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Abstract: Physical processes are usually described using four-dimensional vector quantities -
coordinate vector, momentum vector, current vector. But at the fundamental level they are
characterized by spinors - coordinate spinors, momentum spinors, spinor wave functions. The
propagation of fields and their interaction takes place at the spinor level, and since each spinor
uniquely corresponds to a certain vector, the results of physical processes appear before us in vector
form. For example, the relativistic Schrodinger equation and the Dirac equation are formulated by
means of coordinate vectors, momentum vectors and quantum operators corresponding to them. In
the Dirac equation a step forward is taken and the wave function is a spinor with complex
components, but still coordinates and momentum are vectors. For a closed description of nature using
only spinor quantities, it is necessary to have an equation similar to the Dirac equation in which
momentum, coordinates and operators are spinors. It is such an equation that is presented in this
paper. Using the example of the interaction between an electron and an electromagnetic field, we can
see that the spinor equation contains more detailed information about the interaction than the vector
equations. This is not new for quantum mechanics, since it describes interactions using complex wave
functions, which cannot be observed directly, and only when measured goes to probabilities in the
form of squares of the moduli of the wave functions. In the same way spinor quantities are not
observable, but they completely determine observable vectors. In Section 2 of the paper, we analyze
the quadratic form for an arbitrary four-component complex vector based on Pauli matrices. The form
is invariant with respect to Lorentz transformations including any rotations and boosts. The
invariance of the form allows us to construct on its basis an equation for a free particle combining the
properties of the relativistic wave equation and the Dirac equation. For an electron in the presence of
an electromagnetic potential it is shown that taking into account the commutation relations between
the momentum and coordinate components allows us to obtain from this equation the known results
describing the interactions of the electron spin with the electric and magnetic field. In the presence of
a potential the momentum components cease to commute with each other. To neutralize this effect,
the Schrodinger equation is supplemented by several equations with mixed derivatives on
coordinates. In section 3 of the paper this quadratic form is expressed through momentum spinors,
which makes it possible to obtain an equation for the spinor wave function in spinor coordinate space
by replacing the momentum spinor components by partial derivative operators on the corresponding
coordinate spinor component. Section 4 presents a modification of the theory of the path integral,
which consists in considering the path integral in the spinor coordinate space. The Lagrangian
densities for the scalar field and for the electron field, along with their corresponding propagators,
are presented. An equation of motion for the electron is proposed that is relativistically invariant, in
contrast to the Dirac equation, which lacks this invariance. This novel equation permitted the
construction of an actually invariant procedure for the second quantization of the fermion field in
spinor coordinate space. Furthermore, it is demonstrated that the field operators are a combination
of plane waves in spinor or vector space, with the coefficients of which being pseudospinors or
pseudovectors. Each of these pseudovectors or pseudospinors corresponds to one of the particles
presented in the theory of electrodynamics. Furthermore, each plane wave possesses an additional
coefficient in the form of a birth or annihilation operator. In vector space, these operators commute,
whereas in spinor space they anticommutate. The paper presents the spinor and vector
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representations of the field operators in explicit form, comprising sets of 16 pseudospinors or 4
pseudovectors corresponding to particles represented in electrodynamics.

Keywords: Dirac equation; Pauli matrices; Schrodinger equation; second quantization; path integral

1. Introduction

Nowadays, the interest to study applications of the Dirac equation to different situations and to
find out the conditions of its generalization is not weakening. In particular, in [1] new versions of an
extended Dirac equation and the associated Clifford algebra are presented. In [2] a study of the
Schrodinger-Dirac covariant equation in the presence of gravity, where the non-commuting gamma
matrices become space-time-dependent, is carried out. In [3] an idea is discussed that the visible
properties of the electron, including rest mass and magnetic moment, are determined by a massless
charge spinning at light speed within a Compton domain. In [4] some aspects of conformal rescaling
in detail are explored and the role of the "quantum" potential is discussed as a natural consequence
of non-inertial motion and is not exclusive to the quantum domain. Author establishes the
fundamental importance of conformal symmetry, in which rescaling of the rest mass plays a vital
role. Thus, the basis for a radically new theory of quantum phenomena based on the process of mass-
energy flow is proposed. In [5] author has derived the covariant fourth-order/one-function equivalent
of the Dirac equation for the general case of an arbitrary set of y-matrices.

Supporting these search aspirations, in our work we propose a deeper understanding of the
Dirac equation with an emphasis on the direct use of the principles of symmetry and invariance to
Lorentz transformations. For the first time we present a formulation of the Dirac and Schrodinger
equations in spinor coordinate space.

2. Generalized Dirac Type Equation

Let us introduce notations, which will be used further on. The speed of light and the rationalized
Planck’s constant will be considered as unity.
Pauli matrices
w=(p 1) 2=(G o) 2=(G o) »=( 2)
Matrices constructed from Pauli matrices
o 0 op 0 o 0 o 0
S°=(8 00) 51=(6 01) SZ:(S 02) S3=(03 03)
A vector of matrices
ST = (51,5,,53)
A set of arbitrary complex numbers and a vector of its three components
X" = (Xo, X1, X2, X3)
X' = (X1, X, X3)
Let us define a 2x2 matrix of Lorentz transformations given by the set of real rotation angles
(a1, @z, a3) and boosts (B1, B2, B3)

1 1 1 1 1 1
n = exp (—Ei‘?ﬁ%) exp (5.310’1) exp (— Eia20'2> exp <§,6’20'2> exp <— > ia3a3> exp <E/)’303)
and a similar 4x4 transformation matrix
1 1 1 1 1 1
N = exp (— > ialSl) exp (5.3151> exp (— EiazSz) exp (Eﬁzsz> exp (— > ia353) exp (E/)’353)
We also define a 4x4 matrix of Lorentz transformations /A, where u and v take values 0,1,2,3

1
Ah = ETr[Uuncfvn*]
which can also be written explicitly using the 4x4 matrices of turn generators (Ry, R,, R;) and boosts
(Kl' KZ' KS)

A = exp(a;R,)exp(B,Ki)exp(azR;)exp (B, K;)exp(asRs)exp(B3K3)
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Let's define a 4x4 matrix
M? = (SoXo — S1X1 — S X5 — S3X3)(SoXo + S1X1 + So X5 + S3X3) =
(SoXo — STX)(SoX, + S™X) =
S0X0S0Xo — $1 X151 X1 — $:X,85,X; — 53X353X3 +
SoXo($1X1 + 52X; + 53X3) — $1X1(SoXo + 52Xz + 53X3) —
S2X5(SoXo + S1X1 + S3X3) — S3X3(SoXo + S1X:1 + S,X5)

In fact, we consider a quaternion with complex coefficients, which we multiply by its conjugate
quaternion (due to the complexity of the coefficients, these are biquaternions, but we still use
quaternionic conjugation, without complex conjugation).

Let us subject the set of complex numbers to the Lorentz transformation

X' =/AX

Let us write a relation whose validity for an arbitrary set of complex numbers can be checked

directly
(SoXo' = S1X1" — S2X5" — S3X3')(SoXo' + $1X1' + S2X;" + S3X3")
= (SoXo — S1X1 — S2X; — S3X3)(SoXo + S1X1 + S, X, + S3X3) = M?

The matrix M? in the simplest case is diagonal with equal complex elements on the diagonal
equal to the square of the length of the vector X in the metric of Minkowski space, which we denote
m?. Both M? and m? do not change under any rotations and boosts, in physical applications the
invariance of m? is usually used, in particular, for the four-component momentum vector this
quantity is called the square of mass.

Since the matrices S, anticommutate with each other, for a vector X whose components
commute with each other, we have just the simplest case with a diagonal matrix with m? on the
diagonal. But if the components of vector X do not commute, the matrix M? already has a more
complex structure and carries additional physical information compared to m?. For example, the
vector X may include the electron momentum vector and the electromagnetic potential vector. The
four-component potential vector is a function of the four-dimensional coordinates of Minkowski
space. The components of the four-component momentum do not commute with the components of
the coordinate vector, respectively, and the coordinate function does not commute with the
momentum components, and their commutator is expressed through the partial derivative of this
function by the corresponding coordinate. If the components of the vector X do not commute, the
matrix M? will no longer be invariant with respect to Lorentz transformations.

Suppose that the complex numbers we consider commute with all matrices, and note that the
squares of all matrices are equal to the unit 4x4 matrix [

M? = (XoXo — X1 X1 — X2X5 — X3 X3)I + (S, XX + S3 XX, + S3XoX3)
— (S1 X1 Xo + 515X X, + 515:X1X3) — (S XX + S285:1 XX, + 5,5:X,X3)
— (S3X3X + S35 X3X; + 535,X3X;)
= (XoXo — X1 X1 — X5X; — X3 X3)1 + 51 (Xo X1 — X1Xo) + 5, (XoXp — X5X) + 53(XoX3
— X3X0) = ($152X1 Xz + $153X1X3) — (5251 X2X1 + $283X,X3) — (8351 X3X1 + 535,X3X3)
= (XoXo = X1X1 = X5 X5 — X3 X3)I + $1(Xo X1 — X1Xp) + 5, (XoX, — X5Xp) + 53(XoX3
= X3X0) = (152 X1 Xz + 251X, X1) — (S253X2X5 + 535, X3X5) — (351 X3X; + $155X1X5)
= (XoXo — X1X1 — X5X; — X3X3)I + 51 (Xo X1 — X1Xo) + 5, (XoX, — X5Xp) + 53(XoX3
- X3X0) - (5152X1X2 + 5251X1X2 + 5251(X2X1 - X1X2))
— (S253X,X3 + 535, X, X3 + 535, (X3X; — X,X3))
— (8351 X3X;1 + $153X3X; + $1S3(X1 X3 — X3X1))

Taking into account anticommutative properties of matrices and expressions for their pairwise

products we obtain


https://doi.org/10.20944/preprints202401.1032.v6

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 March 2025 d0i:10.20944/preprints202401.1032.v6

4 of 101

2= (XoXo — X1X1 — XpXp — X3 X3)I + S1(XoX; — X1Xo) + S (XoXz — X2Xo) + S3(XoX3 — X3X,)
— 5251 (X2 X1 — X1X5) = S35, (X3X; — X5X3) — 5153(X1 X3 — X3X1)
= (XoXo — X1X1 — Xo Xy — X3X3)I + S1(XoX1 — X1 X0) + 2 (XX — X2Xo) + S3(XoX3
— X3Xo) + iS3(XXy — X1X3) +i5;(X3X; — XpX3) + 185 (X1 X3 — X3X;)
= (XoXo = X1X1 = X5 X5 — X3 X3)1 + $1(Xo X1 — X1Xo) + 151 (X3X; — X5X3) + 5, (XX,
— X5Xo) +iS(X1X3 — X3X;) + S3(XoX3 — X3Xp) + 1S3(X2 X1 — X1 X3)

Consider the case when X is the sum of the momentum vector and the electromagnetic potential

vector, which is a function of coordinates
X=P+A
"= (P, Py, P2, P3)
AT = (Ay, Ay, Ay, As)
P” = (P, P,, P;)
AT = (A, Ay A3)

M? =1I[(Py + Ag)(Po + Ag) — (P + AD)(Py + Ay) — (P, + A) (P, + Az) — (Ps + A3)(Ps + A3)] +
S1[(Po + Ap)(Py + A1) — (PL + A1) (Po + Ag)] + iS1[(Ps + A3) (P, + Az) — (P, + A2)(P3 + A3)] +
S2[(Po + Ap)(Pz + Az) — (P2 + A2)(Po + Ag)] + iS2[(Py + A1) (P3 + A3) — (Ps + A3)(Py + Ay)] +
S3[(Po + Ag)(P3 + A3) — (P3 + A3)(Po + Ag)] + iS3[(P, + A2)(Py + A1) — (PL + A)(P2 + A7)

For now, we'll stick with the Heisenberg approach, that is, we will consider the components of
the momentum vector Py, Py, P, P; as operators for which there are commutation relations with
coordinates or coordinate functions such as Ay, 41, 4, Az. In this approach, the operators do not have
to act on any wave function.

