝑒𝑖(𝐏

′,𝐗′)

+

[
𝑏4
∗(𝐏′)𝐕𝟏(𝐏′) + 𝑑4

∗(𝐏′)𝐔𝟒(𝐏′)

+𝑑1
∗(𝐏′)𝐔𝟏(𝐏′) + 𝑏1

∗(𝐏′)𝐕𝟒(𝐏′)
] 𝑒−𝑖(𝐏

′,𝐗′)

 

[𝜑𝑖(𝐗), 𝜑𝑗(𝐗
′)] = 𝜑𝑖(𝐗)𝜑𝑗(𝐗

′) − 𝜑𝑗(𝐗
′)𝜑𝑖(𝐗) = (𝛗(𝐗)𝛗

𝑇(𝐗′) − (𝛗(𝐗′)𝛗𝑇(𝐗))
𝑇
)
𝑖𝑗

 

𝛗(𝐗)𝛗𝑇(𝐗′) − (𝛗(𝐗′)𝛗𝑇(𝐗))
𝑇
= 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 (𝑑1(𝐏)𝐕𝟏(𝐏)𝑒

𝑖(𝐏,𝐗))(𝑑1
∗(𝐏′)𝐔𝟏(𝐏′)𝑒−𝑖(𝐏

′,𝐗′))
𝑻
− ((𝑑1(𝐏

′)𝐕𝟏(𝐏′)𝑒𝑖(𝐏
′,𝐗′))(𝑑1

∗(𝐏)𝐔𝟏(𝐏)𝑒−𝑖(𝐏,𝐗))
𝑻
)
𝑇

+( 𝑏1(𝐏)𝐔𝟒(𝐏)𝑒
𝑖(𝐏,𝐗))(𝑏1

∗(𝐏′)𝐕𝟒(𝐏′)𝑒−𝑖(𝐏
′,𝐗′))

𝑻
− ((𝑏1(𝐏

′)𝐔𝟒(𝐏′)𝑒𝑖(𝐏
′,𝐗′))(𝑏1

∗(𝐏)𝐯𝟒(𝐏)𝑒−𝑖(𝐏,𝐗))
𝑻
)
𝑻

+(𝑏4(𝐏)𝐕𝟒(𝐏)𝑒
𝑖(𝐏,𝐗))(𝑏4

∗(𝐏′)𝐕𝟏(𝐏′)𝑒−𝑖(𝐏
′,𝐗′))

𝑻
− ((𝑏4(𝐏

′)𝐕𝟒(𝐏′)𝑒𝑖(𝐏
′ ,𝐗′))(𝑏4

∗(𝐏)𝐕𝟏(𝐏)𝑒−𝑖(𝐏,𝐗))
𝑻
)
𝑻

+(𝑑4(𝐏)𝐔𝟏(𝐏)𝑒
𝑖(𝐏,𝐗))(𝑑4

∗(𝐏′)𝐔𝟒(𝐏′)𝑒−𝑖(𝐏
′,𝐗′))

𝑻
− ((𝑑4(𝐏

′)𝐔𝟏(𝐏′)𝑒𝑖(𝐏
′ ,𝐗′))(𝑑4

∗(𝐏)𝐔𝟒(𝐏)𝑒−𝑖(𝐏,𝐗))
𝑻
)
𝑇

]
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+∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 (𝑏4

∗(𝐏)𝐕𝟏(𝐏)𝑒−𝑖(𝐏,𝐗))(𝑏4(𝐏
′)𝐕𝟒(𝐏′)𝑒𝑖(𝐏

′,𝐗′))
𝑻
− ((𝑏4

∗(𝐏′)𝐕𝟏(𝐏′)𝑒−𝑖(𝐏
′,𝐗′))(𝑏4(𝐏)𝐕𝟒(𝐏)𝑒

𝑖(𝐏,𝐗))
𝑻
)
𝑻

+(𝑑4
∗(𝐏)𝐔𝟒(𝐏)𝑒−𝑖(𝐏,𝐗))(𝑑4(𝐏

′)𝐔𝟏(𝐏′)𝑒𝑖(𝐏
′,𝐗′))

𝑻
− ((𝑑4

∗(𝐏′)𝐔𝟒(𝐏′)𝑒−𝑖(𝐏
′,𝐗′))(𝑑4(𝐏)𝐔𝟏(𝐏)𝑒

𝑖(𝐏,𝐗))
𝑻
)
𝑻

+(𝑑1
∗(𝐏)𝐔𝟏(𝐏)𝑒−𝑖(𝐏,𝐗))(𝑑1(𝐏

′)𝐕𝟏(𝐏′)𝑒𝑖(𝐏
′,𝐗′))

𝑻
− ((𝑑1

∗(𝐏′)𝐔𝟏(𝐏′)𝑒−𝑖(𝐏
′,𝐗′))(𝑑1(𝐏)𝐕𝟏(𝐏)𝑒

𝑖(𝐏,𝐗))
𝑻
)
𝑇

+(𝑏1
∗(𝐏)𝐕𝟒(𝐏)𝑒−𝑖(𝐏,𝐗))(𝑏1(𝐏

′)𝐔𝟒(𝐏′)𝑒𝑖(𝐏
′,𝐗′))

𝑻
− ((𝑏1

∗(𝐏′)𝐕𝟒(𝐏′)𝑒−𝑖(𝐏
′,𝐗′))( 𝑏1(𝐏)𝐔𝟒(𝐏)𝑒

𝑖(𝐏,𝐗))
𝑻
)
𝑇

]
 
 
 
 
 
 
 
 

 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 𝑑1(𝐏)𝑑1

∗(𝐏′)𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′) − 𝑑1(𝐏

′)𝑑1
∗(𝐏)𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏′)𝑒𝑖(𝐏

′,𝐗′)𝑒−𝑖(𝐏,𝐗)

+ 𝑏1(𝐏)𝑏1
∗(𝐏′)𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′) − 𝑏1(𝐏
′)𝑏1

∗(𝐏)𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏′)𝑒𝑖(𝐏
′,𝐗′)𝑒−𝑖(𝐏,𝐗)

+𝑏4(𝐏)𝑏4
∗(𝐏′)𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′) − 𝑏4(𝐏
′)𝑏4

∗(𝐏)𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏′)𝑒𝑖(𝐏
′,𝐗′)𝑒−𝑖(𝐏,𝐗)

+𝑑4(𝐏)𝑑4
∗(𝐏′)𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′) − 𝑑4(𝐏
′)(𝐏)𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏′)𝑒𝑖(𝐏

′,𝐗′)𝑒−𝑖(𝐏,𝐗) ]
 
 
 
 

 

+∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 𝑏4

∗(𝐏)𝑏4(𝐏
′)𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏

′,𝐗′) − 𝑏4
∗(𝐏′)𝑏4(𝐏)𝐕𝟒(𝐏)𝐕𝟏

𝑇(𝐏′) 𝑒−𝑖(𝐏
′,𝐗′)𝑒𝑖(𝐏,𝐗)

+𝑑4
∗(𝐏)𝑑4(𝐏

′)𝐔𝟒(𝐏)𝐔𝟏𝑻(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′ ,𝐗′) − 𝑑4

∗(𝐏′)𝑑4(𝐏)𝐔𝟏(𝐏)𝐔𝟒
𝑇(𝐏′)𝑒−𝑖(𝐏

′ ,𝐗′)𝑒𝑖(𝐏,𝐗)

+𝑑1
∗(𝐏)𝑑1(𝐏

′)𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′) − 𝑑1

∗(𝐏′)𝑑1(𝐏)𝐕𝟏(𝐏)𝐔𝟏
𝑇(𝐏′)𝑒−𝑖(𝐏

′,𝐗′)𝑒𝑖(𝐏,𝐗)

+𝑏1
∗(𝐏)𝑏1(𝐏

′)𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′) − 𝑏1

∗(𝐏′)𝑏1(𝐏)𝐔𝟒(𝐏)𝐕𝟒
𝑇(𝐏′)𝑒−𝑖(𝐏

′,𝐗′)𝑒𝑖(𝐏,𝐗) ]
 
 
 
 

 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 (𝑑1(𝐏)𝑑1

∗(𝐏′) − 𝑑1
∗(𝐏′)𝑑1(𝐏))𝐕𝟏(𝐏)𝐔𝟏

𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+( 𝑏1(𝐏)𝑏1
∗(𝐏′) − 𝑏1

∗(𝐏′)𝑏1(𝐏))𝐔𝟒(𝐏)𝐕𝟒
𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′)

+(𝑏4(𝐏)𝑏4
∗(𝐏′) − 𝑏4

∗(𝐏′)𝑏4(𝐏))𝐕𝟒(𝐏)𝐕𝟏
𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′)

+(𝑑4(𝐏)𝑑4
∗(𝐏′) − 𝑑4

∗(𝐏′)𝑑4(𝐏))𝐔𝟏(𝐏)𝐔𝟒
𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′)]
 
 
 
 

 

+∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 (𝑏4

∗(𝐏)𝑏4(𝐏
′) − 𝑏4(𝐏

′)𝑏4
∗(𝐏))𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏

′,𝐗′)

+(𝑑4
∗(𝐏)𝑑4(𝐏

′) − 𝑑4(𝐏
′)𝑑4

∗(𝐏))𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)

+(𝑑1
∗(𝐏)𝑑1(𝐏

′) − 𝑑1(𝐏
′)𝑑1

∗(𝐏))𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)

+(𝑏1
∗(𝐏)𝑏1(𝐏

′) − 𝑏1(𝐏
′)𝑏1

∗(𝐏))𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′) ]

 
 
 
 

 

Let us apply the following commutation relations 

𝑑1(𝐏)𝑑1
∗(𝐏′) − 𝑑1

∗(𝐏′)𝑑1(𝐏) = 𝛿(𝐏 − 𝐏′) 

 𝑏1(𝐏)𝑏1
∗(𝐏′) − 𝑏1

∗(𝐏′)𝑏1(𝐏) = 𝛿(𝐏 − 𝐏
′) 

𝑏4(𝐏)𝑏4
∗(𝐏′) − 𝑏4

∗(𝐏′)𝑏4(𝐏) = 𝛿(𝐏 − 𝐏
′) 

𝑑4(𝐏)𝑑4
∗(𝐏′) − 𝑑4

∗(𝐏′)𝑑4(𝐏) = 𝛿(𝐏 − 𝐏
′) 

𝑑1(𝐏
′)𝑑1

∗(𝐏) − 𝑑1
∗(𝐏)𝑑1(𝐏

′) = 𝛿(𝐏′ − 𝐏) 

𝑑1
∗(𝐏)𝑑1(𝐏

′) − 𝑑1(𝐏
′)𝑑1

∗(𝐏) = −𝛿(𝐏′ − 𝐏) 

𝑏1
∗(𝐏)𝑏1(𝐏

′) − 𝑏1(𝐏
′)𝑏1

∗(𝐏) = −𝛿(𝐏′ − 𝐏) 

𝑑4
∗(𝐏)𝑑4(𝐏

′) − 𝑑4(𝐏
′)𝑑4

∗(𝐏) = −𝛿(𝐏′ − 𝐏) 

𝑏4
∗(𝐏)𝑏4(𝐏

′) − 𝑏4(𝐏
′)𝑏4

∗(𝐏) = −𝛿(𝐏′ − 𝐏) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2025 doi:10.20944/preprints202401.1032.v6

https://doi.org/10.20944/preprints202401.1032.v6


 77 of 101 

 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 𝛿(𝐏 − 𝐏

′)𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+𝛿(𝐏 − 𝐏′)𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+𝛿(𝐏 − 𝐏′)𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+𝛿(𝐏 − 𝐏′)𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)]

 
 
 
 

+

[
 
 
 
 −𝛿(𝐏

′ − 𝐏)𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)

−𝛿(𝐏′ − 𝐏)𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′ ,𝐗′)

−𝛿(𝐏′ − 𝐏)𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)

−𝛿(𝐏′ − 𝐏)𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)]

 
 
 
 

 

= ∫
𝑑4𝑃

(2𝜋)4
 

 

[
 
 
 
 𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗

′)

+𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖
((𝐏,𝐗′))

+𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗
′)

+𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗
′) ]
 
 
 
 

+

[
 
 
 
 −𝐕𝟏(𝐏)𝐕𝟒

𝑇(𝐏)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏,𝐗
′)

−𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏,𝐗
′)

−𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏,𝐗
′)

−𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏,𝐗
′)]
 
 
 
 

 

= ∫
𝑑4𝑃

(2𝜋)4
 

 

[
 
 
 
𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏)

+𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏)

+𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏)

+𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏)]
 
 
 

𝑒𝑖(𝐏,𝐗−𝐗
′) −

[
 
 
 
𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏)

+𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏)

+𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏)

+𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏)]
 
 
 

𝑒𝑖(𝐏,𝐗
′−𝐗) 

= ∫
𝑑4𝑃

(2𝜋)4
 

(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝑒𝑖(𝐏,𝐗−𝐗
′) −∫

𝑑4𝑃

(2𝜋)4
 

(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝑒𝑖(𝐏,𝐗
′−𝐗) 

= (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)∫
𝑑4𝑃

(2𝜋)4
 

𝑒𝑖(𝐏,𝐗−𝐗
′) − (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)∫
𝑑4𝑃

(2𝜋)4
 

𝑒𝑖(𝐏,𝐗
′−𝐗) 

= (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝛿(𝐗 − 𝐗′) − (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝛿(𝐗′ − 𝐗) = 0 

Here it is taken into account that 

𝐕𝟏 ∗ 𝐔𝟏𝑻 + 𝐕𝟒 ∗ 𝐕𝟏𝑻 + 𝐔𝟒 ∗ 𝐕𝟒𝑻 + 𝐔𝟏 ∗ 𝐔𝟒𝑻 = (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

) 

𝐔𝟏 ∗ 𝐕𝟏𝑻 + 𝐕𝟏 ∗ 𝐕𝟒𝑻 + 𝐕𝟒 ∗ 𝐔𝟒𝑻 + 𝐔𝟒 ∗ 𝐔𝟏𝑻 = (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

) 

We will consider this relation as a proof of the symmetry of the wave function under the 

stipulated commutation relations. 

Let us find the commutation relations for the wave function and its time derivative, which in 

this case play the role of canonical momentum 

[𝜑𝑖(𝐗), 𝜑𝑗̇(𝐗
′)] = 𝜑𝑖(𝐗)𝜑𝑗̇(𝐗

′) − 𝜑𝑗̇(𝐗
′)𝜑𝑖(𝐗) = (𝛗(𝐗)𝛗̇

𝑇(𝐗′) − (𝛗̇(𝐗′)𝛗𝑇(𝐗))
𝑇

)
𝑖𝑗

 

where 
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𝜑𝑗̇(𝐗) ≡
𝜕𝜑𝑖(𝐗)

𝜕𝑋0
 

𝛗(𝐗)𝛗̇𝑇(𝐗′) − (𝛗̇(𝐗′)𝛗𝑇(𝐗))
𝑇

= 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 (𝑑1(𝐏)𝐕𝟏(𝐏)𝑒

𝑖(𝐏,𝐗)) ((−𝑖𝑃0
′)𝑑1

∗(𝐏′)𝐔𝟏(𝐏′)𝑒−𝑖(𝐏
′,𝐗′))

𝑻

− (((𝑖𝑃0
′)𝑑1(𝐏

′)𝐕𝟏(𝐏′)𝑒𝑖(𝐏
′,𝐗′)) (𝑑1

∗(𝐏)𝐔𝟏(𝐏)𝑒−𝑖(𝐏,𝐗))
𝑻
)
𝑇

+( 𝑏1(𝐏)𝐔𝟒(𝐏)𝑒
𝑖(𝐏,𝐗)) ((−𝑖𝑃0

′)𝑏1
∗(𝐏′)𝐕𝟒(𝐏′)𝑒−𝑖(𝐏

′,𝐗′))
𝑻

− (((𝑖𝑃0
′)𝑏1(𝐏

′)𝐔𝟒(𝐏′)𝑒𝑖(𝐏
′,𝐗′)) (𝑏1

∗(𝐏)𝐕𝟒(𝐏)𝑒−𝑖(𝐏,𝐗))
𝑻
)
𝑻

+(𝑏4(𝐏)𝐕𝟒(𝐏)𝑒
𝑖(𝐏,𝐗)) ((−𝑖𝑃0

′)𝑏4
∗(𝐏′)𝐕𝟏(𝐏′)𝑒−𝑖(𝐏

′,𝐗′))
𝑻

− (((𝑖𝑃0
′)𝑏4(𝐏

′)𝐕𝟒(𝐏′)𝑒𝑖(𝐏
′,𝐗′)) (𝑏4

∗(𝐏)𝐕𝟏(𝐏)𝑒−𝑖(𝐏,𝐗))
𝑻
)
𝑻

+(𝑑4(𝐏)𝐔𝟏(𝐏)𝑒
𝑖(𝐏,𝐗)) ((−𝑖𝑃0

′)𝑑4
∗(𝐏′)𝐔𝟒(𝐏′)𝑒−𝑖(𝐏

′,𝐗′))
𝑻

− (((𝑖𝑃0
′)𝑑4(𝐏

′)𝐔𝟏(𝐏′)𝑒𝑖(𝐏
′,𝐗′)) (𝑑4

∗(𝐏)𝐔𝟒(𝐏)𝑒−𝑖(𝐏,𝐗))
𝑻
)
𝑇

]
 