Taking into account the commutation relations of the components of the momentum vector and
the coordinate vector, the commutator of the momentum component and the coordinate function is

expressed through the derivative of this function by the corresponding coordinate, e.g.

94, 94,
[Py + AP + A1) = (Py + A (P, + A)] = Py = AyPy = (P, — AP) = =it = (=i2-2)
X2

2
d0x;
As a result, we obtain

2=1[(Py + A0)(Py + A ) — (P, +ADMP +A ) - (Pz + A2)(Py + Az) — (P3 + A3)(P; + A3)]
1 la e Yo, T2 T Yoy,
bis [ 6A3 + 6A1] S [ 6A3 aAO] LS [ 04, 04,
152 |~ lax3 3 6x0 0x; e Oxz laxl
=1[(P, +A0)(P0 +Ag) — (P + AP + Ay) — (P, + A3) (P, + A7)
(P + A,)(Py + A)] — iS dA 94, aAo] [BAZ 0A3] __[04, 04,
3 33 3 1 6x0 Jdxy Hox, ox,

za_xo dx,

z 6x1 6x3 3 0x, Ox; 3 dx, 0x;

I[(Py + Ag)(Po + Ag) — (Py + A (P + A7) — (P, + 42) (P, + 4,)

(P3 + A3)(P; + A3)] — iS1Fqy + S1F3; — iS3Fgp + SpF13 — iS3Fg3 + S3Fay
I[(Py + Ag)(Po + Ag) — (Py + AD(Py + A7) — (P, + 42) (P, + 4,)

— (P33 + A3)(P; + A3)] — iS{E, + S;B, — iSzEy + Ssz —IS3E, + S3B,

where
F, = 0,4, — 0,A,
0 = d
mT 9xk
0 E, E, E
F —E, 0 -B, B
i _Ey Bz 0 _Bx

As a result, we have the expression
M? =1[(Po + A0)(Po + Ag) — (Py + A)(Py + A1) — (P, + A) (P, + Ap) — (Ps + A3)(Ps + A9)] +
STB —iSTE
= (Bx' By' BZ) = (Bli BZ) BS)
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E" = (Ey Ey, E,) = (Ey, By B3)
Similarly, it can be shown that
(SoPo = S1P1 = 55P; = S3P3)(SoAg + S141 + 54, + S345)

+ (SoAg — S1A; — SyA; — S3A3)(SoPo + SiPy + SoPy + S3Ps)
= 2I(PyAy — PyA; — P,A, — P3A3) + STB — iSTE

The matrix

M2 — {STB — iSTE} = I{(Py + Ag) (Py + Ag) — (P + A (P, + Ay) — (P, + A)(P, + 4;) — (P +
A3)(P; + A3)} = 1d?
does not change under Lorentz transformations involving any rotations and boosts.
Id? = (So(Py + Ag) = S1(Py + Ay) = Sy (P, + A3) — S3(P3 + A3))(So(Po + 4g) + Sy (Py + 4y)
+S,(P, + Ay) + S3(Ps + A3)) — {STB — iSTE}
= (So(Po + Ag) — 87 (P + &) (So(Py + 4o) + 87 (P + &) ) — {S7B — iS"E}
Taking into account the electron charge we have
X=P—-e€A
1d? = (S,(Py — eAg) — 87 (P + &)) (So(Py — eA,) + 87 (P + &) ) + e{S"B — iS"E}
Let us summarize our consideration. There is a correlation
1d* = M? + ¢{S"B — iS"E}
where
M? = (S5o(Py — eAg) — 87 (P — eR) ) (So(P — o) + §7(P - eA))
1d? = I{(P, — eAy)* — (Py — eA1)? — (P, — edy)? — (P; — ed3)?}
= I[(P, — eAo)(Py — eAp) — (Py — eA)(Py — eAy) — (P, — eA,)(P, — edy)
— (P — eA3)(Ps — eAy)] = 1[(Py — eAo)(Py — eAy) — (F — eA) (P — eA)|
= I{(PO —edy)?—(P— eK)Z}
Let's analyze the obtained equality
M? = Id? — e{S"B — iS"E}

Note that the quantity d? is invariant to the Lorentz transformations irrespective of whether
the momentum and field components commute or not. To solve this equation, we have to make
additional simplifications. For example, to arrive at an equation similar to the Dirac equation, we
must equate M? with the matrix Im?, where m? is the square of the mass of a free electron. Then

Im? = Id? — e{S"B — iS"E}
I1d* — Im? — e{S"B — iSE} = 0
1{(Py — eAg)? — (P~ eA) "} - Im? — efS"B - i§7E} = 0

With this substitution the generalized equation almost coincides with the equation [[6], formula
(43.25)], the difference is that there is a plus sign before eSTB, and instead of iSTE there is ia’E, in
which the matrices a have the following form

a" = (g, a5, a3)
0 o 0 o 0 o3
a1=(0'1 0) a2=(0'2 0) O!3=<0_3 0)

A similar equation is given by Dirac in [[7], Paragraph 76, Equation 24]; he does not use the
matrices @, only the matrices S, but the signs of the contributions of the magnetic and electric fields
are the same.

Along with the original form

M? = (So(Py — eAo) — §7(P — eR) ) (So(P, — edy) + 87 (P — eA)) = d? — e{STB - iSE)

it is possible to consider the form with a different order of the factors. It can be shown that this

leads to a change in the sign of the electric field contribution
M? = (sO(P0 —edy) +ST(P - eZ\’)) (SO(PO —edy) —ST(P - eK)) = d? — e{S"B + iSTE}

Since Id?, unlike M?, isinvariant to Lorentz transformations, it would be logical to replace it by

Im?. At least both these matrices are diagonal, and in the case of a weak field their diagonal elements
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are close. Nevertheless, the approach based on the Dirac equation leads to solutions consistent with
experiment.

The matrix M? in the general case has complex elements and is not diagonal, and in the Dirac
equations instead of it is substituted the product of the unit matrix by the square of mass m?, the
physical meaning of such a substitution is not obvious. Apparently it is implied that it is the square
of the mass of a free electron. But the square of the length of the sum of the lengths of the electron
momentum vectors and the electromagnetic potential vector is not equal to the sum of the squares of
the lengths of these vectors, that is, it is not equal to the square of the mass of the electron, even if the
square of the length of the potential vector were zero. But, for example, in the case of an electrostatic
central field, even the square of the length of one potential vector is not equal to zero. Therefore, it is
difficult to find a logical justification for using the mass of a free electron in the Dirac equation in the
presence of an electromagnetic field. Due to the noted differences, the solutions of the generalized
equation can differ from the solutions arising from the Dirac equation.

In the case when there is a constant magnetic field directed along the z-axis, we can write down

1 1
A():O A1 :_§B3x2 A2 ZEB3X1 A3=O

(SoPy)2 — M2 — (B — eR)' (P — eA) — eS,B; = 0
ofo 3b3
(SoPp)? — M? — (P; — eAy) (P, — eA)] — (P, — eﬁz)(Pz —eA;) —eS3B; =0
(SoPo)? — M? _POZI_P321 — P = (eA;)? — P,? — (eA,)? +EB3(X1P2 —XPy + x; P, — x,P;) — eS3B;

=0
Pyl — M? — Py%I — P21 — P.%1 — (eA;)%] — P,*1 — (eA,)?I + eBy(x; P, — x,P;)] — eS3B; = 0
L;y+1 0 0 0
I(—=P,% = P2 — P;% — (eA;)? — (edy)?) — M? — eB; 0 0o L+1 o |70
0 0 0 Ly—1

Here (x; P, —x,P,) = L. Only when the field is directed along the z-axis, the matrix M? is
diagonal and real because the third Pauli matrix is diagonal and real. And if the field is weak, M?
can be approximated by the m?l matrix. This is probably why it is customary to illustrate the
interaction of electron spin with the magnetic field by choosing its direction along the z-axis. In any
other direction M? is not only non-diagonal, but also complex, so that it is difficult to justify the use
of m?l.

When the influence of the electromagnetic field was taken into account, no specific
characteristics of the electron were used. When deriving a similar result using the Dirac equation, it
is assumed that since the electron equation is used, the result is specific to the electron. In our case
Pauli matrices and commutation relations are used, apparently these two assumptions or only one of
them characterize the properties of the electron, distinguishing it from other particles with non-zero
masses.

The proposed equation echoes the Dirac equation, at least from it one can obtain the same
formulas for the interaction of spin and electromagnetic field as with the Dirac equation, and in the
absence of a field the proposed equation is invariant to the Lorentz transformations. In contrast, to
prove the invariance of the Dirac equation even in the absence of a field, the infinitesimal Lorentz
transformations are used, but the invariance at finite angles of rotations and boosts is not
demonstrated. The proof of invariance of the Dirac equation is based on the claim that a combination
of rotations at finite angles can be represented as a combination of infinitesimal rotations. But this is
true only for rotations or boosts around one axis, and if there are at least two axes, this statement is
not true because of non-commutability of Pauli matrices, which are generators of rotations, so that
the exponent of the sum is not equal to the product of exponents if the sum includes generators of
rotations or boosts around different axes. By a direct check we can verify that the invariance of the
Dirac equation takes place at any combination of rotations, but only under the condition of zero
boosts, i.e., only in a rest frame of reference, any boost violates the invariance.

A test case for any theory is the model of the central electrostatic field used in the description of
the hydrogen atom, in which the components of the vector potential are zero
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(So(Py — eAg) — STP)(So(Py — eAg) + STP) = I[(Py — eAg)? — P2 — P2 — P3%] + ieSTE
If again we equate the left part with Im?, we obtain
I[(Py — eAy)? — P,% — P,2 — P2 — Im? +ieSTE = 0
94, 04, _ 94,
a—xl+sza—x2+s36—x3) =0
Introducing the notations (4, = ¢(r) = Q/r, P, =E, r =1/ x. % + x, %> + x3 2), we obtain

e\N) L, . . L (e de)  dp(r))
I [(E T) Pl P2 P3 m Le Sl axl + Sz axz + S3 ax3 - 0

2
e e
I[(E—TQ) —P2—P% P2 m2]+ir—§(51x1 + 5,2, +S3x3) = 0

I[(Py — eAg)? — P,* — P, — P> — m?] —ie (sl

If we substitute operators acting on the wave function instead of momentum components into
the equation, we obtain a generalized analog of the relativistic Schrodinger equation, in which the
wave function has four components and changes as a spinor under Lorentz transformations. Using

the substitutions

. . . 0
PO—Ma P1—>—la—x1 P2—>—la—x2 P3—>—la—x3

the equation for the four-component wave function { before all transformations has the form
0 5 - 0 5 -
(50 (55— 40) +87(V - eA)) (so (5~ edo) = §7(v - eA)> ¥+ M2y = 0
and after transformations
— —\2 == g
{(S0(Py — e4))” — (P — eA) T — eSTB + ieSTE} w = My

Once again, note that the matrix M? is not diagonal and real.

All the above deductions are also valid when replacing 4x4 matrices S, by 2x2 matrices g,
since their commutative and anticommutative properties are the same. The corresponding
generalized equation is of the form

2 — —\ 2 I L=
(0o(Py —eAy)) —M?— (P—eA) I —e6"B+iec’E=0
where

6" = (04,07,03)
and the equation for the now two-component wave function looks like
(00 (% - er> +3" (V- eZ\’)) (oo (% —~ eAO) -o" (V- eK)) P+ M2 =0

In deriving his equation, Dirac [[7], Paragraph 74] noted that as long as we are dealing with
matrices with two rows and columns, we cannot obtain a representation of more than three
anticommuting quantities; to represent four anticommuting quantities, he turned to matrices with
four rows and columns. In our case, however, three anticommuting matrices are sufficient, so the
wave function can also be two-component. Dirac also explains that the presence of four components
results in twice as many solutions, half of which have negative energy. In the case of a two-component
wave function, however, no negative energy solutions are obtained. Particles with negative energy
in this case also exist, but they are described by the same equation in which the signs of all four
matrices S or o are reversed.