 
 
 
 
 
 
 

 

+∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 (𝑏4

∗(𝐏)𝐕𝟏(𝐏)𝑒−𝑖(𝐏,𝐗)) ((𝑖𝑃0
′)𝑏4(𝐏

′)𝐕𝟒(𝐏′)𝑒𝑖(𝐏
′,𝐗′))

𝑻

− (((−𝑖𝑃0
′)𝑏4

∗(𝐏′)𝐕𝟏(𝐏′)𝑒−𝑖(𝐏
′,𝐗′)) (𝑏4(𝐏)𝐕𝟒(𝐏)𝑒

𝑖(𝐏,𝐗))
𝑻
)
𝑻

+(𝑑4
∗(𝐏)𝐔𝟒(𝐏)𝑒−𝑖(𝐏,𝐗)) ((𝑖𝑃0

′)𝑑4(𝐏
′)𝐔𝟏(𝐏′)𝑒𝑖(𝐏

′,𝐗′))
𝑻

− (((−𝑖𝑃0
′)𝑑4

∗(𝐏′)𝐔𝟒(𝐏′)𝑒−𝑖(𝐏
′,𝐗′)) (𝑑4(𝐏)𝐔𝟏(𝐏)𝑒

𝑖(𝐏,𝐗))
𝑻
)
𝑻

+(𝑑1
∗(𝐏)𝐔𝟏(𝐏)𝑒−𝑖(𝐏,𝐗)) ((𝑖𝑃0

′)𝑑1(𝐏
′)𝐕𝟏(𝐏′)𝑒𝑖(𝐏

′,𝐗′))
𝑻

− (((−𝑖𝑃0
′)𝑑1

∗(𝐏′)𝐔𝟏(𝐏′)𝑒−𝑖(𝐏
′,𝐗′)) (𝑑1(𝐏)𝐕𝟏(𝐏)𝑒

𝑖(𝐏,𝐗))
𝑻
)
𝑇

+(𝑏1
∗(𝐏)𝐕𝟒(𝐏)𝑒−𝑖(𝐏,𝐗)) ((𝑖𝑃0

′)𝑏1(𝐏
′)𝐔𝟒(𝐏′)𝑒𝑖(𝐏

′,𝐗′))
𝑻

− (((−𝑖𝑃0
′)𝑏1

∗(𝐏′)𝐕𝟒(𝐏′)𝑒−𝑖(𝐏
′,𝐗′)) (𝑏1(𝐏)𝐔𝟒(𝐏)𝑒

𝑖(𝐏,𝐗))
𝑻
)
𝑇

]
 
 
 
 
 
 
 
 

 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 (−𝑖𝑃0

′)𝑑1(𝐏)𝑑1
∗(𝐏′)𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′) − (𝑖𝑃0
′)𝑑1(𝐏

′)𝑑1
∗(𝐏)𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏′)𝑒𝑖(𝐏

′,𝐗′)𝑒−𝑖(𝐏,𝐗)

+ (−𝑖𝑃0
′)𝑏1(𝐏)𝑏1

∗(𝐏′)𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′) − (𝑖𝑃0

′)𝑏1(𝐏
′)𝑏1

∗(𝐏)𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏′)𝑒𝑖(𝐏
′,𝐗′)𝑒−𝑖(𝐏,𝐗)

+(−𝑖𝑃0
′)𝑏4(𝐏)𝑏4

∗(𝐏′)𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′) − (𝑖𝑃0

′)𝑏4(𝐏
′)𝑏4

∗(𝐏)𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏′)𝑒𝑖(𝐏
′,𝐗′)𝑒−𝑖(𝐏,𝐗)

+(−𝑖𝑃0
′)𝑑4(𝐏)𝑑4

∗(𝐏′)𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′) − (𝑖𝑃0

′)𝑑4(𝐏
′)𝑑4

∗(𝐏)𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏′)𝑒𝑖(𝐏
′,𝐗′)𝑒−𝑖(𝐏,𝐗)]

 
 
 
 
 

 

+∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 (𝑖𝑃0

′)𝑏4
∗(𝐏)𝑏4(𝐏

′)𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐩′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′) − (−𝑖𝑃0

′)𝑏4
∗(𝐏′)𝑏4(𝐏)𝐕𝟒(𝐏)𝐕𝟏

𝑇(𝐏′) 𝑒−𝑖(𝐏
′,𝐗′)𝑒𝑖(𝐏,𝐗)

+(𝑖𝑃0
′)𝑑4

∗(𝐏)𝑑4(𝐏
′)𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐩′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏

′,𝐗′) − (−𝑖𝑃0
′)𝑑4

∗(𝐏′)𝑑4(𝐏)𝐔𝟏(𝐏)𝐔𝟒
𝑇(𝐏′)𝑒−𝑖(𝐏

′,𝐗′)𝑒𝑖(𝐏,𝐗)

+(𝑖𝑃0
′)𝑑1

∗(𝐏)𝑑1(𝐏
′)𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐩′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏

′,𝐗′) − (−𝑖𝑃0
′)𝑑1

∗(𝐏′)𝑑1(𝐏)𝐕𝟏(𝐏)𝐔𝟏
𝑇(𝐏′)𝑒−𝑖(𝐏

′,𝐗′)𝑒𝑖(𝐏,𝐗)

+(𝑖𝑃0
′)𝑏1

∗(𝐏)𝑏1(𝐏
′)𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐩′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏

′,𝐗′) − (−𝑖𝑃0
′)𝑏1

∗(𝐏′)𝑏1(𝐏)𝐔𝟒(𝐏)𝐕𝟒
𝑇(𝐏′)𝑒−𝑖(𝐏

′,𝐗′)𝑒𝑖(𝐏,𝐗) ]
 
 
 
 
 

 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 (−𝑖𝑃0

′)(𝑑1(𝐏)𝑑1
∗(𝐏′) − 𝑑1

∗(𝐏′)𝑑1(𝐏))𝐕𝟏(𝐏)𝐔𝟏
𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′)

+(−𝑖𝑃0
′)( 𝑏1(𝐏)𝑏1

∗(𝐏′) − 𝑏1
∗(𝐏′)𝑏1(𝐏))𝐔𝟒(𝐏)𝐕𝟒

𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+(−𝑖𝑃0
′)(𝑏4(𝐏)𝑏4

∗(𝐏′) − 𝑏4
∗(𝐏′)𝑏4(𝐏))𝐕𝟒(𝐏)𝐕𝟏

𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+(−𝑖𝑃0
′)(𝑑4(𝐏)𝑑4

∗(𝐏′) − 𝑑4
∗(𝐏′)𝑑4(𝐏))𝐔𝟏(𝐏)𝐔𝟒

𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)]
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+∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 (𝑖𝑃0

′)(𝑏4
∗(𝐏)𝑏4(𝐏

′) − 𝑏4(𝐏
′)𝑏4

∗(𝐏))𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)

+(𝑖𝑃0
′)(𝑑4

∗(𝐏)𝑑4(𝐏
′) − 𝑑4(𝐏

′)𝑑4
∗(𝐏))𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏

′,𝐗′)

+(𝑖𝑃0
′)(𝑑1

∗(𝐏)𝑑1(𝐏
′) − 𝑑1(𝐏

′)𝑑1
∗(𝐏))𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏

′,𝐗′)

+(𝑖𝑃0
′)(𝑏1

∗(𝐏)𝑏1(𝐏
′) − 𝑏1(𝐏

′)𝑏1
∗(𝐏))𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏

′,𝐗′) ]
 
 
 
 
 

 

The commutation relations remain the same 

𝑑1(𝐏)𝑑1
∗(𝐏′) − 𝑑1

∗(𝐏′)𝑑1(𝐏) = 𝛿(𝐏 − 𝐏′) 

 𝑏1(𝐏)𝑏1
∗(𝐏′) − 𝑏1

∗(𝐏′)𝑏1(𝐏) = 𝛿(𝐏 − 𝐏
′) 

𝑏4(𝐏)𝑏4
∗(𝐏′) − 𝑏4

∗(𝐏′)𝑏4(𝐏) = 𝛿(𝐏 − 𝐏
′) 

𝑑4(𝐏)𝑑4
∗(𝐏′) − 𝑑4

∗(𝐏′)𝑑4(𝐏) = 𝛿(𝐏 − 𝐏′) 

𝑑1
∗(𝐏)𝑑1(𝐏

′) − 𝑑1(𝐏
′)𝑑1

∗(𝐏) = −𝛿(𝐏′ − 𝐏) 

𝑏1
∗(𝐏)𝑏1(𝐏

′) − 𝑏1(𝐏
′)𝑏1

∗(𝐏) = −𝛿(𝐏′ − 𝐏) 

𝑑4
∗(𝐏)𝑑4(𝐏

′) − 𝑑4(𝐏
′)𝑑4

∗(𝐏) = −𝛿(𝐏′ − 𝐏) 

𝑏4
∗(𝐏)𝑏4(𝐏

′) − 𝑏4(𝐏
′)𝑏4

∗(𝐏) = −𝛿(𝐏′ − 𝐏) 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

(−𝑖𝑃0
′)

[
 
 
 
 
 𝛿(𝐏 − 𝐏

′)𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+𝛿(𝐏 − 𝐏′)𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+𝛿(𝐏 − 𝐏′)𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+𝛿(𝐏 − 𝐏′)𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)]
 
 
 
 
 

+ (𝑖𝑃0
′)

[
 
 
 
 
 −𝛿(𝐏

′ − 𝐏)𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)

−𝛿(𝐏′ − 𝐏)𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)

−𝛿(𝐏′ − 𝐏)𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)

−𝛿(𝐏′ − 𝐏)𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏′)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏
′,𝐗′)]
 
 
 
 
 

 

= ∫
𝑑4𝑃

(2𝜋)4
 

 

(−𝑖𝑃0)

[
 
 
 
 𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗

′)

+𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖
((𝐏,𝐗′))

+𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗
′)

+𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗
′) ]
 
 
 
 

+ (𝑖𝑃0)

[
 
 
 
 −𝐕𝟏(𝐏)𝐕𝟒

𝑇(𝐏)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏,𝐗
′)

−𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏,𝐗
′)

−𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏,𝐗
′)

−𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏)𝑒−𝑖(𝐏,𝐗)𝑒𝑖(𝐏,𝐗
′)]
 
 
 
 

 

= ∫
𝑑4𝑃

(2𝜋)4
 

 

(−𝑖𝑃0)

[
 
 
 
𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏)

+𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏)

+𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏)

+𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏)]
 
 
 

𝑒𝑖(𝐏,𝐗−𝐗
′) − (𝑖𝑃0)

[
 
 
 
𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏)

+𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏)

+𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏)

+𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏)]
 
 
 

𝑒𝑖(𝐏,𝐗
′−𝐗) = 

(−𝑖𝑃0)(

 4𝑃0
2 0

 0 0
 
0 0
0 0

 
0 0
0 0

 −4𝑃2
2 0

 0 0

)∫
𝑑4𝑃

(2𝜋)2
 

𝑒𝑖(𝐏,𝐗−𝐗
′) − (𝑖𝑃0) (

 4𝑃0
2 0

 0 0
 
0 0
0 0

 
0 0
0 0

 −4𝑃2
2 0

 0 0

)∫
𝑑4𝑃

(2𝜋)2
 

𝑒𝑖(𝐏,𝐗
′−𝐗) 

= (−𝑖𝑃0) (

 4𝑃0
2 0

 0 0
 
0 0
0 0

 
0 0
0 0

 −4𝑃2
2 0

 0 0

)𝛿(𝐗 − 𝐗′) − (𝑖𝑃0)(

 4𝑃0
2 0

 0 0
 
0 0
0 0

 
0 0
0 0

 −4𝑃2
2 0

 0 0

)𝛿(𝐗′ − 𝐗) 
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= −𝑖𝑃0(

 8𝑃0
2 0

 0 0
 
0 0
0 0

 
0 0
0 0

 −8𝑃2
2 0

0 0

)𝛿(𝐗 − 𝐗′) 

As one would expect, the field has only two degrees of freedom. This relation is valid for any 

reference frame, but the values of the momentum components in each of them are different. 

Let us calculate the square of the field energy  

𝐸2 = ∫𝑑4𝑋𝛗+(𝐗)𝛗(𝐗) = 

= ∫𝑑4𝑋 ∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 [
𝑑1
∗(𝐏′)𝐕𝟏𝑻(𝐏′) + 𝑏1

∗(𝐏′)𝐔𝟒𝑇(𝐏′)

+𝑑4
∗(𝐏′)𝐔𝟏𝑇(𝐏′) + 𝑏4

∗(𝐏′)𝐕𝟒𝑇(𝐏′)
] 𝑒−𝑖(𝐏

′,𝐗)

+[
𝑏1(𝐏

′)𝐕𝟏𝑻(𝐏′) + 𝑑1(𝐏
′)𝐔𝟒𝑻(𝐏′)

+𝑏4(𝐏
′)𝐔𝟏𝑇(𝐏′) + 𝑑4(𝐏

′)𝐕𝟒𝑻(𝐏′)
] 𝑒𝑖(𝐏

′,𝐗)

]
 
 
 
 

 

[
 
 
 
 [

𝑑1(𝐏)𝐕𝟏
𝑻(𝐏) + 𝑏1(𝐏)𝐔𝟒

𝑇(𝐏)

+𝑑4(𝐏)𝐔𝟏
𝑻(𝐏) + 𝑏4(𝐏)𝐕𝟒

𝑻(𝐏)
] 𝑒𝑖(𝐏,𝐗)

+[
𝑏1
∗(𝐏)𝐕𝟏𝑻(𝐏) + 𝑑1

∗(𝐏)𝐔𝟒𝑻(𝐏)

+𝑏4
∗(𝐏)𝐔𝟏𝑻(𝐏) + 𝑑4

∗(𝐏)𝐕𝟒𝑻(𝐏)
] 𝑒−(𝐏,𝐗)

]
 
 
 
 

 

= ∫𝑑4𝑋 ∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 
 
 
 [

𝑑1
∗(𝐏′)𝐕𝟏𝑻(𝐏′) + 𝑏1

∗(𝐏′)𝐔𝟒𝑇(𝐏′)

+𝑑4
∗(𝐏′)𝐔𝟏𝑇(𝐏′) + 𝑏4

∗(𝐏′)𝐕𝟒𝑇(𝐏′)
]

[
𝑑1(𝐏)𝐕𝟏(𝐏) +  𝑏1(𝐏)𝐔𝟒(𝐏)

+𝑑4(𝐏)𝐔𝟏(𝐏) +  𝑏4(𝐏)𝐕𝟒(𝐏)
]

𝑒−𝑖(𝐏
′,𝐗)𝑒𝑖(𝐏,𝐗)

+[
𝑏1(𝐏

′)𝐕𝟏𝑻(𝐏′) + 𝑑1(𝐏
′)𝐔𝟒𝑻(𝐏′)

+𝑏4(𝐏
′)𝐔𝟏𝑇(𝐏′) + 𝑑4(𝐏

′)𝐕𝟒𝑻(𝐏′)
]

[
𝑏1
∗(𝐏)𝐕𝟏(𝐏) + 𝑑1

∗(𝐏)𝐔𝟒(𝐏)

+𝑏4
∗(𝐏)𝐔𝟏(𝐏) + 𝑑𝟒

∗(𝐏)𝐕𝟒(𝐏)
]

𝑒𝑖(𝐏
′,𝐗)𝑒−𝑖(𝐏,𝐗) ]

 
 
 
 
 
 
 
 
 
 
 

 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 
 
 
 
 
 
 
 [

𝑑1
∗(𝐏′)𝐕𝟏+(𝐏′) + 𝑏1

∗(𝐏′)𝐔𝟒𝑇(𝐏′)

+𝑑4
∗(𝐏′)𝐔𝟏+(𝐏′) + 𝑏4

∗(𝐏′)𝐕𝟒𝑇(𝐏′)
]

[
𝑑1(𝐏)𝐕𝟏(𝐏) +  𝑏1(𝐏)𝐔𝟒(𝐏)

+𝑑4(𝐏)𝐔𝟏(𝐏) +  𝑏4(𝐏)𝐕𝟒(𝐏)
]

𝛿(𝐏 − 𝐏′)

+ [
𝑏1(𝐏

′)𝐕𝟏𝑻(𝐩′) + 𝑑1(𝐏
′)𝐔𝟒+(𝐏′)

+𝑏4(𝐏
′)𝐔𝟏𝑇(𝐩′) + 𝑑4(𝐏

′)𝐕𝟒+(𝐏′)
]

[
𝑏1
∗(𝐏)𝐕𝟏(𝐏) + 𝑑1

∗(𝐏)𝐔𝟒(𝐏)

+𝑏4
∗(𝐏)𝐔𝟏(𝐏) + 𝑑𝟒

∗(𝐏)𝐕𝟒(𝐏)
]

𝛿(𝐏′ − 𝐏) ]
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= ∫
𝑑4𝑃

(2𝜋)4
 

[
 
 
 
 
𝑑1
∗(𝐏)𝑑1(𝐏)𝐕𝟏

𝑻(𝐩)𝐕𝟏(𝐏) + 𝑑1(𝐏)𝑑1
∗(𝐏)𝐔𝟒𝑻(𝐏)𝐔𝟒(𝐏)

+𝑏1(𝐏)𝑏1
∗(𝐏)𝐕𝟏𝑻(𝐩)𝐕𝟏(𝐏) + 𝑏1

∗(𝐏)𝑏1(𝐏)𝐔𝟒
𝑻(𝐏)𝐔𝟒(𝐏)

+𝑑4
∗(𝐏)𝑑4(𝐏)𝐔𝟏

𝑻(𝐩)𝐔𝟏(𝐏) + 𝑑4(𝐏)𝑑4
∗(𝐏)𝐕𝟒𝑻(𝐏)𝐕𝟒(𝐏)

+𝑏4(𝐏)𝑏4
∗(𝐏)𝐔𝟏𝑻(𝐩)𝐔𝟏(𝐏) + 𝑏4

∗(𝐏)𝑏4(𝐏)𝐕𝟒
𝑻(𝐏)𝐕(𝐏) ]

 
 
 
 

 

= ∫
𝑑4𝑃

(2𝜋)4
 𝐸0

2 (𝐏) [
𝑏1(𝐏)𝑏1

∗(𝐏) + 𝑏1
∗(𝐏)𝑏1(𝐏) + 𝑑1

∗(𝐏)𝑑1(𝐏) + 𝑑1(𝐏)𝑑1
∗(𝐏)

+𝑏4(𝐏)𝑏4
∗(𝐏) + 𝑏4

∗(𝐏)𝑏4(𝐏) + 𝑑4
∗(𝐏)𝑑4(𝐏) + 𝑑4(𝐏)𝑑4

∗(𝐏)
] 

= ∫
𝑑4𝑃

(2𝜋)4
 𝐸0

2(𝐏) [
(𝑏1

∗(𝐏)𝑏1(𝐏) + 𝛿(𝟎)) + 𝑏1
∗(𝐏)𝑏1(𝐏) + 𝑑1

∗(𝐏)𝑑1(𝐏) + (𝑑1
∗(𝐏)𝑑1(𝐏) + 𝛿(𝟎))

+(𝑏4
∗(𝐏)𝑏4(𝐏) + 𝛿(𝟎)) + 𝑏4

∗(𝐏)𝑏4(𝐏) + 𝑑4
∗(𝐏)𝑑4(𝐏) + (𝑑4

∗(𝐏)𝑑4(𝐏) + 𝛿(𝟎))
] 

= ∫
𝑑4𝑃

(2𝜋)4
 2𝐸0

2(𝐏) [
𝑏1
∗(𝐏)𝑏1(𝐏) + 𝑑1

∗(𝐏)𝑑1(𝐏)

+𝑏4
∗(𝐏)𝑏4(𝐏) + 𝑑4

∗(𝐏)𝑑4(𝐏)
] + ∫

𝑑4𝑃

(2𝜋)4
 4𝐸0

2(𝐏)𝛿(𝟎) 

here 

𝐸0
2(𝐏) ≡ 𝐕𝟏𝑻(𝐏)𝐕𝟏(𝐏) = 𝐔𝟒𝑻(𝐏)𝐔𝟒(𝐏) = 𝐔𝟏𝑻(𝐏)𝐔𝟏(𝐏) = 𝐕𝟒𝑻(𝐏)𝐕𝟒(𝐏) = 

= 𝐏𝑻𝐏 = 2𝑃0
2 −𝑀2 = 2𝑃0

2 − 𝐏𝑻𝐺𝐏 = 2𝑃0
2 − (𝐏, 𝐏) 

If we consider the photon field, the mass is zero, so that only the energy of the field remains in 

the formula. Each summand in brackets under the integral represents the operator of number of 

particles with a certain reference vector, its action consists in the consecutive application of the 

annihilation operator and the particle birth operator. The last summand describes the energy of zero-

point fluctuations of vacuum. When there is no particle, we have the equality 

𝐸2 = ∫𝑑4𝑋𝛗+(𝐗)𝛗(𝐗) = ∫
𝑑4𝑃

(2𝜋)4
 4𝐸0

2(𝐏)𝛿(𝟎) 

In this connection it is logical to use the normalization for the wave operator so that the energy 

of zero-point fluctuations of vacuum without taking into account the infinite component is unity 
𝛗(𝐗)

2𝐸0(𝐏)
 

If the mass is not zero, then we can relate 𝐔𝟏(𝐏) and 𝐕𝟏(𝐏) to the current of electrons with 

different spins and, respectively, relate 𝐔𝟒(𝐏) and 𝐕𝟒(𝐏) to the current of positrons with different 

spins. 

As we have seen, neither electron current vectors nor electromagnetic field vectors are true 

vectors. When transforming the coordinate system, the same transformation acts on the components 

of the momentum vector, from these transformed components in each frame of reference the 

pseudovectors of the field are formed. But we know that the interaction between current and 

electromagnetic field is described by an additional term in the Lagrangian of the electrodynamics 

theory. This term is the scalar product of the current and the electromagnetic potential and it is 

necessary for this product to be a scalar. But to form a scalar using a metric tensor, two true vectors 

are needed, and these are not available. There remains only one way to provide the scalar, it is 

necessary that signs of components in pseudovectors of current and field coincide, then they will 

compensate each other, and in fact we will get the scalar product of two vectors, and hence we will 

get a scalar. 

Thus, there is a direct connection between the spinor description of the field and its vector 

description. 16 pseudospinors pass into 4 pseudovectors, moreover, the modulus of the complex 

mass in spinor space is equal to the mass in vector space. At all this by the value of the phase of a 

plane wave in spinor space by any direct way it is not possible to calculate the phase of a plane wave 

in vector space. Hence the assumption arises that operators in spinor space describe nature exactly, 

while operators in vector space provide only an approximate description. This may partly explain 

the problems with divergence when integrating in vector space. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2025 doi:10.20944/preprints202401.1032.v6

https://doi.org/10.20944/preprints202401.1032.v6


 82 of 101 

 

To describe the evolution of the field state, we consider the vacuum averaged expression having 

the sense of the propagator. Let us explain the meaning of operators included in the field 

decomposition 

𝛗(𝐗) = ∫
𝑑4𝑃

(2𝜋)4
  

[
𝑑1(𝐏)𝐕𝟏(𝐏) +  𝑏1(𝐏)𝐔𝟒(𝐏)

+𝑑4(𝐏)𝐔𝟏(𝐏) + 𝑏4(𝐏)𝐕𝟒(𝐏)
] 𝑒𝑖(𝐏,𝐗) 

+ 

[
𝑏4
∗(𝐏)𝐕𝟏(𝐏) + 𝑑4

∗(𝐏)𝐔𝟒(𝐏)

+𝑑1
∗(𝐏)𝐔𝟏(𝐏) + 𝑏1

∗(𝐏)𝐕𝟒(𝐏)
] 𝑒−𝑖(𝐏,𝐗) 

For example, 𝑑1(𝐏)  is an operator of annihilation of a particle with pseudovector 𝐕𝟏(𝐏) , 

similarly, other operators without asterisks annihilate particles with pseudovector which stands in 

expansion with these operators. Accordingly, the operator 𝑑1
∗(𝐏)𝑑1(𝐏)is the operator of the number 

of particles with pseudovector 𝐕𝟏(𝐏). 

Let us define a vacuum state of the field with zero filling numbers of particles of each of four 

varieties 

|Ψ0⟩ ≡ |Ψ0000⟩ 

by specifying its properties with respect to the action of annihilation operators 

𝑑1(𝐏)|Ψ0⟩ = 0             𝑑4(𝐏)|Ψ0⟩ = 0            𝑏1(𝐏)|Ψ0⟩ = 0            𝑏4(𝐏)|Ψ0⟩ = 0 

⟨Ψ0
∗|𝑑1

∗(𝐏) = 0           ⟨Ψ0
∗| 𝑑4

∗(𝐏) = 0            ⟨Ψ0
∗|𝑏1

∗(𝐏) = 0           ⟨Ψ0
∗|𝑏4

∗(𝐏) = 0 

It follows from these relations that 

〈Ψ0
∗|𝑑1(𝐏)𝑑1

∗(𝐏′)|Ψ0〉 = 〈Ψ0
∗|[ 𝑑1(𝐏), 𝑑1

∗(𝐏′)]|Ψ0〉 = 〈Ψ0
∗|𝛿(𝐏 − 𝐏′)|Ψ0〉 

Let us construct the amplitude of the field component, which is born at the point with 

coordinates 𝐗 = 𝟎 and annihilated at the point with coordinates 𝐗 

〈Ψ0
∗|𝜑𝑖(𝐗)𝜑𝑗(𝟎)|Ψ0〉 = (〈Ψ0

∗|𝛗(𝐗)𝛗𝑇(𝟎)|Ψ0〉)𝑖𝑗 

〈Ψ0
∗|𝛗(𝐗)𝛗𝑇(𝟎)|Ψ0〉 = 

∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
〈Ψ0

∗ |[
𝑑1(𝐏)𝐕𝟏(𝐏) + 𝑏1(𝐏)𝐔𝟒(𝐏)

+𝑑4(𝐏)𝐔𝟏(𝐏) + 𝑏4(𝐏)𝐕𝟒(𝐏)
] [
𝑏4
∗(𝐏′)𝐕𝟏𝑇(𝐏′) + 𝑑4

∗(𝐏′)𝐔𝟒𝑇(𝐏′)

+𝑑1
∗(𝐏′)𝐔𝟏𝑇(𝐏′) + 𝑏1

∗(𝐏′)𝐕𝟒𝑇(𝐏′)
]|Ψ0〉 𝑒

𝑖(𝐏,𝐗) 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
〈Ψ0

∗ |[
𝑑1(𝐏)𝑑1

∗(𝐏′)𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏′) + 𝑏1(𝐏)𝑏1
∗(𝐏′)𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏′)

+𝑑4(𝐏)𝑑4
∗(𝐏′)𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏′) + 𝑏4(𝐏)𝑏4

∗(𝐏′)𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏′)
]|Ψ0〉 𝑒

𝑖(𝐏,𝐗) 

= ∫
𝑑4𝑃

(2𝜋)4
 〈Ψ0

∗ |[
𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏) + 𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏)

+𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏) + 𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏)
]|Ψ0〉 𝑒

𝑖(𝐏,𝐗) 

= ∫
𝑑4𝑃

(2𝜋)4
 〈Ψ0

∗ |(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)|Ψ0〉 𝑒
𝑖(𝐏,𝐗) 

For the reasons given above, let us apply the normalization of the field operator 
𝛗(𝐗)

2𝐸0(𝐏)
 

As a result, we get   
1

4𝐸0
2(𝐏)

〈Ψ0
∗|𝛗(𝐗)𝛗𝑇(𝟎)|Ψ0〉 = 

∫
𝑑4𝑃

(2𝜋)4
 

〈Ψ0
∗|Ψ0〉

4(2𝑃0
2 −𝑀2)

(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝑒𝑖(𝐏,𝐗) = 

= ∫
𝑑4𝑃

(2𝜋)4
 
〈Ψ0

∗|Ψ0〉

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)𝑒𝑖(𝐏,𝐗) 
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If the mass is zero, this expression is the propagator of the photon. 

Note that the matrix entering the propagator has no inverse, so we do not try to find the equation 

of motion or Lagrangian, they are not necessary in this case, since we have an explicit expression for 

the field operator. We do not have to worry about following the principles of Lorentzian covariance, 

gauge invariance, or following ideas of symmetry. Instead, we rely only on the fulfilment of canonical 

commutation relations for the field operator. The field operator is written identically in any frame of 

reference, and to pass to another frame it is enough to know how the momentum vector is 

transformed, which is transformed by exactly the same law as the coordinate vector, which ensures 

the invariance of the phase of the plane wave. In other words, the field is not a vector but a set of 

pseudovectors (pseudospinors in spinor space), only momentum and coordinate are vectors (spinor). 

We can make our reasoning more intuitively clear if we define the birth and annihilation 

operators of the field particle 

𝑩(𝐗) = ∫
𝑑4𝑃

(2𝜋)4
 [
𝑏4
∗(𝐏)𝐕𝟏(𝐏) + 𝑑4

∗(𝐏)𝐔𝟒(𝐏)

+𝑑1
∗(𝐏)𝐔𝟏(𝐏) + 𝑏1

∗(𝐏)𝐕𝟒(𝐏)
] 𝑒−𝑖(𝐏,𝐗) 

𝑨(𝐗) = ∫
𝑑4𝑃

(2𝜋)4
 [
𝑑1(𝐏)𝐕𝟏(𝐏) + 𝑏1(𝐏)𝐔𝟒(𝐏)

+𝑑4(𝐏)𝐔𝟏(𝐏) + 𝑏4(𝐏)𝐕𝟒(𝐏)
] 𝑒𝑖(𝐏,𝐗) 

Let us find the commutation relations between the components of these operators 

[𝐴𝑖(𝐗), 𝐵𝑗(𝐗
′)] = 𝐴𝑖(𝐗)𝐵𝑗(𝐗

′) − 𝐵𝑗(𝐗
′)𝐴𝑖(𝐗) = (𝑨(𝐗)𝑩𝑇(𝐗′) − (𝑩(𝐗′)𝑨𝑇(𝐗))

𝑇
)
𝑖𝑗

 

𝑨(𝐗)𝑩𝑇(𝐗′) − (𝑩(𝐗′)𝑨𝑇(𝐗))
𝑇
= 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

[
 
 
 
 
 𝑑1(𝐏)𝑑1

∗(𝐏′)𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′) − 𝑑1

∗(𝐏′)𝑑1(𝐏)𝐕𝟏(𝐏)𝐔𝟏
𝑇(𝐏′)𝑒−𝑖(𝐏

′,𝐗′)𝑒𝑖(𝐏,𝐗)

+ 𝑏1(𝐏)𝑏1
∗(𝐏′)𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′) − 𝑏1
∗(𝐏′)𝑏1(𝐏)𝐔𝟒(𝐏)𝐕𝟒

𝑇(𝐏′)𝑒−𝑖(𝐏
′,𝐗′)𝑒𝑖(𝐏,𝐗)

+𝑏4(𝐏)𝑏4
∗(𝐏′)𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′) − 𝑏4
∗(𝐏′)𝑏4(𝐏)𝐕𝟒(𝐏)𝐕𝟏

𝑇(𝐏′) 𝑒−𝑖(𝐏
′,𝐗′)𝑒𝑖(𝐏,𝐗)

+𝑑4(𝐏)𝑑4
∗(𝐏′)𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′) − 𝑑4
∗(𝐏′)𝑑4(𝐏)𝐔𝟏(𝐏)𝐔𝟒

𝑇(𝐏′)𝑒−𝑖(𝐏
′,𝐗′)𝑒𝑖(𝐏,𝐗)]

 
 
 
 
 

 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4

[
 
 
 
 
 
 (𝑑1(𝐏)𝑑1

∗(𝐏′) − 𝑑1
∗(𝐏′)𝑑1(𝐏))𝐕𝟏(𝐏)𝐔𝟏

𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+(𝑏1(𝐏)𝑏1
∗(𝐏′) − 𝑏1

∗(𝐏′)𝑏1(𝐏))𝐔𝟒(𝐏)𝐕𝟒
𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′)

+(𝑏4(𝐏)𝑏4
∗(𝐏′) − 𝑏4

∗(𝐏′)𝑏4(𝐏)) 𝐕𝟒(𝐏)𝐕𝟏
𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′)

+(𝑑4(𝐏)𝑑4
∗(𝐏′) − 𝑑4

∗(𝐏′)𝑑4(𝐏))𝐔𝟏(𝐏)𝐔𝟒
𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏

′,𝐗′)
]
 
 
 
 
 
 

 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4

[
 
 
 
 
 
 (𝛿(𝐏 − 𝐏

′)) 𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+(𝛿(𝐏 − 𝐏′))𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+(𝛿(𝐏 − 𝐏′)) 𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)

+(𝛿(𝐏 − 𝐏′))𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏′)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏
′,𝐗′)
]
 
 
 
 
 
 

 

= ∫
𝑑4𝑃

(2𝜋)4
 

[
 
 
 
 𝐕𝟏(𝐏)𝐔𝟏

𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗
′)

+𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗
′)

+𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗
′)

+𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏)𝑒𝑖(𝐏,𝐗)𝑒−𝑖(𝐏,𝐗
′)]
 
 
 
 

 

= ∫
𝑑4𝑃

(2𝜋)4
 

[
 
 
 
𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏)

+𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏)

+𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏)

+𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏)]
 
 
 

𝑒−𝑖(𝐏,𝐗−𝐗
′) 
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= ∫
𝑑4𝑃

(2𝜋)4
 (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝑒−𝑖(𝐏,𝐗−𝐗
′) 

= (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)∫
𝑑4𝑃

(2𝜋)4
 𝑒−𝑖(𝐏,𝐗−𝐗

′) 

= (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝛿(𝐗 − 𝐗′) 

𝐴𝑖(𝐗)𝐵𝑗(𝐗
′) − 𝐵𝑗(𝐗

′)𝐴𝑖(𝐗) = 𝛿(𝐗 − 𝐗
′) (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

 

As we see, the commutation relations are satisfied for the birth and annihilation operators. 