One would seem to expect similar results from other representations of the momentum operator,
e.g., [6, formula (24.15)]

(1 0 0) 1(0 1 0) 1(0 i o> <1 0 0)
wo={0 1 0] w=—=(10 1) w=—(i 0 —i] ws=(0 0 0
00 1 VZ\o 1 o V2o i o 00 -1

under the assumption that this representation can describe a particle with spin one. But this
expectation is not justified, since the last three matrices do not anticommutate, and therefore the
quadratic form constructed on their basis is not invariant under Lorentz transformations.

If one consistently adheres to the Heisenberg approach and does not involve the notion of wave
function, it is not very clear how to search for solutions of the presented equations. The Schrédinger
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approach with finding the eigenvalues of the M?matrix and their corresponding eigenfunctions can
help here.
{(SO(PO —edy))’ = (P—eA)’1—e§TB + ie§TE} P = M2y

In the left-hand side are the operators acting on the wave function, and in the right-hand side is
a constant matrix on which the wave function is simply multiplied. This equality must be satisfied
for all values of the four-dimensional coordinates (t,x;,,,x3) atonce. Then M? isnot fixed but can
take a set of possible values, finding all these values is the goal of solving the equation.

Thus, we have arrived at an equation containing a matrix M? which is non-diagonal, complex
and in general depends on the coordinates (t,xy, x,, x3). After the standard procedure of separating
the time and space variables, we can go to a stationary equation in which there will be no time
dependence, but the dependence the matrix M? on the coordinates will remain. It is possible to
ignore the dependence of M? on the coordinates and its non-diagonality and simply replace this
matrix by a unit matrix with a coefficient in the form of the square of the free electron mass. Then the
equation will give solutions coinciding with those of the Dirac equation. But this solution can be
considered only approximate and the question remains how far we depart from strict adherence to
the principle of invariance with respect to Lorentz transformations and how far we deviate from the
hypothetical true solution, which is fully consistent with this principle. To find this solution, we need
to approach this equation without simplifying assumptions and look for a set of solutions, each of
which represents an eigenvalue matrix M? of arbitrary form and its corresponding four-component
eigenfunction.

Let us return to the question of Lorentz invariance of the expression

(SoXo — S1X1 — S3X5 — S3X3)(SoXo + S1 X1 + S, X, + S3X5) = M2

As it was noted, this expression does not change at rotations and boosts in Minkowski space
only if the components of (Xy, X1, X, X3) commute with each other. If they do not commute, the
matrix M? changes under Lorentz transformations. Two parts can be distinguished in this matrix

M2 = (XoXo — X1 Xy — Xo Xy — XaXs)]
+81(XoX1 — X1Xo) + 1S (X3X; — X5X3) + S (XoX2 — X2Xo)
i8S, (X1 X3 — X3X1) + S3(XoX3 — X3Xp) + iS3(X2 X1 — X1 X3)

The first row represents the unit matrix multiplied by a value that still does not change under
Lorentz transformations. All changes occur in the last two rows. In the particular case of
electrodynamics, we have

M? = 1[(Py + Ag) (P + Ao) — (P + A (Py + A1) — (P, + A3) (P, + Az) — (P + A3)(Ps + 43)]

+81[(Po + Ag)(Py + A1) = (P + A (Po + Ag)] + iS1[(P3 + A3) (P, + A2) — (P, + A5)(P3 + A3)]

+82[(Po + Ag)(Py + Ay) — (Pr + A2) (Po + Ap)] + iS[(Py + A)(Ps + A3) — (Ps + A3)(Py + Ay)]

+S53[(Po + Ao)(P3 + A3) — (P3 + A3)(Po + Ap)] + iS3[(Pz + A2)(Py + A1) — (P + A1) (P, + 43)]

Here the first line is invariant, but the last three are not. The only way to ensure complete
invariance of M? is to require these three lines to be zero. Let us again consider the commutation
relations, but now we will not assume that the momentum components commute with each other,
only the potential components still commute with each other. Now we can write the relations of the
form

[Pz + A2) (P + A1) = (P + A)(P + 4;)]
=P (P, + Ay) — (P, + AP, _(P1(P2 +4;) — A (P +A1))
0P+ Ay) L 0(P; + A;)
T <_l a—xl)

Such values as
0xy, 0x;
always enter M 2 as a sum with the component of the field, in this case the electric one
apP, 0dP, dA, 04, aP, 0dP,
(o)t (G ) " Gm )+ e
0x, 0x dx, 0x; 0x, 0x;
If we formally define a new value
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V. =—
T m

and suppose that m does not change at rotations and boosts, and also to take into account the presence
of charge at the electron, it is possible to require for this and all other similar sums the fulfilment of

the condition
oV, vV,
m(———) +eE, =0
0xy 0x;

The value V; can be regarded as a component of velocity, and velocity not in the usual sense,
as a derivative of the spatial coordinate by time, but simply as a component of momentum divided
by the inertial mass m. Then the above equality can be interpreted in the spirit of Newton's law,
namely, that the acceleration multiplied by the mass is equal to the force acting on the side of the
electric field. If all such equalities are fulfilled, only the first line will remain in the quantity M?, and
it will be invariant under Lorentz transformations. It is possible to go further, and to assume equality
of the masses appearing here, namely

M? = Im?
As a result, we obtain a system of equations
(Py + eAy)(Py + eAy) — (Py + eA))(Py + eAy) — (P, + eAy) (P, + eAy) — (P + eA3)(P; + eA3) = m?
(0P, — 8,P,) + (3,4, — 3,4,) = 0

It is the fulfilment of these equations that causes the mass M? and m? to have the meaning we
are accustomed to, that is, not only invariant under Lorentz transformations, but also unchanged by
changes in momentum. We can introduce tensor notations

Guy + €Fpy =0
where
Gy = 0,P, — 0,P,

The resulting system of equations describes not only uniform but also accelerated motion. The
presence of an external field leads to a change in momentum, and vice versa, any change in
momentum perturbs the potential and generates an electromagnetic field.

For quantum mechanics we can replace the momentum components in all equations by the
derivative operators

Pp»i=— P o—im— P,—>—i— P;—o—i—
0_>l6x0 17 laxl 27 laxz 37 lax3
This also applies to equations from the second group, where mixed derivatives arise
0o 0
0, P = P o —i—
0 lax# X Wi lé)x# 0x,
0, P, J 0 0, P, 2 9
- —]— - —]—
W2 T T e ax, 3T T Mox, o,

As aresult, we obtain for the wave function a system of equations with second order derivatives,
the innovation compared to the commonly used equations is the presence in the equations of mixed
derivatives on all components of the coordinate vector.

The equations proposed here initially take into account the non-commutability of momentum
components, their derivation relies only on the unconditional fulfilment (even in coupled systems)
of the requirement of invariance to Lorentz transformations for the product of conjugate quaternions
with arbitrary coefficients

(SoXo — S1X1 — S X5 — S3X3)(SoXo + S1X1 + S, X, + S3X3) = M?

Putting all equations together, we write a truly relativistic system of equations

d - d .
(ag (W - eA0> +07 (V- eA)) (ao (W - eAO) -o7 (V- eA)) PY+MP=0
0 0
09 99N (0 0\ .
Yo% 9% | Loxe 9%, Wte 9%, " Bxy " b=

_aa 2 0 e aA aA _o
axoax, ax]axo"' dxy 7 axj°"’_
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This system is a generalization of the relativistic Schrodinger equation. The essence of the
generalization consists not only in taking into account the spin of the electron, which takes place
already in the Dirac equation, but also takes into account the non-commutability of the momentum
components. It can be assumed that the solutions of this generalized system will give exact values for
stationary electron energy levels in the atom, for which no radiative corrections will be needed.

If not to substitute the coordinate derivative instead of the momentum component and to remain
in the framework of classical physics, the system of equations

(Py+edp)?— (P, +eA)? — (P, +eAy)? — (P; + ed3)? =m?
(0,P, — 9,P,) +e(0,4, —0,4,) =0
describes the motion of a macroscopic charged particle in the presence of an electromagnetic or other
potential field, for example, gravitational field. Let us note the nontrivial fact that even in classical
physics, when an electric field acts on a charge, one should use the combination of derivatives % -

0

Py . . . ap
— instead of the simple acceleration —.
0x; dxo

By means of the antisymmetric Levy-Civita symbol we transform antisymmetric tensors into
dual tensors

~ 1 - 1
PRV = S efPOR,  GRY = ety
and we use Maxwell's equations written in compact form
0 FW = jv 9, F" =0
Let us apply the derivative operator to our proposed equations

0,G"" + ed, F* = 9,G" + ed,F* = 0
then taking into account Maxwell's equations we obtain
9,G" =0

0,G"" +ej’ =0
0,(0*PY —3"P*) +ej" =0
ma, (0*VY — aVV#) +ejY =0
= 0,04V = VM) = ="

These formulas describe the behavior of field and charge that results from their mutual
influence.

If in the presence of an arbitrary potential there is no particle in the moving point, then our
equations are the homogeneous Maxwell equations for an arbitrarily moving point. In the particular
case of uniform motion, they transform into the ordinary Maxwell equations. If a charge is placed in
the point, we obtain inhomogeneous Maxwell equations for an arbitrarily moving source.

The equations we propose can even be considered as a derivation of Maxwell's equations. Taking
our equations as a basis and equating all derivatives of momentum to zero, we obtain as a residue
exactly Maxwell's equations for a stationary or uniformly moving point.

The conditions expressed by the second line of our equations may be too strong, since they
require that each pair of brackets with derivatives is zero. But invariance can also be achieved with a
weaker requirement that only their sum as a whole is zero. That is, each pair of brackets can deviate
from zero; the main thing is that these deviations are compensated in the total sum. This can work
both in classical and quantum mechanics. A hint on the validity of this approach is given by
Maxwell's equations, in which conditions are imposed not on individual derivatives, but on their
sums. In addition, it is intuitively clear that the components having similarity to velocity should be
considered in the sum in order not to depend on the rotations of the coordinate system.

3. Equation for the Spinor Coordinates Space

Let us consider the set of arbitrary complex numbers, for simplicity we will call it a
vector

X" = (X, %,,%,, %)
and let us consider arbitrary four-component complex spinors
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P' = (Po,P1, P2, P3)
1T = (21,214,215, x15)
x2T = (324,324, %2,,%23)
Among all possible vectors, let us select a set of such vectors for which there is a representation
of components through arbitrary complex spinors

1
X, = Exﬂsﬂxz
and there is another way to calculate them
X, = %Tr[aaxz*sﬂ]
Further we will assume that both spinors are identical, then the vector constructed from them is
PT = (Py, Py, Py, P3)
has real components, and we will assume that this is the electron momentum vector constructed from

the complex momentum spinor p
1
P, = Ep*Sup
1 t
B, = ETr[pp Syl
Consider the complex quantity

0 1 0 0\ /% Xy
x —X
1 (()) g (?l x; = (pO' P1, P2, p3) x30
0/ X3 X2

(P, %) = p"Zyux = (Do, P1, P2, P3) _0
0 0 -1
= PoX1 — P1Xo + P2X3 — P3X;
where we introduce one more complex spinor, which in the future we will give the meaning of the
complex coordinate spinor

X = (xo, X1, X2, X3)

and
0 1 0 0
(o« OY_[-1 0 0 O (0 1
ZMM_(O 0M>_ o o o0 1) wm=(2 o)
0 0 -1 0

Coordinate vector of the four-dimensional Minkowski space
X" = (Xo, X1, X2, X3)
is obtained from the coordinate spinor by the same formulas
1

X, = EXTS#X
X, = ETr[xx*Su]

Thus, the vector in the Minkowski space is not a set of four arbitrary real numbers, but only such
that are the specified bilinear combinations of components of completely arbitrary complex spinors

Xo = E(x_oxo + X% + X%, + X3%3)
X, = E(%xl + X1x0 + XX3 + X3X3)

X, = E(—ix_ox1 + (X Xy — iXzx3 + iX3X;5)
X3 = %(x_oxo — X1X1 + XXy — X3X3)

Accordingly, the components of the vector in Minkowski space are interdependent, from this
dependence automatically follow the relations of the special theory of relativity between space and
time. For the same reason, the coordinates of Minkowski space cannot serve as independent variables
in the equations. From the commutative properties of S, matrices, which are generators of
rotations and boosts with respect to which the length of vectors is invariant, quantum mechanics
automatically follows. Indeed, the commutation relations between the components of momenta are
related to the noncommutativity of rotations in some way, and from them the commutation relations
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between the components of coordinates and momenta are directly deduced. And from these relations
the differential equations are derived.