Let us define the total particle number operator in the form 

𝑁𝑗𝑖(𝐗) = 𝐵𝑗(𝐗)𝐴𝑖(𝐗) 

𝑁𝑗𝑖 = ∫𝑑
4𝑋 𝐵𝑗(𝐗)𝐴𝑖(𝐗) 

Let's find the commutator 

[𝑁𝑗𝑖 , 𝐵𝑗(𝐗)] =  ∫𝑑
4X′ {𝐵𝑗(𝐗

′)𝐴𝑖(𝐗
′)𝐵𝑗(𝐗) − 𝐵𝑗(𝐗)𝐵𝑗(𝐗

′)𝐴𝑖(𝐗
′)} = 

∫𝑑4X′ {𝐵𝑗(𝐗
′)𝐴𝑖(𝐗

′)𝐵𝑗(𝐗) − 𝐵𝑗(𝐗
′)𝐵𝑗(𝐗)𝐴𝑖(𝐗

′)} = 

∫𝑑4X′ {𝐵𝑗(𝐗
′) (𝐴𝑖(𝐗

′)𝐵𝑗(𝐗) − 𝐵𝑗(𝐗)𝐴𝑖(𝐗
′))} = 

∫𝑑4X′ {𝐵𝑗(𝐗
′)𝛿(𝐗′ − 𝐗)}(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

= 𝐵𝑗(𝐗)(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

 

Let's define the vacuum state using the relations 

𝑑1(𝐏)|Ψ0⟩ = 0    𝑏1(𝐏)|Ψ0⟩ = 0    𝑑4(𝐏)|Ψ0⟩ = 0    𝑏4(𝐏)|Ψ0⟩ = 0     

which implies 

𝐴𝑖(𝐗)|Ψ0⟩ = 0 

𝑁𝑗𝑖|Ψ0⟩ = ∫𝑑
4𝑋 𝐵𝑗(𝐗)𝐴𝑖(𝐗)|Ψ0⟩ = 0 

Let's act on vacuum by the birth operator and for the obtained state we find eigenvalues of the 

particle number operator 

(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

𝐵𝑗(𝐗) = [𝑁𝑗𝑖 , 𝐵𝑗(𝐗)] = 𝑁𝑗𝑖𝐵𝑗(𝐗) − 𝐵𝑗(𝐗)𝑁𝑗𝑖 

(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

𝐵𝑗(𝐗)|Ψ0⟩ = 𝑁𝑗𝑖𝐵𝑗(𝐗)|Ψ0⟩ − 𝐵𝑗(𝐗)𝑁𝑗𝑖|Ψ0⟩ 
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𝑁𝑗𝑖(𝐵𝑗(𝐗)|Ψ0⟩) = (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

(𝐵𝑗(𝐗)|Ψ0⟩) 

If we apply normalization 
𝐴(𝐗)

2𝐸0(𝐏)
     

𝐵(𝐗)

2𝐸0(𝐏)
 

then the eigenvalues will have the form 

𝑁𝑗𝑖(𝐵𝑗(𝐗)|Ψ0⟩) =
1

2𝑃0
2 −𝑀2

(

  𝑃0
2 0

 0 0
   

0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)

𝑖𝑗

(𝐵𝑗(𝐗)|Ψ0⟩) 

Note that in the case of the photon field, the matrix, taking into account the normalization, 

contains elements whose modulus is less than or equal to ½, since at zero mass 𝑃2
2 ≤ 𝑃0

2 . 

The fact that for the birth and annihilation operators commutation relations are fulfilled, allows 

to conclude that quanta of the field obey Bose statistics, therefore a single action of the birth operator 

increases the number of particles in the field by one, and the action of the annihilation operator 

decreases this number by one. Hence, by means of these operators it is possible to write the 

propagator not only for the case when the initial and final states are vacuum, but also for the initial 

state with an arbitrary number of particles 

〈Ψ𝑛
∗|𝑨(𝐗)𝑩T(𝟎)|Ψ𝑛〉

4𝐸0
2(𝐏)

= ∫
𝑑4𝑃

(2𝜋)4
 
〈Ψ𝑛

∗|Ψ𝑛〉

2𝑃0
2 −𝑀2

(

  𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)𝑒𝑖(𝐏,𝐗) 

For illustration let us consider a one-particle state 

|Ψ1⟩ ≡ 𝐵𝑗(𝐗)|Ψ0⟩ 

𝑁𝑗𝑖|Ψ1⟩ =
1

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)

𝑖𝑗

|Ψ1⟩ 

and act on it with the birth operator. Again, let's take into account 

1

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)

𝑖𝑗

𝐵𝑗(𝐗) = [𝑁𝑗𝑖 , 𝐵𝑗(𝐗)] = 𝑁𝑗𝑖𝐵𝑗(𝐗) − 𝐵𝑗(𝐗)𝑁𝑗𝑖 

1

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)

𝑖𝑗

𝐵𝑗(𝐗)|Ψ1⟩ = 𝑁𝑗𝑖𝐵𝑗(𝐗)|Ψ1⟩ − 𝐵𝑗(𝐗)𝑁𝑗𝑖|Ψ1⟩

= 𝑁𝑗𝑖𝐵𝑗(𝐗)|Ψ1⟩ − 𝐵𝑗(𝐗)
1

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)

𝑖𝑗

|Ψ1⟩ 

The result is 
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𝑁𝑗𝑖𝐵𝑗(𝐗)|Ψ1⟩ = 2
1

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)

𝑖𝑗

𝐵𝑗(𝐗)|Ψ1⟩ 

The eigenvalue of the particle number operator has increased, instead of a one-particle state we 

have a two-particle state 

|Ψ2⟩ ≡ 𝐵𝑗(𝐗)|Ψ1⟩ 

𝑁𝑗𝑖|Ψ2⟩ = 2
1

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)

𝑖𝑗

|Ψ2⟩ 

Further application of the birth operator increases the number of particles to any value. Now let 

us find a commutator for the annihilation operator, without taking into account the normalization 

for the moment 

[𝑁𝑗𝑖 , 𝐴𝑖(𝐗)] =  ∫𝑑
4X′ {𝐵𝑗(𝐗

′)𝐴𝑖(𝐗
′)𝐴𝑖(𝐗) − 𝐴𝑖(𝐗)𝐵𝑗(𝐗

′)𝐴𝑖(𝐗
′)} = 

∫𝑑4X′ {𝐵𝑗(𝐗
′)𝐴𝑖(𝐗)𝐴𝑖(𝐗

′) − 𝐴𝑖(𝐗)𝐵𝑗(𝐗
′)𝐴𝑖(𝐗

′)} = 

∫𝑑4X′ {(𝐵𝑗(𝐗
′)𝐴𝑖(𝐗) − 𝐴𝑖(𝐗)𝐵𝑗(𝐗

′)) 𝐴𝑖(𝐗
′)} = 

∫𝑑4X′ {−𝛿(𝐗′ − 𝐗)𝐴𝑖(𝐗
′)}(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

= −𝐴𝑖(𝐗) (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

 

The ratios have been taken into account here 

𝐴𝑖(𝐗)𝐵𝑗(𝐗
′) − 𝐵𝑗(𝐗

′)𝐴𝑖(𝐗) = 𝛿(𝐗 − 𝐗
′) (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

 

𝐵𝑗(𝐗
′)𝐴𝑖(𝐗) − 𝐴𝑖(𝐗)𝐵𝑗(𝐗

′) = −𝛿(𝐗 − 𝐗′) (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

 

Let's act on the two-particle state by the annihilation operator and for the obtained state we find 

the eigenvalues of the particle number operator 

−(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

𝐴𝑖(𝐗) = [𝑁𝑗𝑖 , 𝐴𝑖(𝐗)] = 𝑁𝑗𝑖𝐴𝑖(𝐗) − 𝐴𝑖(𝐗)𝑁𝑗𝑖 

−(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

𝐴𝑖(𝐗)|Ψ2⟩ = 𝑁𝑗𝑖𝐴𝑖(𝐗)|Ψ2⟩ − 𝐴𝑖(𝐗)𝑁𝑗𝑖|Ψ2⟩ 
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𝑁𝑗𝑖(𝐴𝑖(𝐗)|Ψ2⟩) = −(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

𝐴𝑖(𝐗)|Ψ2⟩ + 2(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

(𝐴𝑖(𝐗)|Ψ2⟩) 

Here, the fact that without taking into account the rationing 

𝑁𝑗𝑖|Ψ2⟩ = 2(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)

𝑖𝑗

|Ψ2⟩ 

Thus, the annihilation operator reduces the number of particles and puts the field into a single-

particle state. 

Separate application of the birth and annihilation operators more corresponds to the ideology of 

second quantization than their use only as a sum, i.e. only as a field operator 

𝛗(𝐗) = 𝑨(𝐗) + 𝑩(𝐗) 

In particular, since 

〈Ψ0
∗|𝛗(𝐗)𝛗𝑇(𝟎)|Ψ0〉 = 〈Ψ0

∗|𝑨(𝐗)𝑩𝑇(𝟎)|Ψ0〉 

then the propagator really acquires the sense of the amplitude of the probability that the particle is 

born at the origin and annihilated at the point with coordinates 𝐗. 

Moreover, now the propagator can be not bound to the vacuum state, but can be applied to the 

field state with arbitrary number of particles n>0. The application of the sum of operators to some 

state makes sense only in the case when all operators except one give as a result zero. Therefore, at 

the usual approach we have to work only with the vacuum state so that at calculation of the 

propagator the annihilation operator gives zero. In our approach this restriction is removed, the 

operators are not summed, but only multiplied, and they can be applied to a state with any number 

of particles. For this purpose, let us take into account the following relations 

〈Ψ(𝐏, 𝑑1)𝑛
∗ |𝑑1(𝐏)𝑑1

∗(𝐏′)|Ψ(𝐏, 𝑑1)𝑛〉 = 〈Ψ(𝐏, 𝑑1)𝑛
∗ |𝑑1

∗(𝐏)𝑑1(𝐏
′)|Ψ(𝐏, 𝑑1)𝑛〉 

= 〈Ψ(𝐏, 𝑑1)𝑛
∗ |𝛿(𝐏 − 𝐏′)|Ψ(𝐏, 𝑑1)𝑛〉 = 〈Ψ(𝐏)𝑛

∗ |𝛿(𝐏 − 𝐏′)|Ψ(𝐏)𝑛〉 

〈Ψ(𝐏, 𝑏1)𝑛
∗ |𝑏1(𝐏)𝑏1

∗(𝐏′)|Ψ(𝐏, 𝑏1)𝑛〉 = 〈Ψ(𝐏, 𝑏1)𝑛
∗ |𝑏1

∗(𝐏)𝑏1(𝐏
′)|Ψ(𝐏, 𝑏1)𝑛〉 

= 〈Ψ(𝐏, 𝑏1)𝑛
∗ |𝛿(𝐏 − 𝐏′)|Ψ(𝐏, 𝑏1)𝑛〉 = 〈Ψ(𝐏)𝑛

∗ |𝛿(𝐏 − 𝐏′)|Ψ(𝐏)𝑛〉 

〈Ψ(𝐏, 𝑑4)𝑛
∗ |𝑑4(𝐏)𝑑4

∗(𝐏′)|Ψ(𝐏, 𝑑4)𝑛〉 = 〈Ψ(𝐏, 𝑑4)𝑛
∗ |𝑑4

∗(𝐏)𝑑4(𝐏
′)|Ψ(𝐏, 𝑑4)𝑛〉 

= 〈Ψ(𝐏, 𝑑4)𝑛
∗ |𝛿(𝐏 − 𝐏′)|Ψ(𝐏, 𝑑4)𝑛〉 = 〈Ψ(𝐏)𝑛

∗ |𝛿(𝐏 − 𝐏′)|Ψ(𝐏)𝑛〉 

〈Ψ(𝐏, 𝑏4)𝑛
∗ |𝑏4(𝐏)𝑏4

∗(𝐏′)|Ψ(𝐏, 𝑏4)𝑛〉 = 〈Ψ(𝐏, 𝑏4)𝑛
∗ |𝑏4

∗(𝐏)𝑏4(𝐏
′)|Ψ(𝐏, 𝑏4)𝑛〉 

= 〈Ψ(𝐏, 𝑏4)𝑛
∗ |𝛿(𝐏 − 𝐏′)|Ψ(𝐏, 𝑏4)𝑛〉 = 〈Ψ(𝐏)𝑛

∗ |𝛿(𝐏 − 𝐏′)|Ψ(𝐏)𝑛〉 

〈Ψ𝑛
∗ |𝑨(𝐗)𝑩𝑇(𝟎)|Ψ𝑛〉 = ∬

𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

〈Ψ(𝐏)𝑛
∗ |[

𝑑1(𝐏)𝐕𝟏(𝐏) + 𝑏1(𝐏)𝐔𝟒(𝐏)

+𝑑4(𝐏)𝐔𝟏(𝐏) + 𝑏4(𝐏)𝐕𝟒(𝐏)
] [
𝑏4
∗(𝐏′)𝐕𝟏𝑇(𝐏′) + 𝑑4

∗(𝐏′)𝐔𝟒𝑇(𝐏′)

+𝑑1
∗(𝐏′)𝐔𝟏𝑇(𝐏′) + 𝑏1

∗(𝐏′)𝐕𝟒𝑇(𝐏′)
]|Ψ(𝐏)𝑛〉 𝑒

𝑖(𝐏,𝐗) 

=∬
𝑑4𝑃

(2𝜋)4
𝑑4𝑃′

(2𝜋)4
 

〈Ψ(𝐏)𝑛
∗ |[

𝑑1(𝐏)𝑑1
∗(𝐏′)𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏′) + 𝑏1(𝐏)𝑏1

∗(𝐏′)𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏′)

+𝑑4(𝐏)𝑑4
∗(𝐏′)𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏′) + 𝑏4(𝐏)𝑏4

∗(𝐏′)𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏′)
]|Ψ(𝐏)𝑛〉 𝑒

𝑖(𝐏,𝐗) 

= ∫
𝑑4𝑃

(2𝜋)4
 〈Ψ(𝐏)𝑛

∗ |[
𝐕𝟏(𝐏)𝐔𝟏𝑇(𝐏) + 𝐔𝟒(𝐏)𝐕𝟒𝑇(𝐏)

+𝐔𝟏(𝐏)𝐔𝟒𝑇(𝐏) + 𝐕𝟒(𝐏)𝐕𝟏𝑇(𝐏)
]|Ψ(𝐏)𝑛〉 𝑒

𝑖(𝐏,𝐗) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2025 doi:10.20944/preprints202401.1032.v6

https://doi.org/10.20944/preprints202401.1032.v6


 88 of 101 

 

= ∫
𝑑4𝑃

(2𝜋)4
 〈Ψ(𝐏)𝑛

∗ |(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)|Ψ(𝐏)𝑛〉 𝑒
𝑖(𝐏,𝐗) 

= ∫
𝑑4𝑃

(2𝜋)4
 〈Ψ(𝐏)𝑛

∗ |Ψ(𝐏)𝑛〉 (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝑒𝑖(𝐏,𝐗) 

= 〈Ψ𝑛
∗ |Ψ

𝑛
〉∫

𝑑4𝑃

(2𝜋)4
 (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝑒𝑖(𝐏,𝐗) 

The assumption used here is that the scalar products 〈〈Ψ(𝐏)𝑛
∗ |Ψ(𝐏)𝑛〉 = 〈Ψ𝑛

∗|Ψ𝑛〉 are the same 

for any values of momentum. Taking into account the normalisation 

〈Ψ𝑛
∗|𝑨(𝐗)𝑩𝑇(𝟎)|Ψ𝑛〉 = ∫

𝑑4𝑃

(2𝜋)4
〈Ψ𝑛

∗|Ψ𝑛〉

2𝑃0
2 −𝑀2

 (

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)𝑒𝑖(𝐏,𝐗) 

At non-zero number of particles we can change the order of operators and first apply the 

annihilation operator 

〈Ψ𝑛
∗|𝑩(𝐗)𝑨𝑇(𝟎)|Ψ𝑛〉 = ∫  ∫

𝑑4𝑃

(2𝜋)4
 
𝑑4𝑃′

(2𝜋)4
 

〈Ψ(𝐏)𝑛
∗ |[

𝑏4
∗(𝐏)𝐕𝟏(𝐏) + 𝑑4

∗(𝐏)𝐔𝟒(𝐏)

+𝑑1
∗(𝐏)𝐔𝟏(𝐏) + 𝑏1

∗(𝐏)𝐕𝟒(𝐏)
] [
𝑑1(𝐏

′)𝐕𝟏𝑇(𝐏′) + 𝑏1(𝐏
′)𝐔𝟒𝑇(𝐏′)

+𝑑4(𝐏
′)𝐔𝟏𝑇(𝐏′) + 𝑏4(𝐏

′)𝐕𝟒𝑇(𝐏′)
]|Ψ(𝐏)𝑛〉 𝑒

−𝑖(𝐏,𝐗) 

= ∫  ∫
𝑑4𝑃

(2𝜋)4
 
𝑑4𝑃′

(2𝜋)4
 

〈Ψ(𝐏)𝑛
∗ |[

𝑑1
∗(𝐏)𝑑1(𝐏

′)𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏′) + 𝑏1
∗(𝐏)𝑏1(𝐏

′)𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏′)

+𝑑4
∗(𝐏)𝑑4(𝐏

′)𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏′) + 𝑏4
∗(𝐏)𝑏4(𝐏

′)𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏′)
]|Ψ(𝐏)𝑛〉 𝑒

−𝑖(𝐏,𝐗) 

= ∫
𝑑4𝑃

(2𝜋)4
 〈Ψ(𝐏)𝑛

∗ |[
𝐔𝟏(𝐏)𝐕𝟏𝑇(𝐏) + 𝐕𝟒(𝐏)𝐔𝟒𝑇(𝐏)

+𝐔𝟒(𝐏)𝐔𝟏𝑇(𝐏) + 𝐕𝟏(𝐏)𝐕𝟒𝑇(𝐏)
]|Ψ(𝐏)𝑛〉 𝑒

−𝑖(𝐏,𝐗) 

= ∫
𝑑4𝑃

(2𝜋)4
 〈Ψ(𝐏)𝑛

∗ |(

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)|Ψ(𝐏)𝑛〉 𝑒
−𝑖(𝐏,𝐗) 

= ∫
𝑑4𝑃

(2𝜋)4
 〈Ψ(𝐏)𝑛

∗ |Ψ(𝐏)𝑛〉 (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝑒−𝑖(𝐏,𝐗) 

= 〈Ψ𝑛
∗ |Ψ

𝑛
〉∫

𝑑4𝑃

(2𝜋)4
 (

 4𝑃0
2 0

 0 0
   
0   0
0   0

   
0  0
0  0

 −4𝑃2
2 0

0 0

)𝑒−𝑖(𝐏,𝐗) 

After normalization we obtain 

〈Ψ𝑛
∗|𝑩(𝐗)𝑨𝑇(𝟎)|Ψ𝑛〉 = ∫

𝑑4𝑃

(2𝜋)4
 
〈Ψ𝑛

∗|Ψ𝑛〉

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)𝑒−𝑖(𝐏,𝐗) 

Let’s return to the previously used definition of the vacuum state by means of relations 

𝑑1(𝐏)|Ψ0⟩ = 0    𝑏1(𝐏)|Ψ0⟩ = 0    𝑑4(𝐏)|Ψ0⟩ = 0    𝑏4(𝐏)|Ψ0⟩ = 0     

𝑑1
∗(𝐏)𝑑1(𝐏)|Ψ0⟩ = 0    𝑏1

∗(𝐏)𝑏1(𝐏)|Ψ0⟩ = 0    𝑑4
∗(𝐏)𝑑4(𝐏)|Ψ0⟩ = 0    𝑏4

∗(𝐏)𝑏4(𝐏)|Ψ0⟩ = 0     

which implies 

𝐴𝑖(𝐗)|Ψ0⟩ = 0 
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𝑁𝑗𝑖|Ψ0⟩ = ∫𝑑4𝑋 𝐵𝑗(𝐗)𝐴𝑖(𝐗)|Ψ0⟩ = 0 

As we have seen, the action of the birth operator transforms the zero-particle state into a one-

particle state 

𝑁𝑗𝑖(𝐵𝑗(𝐗)|Ψ0⟩) = 𝑁𝑗𝑖|Ψ1⟩ =
1

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)

𝑖𝑗

|Ψ1⟩ 

At that, none of the operators of the number of particles with a particular value of momentum 

𝑑1
∗(𝐏)𝑑1(𝐏)|Ψ1⟩    𝑏1

∗(𝐏)𝑏1(𝐏)|Ψ1⟩    𝑑4
∗(𝐏)𝑑4(𝐏)|Ψ1⟩    𝑏4

∗(𝐏)𝑏4(𝐏)|Ψ1⟩     

has no definite meaning, since the particle is only one. In this connection it makes sense not to define 

the vacuum in such a detailed way, it is enough to define that the vacuum state is characterized by 

only one condition 

𝑁𝑗𝑖|Ψ0⟩ = ∫𝑑4𝑋 𝐵𝑗(𝐗)𝐴𝑖(𝐗)|Ψ0⟩ = 0 

At this approach the field energy is not equal to the sum of energies of partial oscillations, 

accordingly the question about the energy of zero-point oscillations of each oscillator constituting the 

field is removed. We get rid of the problem of infinite energy of the sum of zero-point vibrations of 

an infinite number of oscillators. 

We would like the propagator to have properties of the Green's function, i.e., to satisfy the Klein-

Gordon equation of motion 

−(
𝜕2

𝜕𝑋0
2 −

𝜕2

𝜕𝑋1
2 −

𝜕2

𝜕𝑋2
2 −

𝜕2

𝜕𝑋3
2 +𝑚

2)𝐷(𝐗) = 𝛿(𝐗) 

The solution of this equation has the form 

𝐷(𝐗) = ∫
𝑑4𝑃

(2𝜋)4
 

𝑒𝑖(𝐏,𝐗)

𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 −𝑀2
 

Therefore, we add the same multiplier to the denominator of the integrand expression 

〈Ψ𝑛
∗|𝑩(𝐗)𝑨𝑇(𝟎)|Ψ𝑛〉 = ∫

𝑑4𝑃

(2𝜋)4
 
〈Ψ𝑛

∗|Ψ𝑛〉

2𝑃0
2 −𝑀2

(

 𝑃0
2 0
 0 0

   
0   0
0   0

   
0  0
0  0

 −𝑃2
2 0

0 0

)
𝑒−𝑖(𝐏,𝐗)

𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 −𝑀2
 

By analogy with the introduced birth and annihilation operators for fields in vector space, let us 

describe the corresponding operators for fields in spinor space. As an initial one we use the 

previously described field operator for the fermionic field 

𝛗(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅) 

+[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒(𝐩)
] 𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

Let us define the birth and annihilation operators 

𝒃(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑏1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) + 𝑖𝑏2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) + 𝑖𝑑2
∗(𝐩)𝐮𝟐(𝐩) + 𝑑1

∗(𝐩)𝐮𝟒(𝐩)

+𝑏4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) + 𝑖𝑏3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) + 𝑖𝑑3
∗(𝐩)𝐯𝟐(𝐩) + 𝑑4

∗(𝐩)𝐯𝟒(𝐩)
] 𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

𝒂(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅) 

Let's find anticommutation relations between components of these operators 

{𝑎𝑖(𝐱), 𝑏𝑗(𝐱
′)} = 𝑎𝑖(𝐱)𝑏𝑗(𝐱

′) + 𝑏𝑗(𝐱
′)𝑎𝑖(𝐱) = (𝒂(𝐱)𝒃(𝐱′) + (𝒃(𝐱′)𝒂𝑇(𝐱))

𝑇
)
𝑖𝑗

 

𝒂(𝐱)𝒃𝑇(𝐱′) + (𝒃(𝐱′)𝒂𝑇(𝐱))
𝑇
= 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
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{𝑎𝑖(𝐱), 𝑏𝑗(𝐱
′)} = 𝑎𝑖(𝐱)𝑏𝑗(𝐱

′) + 𝑏𝑗(𝐱
′)𝑎𝑖(𝐱) = (𝒂(𝐱)𝒃(𝐱′) + (𝒃(𝐱′)𝒂𝑇(𝐱))

𝑇

)
𝑖𝑗

 

𝒂(𝐱)𝒃𝑇(𝐱′) + (𝒃(𝐱′)𝒂𝑇(𝐱))
𝑇

= 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4
 

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 

[
𝑏1
∗(𝐩′)𝐮𝟏+(𝐩′) + 𝑖𝑏2

∗(𝐩′)𝐮𝟑+(𝐩′) + 𝑖𝑑2
∗(𝐩′)𝐮𝟐𝑻(𝐩′) + 𝑑1

∗(𝐩′)𝐮𝟒𝑻(𝐩′)

+𝑏4
∗(𝐩′)𝐯𝟏+(𝐩′) + 𝑖𝑏3

∗(𝐩′)𝐯𝟑+(𝐩′) + 𝑖𝑑3
∗(𝐩′)𝐯𝟐𝑻(𝐩′) + 𝑑4

∗(𝐩′)𝐯𝟒𝑻(𝐩′)
] 

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖

(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅) 

+ 

(

 
 
 
[
𝑏1
∗(𝐩′)𝐮𝟏̅̅̅̅ (𝐩′) + 𝑖𝑏2

∗(𝐩′)𝐮𝟑̅̅̅̅ (𝐩′) + 𝑖𝑑2
∗(𝐩′)𝐮𝟐(𝐩′) + 𝑑1

∗(𝐩′)𝐮𝟒(𝐩′)

+𝑏4
∗(𝐩′)𝐯𝟏̅̅̅̅ (𝐩′) + 𝑖𝑏3

∗(𝐩′)𝐯𝟑̅̅̅̅ (𝐩′) + 𝑖𝑑3
∗(𝐩′)𝐯𝟐(𝐩′) + 𝑑4

∗(𝐩′)𝐯𝟒(𝐩′)
]

[
𝑑1(𝐩)𝐮𝟏

𝑻(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑
𝑻(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐

+(𝐩) + 𝑏1(𝐩)𝐮𝟒
+(𝐩)

+𝑑4(𝐩)𝐯𝟏
𝑻(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑

𝑻(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐
+(𝐩) + 𝑏4(𝐩)𝐯𝟒

+(𝐩)
]

𝑒−𝑖
(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) )

 
 
 

𝑇

 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4

[
 
 
 
 
 
 
 
 [

𝑑1(𝐩)𝑑1
∗(𝐩′)𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩′)

−𝑑2(𝐩)𝑑2
∗(𝐩′)𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩′) +⋯

]

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖

(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
 𝑏1(𝐩)𝑏1

∗(𝐩′)𝐮𝟒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐩)𝐮𝟏+(𝐩′)

−𝑏2(𝐩)𝑏2
∗(𝐩′)𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩′) + ⋯

]

𝑒𝑖
(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)]

 
 
 
 
 
 
 
 

 

+∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4

[
 
 
 
 
 
 
 
 
 
 
 

[
𝑏1
∗(𝐩′)𝑏1(𝐩) (𝐮𝟏̅̅̅̅ (𝐩

′)𝐮𝟒+(𝐩))
𝑻

−𝑏2
∗(𝐩′)𝑏2(𝐩) (𝐮𝟑̅̅̅̅ (𝐩

′)𝐮𝟐+(𝐩))
𝑻

+⋯
]

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒𝑖

(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
𝑑1
∗(𝐩′)𝑑1(𝐩) (𝐮𝟒(𝐩

′)𝐮𝟏𝑻(𝐩))
𝑻

−𝑑2
∗(𝐩′)𝑑2(𝐩) (𝐮𝟐(𝐩

′)𝐮𝟑𝑻(𝐩))
𝑻

+⋯
]

𝑒−𝑖
(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)]

 
 
 
 
 
 
 
 
 
 
 

 

=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4

[
 
 
 
 
 
 
 
 
 
 
 
[

𝑑1(𝐩)𝑑1
∗(𝐩′)𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩′) + 𝑑1

∗(𝐩′)𝑑1(𝐩) (𝐮𝟒(𝐩
′)𝐮𝟏𝑻(𝐩))

𝑻

−𝑑2(𝐩)𝑑2
∗(𝐩′)𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩′) − 𝑑2

∗(𝐩′)𝑑2(𝐩) (𝐮𝟐(𝐩
′)𝐮𝟑𝑻(𝐩))

𝑻

+⋯
]

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖

(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
 𝑏1(𝐩)𝑏1

∗(𝐩′)𝐮𝟒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐩)𝐮𝟏+(𝐩′) + 𝑏1
∗(𝐩′)𝑏1(𝐩) (𝐮𝟏̅̅̅̅ (𝐩

′)𝐮𝟒+(𝐩))
𝑻

−𝑏2(𝐩)𝑏2
∗(𝐩′)𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩′) − 𝑏2

∗(𝐩′)𝑏2(𝐩) (𝐮𝟑̅̅̅̅ (𝐩
′)𝐮𝟐+(𝐩))

𝑻

+⋯
]

𝑒𝑖
(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]
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=∬
𝑑4𝑝

(2𝜋)4
𝑑4𝑝′

(2𝜋)4

[
 
 
 
 
 
 
 
 
 
 
[

𝑑1(𝐩)𝑑1
∗(𝐩′)𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩′) + 𝑑1

∗(𝐩′)𝑑1(𝐩) (𝐮𝟏(𝐩)𝐮𝟒
𝑻(𝐩′))

−𝑑2(𝐩)𝑑2
∗(𝐩′)𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩′) − 𝑑2

∗(𝐩′)𝑑2(𝐩) (𝐮𝟑(𝐩)𝐮𝟐
𝑻(𝐩′)) +⋯

]

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)𝑒−𝑖

(𝑝0
′𝑥1

′−𝑝1
′𝑥0

′+𝑝2
′𝑥3

′−𝑝3
′𝑥2

′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

+

[
 𝑏1(𝐩)𝑏1

∗(𝐩′)𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟏+(𝐩′) + 𝑏1
∗(𝐩′)𝑏1(𝐩) (𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟏

+(𝐩′))

−𝑏2(𝐩)𝑏2
∗(𝐩′)𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩′) − 𝑏2

∗(𝐩′)𝑏2(𝐩) (𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑
+(𝐩′)) + ⋯

]

𝑒𝑖
(𝑝0

′𝑥1
′−𝑝1

′𝑥0
′+𝑝2

′𝑥3
′−𝑝3

′𝑥2
′+(𝐩′,𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) ]

 
 
 
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4

[
 
 
 
 
 
 
 
 [

𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) + 𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩)

−𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) − 𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) + ⋯
]

𝑒𝑖
(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟏+(𝐩) + 𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟒+(𝐩)

−𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩) − 𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟐+(𝐩) + ⋯
]

𝑒−𝑖
(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′+(𝐩′,𝐱)̅̅ ̅̅ ̅̅ ̅̅ )+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )]

 
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 

[
 
 
 
 
 
 
 
 [
𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) + 𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩) + 𝐯𝟏(𝐩)𝐯𝟒𝑻(𝐩) + 𝐯𝟒(𝐩)𝐯𝟏𝑻(𝐩)

−𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) − 𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) − 𝐯𝟑(𝐩)𝐯𝟐𝑻(𝐩) − 𝐯𝟐(𝐩)𝐯𝟑𝑻(𝐩)
]

𝑒𝑖
(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+

[
𝐮𝟒̅̅̅̅ (𝐩)𝐮𝟏+(𝐩) + 𝐮𝟏̅̅̅̅ (𝐩)𝐮𝟒+(𝐩) + 𝐯𝟒̅̅̅̅ (𝐩)𝐯𝟏+(𝐩) + 𝐯𝟏̅̅̅̅ (𝐩)𝐯𝟒+(𝐩)

−𝐮𝟐̅̅̅̅ (𝐩)𝐮𝟑+(𝐩) − 𝐮𝟑̅̅̅̅ (𝐩)𝐮𝟐+(𝐩) − 𝐯𝟐̅̅̅̅ (𝐩)𝐯𝟑+(𝐩) − 𝐯𝟑̅̅̅̅ (𝐩)𝐯𝟐+(𝐩)
]

𝑒−𝑖
(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ]

 
 
 
 
 
 
 
 

 

= ∫
𝑑4𝑝

(2𝜋)4
 (𝑆𝑅(𝐩) + 𝑆𝑅(𝐩))𝑒

(𝑖(𝑝0(𝑥1−𝑥1
′)−𝑝1(𝑥0−𝑥0

′)+𝑝2(𝑥3−𝑥3
′)−𝑝3(𝑥2−𝑥2

′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))
 

+∫
𝑑4𝑝

(2𝜋)4
 (𝑆𝑅̅̅ ̅(𝐩) + 𝑆

𝑅̅̅ ̅(𝐩)) 𝑒
−(𝑖(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

 

= ∫
𝑑4𝑝

(2𝜋)4
 4(

𝑚 0
0 𝑚

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

)𝑒
(𝑖(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

 

+∫
𝑑4𝑝

(2𝜋)4
 4(

𝑚̅ 0
0 𝑚̅

0 0
0 0

0 0
0 0

𝑚̅ 0
0 𝑚̅

) 𝑒
−(𝑖(𝑝0(𝑥1−𝑥1

′)−𝑝1(𝑥0−𝑥0
′)+𝑝2(𝑥3−𝑥3

′)−𝑝3(𝑥2−𝑥2
′)+(𝐩,𝐱−𝐱′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

 