And since we do not doubt the truth of the theory of relativity and quantum mechanics, we
cannot doubt the reality of spinor space, which by means of the simplest arithmetic operations
generates our space and time.

The quantity pTXyyX isinvariant under the Lorentz transformation simultaneously applied to
the momentum and coordinate spinor, which automatically transforms both corresponding vectors

as well
p'=Np
! 1 ! !1‘
PﬂzzTr[pp Sn]
’ 1 T I
P;L:Ep S,up
P’ = AP
x' = Nx
R S
X#=ETr[xx Syl
' 1 't ’
Xuzzx Sux
X =X

This quantity does not change for any combination of turns and boosts
P Zyux’ = pT Eynx
Accordingly, the exponent
exp(p" ZymX) = exp(pox; — p1xo + Paxs — P3x2)
characterizes the propagation process of a plane wave in spinor space with phase invariant to Lorentz

transformations.
Let us apply the differential operator to the spinor analog of a plane wave
0o 0 d 0
(a_xla_xz - a_xoa_x) exp(PoX; — P1Xo + P2X3 — P3X2)

= (Po(=p3) = (=P1)P2) exp(Pox1 — P1Xg + P2X3 — P3%2) =
= (p1p2 — pops) exp(PoX1 — 1% + P2X3 — P3X2)
Applying this operator at another definition of the phase gives the same eigenvalue
0 0 0 0
(Grrom 3w
that is, two different eigenfunctions correspond to this eigenvalue, but in the second case the phase
in the exponent is not invariant with respect to the Lorentz transformation, so we will use the first

) exp(poxo + p1x1 + 02X + P3x3) = (P1P2 — Pob3) exp(Poxp + P1X1 + PaXo + P3X3)

definition.
Since

(Po,p)" and (p2,p3)"
are complex spinors, which, under the transformation

b=Np=@ 9p

is affected by the same matrix n, then the complex quantity

m = piP2 — PoPs
is invariant under the action on the momentum spinor p of the transformation N. m is an
eigenvalue of the differential operator, and the plane wave is the corresponding m eigenfunction,

which is a solution of the equation

9% 0%, a_xoa_x3) P (xg, X1, %2, X3) = M (xg, X1, X, X3)
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Here (x¢,x1,x,%3) denotes the complex function of complex spinor coordinates.

When substantiating the Schrodinger equation for a plane wave in four-dimensional vector
space, an assumption is made (further confirmed in the experiment) about its applicability to an
arbitrary wave function. Let us make a similar assumption about the applicability of the reduced
spinor equation to an arbitrary function of spinor coordinates, that is, we will consider this equation
as universal and valid for all physical processes.

Let us clarify that by the derivative on a complex variable from a complex function we here
understand the derivative from an arbitrary stepped complex function using the formula that is valid
at least for any integer degrees

az*
0z

In particular, this is true for the exponential function, which is an infinite power series.

= kzk1

It is very important to emphasize that we consider the complex variable and the variable
conjugate to it to be independent, so when finding the derivative of a complex variable from some
function, we treat all the quantities which are conjugate to our variable and which are included in
this function, as ordinary constants.

It is not by chance that we denote the eigenvalue by the symbol m, because if we form the
momentum vector from the momentum spinor p included in the expression for the plane wave

1 t
B u= Ep Sup
then for the square of its length the following equality will be satisfied

POZ—Plz—PZZ—P32=TT7.m=m2

That is the square of the modulus m has the sense of the square of the mass of a free particle,
which is described by a plane wave in spinor space as well as by a plane wave in vector space. For
the momentum spinor of a fermionic type particle having in the rest frame the following form

P’ = (Po,P1, P1, —Po)
quantity

m = p1P2 — PoP3 = P1P1 T PoPo
is real and not equal to zero, and for the bosonic-type momentum spinor having in the rest frame the
following form

pT = (Po, P1,Po, P1)

it is zero
m = PP — PoP3 = P1Po — PoP1 = 0

i.e., the boson satisfies the plane wave equation in spinor space with zero eigenvalue.

For the momentum spinor of a fermion-type particle we can consider another form in the rest
system

pT = (pO' Py —DP1s m)
then the mass will be real and negative
m = PP, — PoPs = —P1P1 ~ PoPo

This particle with negative mass can be treated as an antiparticle, and in the rest frame its energy

is equal to its mass modulo, but it is always positive

1 1 L L L
Py = EPTSOP =5 (Popo + P1p1 + (—p1)(=P1) + PoPo)

1 _ _ _
=3 (Popo + P1P1 + P1P1 + PoDo)

To describe the behavior of an electron in the presence of an external electromagnetic field, it is
common practice to add the electromagnetic potential vector to its momentum vector. We use the
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same approach at the spinor level and to each component of the momentum spinor of the electron
we add the corresponding component of the electromagnetic potential spinor. For simplicity, the
electron charge is equal to unity.

Further we need an expression for the commutation relation between the components of the
momentum spinor, to which is added the corresponding component of the electromagnetic potential
spinor, which is a function of the spinor coordinates

(Po + ao(x1, %2)) (p1 + a1 (x1, %)) = (p1 + a4 (x4, %)) (po + Ao (x4, %7))

Let us replace the momenta by differential operators

0 0 0 0
p0_>6_x1 P1_>_a_xo p2_>6_x3 p3_>_6_xz
and find the commutation relation

0 d
{(a_xl + ag(xo, X1, X2, x3)> (‘ 6_xo + a1 (xo, X1, %7, x3)>

d d
- <— a—xo + a; (xq, x4, xz,x3)> (6—961 + ao((xm X1, X2, x3))>}¢(x0, X1, X2, X3)

0 Y
—a—xl(aﬂl’) —aoa—x()*'a—xo(aolﬁ) —Cl1a—x1

da, Y oY day o oy da, da,
B T TR TR Y PR A TR A
- {aal(xo’;;ll’ xz’X3) + aaO(xO;DCClO, xZ’X?’)} l,b(xo, X1, X2, x3)
Thus
da; Odaqg
(po + ag) (P + ar) — (p1 + a))(po + ap) = o + PN

Let us apply the proposed equation to analyze the wave function of the electron in a centrally
symmetric electric field, this model is used to describe the hydrogen-like atom. For the components

of the vector potential of a centrally symmetric electric field it is true that
1 1
Ay = EaTSOa = E(a_oao +aya, +aza, +aza;) =

| -

1 1
A] = EaTSIa = E(a_oal +a_1a0 + a_2a3 +a_3a2) =0

1 1
AZ = EaTSZa = E(—la_oaj + ia_1a0 - ia_2a3 + ia_3a2) =0
1,1
A3 = Ea 533 = E(aoao —a;a; + a,a; — a3a3) =0

apay + a;a; = aja; + aza;z

1
ayay + @a, = R

apa; + a3 = a;ay + aza,

E(a_oaz +aja) + @ya; + aza,) = aga; + azaz =0

qya; = —aya;z
@ = ia;
a, = —ia,

1
@y + Ga, = i@ * (—iay) + Ga, = 2qa, = 2a," = R

As a result, it is possible to accept
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1 1 i

aa, = [ —— =
1T "V2RV2R 2R

1 1 i
Gay=—|—l—|=—7%
2 \/ZR( \/ZR) 2R

R= fxf + X7+ X% =

2
1,_ _ _ _ 1, . . L .
\/(E (Xox1 + Xyxg + x5 + x3x2)) + (5 (—ixgx; + ixyxg — iXpx3 + lX3X2))

2 2
1,_ _ _ _
+ (5 (Xoxp — X171 + X5 — xsxs))

2

2 2
1, _ _ _ 1 _ _ _ _ 1, _ _ _
\/(E (xoxl + X1X0 + XyX3 + X3.X'2)) - (E (—xoxl + X1Xp — XpX3 + X3X2)) + <E (Xo.X'O — X1X1 + Xy Xy — X3X3))

We are looking for a solution of the spinor equation; we do not consider the electron's spin yet

(66 0 0

6_x16_9c2 - a_xoa_x3> @ (X9, X1, X3, x3) = m @ (X, X1, X3, X3)

This equation can be interpreted in another way. Let us take the invariant expression
(p1p2 —pop3) =m

And let's do the substitution

d d
Po =5~ + ag(xp, x1,%2,x3)  p1 > _a_xo + a;(xg, X1, X3, x3)
1

d
P = I + a,(xp, x1, %2, X3) p; o “ax + a3 (xg, x1, X2, x3)
3 2

(50 o) (o e) -Gt o) (-5 T oo =
6x0 % OX3 % 6x1 %o axz a)j¢=me

We will consider this equation as an equation for determining the eigenvalues of m and the

corresponding eigenfunctions

Jd 0 4 Jd 0 ( da, 6a3) do + do do + do +( )
0xo 0x5 ¢ 0x; 0x, 0x, 0x; 4 25 10x3 as dox Qo ax, a,a; — Apaz)e
i 1 1 i
Ay = —— a = — a —_— Ay = ———
0 \/ﬁ 1 \/ﬁ 2 m 3 m
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_Z_:_Z_Zj__%a%(\/l_) \lfail(\/l_): \/1—6(10(\/1_) \/1_6(11(\/1_)
1(11\o, ,  1(11\a
-l @)a—%mwﬁ( ‘@)a—#’”
1(1 1 a
=\F< —)[G—%(RZ)— ) - ﬁ[a—%( )= i)

(R?)*
R= /Xlz + X2+ X, =

2
1 1 _ _ _
J(E (Xox; + X1x0 + X3x3 + Exz)) - <§ (—Xox1 + X1x9 — Xpx3 + x3x2))

2 1 2
+ <E (Xoxo — X1x1 + X%, — x_3x3)>

2 2
0 1 . . . 1 . _ _
_( = R ((E (Xox1 +X1x0 + X3x3 + x3x2)> - <§ (=Xox1 + X1x9 — Xpx3 + x3x2)>
0

dx,
1 2
+ <§ (Xoxo — X1x1 + X%, — E’%)) )
1 d
=3 2(Xgxq + X1xo + Xgx3 + x3x2) (x0x1 + X xg + XXz + X3x5)
d
- 2( x0x1 + xle - xe3 + X3x2) ( x0x1 + x1x0 - x2x3 + X3x2)
a

+ 2(Xgxy — X7x1 + XXy — x3x3) (Xoxg — X121 + X3x5 — x3x3)>
d0x,

= %(Z(X_o’ﬁ + X1xg + X5x3 + X3x5) % — 2(—Xox; + XX — XpX3 + X3X3) %X
+ 2(Xgxo — X1x1 + X3X; — X3X3)%0)
=3 ((x_0x1 + XX + XXz + X3x)%1 — (—XoX1 + XX — XXz + X3xp) X
+ (Toxo — X1y + Xpx; — X3X3)Xg)

1, o _ e _ _ e
=5 ((x0x1 + X5x3) %7 — (—Xgx; — X3x3)%; + (KXo — X1%; + XpX, — X3%x3)%g)
1, e e _ _ o
= E((xoxl + X3x3)%1 + (Xoxq + Xx3)%7 + (XoXo — X1X; + XX, — x3x3)x0)
1, e _ o
= E((xo?ﬁ + Xx3)%; + (X2x3)%1 + (XoXo + XX, — x3x3)x0)
r _ N
=5 (Xox1%1 + 2X5x3%7 + (XoXo + X3X; — X3X3)%0)
=5 (233x3%1 — 2X3x3%0 + (XoXo + X1 X1 + X3X5 + X3X3)%0)
= 2 (2x3 (%1 — X3%g) + (Xpxo + X1 X1 + XX, + X3X3)Xg)

= 2 (2x3 (021 — X3%g) + (XoXo + X1 X1 + XX, + X3X3)%g)
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1
F R?) = > ((%’ﬁ + X1Xo + XXz + X3x)Xg + (XX + X1Xg — XpX3 + X3X2)%Xg
1
— (Xoxo — X1x1 + X%, — x_zxs)ﬁ)

1, e e _ _ o
=5 ((xlxo + X3%)%0 + (X1xg + X3%x2)Xg — (XgXo — X1 X1 + XX, — x3x3)x1)
=5 (X1x0Xg + 2X3%x,X0 + (X1 — XX, + X3X3)%7)

1 _ o _ S
= 2 (2x,(X3X9 — X3%1) + (XoXo + X1X;1 + XX, + X3X3)%7)

Let's introduce the notations

KX — X369 = 1

this quantity does not change under rotations and boosts and is some analog of the interval defined
for Minkowski space and

1
> (x0Xg + X1x1 + XX, +X3x3) =t

this quantity represents time in four-dimensional vector space.