= 4𝑚𝐼𝛿(𝐱′ − 𝐱) + 4𝑚̅𝐼𝛿(𝐱 − 𝐱′) 

{𝑎𝑖(𝐱
′), 𝑏𝑗(𝐱)} = 𝑎𝑖(𝐱

′)𝑏𝑗(𝐱) + 𝑏𝑗(𝐱)𝑎𝑖(𝐱
′) = 4𝑅𝑒(𝑚)𝛿(𝐱′ − 𝐱)𝛿𝑖𝑗 

{𝑏𝑗(𝐱
′), 𝑎𝑖(𝐱)} = 𝑏𝑗(𝐱

′)𝑎𝑖(𝐱) + 𝑎𝑖(𝐱)𝑏𝑗(𝐱
′) = 4𝑅𝑒(𝑚)𝛿(𝐱 − 𝐱′)𝛿𝑖𝑗 

Besides these relations, the following `anti-commutation relations take place between the 

components of the annihilation and birth operators 

{𝑏𝑖(𝐱), 𝑏𝑗(𝐱
′)} = 𝑏𝑖(𝐱)𝑏𝑗(𝐱

′) + 𝑏𝑗(𝐱
′)𝑏𝑖(𝐱) = 0  

{𝑎𝑖(𝐱), 𝑎𝑗(𝐱
′)} = 𝑎𝑖(𝐱)𝑎𝑗(𝐱

′) + 𝑎𝑗(𝐱
′)𝑎𝑖(𝐱) = 0  

Let's define operators of the total number of particles in the form 

𝑁𝑗𝑖(𝐱) = 𝑏𝑗(𝐱)𝑎𝑖(𝐱)            𝑁𝑗𝑖 = ∫𝑑
4𝑥 𝑏𝑗(𝐱)𝑎𝑖(𝐱) 

Let's find the commutators 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2025 doi:10.20944/preprints202401.1032.v6

https://doi.org/10.20944/preprints202401.1032.v6


 92 of 101 

 

[𝑁𝑗𝑖 , 𝑏𝑗(𝐱)] =  ∫𝑑
4x′ [𝑏𝑗(𝐱

′)𝑎𝑖(𝐱
′)𝑏𝑗(𝐱) − 𝑏𝑗(𝐱)𝑏𝑗(𝐱

′)𝑎𝑖(𝐱
′)] = 

 ∫ 𝑑4x′ [𝑏𝑗(𝐱
′)𝑎𝑖(𝐱

′)𝑏𝑗(𝐱) + 𝑏𝑗(𝐱
′)𝑏𝑗(𝐱)𝑎𝑖(𝐱

′)] = 

 ∫ 𝑑4x′ [𝑏𝑗(𝐱
′) (𝑎𝑖(𝐱

′)𝑏𝑗(𝐱) + 𝑏𝑗(𝐱)𝑎𝑖(𝐱
′))] = 

4𝑅𝑒(𝑚)∫𝑑4x′ 𝑏𝑗(𝐱
′)𝛿(𝐱′ − 𝐱)𝛿𝑖𝑗 = 4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑏𝑗(𝐱) = [𝑁𝑗𝑖 , 𝑏𝑗(𝐱)] 

[𝑁𝑗𝑖 , 𝑎𝑖(𝐱)] =  ∫𝑑
4x′ [𝑏𝑗(𝐱

′)𝑎𝑖(𝐱
′)𝑎𝑖(𝐱) − 𝑎𝑖(𝐱)𝑏𝑗(𝐱

′)𝑎𝑖(𝐱
′)] = 

∫𝑑4x′ [−𝑏𝑗(𝐱
′)𝑎𝑖(𝐱)𝑎𝑖(𝐱

′) − 𝑎𝑖(𝐱)𝑏𝑗(𝐱
′)𝑎𝑖(𝐱

′)] = 

−∫𝑑4x′ [(𝑏𝑗(𝐱
′)𝑎𝑖(𝐱) + 𝑎𝑖(𝐱)𝑏𝑗(𝐱

′)) 𝑎𝑖(𝐱
′)] = 

−4𝑅𝑒(𝑚)∫𝑑4x′ 𝛿(𝐱′ − 𝐱)𝛿𝑖𝑗𝑎𝑖(𝐱
′) = −4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑎𝑖(𝐱) = [𝑁𝑗𝑖 , 𝑎𝑖(𝐱)] 

Instead of defining the vacuum state through its properties under the action of annihilation 

operators 

𝑑1(𝐩)|Ψ0⟩ = 𝑑2(𝐩)|Ψ0⟩ = 𝑏2(𝐩)|Ψ0⟩ = 𝑏1(𝐩)|Ψ0⟩ = 0 

𝑑4(𝐩)|Ψ0⟩ = 𝑑3(𝐩)|Ψ0⟩ = 𝑏3(𝐩)|Ψ0⟩ = 𝑏3(𝐩)|Ψ0⟩ = 0 

which would entail the ratios 

𝒂(𝐱)|Ψ0⟩ = 0      𝑁𝑗𝑖|Ψ0⟩ = 0 

we will not require from operators all these properties, but we will be limited by a weaker and simpler 

definition of vacuum, namely, absence of particles in vacuum 

𝑁𝑗𝑖|Ψ0⟩ = 0 

Let's use the found commutator 

4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑏𝑗(𝐱) = 𝑁𝑗𝑖𝑏𝑗(𝐱) − 𝑏𝑗(𝐱)𝑁𝑗𝑖  

4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑏𝑗(𝐱)|Ψ0⟩ = 𝑁𝑗𝑖𝑏𝑗(𝐱)|Ψ0⟩ − 𝑏𝑗(𝐱)𝑁𝑗𝑖|Ψ0⟩ 

𝑁𝑗𝑖𝑏𝑗(𝐱)|Ψ0⟩ = 4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑏𝑗(𝐱)|Ψ0⟩ 

|Ψ1⟩ ≡ 𝑏𝑗(𝐱)|Ψ0⟩ 

𝑁𝑗𝑖|Ψ1⟩ = 4𝑅𝑒(𝑚)𝛿𝑖𝑗|Ψ1⟩ 

On the obtained one-particle state let's act on the obtained one-particle state by the birth operator 

again 

4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑏𝑗(𝐱)|Ψ1⟩ = 𝑁𝑗𝑖𝑏𝑗(𝐱)|Ψ1⟩ − 𝑏𝑗(𝐱)𝑁𝑗𝑖|Ψ1⟩ 

4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑏𝑗(𝐱)|Ψ1⟩ = 𝑁𝑗𝑖𝑏𝑗(𝐱)|Ψ1⟩ − 4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑏𝑗(𝐱)|Ψ1⟩ 

𝑁𝑗𝑖𝑏𝑗(𝑥)|Ψ1⟩ = 2(4𝑅𝑒(𝑚)𝛿𝑖𝑗)𝑏𝑗(𝑥)|Ψ1⟩ 

|Ψ2⟩ ≡ 𝑏𝑗(𝐱)|Ψ1⟩ 

𝑁𝑗𝑖|Ψ2⟩ = 2(4𝑅𝑒(𝑚)𝛿𝑖𝑗)|Ψ2⟩ 

We have obtained a state with two particles and we can thus increase the number of particles to 

infinity. All particles are identical and indistinguishable from each other, each of them is in all 

allowed states, of which the free field has infinitely many. Electrons in an atom have fewer allowed 

states, but still any electron occupies all of them equally with the others. This theory describes both 

electron and positron, the difference between them being only in the sign of the mass, it being 

convenient to consider that the electron has a negative mass and the positron a positive one. 

Similarly, we use the commutator of the annihilation operator 

−4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑎𝑖(𝐱) = 𝑁𝑗𝑖𝑎𝑖(𝐱) − 𝑎𝑖(𝐱)𝑁𝑗𝑖  

−4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑎𝑖(𝐱)|Ψ2⟩ = 𝑁𝑗𝑖𝑎𝑖(𝐱)|Ψ2⟩ − 𝑎𝑖(𝐱)𝑁𝑗𝑖|Ψ2⟩ 

−4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑎𝑖(𝐱)|Ψ2⟩ = 𝑁𝑗𝑖𝑎𝑖(𝐱)|Ψ2⟩ − 2(4𝑅𝑒(𝑚)𝛿𝑖𝑗)𝑎𝑖(𝒙)|Ψ2⟩ 

𝑁𝑗𝑖𝑎𝑖(𝐱)|Ψ2⟩ = 4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑎𝑖(𝐱)|Ψ2⟩ 
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Thus, the action of the annihilation operator has transformed the two-particle state into a one-

particle state. Using the same calculations, we obtain the result of the annihilation operator action on 

the one-particle state 

𝑁𝑗𝑖𝑎𝑖(𝐱)|Ψ1⟩ = 0 ∗ 𝑎𝑖(𝐱)|Ψ1⟩ 

And in the same way we define the result of its action on the null state 

𝑁𝑗𝑖𝑎𝑖(𝐱)|Ψ0⟩ = −4𝑅𝑒(𝑚)𝛿𝑖𝑗𝑎𝑖(𝐱)|Ψ0⟩ = 4𝑅𝑒(−𝑚)𝛿𝑖𝑗𝑎𝑖(𝐱)|Ψ0⟩ 

We obtain a state with the number of particles minus one, but we see that in fact it is a state with 

one particle whose mass is negative. Thus, the positron annihilation operator is also the electron birth 

operator. It destroys positrons until they run out, after which it begins to give birth to electrons. The 

birth operator, on the contrary, destroys electrons, and when they run out, begins to give birth to 

positrons. Thus, since there are many electrons in our universe, this operator cannot give birth to 

positrons because it cannot destroy all electrons due to their number. Moreover, the operator of 

annihilation of positrons because of the absence of the latter, only gives birth to more and more 

electrons. 

If the mass is zero, then in any state the number of particles is zero, i.e., for example, the 

electromagnetic field in spinor space, where it should be fermionic, simply has no particles. The 

absence of particles does not contradict the presence of the field, which is represented by the same 16 

spinors, this field obeys Fermi statistics, and it has no charge and can be treated as a Majorana 

fermion. This field interacts with electrons in spinor space, and the result of the interaction manifests 

itself in vector space. 

With the help of the birth and annihilation operators we can write the propagator for the 

situation when the initial and final states are states with arbitrary number of particles 

〈Ψ𝑛
∗|𝒂(𝐱)𝒃T(𝟎)|Ψ𝑛〉 = ∫

𝑑4𝑝

(2𝜋)4
 〈Ψ𝑛

∗|Ψ𝑛〉4𝑅𝑒(𝑚) (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

) 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) 

〈Ψ𝑛
∗|𝒃(𝐱)𝒂T(𝟎)|Ψ𝑛〉 = ∫

𝑑4𝑝

(2𝜋)4
 〈Ψ𝑛

∗|Ψ𝑛〉4𝑅𝑒(𝑚) (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

) 𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅) 

We would like the spinor propagator also to have properties of the Green's function, i.e. to satisfy 

the equations which for this case are given below and which can be combined into one equation by 

summation 

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
+𝑚)𝐷(𝐱) = 𝛿(𝐱) 

(
𝜕[ ]̅

𝜕𝑥1̅̅̅

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
−
𝜕[ ]̅

𝜕𝑥0̅̅ ̅

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
+ 𝑚̅)𝐷(𝐱) = 𝛿(𝐱) 

((
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) + (

𝜕[ ]̅

𝜕𝑥1̅̅̅

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
−
𝜕[ ]̅

𝜕𝑥0̅̅ ̅

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
) + 𝑚 + 𝑚̅)𝐷(𝐱) = 𝛿(𝐱) 

where the delta function can be represented as 

𝛿(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

The solution of the combined equation has the form 

𝐷(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 

𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)
̅̅ ̅̅ ̅̅ ̅)

(𝑝1𝑝2 − 𝑝0𝑝3) + (𝑝1̅𝑝2̅ − 𝑝0̅𝑝3̅) − 𝑚 − 𝑚̅
 

Therefore, we must add to the denominator of the integrand an appropriate multiplier 

〈Ψ𝑛
∗ |𝒂(𝐱)𝒃T(𝐲)|Ψ𝑛〉 = ∫

𝑑4𝑝

(2𝜋)4
 〈Ψ𝑛

∗ |Ψ𝑛〉 (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

)
4𝑅𝑒(𝑚)𝑒𝑖(

(𝐩,𝐱−𝐲)+(𝐩,𝐱−𝐲)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

(𝑝1𝑝2 − 𝑝0𝑝3) + (𝑝1̅𝑝2̅ − 𝑝0̅𝑝3̅) − 𝑅𝑒(𝑚)
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〈Ψ𝑛
∗ |𝒃(𝐱)𝒂T(𝐲)|Ψ𝑛〉 = ∫

𝑑4𝑝

(2𝜋)4
 〈Ψ𝑛

∗ |Ψ𝑛〉 (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

)
4𝑅𝑒(𝑚)𝑒−𝑖(

(𝐩,𝐱−𝐲)+(𝐩,𝐱−𝐲)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

(𝑝1𝑝2 − 𝑝0𝑝3) + (𝑝1̅𝑝2̅ − 𝑝0̅𝑝3̅) − 𝑅𝑒(𝑚)
 

The electron and positron have different mass sign, so their propagators will be different. 

Instead of the sum of equations we can use their product, then the corresponding 

inhomogeneous equation 

((
𝜕[ ]̅

𝜕𝑥1̅

𝜕[ ]̅

𝜕𝑥2̅
−
𝜕[ ]̅

𝜕𝑥0̅

𝜕[ ]̅

𝜕𝑥3̅
) (

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) −𝑚2)𝐷(𝐱) = 𝛿(𝐱) 

has a solution 

𝐷(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
 
𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

(𝑝1̅𝑝2̅ − 𝑝0̅𝑝3̅)(𝑝1𝑝2 − 𝑝0𝑝3) − 𝑚
2

= ∫
𝑑4𝑝

(2𝜋)4
 
𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 −𝑚2
 

Correspondingly, it is necessary to add to the propagator the denominator in any of these forms, 

since it was shown earlier that for a free field 

(𝑝1𝑝2 − 𝑝0𝑝3)(𝑝1𝑝2 − 𝑝0𝑝3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 

We can repeat the above calculations, keeping the annihilation operator, but defining the birth 

operator differently 

𝒂(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 𝑒𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

𝒃(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑑1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) − 𝑖𝑑2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) − 𝑖𝑏2
∗(𝐩)𝐮𝟐(𝐩) + 𝑏1

∗(𝐩)𝐮𝟒(𝐩)

+𝑑4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) − 𝑖𝑑3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) − 𝑖𝑏3
∗(𝐩)𝐯𝟐(𝐩) + 𝑏4

∗(𝐩)𝐯𝟒(𝐩)
] 𝑒−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)

̅̅ ̅̅ ̅̅ ̅) 

As a result, we obtain the anticommutator 

{𝑎𝑖(𝐱), 𝑏𝑗(𝐱
′)} = 𝑎𝑖(𝐱)𝑏𝑗(𝐱

′) + 𝑏𝑗(𝐱
′)𝑎𝑖(𝐱) = (𝒂(𝐱)𝒃(𝐱′) + (𝒃(𝐱′)𝒂𝑇(𝐱))

𝑇
)
𝑖𝑗

 

𝒂(𝐱)𝒃𝑇(𝐱′) + (𝒃(𝐱′)𝒂𝑇(𝐱))
𝑇
= 4𝑃0𝐼𝛿(𝐱

′ − 𝐱) + 4𝑃0𝐼𝛿(𝐱 − 𝐱
′) = 8𝑃0𝛿(𝐱 − 𝐱

′) 

𝑃0 = 𝑝0𝑝0̅̅ ̅ + 𝑝1𝑝1̅̅̅ + 𝑝2𝑝2̅̅ ̅ + 𝑝3𝑝3̅̅ ̅ 

As before, using the birth and annihilation operators, we construct propagators for a state with 

an arbitrary number of particles 

〈Ψ𝑛
∗|𝒂(𝐱)𝒃T(𝟎)|Ψ𝑛〉 = ∫

𝑑4𝑝

(2𝜋)4
 〈Ψ𝑛

∗|Ψ𝑛〉 (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

)
8𝑃0𝑒

𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)

(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅)(𝑝1𝑝2 − 𝑝0𝑝3) − 𝑚
2
 

〈Ψ𝑛
∗|𝒃(𝐱)𝒂T(𝟎)|Ψ𝑛〉 = ∫

𝑑4𝑝

(2𝜋)4
 〈Ψ𝑛

∗|Ψ𝑛〉 (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

)
8𝑃0𝑒

−𝑖(𝑝0𝑥1−𝑝1𝑥0+𝑝2𝑥3−𝑝3𝑥2+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)

(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅)(𝑝1𝑝2 − 𝑝0𝑝3) − 𝑚
2
 

Now instead of mass the propagator includes energy, therefore such theory is applicable also to 

the field with zero mass, i.e. it can serve as a model not only for the electron, but also for the 

electromagnetic field in spinor space.  The only problem is that if earlier the action of the 

annihilation operator on the zero-point state gave a particle with negative mass, now this action gives 

a particle with negative energy, which makes the interpretation of such theory more difficult. 

We can reformulate the above reasoning in a more consistent and logical form. Let us again write 

down the equations  

(
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
+𝑚)𝐷(𝐱) = 𝛿(𝐱) 
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(
𝜕[ ]̅

𝜕𝑥1̅̅̅

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
−
𝜕[ ]̅

𝜕𝑥0̅̅ ̅

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
+ 𝑚̅)𝐷(𝐱) = 𝛿(𝐱) 

and put in correspondence with them the birth and annihilation operators, which in this version are 

conjugate to each other 

𝒂(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
]

𝑒𝑖
((𝐩,𝐱)+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)

𝑝1𝑝2 − 𝑝0𝑝3 −𝑚
 

𝒃(𝐱) = 𝒂(𝐱)̅̅ ̅̅ ̅̅ = ∫
𝑑4𝑝

(2𝜋)4
  

[
𝑑1
∗(𝐩)𝐮𝟏̅̅̅̅ (𝐩) − 𝑖𝑑2

∗(𝐩)𝐮𝟑̅̅̅̅ (𝐩) − 𝑖𝑏2
∗(𝐩)𝐮𝟐(𝐩) + 𝑏1

∗(𝐩)𝐮𝟒(𝐩)

+𝑑4
∗(𝐩)𝐯𝟏̅̅̅̅ (𝐩) − 𝑖𝑑3

∗(𝐩)𝐯𝟑̅̅̅̅ (𝐩) − 𝑖𝑏3
∗(𝐩)𝐯𝟐(𝐩) + 𝑏4

∗(𝐩)𝐯𝟒(𝐩)
]
𝑒−𝑖

((𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅+(𝐩,𝐱))

𝑝1̅𝑝2̅ − 𝑝0̅𝑝3̅ − 𝑚̅
 

Then the propagator without additional assumptions will have the form 

𝐷𝑖𝑗(𝐱 − 𝐲) = 〈Ψ𝑛
∗ |𝒂(𝐱)𝒃T(𝐲)|Ψ𝑛〉𝑖𝑗 = ∫

𝑑4𝑝

(2𝜋)4
 〈Ψ𝑛

∗ |Ψ𝑛〉8𝑃0𝛿𝑖𝑗
𝑒𝑖
((𝐩,𝐱−𝐲)+(𝐩,𝐱−𝐲)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

(𝑝1𝑝2 − 𝑝0𝑝3 −𝑚)(𝑝1̅𝑝2̅ − 𝑝0̅𝑝3̅ − 𝑚̅)
 

One can even propose to use plane waves in spinor space immediately together with the 

denominator in any field operators 

1

√8𝑃0

𝑒𝑖
((𝐩,𝐱)+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)

𝑝1𝑝2 − 𝑝0𝑝3 −𝑚
 

The considered free field propagators describe the situation when there is a point source with 

coordinate 𝐱  and a point sink with coordinate 𝐲 . In the general case in the spinor space the 

distribution of source-stocks J(x) can be given and the value of 

𝑊(𝐽) = −
1

2
∬𝑑4𝑥 𝑑4𝑦 𝐽𝑖(𝐱)𝐷𝑖𝑗(𝐱 − 𝐲)𝐽𝑗(𝐲) 

which is used for finding the integral over the trajectories and which can be written using the Fourier 

transform for the spinor space 

𝐽𝑖(𝐩) ≡ ∫
𝑑4𝑥

(2𝜋)4
 𝐽𝑖(𝐱)𝑒

−𝑖((𝐩,𝐱)+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅) 

𝑊(𝐽) = −
1

2
∬

𝑑4𝑝

(2𝜋)4
𝐽𝑖(𝐩)̅̅ ̅̅ ̅̅  8𝑃0𝛿𝑖𝑗

(𝑝0𝑝0̅̅ ̅ + 𝑝1𝑝1̅̅̅ + 𝑝2𝑝2̅̅ ̅ + 𝑝3𝑝3̅̅ ̅)

(𝑝1𝑝2 − 𝑝0𝑝3)(𝑝1̅̅̅𝑝2̅̅ ̅ − 𝑝0̅̅ ̅𝑝3̅̅ ̅) − 𝑚
2
𝐽𝑗(𝐩) 

In quantum field theory it is customary to calculate a similar quantity 

𝑊(𝐽) = −
1

2
∬𝑑4𝑋 𝑑4𝑌 𝐽𝑖(𝐗)𝐷𝑖𝑗(𝐗 − 𝐘)𝐽𝑗(𝐘) 

in which the coordinates, momenta and the Fourier transform connecting them belong to the vector 

space. In our opinion, the transition to spinor space, more fundamental than vector space, which is a 

superstructure over spinor space, can eliminate divergences in calculating integrals in the framework 

of the formalism of the integral over trajectories. In momentum space the similarity is even more 

obvious, the kernels of the integrals are the same, the only difference is in the space where the 

integration takes place and the way of calculating the Fourier transform - either in vector or in spinor 

space 

𝑊(𝐽) = −
1

2
∬

𝑑4𝑃

(2𝜋)4
𝐽𝑖(𝐏)̅̅ ̅̅ ̅̅  

𝛿𝑖𝑗

𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 −𝑚2
𝐽𝑗(𝐏) 

𝑊(𝐽) = −
1

2
∬

𝑑4𝑝

(2𝜋)4
𝐽𝑖(𝐩)̅̅ ̅̅ ̅̅  

8𝛿𝑖𝑗

𝑃0
2 − 𝑃1

2 − 𝑃2
2 − 𝑃3

2 −𝑚2
𝐽𝑗(𝐩) 

The spinor space has the additional advantage that the integrand is factorised 
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𝑊(𝐽) = −
1

2
∬

𝑑4𝑝

(2𝜋)4
8𝑃0  

𝐽𝑖(𝐩)̅̅ ̅̅ ̅̅

(𝑝1𝑝2 − 𝑝0𝑝3 −𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝛿𝑖𝑗

𝐽𝑗(𝐩)

(𝑝1𝑝2 − 𝑝0𝑝3 −𝑚)
 

This factorization in momentum space looks like a consequence of a more fundamental property 

of factorization in coordinate space 

𝑊(𝐽) = −
1

2
∬𝑑4𝑥 𝑑4𝑦 𝐽𝑖(𝐱)𝐷𝑖𝑗(𝐱 − 𝐲)𝐽𝑗(𝐲) 

= −
1

2
∬𝑑4𝑥 𝑑4𝑦 𝐽𝑖(𝐱)〈Ψ𝑛

∗|𝒂(𝐱)𝒃T(𝐲)|Ψ𝑛〉𝑖𝑗𝐽𝑗(𝐲) 

= −
1

2
∬𝑑4𝑥 𝑑4𝑦 〈Ψ𝑛

∗ |𝐽𝑖(𝐱)(𝒂(𝐱)𝒃
T(𝐲))

𝑖𝑗
𝐽𝑗(𝐲)|Ψ𝑛〉 

= −
1

2
〈Ψ𝑛

∗ |∬𝑑4𝑥 𝑑4𝑦 𝐽𝑖(𝐱)(𝒂(𝐱)𝒃
T(𝐲))𝑖𝑗𝐽𝑗(𝐲)|Ψ𝑛〉 

We can assume that first it makes sense to perform integration separately on x and y, and only 

then to perform multiplication 

𝑊(𝐽) = −
1

2
 〈Ψ𝑛

∗ |(∫𝑑4𝑥 𝑱𝑻(𝒙) 𝒂(𝒙)) (∫𝑑4𝑦 𝒃𝑇(𝒚) 𝑱(𝒚))|Ψ𝑛〉 

Since earlier we have obtained an explicit representation of field operators in both vector and 

spinor space, we do not need to refer to the equation of motion and the Lagrangian. Proceeding from 

these representations, we define the birth and annihilation operators, and from them we construct 

the propagator as a function of relative coordinates. For example, for a spinor space 

𝐷𝜈𝜆(𝐱 − 𝐲) = ∫
𝑑4𝑝

(2𝜋)4
 8𝑃0𝛿𝜈𝜆𝑒

𝑖((𝐩,𝐱−𝐲)+(𝐩,𝐱−𝐲)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
 

But we need to take two more steps. The first is to find an equation for which this propagator is 

an eigenfunction of the relative coordinates. Two equations can be proposed for this role 

((
𝜕[ ]̅

𝜕𝑥1̅̅̅

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
−
𝜕[ ]̅

𝜕𝑥0̅̅ ̅

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
) (

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) − 𝑚2)𝑔𝜇𝜈𝐷𝜈𝜆(𝐱) = 𝛿𝜆

𝜇
𝛿(𝐱) 

((
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) − 𝑚)((

𝜕[ ]̅

𝜕𝑥1̅̅̅

𝜕[ ]̅

𝜕𝑥2̅̅ ̅
−
𝜕[ ]̅

𝜕𝑥0̅̅ ̅

𝜕[ ]̅

𝜕𝑥3̅̅ ̅
) − 𝑚̅)𝑔𝜇𝜈𝐷𝜈𝜆(𝐱) = 𝛿𝜆

𝜇
𝛿(𝐱) 

It is important that in both cases the eigenvalue is a real value independent of the coordinates. 

The second step is to ensure that the propagator has the properties of the Green's function, i.e., that 

the right-hand side of the equation has a delta function. This is necessary so that for an arbitrary 

distribution of sources we can use this propagator to construct a complete picture of the field 

propagation. To satisfy these equations, we must include in the solution a normalizing multiplier of 

the appropriate kind for each equation. This multiplier does not depend on the coordinates, but 

depends on the momentum. As a result, we obtain the normalized propagator in two variants 

𝐷𝜈𝜆(𝐱 − 𝐲) = ∫
𝑑4𝑝

(2𝜋)4
 

𝛿𝜈𝜆 𝑒
𝑖((𝐩,𝐱−𝐲)+(𝐩,𝐱−𝐲)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

(𝑝1𝑝2 − 𝑝0𝑝3)(𝑝1̅𝑝2̅ − 𝑝0̅𝑝3̅) − 𝑚
2
 

𝐷𝜈𝜆(𝐱 − 𝐲) = ∫
𝑑4𝑝

(2𝜋)4
 

𝛿𝜈𝜆 𝑒
𝑖((𝐩,𝐱−𝐲)+(𝐩,𝐱−𝐲)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

(𝑝1𝑝2 − 𝑝0𝑝3 −𝑚)(𝑝1̅𝑝2̅ − 𝑝0̅𝑝3̅ − 𝑚̅)
 

In our opinion, the second variant is more preferable, since the denominator consists of two 

conjugate terms, so we can consider them as an integral part of the birth and annihilation operators, 

which are also conjugate copies of each other 

𝒃(𝐱)̅̅ ̅̅ ̅̅ = 𝒂(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
  

1

√8𝑃0

𝑒𝑖
((𝐩,𝐱)+(𝐩,𝐱)̅̅ ̅̅ ̅̅ ̅)

𝑝1𝑝2 − 𝑝0𝑝3 −𝑚
[
𝑑1(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑2(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏2(𝐩)𝐮𝟐̅̅̅̅ (𝐩) +  𝑏1(𝐩)𝐮𝟒̅̅̅̅ (𝐩)

+𝑑4(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑3(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏3(𝐩)𝐯𝟐̅̅̅̅ (𝐩) + 𝑏4(𝐩)𝐯𝟒̅̅̅̅ (𝐩)
] 

The obtained results allow us to answer the question how the fermion field changes under the 

action of Lorentz transformations on the coordinates. Exactly, if we move to another frame of 

reference by rotations and boosts, the coordinate spinor changes. As a consequence, the momentum 

spinor changes, the components of which are the coefficients of the expansion on the new coordinates, 
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and the momentum spinor undergoes exactly the same transformation as the coordinates, so that the 

phases of all plane waves in spinor space do not change. The components of the new momentum 

spinor are substituted into the 16 spinors describing the fermion field. Thus, there is no any uniform 

law of transformation of a spinor of the fermionic field, each of 16 spinors corresponding to the 

particles forming it, is transformed in its own way. 

However, if, following Heisenberg [[12], Chapter 3, Paragraph 1], we index the field components 

differently 

𝜑0(𝐱) = 𝜉00(𝐱)      𝜑1(𝐱) = 𝜉10(𝐱)    𝜑2̅̅̅̅ (𝐱) = 𝜉11(𝐱)    𝜑3̅̅̅̅ (𝐱) = −𝜉01(𝐱) 

Then it can appear that this field 𝛏  on the first index will be transformed by three spatial 

rotations and three boosts, and on the second index it will be transformed by three rotations in 

isotopic space. In this case the additional quantum number related to the sign of mass may be an 

isotopic spin. 

Let us suggest that the coordinate and momentum spinor spaces can also be indexed in a similar 

way 

𝑥0 = 𝜒00      𝑥1 = 𝜒10    𝑥2̅̅ ̅ = 𝜒11    𝑥3̅̅ ̅ = −𝜒01 

𝑝0 = 𝜌00      𝑝1 = 𝜌10    𝑝2̅̅ ̅ = 𝜌11    𝑝3̅̅ ̅ = −𝜌01 

Thus, we are in a space 𝛘 that is subject to three rotations, three boosts, and three isotopic 

rotations. All of these transformations are equally real, but there is an imbalance due to the luck of 

isotopic boosts. After all, isotopic rotations, like spatial rotations, are generated by Pauli matrices; 

these rotations also do not form a group. Therefore, the full isotopic group must also consist of three 

rotations and three boosts. 

Let's rewrite the previously used quantities with new variables 

𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2 = 𝜌00𝜒10 − 𝜌10𝜒00 − 𝜌11̅̅ ̅̅ 𝜒01̅̅ ̅̅ + 𝜌01̅̅ ̅̅ 𝜒11̅̅ ̅̅

= (𝜌00 𝜌10) (
0 1
−1 0

) (
𝜒00
𝜒10

) + (𝜌01̅̅ ̅̅  𝜌11̅̅ ̅̅ ) (
0 1
−1 0

) (
𝜒01̅̅ ̅̅
𝜒11̅̅ ̅̅

) 

𝑚 = 𝑝1𝑝2 − 𝑝0𝑝3 = 𝜌10𝜌11̅̅ ̅̅ + 𝜌00𝜌01̅̅ ̅̅  

𝐮𝟏(𝐩) = (

−𝑝3
−𝑝2
𝑝1
𝑝0

) (
−𝑝3 −𝑝0̅
−𝑝2 𝑝1̅

) (
𝜌01̅̅ ̅̅ −𝜌00̅̅ ̅̅
−𝜌11̅̅ ̅̅ 𝜌10̅̅ ̅̅

) 

𝐮𝟒(𝐩) = (

𝑝0
−𝑝1
𝑝2
−𝑝3

) (
𝑝0 𝑝3̅
−𝑝1 𝑝2̅

) (
𝜌00 −𝜌01
−𝜌10 𝜌11

) 

𝐮𝟏̅̅̅̅ (𝐩) = (

−𝑝3̅
−𝑝2̅
𝑝1̅
𝑝0̅

) (
−𝑝3̅ −𝑝0
−𝑝2̅ 𝑝1

) (
𝜌01 −𝜌00
−𝜌11 𝜌10

) 

𝐮𝟒̅̅̅̅ (𝐩) = (

𝑝0̅
−𝑝1̅
𝑝2̅
−𝑝3̅

) (
𝑝0̅ 𝑝3
−𝑝1̅ 𝑝2

) (
𝜌00̅̅ ̅̅ −𝜌01̅̅ ̅̅
−𝜌10̅̅ ̅̅ 𝜌11̅̅ ̅̅

) 

𝐯𝟏(𝐩) = (

𝑝1
𝑝0
𝑝3
𝑝2

) (
𝑝1 −𝑝2̅
𝑝0 𝑝3̅

) (
𝜌10 −𝜌11
𝜌00 −𝜌01

) 

𝐯𝟒(𝐩) = (

𝑝2
−𝑝3
−𝑝0
𝑝1

) (
𝑝2 −𝑝1̅
−𝑝3 −𝑝0̅

) (
𝜌11̅̅ ̅̅ −𝜌10̅̅ ̅̅
𝜌01̅̅ ̅̅ −𝜌00̅̅ ̅̅

) 

𝐯𝟏̅̅̅̅ (𝐩) = (

𝑝1̅
𝑝0̅
𝑝3̅
𝑝2̅

) (
𝑝1̅ −𝑝2
𝑝0̅ 𝑝3

) (
𝜌10̅̅ ̅̅ −𝜌11̅̅ ̅̅
𝜌00̅̅ ̅̅ −𝜌01̅̅ ̅̅

) 
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𝐯𝟒̅̅̅̅ (𝐩) = (

𝑝2̅
−𝑝3̅
−𝑝0̅
𝑝1̅

) (
𝑝2̅ −𝑝1
−𝑝3̅ −𝑝0

) (
𝜌11 −𝜌10
𝜌01 −𝜌00

) 