An interesting fact is that time is always a positive quantity. As an assumption it can be noted
that since we observe that time value goes forward, i.e. the value of t grows, and it is possible only
due to scaling of all components of spinor space, such scaling leads to increase of distance between
any two points of Minkowski space. As a result, with the passage of time the Minkowski space should
expand, herewith at first relatively quickly, and then more and more slowly.

O (R%) - i (&)

i i

0x, 0x;
=5 (2x3 (0321 — X3%g) + (XoXo + X1 X7 + XX, + X3X3)X)

1 _ o _ o
—iy (2x, (530 — X2%1) + (XoXo + X1x1 + XX, + X3X3)%7)
.1 o o

= x3(36X] — X3%) + 2 (Xoxo + x1X71 + Xzx, + X3X3)Xg — ix(X3X0 — X3X1)

— iz(xox_o + X1 + X, + X3x3)Xy = X3l + tXg + ixyl — itxg

= l(x3 + ix) + t(Xo — iX7)
As a result, we have an equation for determining the eigenvalues of m and their corresponding
eigenfunctions ¢ (xy, x;, X2, X3)

0 0 0 0 1 dpo Jdp dp  0do 1 . .
( ——)(p ( —ti—- )+—5 (l(x3+lx2)+t(x0—lx1))<p

T ox, 0%, 0w 0w) P TR\ 0x 0w, on on) T ()
+1 =
E(p—mq)

Instead of looking for solutions to this equation directly, we can first try substituting already
known solutions to the Schrodinger equation for the hydrogen-like atom. If ¢(X,, X1, X,,X3) is one
of these solutions, we need to find its derivatives over all spinor components

Jdo d¢ 90X,
ox, 0X, 0x,

Xy = E(x_oxo + X1x1 + XX, + X3X3)
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X = E(%% + X1x0 + XX3 + X3X3)

X2 = E(_lx_oxl + lx_lxo - l@)@ + lgxz)

1 _ _ _ _
X; = > (Xoxo — X1x1 + X3Xx; — X3X3)

For example

dp 0o X, OpXx; Opix; 09 Xy

oxg 09X, 2 Tox, 2 T ox, 2 oK, 2

Let’s pay attention to the shift in priorities. In the Schrodinger equation one looks for energy
eigenvalues, while here it is proposed to look for mass eigenvalues, it seem more natural to us. The
mass of a free particle is an invariant of the Lorentz transformations, and in the bound state the mass
of the particle has a discrete series of allowed values, each of which corresponds to an energy
eigenvalue, and the eigenfunction of these eigenvalues is the same. But these energy eigenvalues are
not the same as the energy eigenvalues of the Schrodinger equation, because the equations are
different. When an electron absorbs a photon, their spinors sum up and the mass of the electron
changes. If the new mass coincides with some allowed value, the electron enters a new state. The kay
idea here is the assumption that the interaction of spinors occurs simply by summing them.

The advantages of considering physical processes in spinor coordinate space may not be limited
to electrodynamics. It may turn out, for example, that the spinor space is not subject to curvature
under the influence of matter, as it takes place in the general theory of relativity for the vector
coordinate space. On the contrary, it can be assumed that it is when the components of vector
coordinate space are computed from the coordinate spinor that the momentum spinor with a
multiplier of the order of the gravitational constant is added to this spinor. This results in a warp that
affects other massive bodies.

To account for the electron spin, we will further represent the electron wave function as a four-
component spinor function of four-component spinor coordinates

¢0(x0!x1ix2!x3) Uy
Py (o, X1, X3, X3) Uy
Xo) X1,X2,X3) = = X0, X1, X2, X
ll’( 0y 4142 3) ¢2(x0vx1vx21x3) Uy (p( 041y A2 3)

Y3 (X, X1, X3, X3)

where the coefficients u, are complex quantities independent of coordinates. In fact, as shown at the
end of the paper, the wave function is a linear combination of such right-hand sides with operator
coefficients.

We will search for the solution of the wave equation considered in the first part of this paper

(SoPy — S1Py — S3Py — S3P3)(SoPy + S1 Py + S, Py + S3P) Y = M2

Let's express the left part through the components of the momentum spinor

1 t
Pu=5p Sup
L . 1 0 0 0 Po " Po
— _nt — (v 7 - e 0 1 0 0 P1 | _ 2 o — — P1
Py = 2p Sop = 2 (Po, P1, P2, P3) 0 0 1 0 P23 (9o, D1, P2, P3) D2
0 0 O 1 D3 D3

1 _ _ _ _
= 2 (Popo + D1p1 + D202 + P3D3)
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L 1 0 1 0 0 Po L P1
— .t [y p— | 0 0 0 Pr|_ Lt — — — [ Po
Pl - 2 p Slp - 2 (va plv p2v p3) 0 0 0 1 pz - 2 (pO'plipZ'p3) p3
0 0 1 0 D3 D2
1 _ _ _ _
= E(P0p1 + P1po + D203 + P3p2)
) ) 0 —i 0 0\ /Po . ~ip
R I p— 0 O 0 (20 [ S — Ipo
P, = 2 p'S;p = 2 (Po, P1, D2, P3) 0 0 0 —i 128 ) (Po, P1, D2, P3) —ip,
0 0 i 0 D3 ip,
1 — — —
= 2 (—=ipop1 + iP1Po — D203 + iD3D2)
1 1 1 0 0 0 Po L Po
_ .t S ——=—=-0 -1 0 0 Pil_trp o [ TP
Py = 2 p'Ssp = 2 (9o, D1, P2, P3) 0 0 1 0 2N (Do, D1, P2, P3) Dy
0 0O 0 -1 D3 —DPs3

1
=3 (Popo — D1P1 + D2P2 — P3D3)
1 L T .
Py—P; = E(popo +P1p1 + P22 + P3p3) — > (Popo — P1P1 + P2P2 — P3P3)
1 _ e
= E(popo + D1p1 + D22 + D3Pz — PoPo + P1P1 — DzP2 + P3P3)
T o
= E(plpl + D3p3 + P1p1 + P3P3) = D11 + D3ps
T T L
Py+P; = E(Popo + P1p1 + D202 + P3p3) + 3 (Popo — D1P1 + D2P2 — P3P3) = DoPo + D22
o1
—P, +iP, = _E(P0P1 + D1bo + D23 + D3p2) + lz(—lpolh + ip1po — iP2p3 + iP3P2)
T _
= E(P0P1 + D1Po + D2P3 + D3Pz + PoP1 — P1Po + D2P3 — P3P2)
1 I o
= E(popl + P2p3 + Dop1 + P2P3) = Dop1 + P2P3
s S S
—P, —iP, = —E(popl + P1Po + D203 + P3p2) — 15(—1pop1 + ip1Po — iP2P3 + iP3D2)
T o
= E(popl + P1Po + D2P3 + P3Pz — PoP1 + P1Po — D2P3 + P3P2)

1 _ _ _ _ _ _
= E(Pﬂ’o + D3Pz + P1Po + D3P2) = P1bo + D3D2
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SOPO_SIPI_SZPZ

0
0
0

oroo
oo

01
Py — Ps
—P, — iP,
0
0

P3=
0 0 0

3_1171 +p__3p3
P1Po t+ D3D2

= o
| Looco 2225

po_Pl + 27_2_P3
PoPo + D2P2

o o

@?1 + p_—sps
DP1Po + D3D2

0
0
0
1

oroo

P, + iP,
0
0

Pl_iPZ
PO_P3
0

0 0 O 0
Pobo + P2P-

—P1Po — P3D2

0
0

—PDoP1 — D2P3
p1p1 + D33
0 0 DoPo t+ P22
0 0 —P1Po — P3P2
Let's distinguish the direct products of vectors in these matrices
DoPo t 2Pz —PoP1 — P2P3
—P1Po — P3P2 pip1 + P3Ps
0 o0
0 0

0 0
0 0
PoPo  —DPoP1
—DP1Po P1b1
—D2
p3
0
0

Pop1 + D2D3
PoPo + D2P:2
0
0

—PoP1
p1ip1
0
0

0
0
—Po
2
p1p1 + D3D3
P1Po + D3P2

0

0
0
0
P1b1
P1Do

PoPo
—P1Po
0
0

D2D2
—P3P2
0
0

—Po
p1
0
0

(—Po, D1, 0'0) +

(0,0, —Po, P1) + (_Pz: D3, 0!0)

SoPy — S1Py — S$3P, — S3P5 =

P2Ps3
p2D2
0
0

P3Ps
D3p2
0
0

PoP1
Pobo
0
0

P1ip1
P1Po
0
0

0

0
PoP1
Pobo

P1Po — [P1Do — Pop1]
PoPo — [PoPo — Pobo]
0
0

p1P1 — [P1P1 — P1p:]
PoP1 — [PoP1 — P1Po]

0
0

p1P1 — [P1P1 — Pips
Pob1 — [PoP1 — P1Po

—_—

psDs — [p3Ps — P3ps]  psD2 — [PsD; — D2psl

oS o

+ P2Ds — [P2P3 — P3p2] 02Dz — [P2D2 — D2p2]
0 0 P33 — [P3P3 — D3ps]
0 0 P2Ps — [p2P3 — P3p2]

0
0

P, + iP,

0
0

Elﬁ + P__sps
P1Po t D3P2
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0

OP2

0
0
0 —i
i
0
0

PO_P3
_Pl_iPZ

P + P
DPoDo + D2P2

0

P, +iP,
0
0

—PoP1 — D2P3

P1b1 + D3D3

Pl_ipz
PO_P3

0
0
P1 - lPZ
Py —P;
p2ps3
P33

0

0
D2D2

—D3P:

0
0
—D2D3
P33
0
0
—D2
ps
0
0

+ (0,0, —p2, v3)

0
0
Pob1 + D2P3
PoPo + D2P-
0
0
P23
D2D2

0
0

EP3
P32

0

0
P1Po — [P1Po — Pop]
PoDo — [PoPo — Popol

0
0

psDz — [P3D2 — D2ps]
p2Dz — P20z — P2p2]
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D1 0
= % | @r.50.0,0) +( ) | 0.0,75,50)
0 Do
[p1P1 —Pip1]  [P1Po — Popil 0 0
[PoD1 — P1Po] [PoDo — PoPol 0 0
0 0 [p1P1 —Dip1]  [P1Po — Popi]
0 0 [PoP1 — P1Po] [PoPo — DoPol
D3 0
+| P2 ) 55,55,00 + (.2 | 00,75 5)
0 p3' pZ' ’ P3 ’ 'p3' pZ
0 D2
/[psm —Dspsl  [psPz — P2ps] 0 0
_ [p2Ps —Pap2]  [p2Pz — P2p2] 0 0
0 0 [psPs — Psps]  [psPz — P2psl
0 0 [p2P5 — P3p2] [p2P2 — P2p2]
Let's introduce the notations
7 0 - 0
Pr ) (po 2, 0,0) + | 2 00, =pop) +| PP | (=pps 00) +| L | 0,0, -pops) =5+
0 oMY _po Y 0rM1 0 2 M3, Y _pZ Yy 2' M3
0 2] 0 p3
P1 0 P3 0
14 S 0 — p — 0 — N e
00 (pli Po, 0'0) + 121 (0,0, P pO) + 02 (p3! P2, 0!0) + D3 (0!0! P3, pZ) =S
0 Do 0 D2
[p1P1 —Pip1]  [P1Do — Popil 0 0
[PoP1 — P1Do] [PoPo — PoPol 0 0
0 0 [p1P1 —Pip1]  [P1Po — Dol
0 0 [PoP1 — P1p0] [PoPo — Popo]
[psPs — Paps]l  [psPz — P2psl 0 0
+ [p2P5 — P3P-] [p2P2 — P2p2] 0 0 =K
0 0 [p3Ps — P3p3]  [P3D2 — D2ps]
0 0 [p2P3 — P3p2] [p2D2 — D2p2]
Let us substitute differential operators instead of spinor components
9 0 9 3] 9 3] 9 0
-»— = > ——=— -»— = > ——=—
Po 9%, 1 D1 9%, o D2 9% 3 D3 ax, 2
Po 5 1 D1 0% o D2 P 3 D3 0%,
Then the quantities included in the wave equation
(O K)5+'~|’(xo; Xy, X2, X3) = lel’(xo; X1, X3, X3)
will have the form
—0, 0 -0, 0
- _| o - = 0 = = 05 = = 0 = =
S™= 0 (—90,01,0,0) +| _ 3, (0,0,—9,,0,) + 0 (=9,,05,00) +| _ 2, (0,0,—9,,95)

0 01 0 03
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Sy 0 —03
st= —go (=0, —0,,0,0) + _3—1 (0,0, =0, —0) + —gz (=03,-0,,0,0)
0 —d 0
0
0
+ -7, (0,0,—05,—095)
—0,
K =
9000 — 050, (=00)0; — 91(—0o) 0 0
01(=3,) = (-30), 8,9, — 3,0, 0 0
0 0 9,0, — 040, (=09)0; — 9, (—0y)
0 0 91(=30) — (=35)0, 010, — 0,0,
0,0, — 0,0, (=0,)05 — 05(—05) 0 0
95(=0,) — (=02)0s 0505 — 0305 0 0
0 0 0,0, — 0,0, (=0,)93 — 35(05)
0 0 63(—6_2) - (_6_2)63 0305 — 0305

Let us consider the case of a free particle and represent the electron field as a four-component
spinor function of four-component spinor coordinates

Yo (X, X1, X2, X3) Uy
_ Y1 (xq, X1, X3, X3) W

lp(XO'xleZI x3) - lpz(x(), X1.X2,x3) - uz <P(xo; x1; x2; x3)
Us

Y3 (x0, X1, X2, X3)

For a free particle, the components of the momentum spinor commute with each other, so all
components of the matrix K are zero.
Let us use the model of a plane wave in spinor space

@(Xo, X1, X2, %3) = exp(PoX1 — P1Xo + P2X3 — P3X3)

Substituting the plane wave solution into the differential equation, we obtain the algebraic

equation
Ug Uy
_ u u
S=s* u; @ (X, X1, %3, X3) = M? u; @ (xq, X1, X2, X3)
U3z U3z
—Do 0 —D2
_ P 0 3
N %1 (=pouo + p1uy) + —Py (=pouz + prus) + %3 (=p2uo + P3uy)
0 2 0
0 U
0 2 U
+ —p; (=p2usz + p3us) ¢ @ (xg, X1, X2, X3) =M U, @ (xq, %1, X3, X3)
p3 Uz
D1 0 D3 0

0 ) s 0.0+ ) | 00,550 +| B2 | 75.52,0,0) + | ) | (00,7552

0 Po 0 P2
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—Do 0 -7
& 0 -
%1 (=pouo + pP1uy) + —To (=pouz + pyuz) + %3 (=p2uo + P3uy)
0 2 0
0 Uy
0 o W
+ —p; (=pouy + psusz) p @(xg, X1, X2, %3) = M u, @ (X9, X1, X2, X3)
D3 Uz
D1 0 D3 0
Po )\ 5 55,000+ .0 0,055 +| P2 | @,5,00 +( .9 |0,0,75)
0 pl! pO' ) P1 ) 'pppo 0 p3; p2t ’ P3 ’ 'p3' pZ
0 Po 0 D2
—Do 0 -5
2 0 &
%1 (=pouo + P1uy) + —To (=pouz + pyusz) + %3 (=p2uo + p3uy)
0 P 0
0 Uy
0 u
+ —P5 (=pauy + p3uz) p = M? u;
p3 Us
P1 %]
P o o
( 00> (=P1Do + DoP1) (—PolUo + P1Uy) + 13)2) (=D3Do + D2P1) (—Polto + P1uy) +
0 0
0 0
<p2> (=P1Do + DoP1) (—PolU, + P1u3) + <p2> (=D3P0 + P201) (—PoU, + Prus) +
Po D2
D1 P3
<%0> (=P1P2 + Pob3) (—p2ug + p3uy) + (%2) (=P3Dz + P2P3) (—P2uo + p3uy) +
0 0
0
0
P1
Po D2

0
(=P1Pz + PoP3)(—p2uy + p3usz) + <p(;> (=P3pz + D2P3) (—p2uy + p3uz) =
= M2<

Let us take into account the commutativity of the momentum components, besides, let us
introduce the notations

—D3Do +P2P1 =M —P1DP2 T PoP3 = —

for the quantities which are invariant under any rotations and boosts, then we obtain

D3 0 P1
P2\ 0=/ Pol, —/_
0 m(—polo + P1y) + Ds m(—pou, + puz) + 0 (—m)(—pauo + P3uUq)
0 D2 0
0 Up
_ u
+ p(i (—=m)(—=pauy + p3ug) ¢ = M? ul

2
Po Uz
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D3 D1 D3 D1 0 0
P2 | Po | - P2 | - p 0\~ 0\~
Up| — 02 mp, + 00 mp, [+ U 02 mp; — 00 mps | +uz| —| p, |MPo +| p, |MP2
0 0 0 0 D2 Po
/ 0 0 \ Up
0)l~. [ 0]~ _ a2 W
+ u3 ps mpl pl mp3 - M (uz
D2 Po Us
P1P2 — P3Po P3sP1 — P1Ps3 0 0
_ | PoP2 — P2Po _ [ P2P1 — PoP3 _ 0 _ 0
Uom 0 tum 0 tu ( pip2—pspo | T W™\ popy — pips
0 0 Pob2 — P2DPo P2P1 — PoPs3
Uy
_ 2| W
=M w
Us
Additionally, introducing notation for Lorentz invariant quantities
P1iP2 —P3Po =M P2pP1 —PoP3 =M
we obtain
m 0 0 0 Ug
Uym 8 +u,m gz +u,m 191 + ugm 8 =m? Z;
0 0 0 m Uz
m? 0 0 0 Uo
0 m? 0 0 _ Uy
uo o | Tl g [T U],z | tus| o = m? U
0 0 0 m? Uz
m? 0 0 0 Ug Ug
0 m2 0 0 Uq - M2 Uy
0 0 mZ 0 u2 uZ
0 0 0 m2 U.3 U3

We see that in the case of a plane wave in spinor space, the matrix in the left part of the equation
is diagonal and remains so at any rotations and boosts, the diagonal element also does not change.

In this case we can consider the matrix M? in the right part to be diagonal with the same
elements on the diagonal m?, then the equation can be rewritten as an equation for the problem of
finding eigenvalues and eigenfunctions

STSTY(xg, X1, X3, x3) = M2IP(xq, X1, X5, X3)
S_S+llj(x01 xll le x3) = mzllj(x()) xll xZI x3)

Let us compare our equation with the Dirac equation [6, formula (43.16)]

Py +M 0 P, P, —iP)\ su,
0 Phb+M P +iP, —P; U)oy
Py P, —iP, P—M 0 Uy
P, +iP, —P; 0 Py—M Us
In the rest frame of reference, the three components of momentum are zero and the equation is
simplified
Py +M 0 0 0 Ug
0 Py, +M 0 0 U\ _ 0
0 0 Po—M 0 Uz
0 0 0 Py—M/ \u3

That is, in the rest frame the Dirac equation and the spinor equation analyzed by us look
identically and contain a diagonal matrix. The corresponding problem on eigenvalues and
eigenvectors of these matrices has degenerate eigenvalues, which correspond to the linear space of
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eigenfunctions. In this space, one can choose an orthogonal basis of linearly independent functions,
and this choice is quite arbitrary. For example, in [[8], formula (2.127)], solutions in the form of plane
waves in the vector space have been proposed for the Dirac equation in the rest frame

ut(0) exp(—iMt)

v!(0) exp(+iMt)
and the following spinors are chosen as basis vectors

1 0 0 0
w©@=(g] @¥@=(5] v@=(%] »©@=()
0 0 0 1
For transformation to a moving coordinate system in [[8], formula (2.133)] the following formula
is used
P! (X) = u'(P) exp(—iPX)
YHX) = vi(P) exp(+iPX)
where
1 1 P,
19 P ° iP Po + M
Py+M 3 Py+ M| f1— U7 Po+M| p, +ipP
1py = |-2 —_— 2(py = |-° S 1p) = |2 1 2
w'(P) o | Potm | WP ol | Porm | VP 2M | Box M
Pl + lPZ _P3 1
P, +M Py + M 0
P, —iP,
Py + M
Py+ M —
v:(P) = |2 Ps
2M | P+ M
0
1

The basis spinors form a complete system, that is, any four-component complex spinor can be
represented as their linear combination and this arbitrary spinor will be a solution to the problem on
eigenvalues and eigenfunctions in a resting coordinate system. The choice of the given particular
basis has disadvantages, because if to find a four-dimensional current vector from any of these basis
functions

1
Ju = E(ul(O))TS#ul(O)

then this current in the rest frame of reference

11
T -
J (2’0'0’2)

has non-zero components, and the square of the length of the current vector is zero. It turns out that
a resting electron creates a current, which contradicts physical common sense.

Since we have freedom of choice of the basis, it is reasonable to choose the spinor for the wave
function as some set of momentum spinor components, for example

|)

N %
u(0) = \/; Do
D1

An exhaustive list of 16 spinors of this kind, each corresponding to some particle of the fermionic
field, is given in the last section of the paper. The proportionality factor is chosen so that in the rest
frame the zero component of the current is equal to the charge of, for example, an electron or a
positron.

The mass of electron m = p;p, — p3p, and the phase of the plane spinor wave
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exp(pTZMMx) = exp(PoX; — P1Xo + P2X3 — P3X2)

do not change at rotations and boosts. The matrix on the left side of the equation does not change
either, remaining diagonal with m? on the diagonal.
For a fermion, which can be an electron or a positron in the rest frame takes place p' =

(Po» P1, P1, —Po), so the quantity
m = p;p; — P3sPo = P1P1 T+ PoPo

which, unlike the mass M in the Dirac equation, is complex in the general case, is also real for the
fermion and can be positive or negative. For simplicity it is possible to consider the mass of the
electron as negative and that of the positron as positive.

For the momentum spinor of a boson, such as a photon, it is true that pT = (p,, p1, o, P1), S0 its
mass is zero

m = p1P; — P3Po = P1Po — P1Po =0

The given constructions are not abstract, but describe the physical reality, since the results of the
processes occurring in the spinor space are displayed in the Minkowski vector space. In particular,
the momentum vector corresponding to the momentum spinor has the following parameters

1 t
B, = ETr[pp Syl
the square of the length is equal to the square of the mass of the electron or positron
Py — P2 — P> — Py* = m?