𝐮𝟑(𝐩) = (

−𝑝1
−𝑝0
𝑝3
𝑝2

) (
−𝑝1 −𝑝2̅
−𝑝0 𝑝3̅

) (
−𝜌10 −𝜌11
−𝜌00 −𝜌01

) 

𝐮𝟐(𝐩) = (

𝑝2
−𝑝3
𝑝0
−𝑝1

) (
𝑝2 𝑝1̅
−𝑝3 𝑝0̅

) (
𝜌11̅̅ ̅̅ 𝜌10̅̅ ̅̅
𝜌01̅̅ ̅̅ 𝜌00̅̅ ̅̅

) 

𝐮𝟑̅̅̅̅ (𝐩) = (

−𝑝1̅
−𝑝0̅
𝑝3̅
𝑝2̅

) (
−𝑝1̅ −𝑝2
−𝑝0̅ 𝑝3

) (
−𝜌10̅̅ ̅̅ −𝜌11̅̅ ̅̅
−𝜌00̅̅ ̅̅ −𝜌01̅̅ ̅̅

) 

𝐮𝟐̅̅̅̅ (𝐩) = (

𝑝2̅
−𝑝3̅
𝑝0̅
−𝑝1̅

) (
𝑝2̅ 𝑝1
−𝑝3̅ 𝑝0

) (
𝜌11 𝜌10
𝜌01 𝜌00

) 

𝐯𝟑(𝐩) = (

𝑝3
𝑝2
𝑝1
𝑝0

) (
𝑝3 −𝑝0̅
𝑝2 𝑝1̅

) (
−𝜌01̅̅ ̅̅ −𝜌00̅̅ ̅̅
𝜌11̅̅ ̅̅ 𝜌10̅̅ ̅̅

) 

𝐯𝟐(𝐩) = (

𝑝0
−𝑝1
−𝑝2
𝑝3

) (
𝑝0 −𝑝3̅
−𝑝1 −𝑝2̅

) (
𝜌00 𝜌01
−𝜌10 −𝜌11

) 

𝐯𝟑̅̅̅̅ (𝐩) = (

𝑝3̅
𝑝2̅
𝑝1̅
𝑝0̅

) (
𝑝3̅ −𝑝0
𝑝2̅ 𝑝1

) (
−𝜌01 −𝜌00
𝜌11 𝜌10

) 

𝐯𝟐̅̅̅̅ (𝐩) = (

𝑝0̅
−𝑝1̅
−𝑝2̅
𝑝3̅

) (
𝑝0̅ −𝑝3
−𝑝1̅ −𝑝2

) (
𝜌00̅̅ ̅̅ 𝜌01̅̅ ̅̅
−𝜌01̅̅ ̅̅ −𝜌11̅̅ ̅̅

) 

Summarizing, we can formulate the following theses. The initial coordinate space is described 

by complex quantities, which can be represented as a square matrix 

𝜒𝛼𝛽 = (
𝜒00 𝜒01
𝜒10 𝜒11 

) 

The field is a superposition of plane waves with complex phase 

𝜌00𝜒10 − 𝜌10𝜒00 − 𝜌11̅̅ ̅̅ 𝜒01̅̅ ̅̅ + 𝜌01̅̅ ̅̅ 𝜒11̅̅ ̅̅ = (𝜌00, 𝜌10) (
0 1
−1 0

) (
𝜒00
𝜒10

) + (𝜌01̅̅ ̅̅ , 𝜌11̅̅ ̅̅ ) (
0 1
−1 0

) (
𝜒01̅̅ ̅̅
𝜒11̅̅ ̅̅

) 

where the momentum coefficients of the decomposition are represented as 

𝜌𝛾𝛿 = (
𝜌00 𝜌01
𝜌10 𝜌11 

) 

The phase of a plane wave is constructed using two metric tensors of spinor space and therefore 

does not change if 𝜒𝛼𝛽 and 𝜌𝛾𝛿  are affected by the same transformation, which is a combination of 

three rotations and three boosts with arbitrary angles at the first index and a combination of three 

rotations and three boosts with arbitrary angles at the second index. Any transformation is given by 

12 real values representing the angles of the turns and boosts. When we considered a four-component 

spinor, we made do with 6 angles, since we took the same rotation and boost angles for both indexes. 

Note also that only under this condition the mass invariance takes place. 

Each plane wave in superposition has a multiplier in the form of a matrix 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2025 doi:10.20944/preprints202401.1032.v6

https://doi.org/10.20944/preprints202401.1032.v6


 99 of 101 

 

𝜀𝜇𝜈 = (
𝜀00 𝜀01
𝜀10 𝜀11 

) 

which may be any matrix of 16 pulse combinations given in the table, e.g. 

(
𝜌
01
̅̅̅̅  −𝜌

00
̅̅̅̅

−𝜌
11
̅̅̅̅ 𝜌

10
̅̅̅̅  

) 

Each of these matrices can be compared to some elementary particle, and at transformation of 

coordinate and momentum space it is transformed according to some inherent law. The field operator 

has the form 

(
𝜉00(𝜒𝛼𝛽)  𝜉01(𝜒𝛼𝛽)

𝜉10(𝜒𝛼𝛽) 𝜉11(𝜒𝛼𝛽) 
) = ∫

𝑑4𝜌𝛾𝛿
(2𝜋)2

  

[
𝑑1 (𝜌𝛾𝛿) (

𝜌01̅̅ ̅̅  −𝜌00̅̅ ̅̅
−𝜌11̅̅ ̅̅ 𝜌10̅̅ ̅̅  

) + 𝑖𝑑2 (𝜌𝛾𝛿) (
−𝜌10 −𝜌11
−𝜌00 −𝜌01

) + 𝑖𝑏2 (𝜌𝛾𝛿) (
𝜌11 𝜌10
𝜌01 𝜌00

) +  𝑏1 (𝜌𝛾𝛿) (
𝜌00̅̅ ̅̅ −𝜌01̅̅ ̅̅
−𝜌01̅̅ ̅̅ 𝜌11̅̅ ̅̅

)

+𝑑4 (𝜌𝛾𝛿) (
𝜌10 −𝜌11
𝜌00 −𝜌01

) + 𝑖𝑑3 (𝜌𝛾𝛿) (
−𝜌01̅̅ ̅̅ −𝜌00̅̅ ̅̅
𝜌11̅̅ ̅̅ 𝜌10̅̅ ̅̅

) + 𝑖𝑏3 (𝜌𝛾𝛿) (
𝜌00̅̅ ̅̅ 𝜌01̅̅ ̅̅
−𝜌01̅̅ ̅̅ −𝜌11̅̅ ̅̅

) + 𝑏4 (𝜌𝛾𝛿) (
𝜌11 −𝜌10
𝜌01 −𝜌00

)
] 

𝑒
𝑖((𝜌00 𝜌10)(

0 1
−1 0

)(
𝜒00
𝜒10

)+(𝜌01̅̅ ̅̅ ̅ 𝜌11̅̅ ̅̅ ̅)(
0 1
−1 0

)(
𝜒01̅̅ ̅̅ ̅
𝜒11̅̅ ̅̅ ̅

))
+ 

[
𝑏1
∗ (𝜌𝛾𝛿) (

𝜌01 −𝜌01
−𝜌11 𝜌10

) + 𝑖𝑏2
∗ (𝜌𝛾𝛿) (

−𝜌10̅̅ ̅̅ −𝜌11̅̅ ̅̅
−𝜌00̅̅ ̅̅ −𝜌01̅̅ ̅̅

) + 𝑖𝑑2
∗ (𝜌𝛾𝛿) (

𝜌11̅̅ ̅̅ 𝜌10̅̅ ̅̅
𝜌01̅̅ ̅̅ 𝜌00̅̅ ̅̅

) + 𝑑1
∗ (𝜌𝛾𝛿) (

𝜌00 −𝜌01
−𝜌10 𝜌11

)

+𝑏4
∗ (𝜌𝛾𝛿) (

𝜌10̅̅ ̅̅ −𝜌11̅̅ ̅̅
𝜌00̅̅ ̅̅ −𝜌01̅̅ ̅̅

) + 𝑖𝑏3
∗ (𝜌𝛾𝛿) (

−𝜌01 −𝜌01
𝜌11 𝜌10

) + 𝑖𝑑3
∗ (𝜌𝛾𝛿) (

𝜌00 𝜌01
−𝜌10 −𝜌11

) + 𝑑4
∗ (𝜌𝛾𝛿) (

𝜌11̅̅ ̅̅ −𝜌10̅̅ ̅̅
𝜌01̅̅ ̅̅ −𝜌00̅̅ ̅̅

)
] 

𝑒
−𝑖((𝜌00 𝜌10)(

0 1
−1 0

)(
𝜒00
𝜒10

)+(𝜌01̅̅ ̅̅ ̅ 𝜌11̅̅ ̅̅ ̅)(
0 1
−1 0

)(
𝜒01̅̅ ̅̅ ̅
𝜒11̅̅ ̅̅ ̅

))
 

In addition, a complex conjugate version of the phase should be added to both exponents, as 

was done above, then there would be an imaginary value in the exponent. 

For the field 𝜉𝜇𝜈(𝜒𝛼𝛽), we can obtain the equation of motion as an equation in partial derivatives 

on the complex variables 𝜒𝛼𝛽  by substituting the derivatives on these variables instead of the 

derivatives on 𝑥𝜎  in the previously discussed equations. 

We can also consider the decomposition of the field by the previously considered plane waves 

of the form 

𝑒𝑥𝑝[±𝑖(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)] = 

𝑒𝑥𝑝[±𝑖(𝜌00𝜒10 − 𝜌10𝜒00 − 𝜌11𝜒01̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌01𝜒11̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝜌00𝜒10̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜌10𝜒00̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜌11𝜒01 + 𝜌01𝜒11)] = 

𝑒𝑥𝑝 [±𝑖 ((𝜌00 𝜌10) (
0 1
−1 0

) (
𝜒00
𝜒10

) + ( 𝜌01̅̅ ̅̅  𝜌11̅̅ ̅̅ ) (
0 1
−1 0

) (
𝜒01̅̅ ̅̅
𝜒11̅̅ ̅̅

)) ((𝜌00̅̅ ̅̅  𝜌10̅̅ ̅̅ ) (
0 1
−1 0

) (
𝜒00̅̅ ̅̅
𝜒10̅̅ ̅̅

)

+ (𝜌01 𝜌11) (
0 1
−1 0

) (
𝜒01
𝜒11

))] 

For the simpler case of a scalar field these plane waves correspond to the Green's function 

𝐷(𝐱) = ∫
𝑑4𝑝

(2𝜋)4
𝑒𝑥𝑝[−𝑖(𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2)]

𝑖[𝑝2 − 𝑝0 + 𝑝1 − 𝑝3]  
 

satisfying the equation 

((
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
−

𝜕

𝜕𝑥0

𝜕

𝜕𝑥3
) − (

𝜕

𝜕𝑥2

𝜕

𝜕𝑥1
−

𝜕

𝜕𝑥3

𝜕

𝜕𝑥0
))𝐷(𝐱) =  𝛿(𝐱) 

Recall that the transition from spinor space to vector space is performed by transformations 

𝑃𝜇 =
1

2
𝐩†𝑆𝜇𝐩            𝑋𝜇 =

1

2
𝐱†𝑆𝜇𝐱  

𝑚 = 𝑝2𝑝2 − 𝑝0𝑝3 

𝑀2 = 𝑃0𝑃0 − 𝑃1𝑃1 − 𝑃2𝑃2 − 𝑃3𝑃3 

𝑀2 = 𝑚̅𝑚 

Lorentz transformations are given by 2×2 matrices with a set of valid rotation angles and boosts   

𝑛1 = 𝑒𝑥𝑝 (−
1

2
𝑖𝛼11𝜎1) 𝑒𝑥𝑝 (

1

2
𝛽11𝜎1) 𝑒𝑥𝑝 (−

1

2
𝑖𝛼12𝜎2) 𝑒𝑥𝑝 (

1

2
𝛽12𝜎2) 𝑒𝑥𝑝 (−

1

2
𝑖𝛼13𝜎3) 𝑒𝑥𝑝 (

1

2
𝛽13𝜎3) 

𝑛2 = 𝑒𝑥𝑝 (−
1

2
𝑖𝛼21𝜎1) 𝑒𝑥𝑝 (

1

2
𝛽21𝜎1) 𝑒𝑥𝑝 (−

1

2
𝑖𝛼22𝜎2) 𝑒𝑥𝑝 (

1

2
𝛽22𝜎2) 𝑒𝑥𝑝 (−

1

2
𝑖𝛼23𝜎3) 𝑒𝑥𝑝 (

1

2
𝛽23𝜎3) 

𝑁 = (
𝑛1 0
0 𝑛2 

)    

𝛬 𝜈
𝜇
= 
1

4
𝑇𝑟[𝑆𝜇𝑁𝑆𝜈𝑁

†]  
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After acting on both spinors of the Lorentz transformation with 12 arbitrary angles   

𝐩′ = 𝑁𝐩         𝐱′ = 𝑁𝐱 

𝑃𝜇
′ =

1

2
𝐩′
†
𝑆𝜇𝐩

′       𝑋𝜇
′ =

1

2
𝐱′
†
𝑆𝜇𝐱

′  

and corresponding transformations in the vector space 

𝐏′ = 𝛬𝐏          𝐗′ = 𝛬𝐗 

𝑚′ = 𝑝1
′𝑝2
′ − 𝑝0

′𝑝3
′  

𝑀′2 = 𝑃0
′𝑃0

′ − 𝑃0
′𝑃0

′ − 𝑃0
′𝑃0

′ − 𝑃0
′𝑃0

′ 

there is still equality of masses 

𝑀′2 = 𝑚′̅̅̅̅ 𝑚′ 

and invariance of the plane wave phase in spinor space 

𝑝0
′𝑥1

′ − 𝑝1
′𝑥0

′ + 𝑝2
′𝑥3

′ − 𝑝3
′𝑥2

′ = 𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2 

(𝑝0
′𝑥1

′ − 𝑝1
′𝑥0

′ + 𝑝2
′𝑥3

′̅̅ ̅̅ ̅̅ − 𝑝3
′𝑥2

′̅̅ ̅̅ ̅̅ )(𝑝0
′𝑥1

′̅̅ ̅̅ ̅̅ − 𝑝1
′𝑥0

′̅̅ ̅̅ ̅̅ + 𝑝2
′𝑥3

′ − 𝑝3
′𝑥2

′ )

= (𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ )(𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3 − 𝑝3𝑥2) 

(𝑝0
′𝑥1

′ − 𝑝1
′𝑥0

′ + 𝑝2
′𝑥3

′ − 𝑝3
′𝑥2

′ ) + (𝑝0
′𝑥1

′̅̅ ̅̅ ̅̅ − 𝑝1
′𝑥0

′̅̅ ̅̅ ̅̅ + 𝑝2
′𝑥3

′̅̅ ̅̅ ̅̅ − 𝑝3
′𝑥2

′̅̅ ̅̅ ̅̅ )

= ( 𝑝0𝑥1 − 𝑝1𝑥0 + 𝑝2𝑥3 − 𝑝3𝑥2) + (𝑝0𝑥1̅̅ ̅̅ ̅̅ − 𝑝1𝑥0̅̅ ̅̅ ̅̅ + 𝑝2𝑥3̅̅ ̅̅ ̅̅ − 𝑝3𝑥2̅̅ ̅̅ ̅̅ ) 

However, at arbitrary 12 angles, the mass is not invariant 

𝑚′ ≠ 𝑚 

and the phase of a plane wave in vector space also changes at Lorentz transformations 

𝑃0
′𝑋0

′ − 𝑃1
′𝑋1

′ − 𝑃2
′𝑋2

′ − 𝑃3
′𝑋3

′ ≠ 𝑃0𝑋0 − 𝑃1𝑋1 − 𝑃2𝑋2 − 𝑃3𝑋3 

And only under the condition of equality of 6 corresponding angles in the transformation 

matrices, i.e. under equality 

𝑛1 = 𝑛2 

both these invariance properties are restored. 

Thus, a plane wave with invariant phase in spinor space is a more general concept than a plane 

wave in vector space, although the concept of invariant mass cannot be introduced for it in the general 

case. 

5. Conclusions 

An alternative approach to analyze relativistic and quantum effects inherent in charged particles 

in the presence of an electromagnetic field is proposed. Two ways of describing the electron behavior 

in the electromagnetic field are considered: by means of the vector equation, which is based on the 

plane wave model for a free electron, and the spinor equation, which is based on the representation 

of the electron as a plane wave in spinor space. For both equations, which are valid for a free particle, 

their applicability to an arbitrary physical situation is postulated, in particular to describe the 

behavior of a particle in the presence of an electromagnetic field. The presented equations are 

intended to fulfill the same role as the Schrödinger equation and the Dirac equation. At the same 

time, in our opinion, the spinor equations more accurately describe the details of the interaction 

between fields and particles. 
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