A spinor wave function Y(xy,x;,x,,%x3) at some point in spinor space can be given a
probabilistic interpretation by establishing its correspondence with the vector wave function
W(Xo, X1, X2, X3)

1
Yy =S Trbw's,]
taking its values in the corresponding point of physical space with coordinates

1
X, = ETr[xx*Su]

We act within the classical concepts of quantum mechanics, simply to describe the state of a
physical system we use spinor coordinate and momentum representations along with vector
coordinate and momentum representations. Both types of representations equally have the right to
be more substantial and in principle there is no need to express the wave function in one
representation through the wave function in the other, both wave functions equally describe the same
physical state. Moreover, since vector coordinates and momenta are simply expressed through spinor
analogues, we would prioritize the spinor representations as the more fundamental ones.

Let us summarize the relations between quantum-mechanical quantities for the spinor space

xT = (%, %1, X2, X3) RT = (R, R, %2, %3)
T — /A A A A

p" = (po, P1, P2, P3) P = (Do, D1, P2, P3)

(P, X) = PoX1 — P1Xo + P2X3 — D3X;

(P, X) = DoX1 — P1Xo +P2X3 — P3X;
The complete orthonormalzed system of eigenvectors of the momentum operator
plp) = pIp)

ﬁa|p> = Pa|P)
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(plp") = @m)*s(p — p")

d*p
J oy P Ple) = oo
- d*p
p(x)(x') = lep)(x)p(pl(x')
. d*p
Pag(x') = me)(x)Pa(Pl(x')

_ [P
) = f G O®IP)

@(p) = (ple)

The complete orthonormalzed system of eigenvectors of the coordinate operator

R|x) = x|x)
X |X) = x4|X)

x|x") = 86(x —x")

fd‘*x X)) (Xl (p) = Lipy(p')
X)) = f d*x X)) X(X] ()
S = | 4% W)

|) =fd4x e(x)|x)

@) = (x|@)

The relation between wave function in momentum and coordinate representations and the
relation between eigenvectors of the coordinate operator and the momentum operator

4

d .
000 = | 52 emel

PX+{PY)

9= [atx oo = [ atx ([ G5 o @) )
= (‘;T’)’ o) ([ dtx e (P2 )
9= [ 5 0@l
p) = [ atx (@D

(le) —e i((P'X)*'(PW)
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The arbitrary choice of the basis of the linear space of the eigenvectors of the matrix takes place
only for a free particle. In the general case the matrix K is not zero, the wave equation has no solution
in the form of plane waves in spinor space and ceases to be invariant with respect to Lorentz
transformations, and the eigenvalues become nondegenerate.

We propose to extend the scope of applicability of the presented equation consisting of
differential operators in the form of partial derivatives on the components of coordinate spinors to
case of a nonzero matrix K

(S™ = K)STW(xg, X1, X2, x3) = M*P(x0, X1, X7, X3)

that is not only to the case of a plane wave, but to any situation in general. This transition is analogous
to the transition from the application of the Schrodinger equation to a plane wave in vector space to
its application in a general situation. The legitimacy of such transitions should be confirmed by the
results of experiments.

This equation will be called the equation for the spinor wave function defined on the spinor
coordinate space. Here the matrix M? is, generally speaking, neither diagonal nor real, but it does
not depend on the coordinates and is determined solely by the parameters of the electromagnetic
field. Only in the case of a plane wave it is diagonal and has on the diagonal the square of the mass
of the free particle. We can try to simplify the problem and require that the matrix M? is diagonal
with the same elements on the diagonal m?, then the equation can be rewritten in the form of the
equation for the problem of search of eigenvalues and eigenfunctions for any quantum states

(5™ = K)S*™(xo, X1, X2, X3) = m*Y(xo, X1, X7, X3)

This approach is pleasant in the Dirac equation, where the mass is fixed and equated to the mass
of a free particle, and at the same time results giving good agreement with experiment are obtained.

We are of the opinion that the spinor equation is more fundamental than the relativistic
Schrodinger and Dirac equations, it is not a generalization of them, it is a refinement of them, because
it describes nature at the spinor level, and hence is more precise and detailed than the equations for
the wave function defined on the vector space.

Let us consider the proposed equation for the special case when the particle is in an external
electromagnetic field, which we will also represent by a four-component spinor function at a point of
the spinor coordinate space

ao(xo, X1, X2, X3)
ay (xo, X1, X2, X3)
a; (xo, Xy, X2, X3)
asz (xo, Xy, X2, X3)

a(xOI X1, X2, X3) =

We will apply to the wave function of the electron the operators corresponding to the
components of the momentum spinor, putting for simplicity the electron charge equal to unity

a
Po =5 - + aog(xq, X1, X2, X3) P1= =5 - + a; (xg, %1, %3, X3)
1 0
d d
D2 FI°N + a, (xg, x1, %3, x3) b3 = — EP + as(xg, x1, %3, x3)
3 2
9] —— o ] —
Do ﬁ"‘ ag(xg, X1, %2, %3) p1 _%"' a, (Xo, X1, X2, X3)
1 0
] = o -
b2 = %"‘ ay(xg, X1, %2, %3) p3 = _%"' az(xo, X1, X2, X3)
3 2

Note that the electromagnetic potential vector can be calculated from the electromagnetic
potential spinor by the standard formula

1 t
A” =Ea S#a
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The advantage of the spinor description over the vector description is that instead of summing
up the components of the momentum and electromagnetic potential vectors as is usually done

1 ; 1 +
PM+AM=§p SMp+Ea Sﬂa

now we sum the spinor components and then the resulting vector is

1 . 1 1. LONDRNR o
E(p+a)SM(p+a)=§pSMp+§pSMa+Ea p+ sa'S,a

in addition to the usual momentum and field vectors, contains an additional term

1 1
—p’rS a+- aJr S.p

taking real values and describing the mutual influence of the fields of the electron and photon.
After the addition of the electromagnetic field the components of the momentum spinor do not
commute, the corresponding commutators are found above

(e ) (o o0) = () ool = i+ 5
0x; %o 0xq % 0xq % 0x; G )§¢ = dx; 0x, 4

(G o) (o o)~ (o) G )} o = G+ 5
0x3 2 Jdx, %2 dx, @ 0x; %2)§¢ = dx; Ox, ¢

Let's find commutators for other operators

a1 _\( o[l __ a1 _\/o[1 __
(v ) (o)~ (-5 ) (G ) o-
a[] a[] a[] af]
(30) (Do) (D)o

<2_2+a_°)< gﬁﬂll‘p) <_Z_Q+a_1><aa—xfl+a_o<p>:

o[l 0@ o[l _ ~ _/ gy o[l o1, . __0¢
a_x_l(_ a_x_o) +apa;p + i (@) +ag (— a_x_o) + = o (axl) aa,p + a—x_o(aofﬂ) T O T
o[l __  __/ agy ol 29
o @)+ T (- 32) + 5 @) - T -
09 __ aa=1 _( 3@) 0p __  0a, 99
e Tt o) tar o o Y T Mo T

doa; 6a0 {aa1 aao}

.’ ox? = ox, Tox,

(ool ) -
o))l

d ip 6[] ®
(a*“o)(‘a—x—()*“lw)‘( 0% +“1)<a_x1+“°"’)_

a / 0p _ ap\ d[l/0p\ __ a[] __dgp
6_x1( axo) +a0aig + o ) (a1<P) + ap (— a_x_o) + a_x_o(a_xl) —aa,p + a—x_o(aoqﬂ) @Gy T
Ja ap a[] do
(3_361 @) +ag (_ ﬁ) — (ao(P) a; 6_x1 =
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dp _ 0@ ( 6<p> o0g 0% P _

o, oy T o) T e T s

6a1 aao _{aa_l aa_o}
axl 6

Further we will use these and analogous relations

(o) (gt o)~ () i+ oo - i+ 5o
(G ) (5 m) - (v ) G o = G+ 5o
(o) () - (3@ (o + o = 5
(o) (5mva) - (~5mvm) (o e = [(-52) + e
(G ) (G )~ (5 ) Z
(G2 ) ()~ (- ) (G ) = (i e
(- (-5 ) () (5 e) (- ) Jo = (G

Earlier, by giving absoluteness to the requirement of invariance of the mass squared to the

dx, a—x_o

Lorentz transformations, we obtained a system of equations for interacting fields in electrodynamics
in the case when these fields exist in vector space. But we can apply this approach to interacting fields
in spinor space as well. Let us analyze again the formula

al da,

(po + ag)(p1 +a) — (P + a)(Po + a) = + EPN
0

If we deal with the field of a free particle, then

PoP1 — P1Po = 0

But since we want to make the invariance principle absolute, we require commutability also in
the presence of the electromagnetic field

(po +ag)(p1 +a;) —(p1 + a1)(Po + ag) =0

This can be achieved if we take into account the dependence of the momentum spinor
components on the coordinates and impose the condition

o(py +ay) N (po + ao) _ (% %) (aal aao) —0

dx, dxg dx; 0x, a_x1 a

As in the case of vector space, we can treat in the spirit of Newton's law equations of the form

da;, Oda
_ (_1 n _0>

(OB 20
0x, 0x,

0x, 0x,

If an external field is applied, the momentum of the electron field changes, if the momentum of
the electron changes for some reason, the electromagnetic potential is perturbed and an
electromagnetic field is generated.

Earlier we defined a matrix of switches
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/[mﬂ — Dbl [P1Po — Popil 0 0
K = [PoP1 — P1ipo]l  [PoPo — PoPol 0 0
\ 0 0 [p:P1 — Pipa]  [paBo — Popi] /
0 0 [PoP1 — P1po]  [PoDo — Dopol
[psPs — Psps]  [psPz — P2psl 0 0
+ [p2P5 — D3p2] [p2Dz — P2p-] 0 0
0 0 [psPs — P3ps]  [p3Pz — P2ps]
0 0 [p2Ps — P3p2] [p2P2 — D2p2]

and noted that for a free particle it is equal to the zero-point matrix. We can require that this matrix
is zero also in the presence of an arbitrary field. Absolutization of this requirement gives us an
additional set of equations, besides the main one (for example, the Dirac equation), to describe the
interaction between the field and the charged particle in the presence of spin. It is guaranteed that
the basic equation remains true both for a free particle and for a particle in an external field.

We will not use the given considerations further in the paper, leaving them as an idea requiring
a separate consideration.

Let's solve the equation

(™= K)S*W(xg, X1, %2, %3) = lell(xo'xpxz'xs)

Yo (X0, X1, X2, X3) Yo (X0, X1, X2, X3)
- Y1 (x0, X1, X3, X3) Y1 (x0, X1, X2, X3)
S™—K)S* = M?
( ) P, (X, X1, X2, X3) P (X, X1, X2, X3)
Y3 (X, X1, X2, X3) Y3 (X, X1, X2, X3)
_60 + al 0
- d; +a T, =\ (A, — 0 — N ==
S = 1 0 0 ((_60 + al), (61 + ao), 0,0) + _ao + a, (0,0, (—60 + al), (61 + ao))
0 61 + Ao
_62 + a3 0
0; +a T\ (A — 0 T\ (A
o ((—a2 +a3),(0; + @), 0,0) +| —9, +a, (0,0(—02 +a3)(0; + az))
0 03 +a,
_(6_1 + a_O) 0
_— 0
S+ = (_600+ al) (— (al + ao), (_60 + al), 0,0) + _(a_l + a_()) (0,0, - (61 + ao)o, (—60 + al))
0 (=0, + @)
(3 + @) 0
— = 0
+ (_620+ a3) (=(05 + a), (=0, + a3),0,0) + —(6_3 + a_z) (0,0, —(03 + a;), (9, + aB))
0 (-0, +a@)
K =
0 —a)(0y— @) — (8o — @) (@ — a1) (=8 + a)(0: + ) — (0, + @) (=8 + a,) 0 0
— (0, + ao)(_‘To + a_l) - (_640 + a_l)(al +ay) (0, + ao)(‘i + a_o) - (51 + a_O)(al +ag) 0 0
0 0 [p1P1 — Pip1l  [P1Po — Popil
0 0 [poP1 — P1po]l  [PoPo — Popol
0, -a3)(0;— @) — (0, — @) (0, —az) (=0, +a3)(0; +az) — (05 + @) (—0, + a3) 0 0
+ (03+a2)(—6_2+al3)— (_0_2+T3)(63 +ay) (03 +a2)(6_3+a'2) _(0_3""1'2)(03 +ay) 0 0
0 0 [psPs —P3ps]  [psbz — P2psl
0 0

[p:05 —P3p2]  [p2P2 — D2p-]
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da; oa; o oa;
S 0x, 0% Oxy 0% 0 0
oa; oa; om,; da, 0 0
_| ox Tox  ox, 0%
oa; oa; odag oag
0 o0 Cox, 0% 0xp 0x%;
0 0 oa; o, oa, 0ag
ox, 0% 0x, 0%
oa; o0a; oa; om
S ox, 0x; Ox, 0% 0 0
oa; oa, oa, og, 0 0
L 9 0m on 0%
oa; o0a; oa; om
0 0 Cox, 0x; Ox, 0%
0 0 oa; o, 0w, 0,
ox; 0%,  0x; 0%

Since the second factor S* in the left-hand side of the equation has a simpler structure than the
first factor, perhaps as a first step we should find the eigenvalues and eigenfunctions of the equation

ST (xg, X1, X2, X3) = lelj(xo,xl,xz,x3)

and use the when solving the equation as a whole.

_ao + al 0
= 0 — N
0, (J)r a ((—00 +a@), (3, +ap), o,o) +| Za, +a, (o,o, (=9 + @), (3; + ao))
- _ 0 d;+a
+| % ;az ((—6_2+a_3), (6_3+a_2),0,0) + _az(l o (0,0,(—6_2+a_3)(6_3+a_2))
0 03 +a,
—(0, + @) 0 \
(_6_2"“1_:) —(¢0+a¢) ( %+a¢) + _0— —<%+alp)+(—%+a¢)
0 ax,  Ho¥o ax, | a¥ -(0 +a) ax, | Jo¥2 ax, Vs
0 (=00 +a) [
—(0; +a3) 0
e Vi oy, 0 oy, o,
) | (G + o) + (-G + ) |+ | @ v m) |- (G +awva) + (-5 + o)
0 (-0, +a3)
—60 + a1
_ _| 0,+a da,  Oday 0, Y,
=T (a—x_1+6—x_0)< (o + aoto) + (-5 + Wl))
0
—0,+a
o 0re (T D)@+ @) + @ + @) (T + 7))~ (52 + ant) + (—%+a¢)
0 2 3 1 0 3 2 0 1 ax 0%0 a 1%1
0
0
0 da, Jdag 0P, 0YP3
)Gz 52) (- (B ) + (- 52 )
0, + ay
0
_ _ _ _ 9
+ —62(-)I— as (—(—52 +@3) (01 + @) + (05 + @) (=00 + a1))< ( olpz) <_0—13/c)3 + a1¢3)>

d; +a,
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-0y + a4 5
+| 9 ?)— a (—(—% +a;)(0; + @) + (0, +a9) (-0, + a3)) ( (— + azwo) (—a—fl + a3¢1)>
0
o2t oy o
a a
ol e ) oo 5 (- (Gl ) (- 52 4 auns))
0
0
H ook o, |CCR+@) @+ @) + (@ + @) (-7, + @) (— (G224 agpe) + (- 52+ asws))
0, + ay
0
d 0 0
oy | Gzt 5) (- (G ) o (- 52 4 o)
0; + a,

Let's calculate the expressions included in the equation
(~(-0+ @) (@ + @) + (35 + @) (=0, + @) ) o =
(03 + @) (=00 +@)e — (=9, +@)(91 + o) =

. 0p — _\(99 __
(05 +a3) (_B_x_o + algo) — (-0, +a3) <a_x_1 + aogo) =
95 9% 97 95
03 (_ 6—> +0;(arp) + @ (_ 6—) +@a 9 + 0, (6 ) ( 62)(a0(p) - ‘135 — Wz =

_/ 3\ da 0@ Y, ¢  da Y
7] (——_> —a,=—+ a,a; d <—_) a, a3 =— — Az3a5Q =
\"ox +6 @ —a ax0+a2a1‘ﬂ+ 2\ 3%, t+ ag 6x2+6 o - a3ax1 azaop
3 (6<p> a_(aq')) [8a1 aao dp __ 0@ +_6</‘J __ 0@
2ox) 26 s Tanl Y T Yan  Pax T Yo Bon

It would be interesting in this context to consider for the presented spinor model the case of a

+ (aza; — azaqs) e

centrally symmetric electric field and to find solutions of the spinor wave equation for the hydrogen-
like atom, taking into account the presence of spin at the electron. For such a model we can take

ay = —l— a, =—= a, = — a; = —i

R

2 2 2

= \/(% (Xox1 + X1x0 + Xx3 + x_3x2)> - <% (=XoX1 +X1xo — XXz + x_3x2)> + (% (Xoxo — X1y + XX — x_3x3)>

As mentioned above, we can substitute into the equation the already known exact solutions of
the Dirac equation for the hydrogen-like atom by expressing the components of the coordinate vector
and derivatives on them through the components of the coordinate spinor and derivatives on them.
It is likely that the solution of the Dirac equation would not make the spinor equation an identity; it
would be evidence that more arbitrary assumptions are made in the Dirac equation than in the spinor
equation, and that the latter claims to be a better description of nature.

We can also consider the case of a constant magnetic field directed along the z-axis

1 1
__B3X2 Az = _B3X1 A3 =0

Ay =0 A=
0 1 2 2

X = E(%% + X1xo + XpX3 + X3X3)
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1
X, = E(—Lx_ox1 + X% — iX3x3 + iX3x;)

1
A = E(a_0a1 +aia, + a@za; + aza,)
1 - — # — #— —
A, = E(—laoa1 +ia;ay — iaa; + iaza,)

1
Ay = > @ao + aja; + aza, + aza;)

1 __ _ _ _
Az = E(aoao —a;a, + aza, — azaz)

Let's say

ay = iX1/B3/2 ay; = —Xo/B3/2
a, = ix3+/B3/2 az = —Xz/B3/2

1
Ay = 133 (ix,Xg — iXoXy + iX32x, — IX5X3) = _§B3X2
1 _ . _ 1
A2 = ZBS (xle + x0x1 + X3x2 + xe3) = EB3X1
1 _ o _ _ 1
AO = 133(x1x1 + XoXo + X3X3 + xeZ) = EB3t

1 _ _ _ _
Az = 133(9‘1951 — XoXg t X3X3 — XpX3) = §B3X3

We see that the scalar potential A, grows with time, but does not depend on spatial coordinates,

and the vector potential does not depend on time, so that there is no electric field. In this case
da; Oda; da, OJa;

dx, 0Xx, 0x, O0xq 0 0
da; OJa, da, dJa, 0 o
co| TR
da; Jda; da, OJa;
0 0 Cox, 0% 0xy 0%
0 o da; da, da, OJa,
ox, 0%, 0x, 0%

da; da; 0da; 0a;

Tox, 0% ox, 0m 0 0
o 0@ Oda; 0 0 0
| =T e _
iz om; om, 0
0 0 Cox, 0%, Ox, 0%
0 0 da; 0w, Oda; 04y
ox; 0% Oxg 0x
3 1 0 0 O 1 0 0 O 1 0 0 O
(5 e Qo3 2 O)-vm(h e g
0 0 0 —i 0 0 0 —i 0 0 0 —i

The equation considered up to now is rather cumbersome, therefore we would like to have a
simpler and compact relativistic invariant equation for the fermion, taking into account the presence
of a half-integer spin. Such equation really exists; its derivation is given in section 4 of the paper. Here
we will give its form for the electron in the presence of the electromagnetic field
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(SR+ SR+ Sz +5z —4(m+m))e(x) =0

where
—(=0; + a3)
- é)3 2
st = (—(60 I Zlg ((61 +a), — (=0 + ay), (03 + ay), —(—0, + a3))
(9, + ao)
—(=0o + ay)
—(0
_ (—(al N ZS (05 + ), — (=0, + a3), (0 + ag), — (=0, + a))
(03 + a;)
(=00 +ay)
+ (g:ﬁi) (05 + ap), — (=0, + a3), —(3; + o), (=9 + a;))
(05 + ay)
(=0, + a3)
((_ago-i-_l_a;z) ((al + ao); _(_60 + al), —(63 + az), (—62 + a3))
(0, + ao)
(9, + ao)
Sg = _E;3aizzc;1)> (_(_62 +a3),—(0; + ay), (—dy + a,), (0, + ao))
—(=0; + a3)
(05 + ay)
—(-d
- < Eal 120633) (=(=00 + a1), —(01 + ao), (=0, + a3), (03 + a;))
—(=00 + ay)
(05 + ay)
—(-d
" ((012++aao§)> (=00 +a1), (9, + @), (=02 + a3), (35 + az))
(=00 +ay)
(0, + ao)
__((_(3(ZO++aCS) ((=0; + a3), (05 + a3), (—9, + a;), (9, + ay))
(=0, +as3)

In general case electric and magnetic fields are expressed through partial derivatives of
components of the vector potential by components of the space vector. We also can find the
expression through these fields for the derivatives of the spinor components of the electromagnetic
potential by the components of the coordinate spinor. To do this, we first find all derivatives

d4A, 04, 0X,
dx, 0X, d0x,

then express the components of the vector potential through the components of the spinor potential,
substitute the components of the electric and magnetic fields instead of the derivatives of the
components of the vector potential by the components of the coordinate vector, and then find the
required derivatives from the resulting system of linear equations.
From general considerations taking into account the substitutions

o0 oD

Po 0%, D1 9%,
it is possible to write the commutation relations for the components of the momentum spinor and
functions from the components of the coordinate spinor
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am_1[ _]_1 o
% c ®,Po] = C(<ppo Do®)
_ . 0%,
[x1,D0] = (x1Po — Dox1) = Ca_x_1 =c

[X1,p0] = (X1Po — PoX1) = C

ool 1[ — 1
o g @l =g @p = Pig)
_ . X,y
[x0, P1] = (xoP1 — P1xo) = —da—_ =-—d
Xo

(%0, p1] = oy — p1 %) = —d
All other combinations commute with each other. The constant coefficients ¢ and d possibly
include a minus sign, an imaginary unit and some degree of the rationalized Planck’s constant.
Let's return to the relations

POZ—Plz—PZZ—P32=TTlm=m2
P1D2 —PoP3 =M PP, —PopP3s =M

(P1P2 — PoP3) (P1P2 — DoP3) = Po2 - P12 - P22 - Pz2 = mm =m?
In this form they are equivalent, but if an external field is added, a difference arises, since in one
case the field is added at the vector level and in the other at the spinor level

(PO_AO)Z_(P1_A1)2_(P2_Az)z_(P3_A3)2 = m?

(1 — a)) (P2 — a2) — (o — @o)(Ps — a3))((P1 — @) (P2 — @2) — (Po — Qo) (P3 — a3)) = m?
These relations correspond to differential equations including the relativistic Schrodinger

equation

0? 0? 0? 0?
<0X 2 9X.2 - X2 - ax 2) ©(Xo, X1, X5, X3) = m2¢(X0;X1;X2;X3)
0 1 2 3

0 0 Ja 9

(a_xla_xz - 6_x06_x3) @ (Xo, X1, X2, %3) = m @(xg, X1, X2, X3)

ool _atlatl) ) = o )
0%, 0%, 0%, 0%, P X, X1, X2,X3) = M P(Xg, X1, X2, X3

af190]1 _oM120] (ii_ii) (X, %1, Xy 23) = M2 (g, X1, X 2s)
0%, 0%, 0% 0%, ) \Ox, dx,  0xg 0xy) & 01 X0 X3 ¢ %0, X1, %20 X3

The corresponding inhomogeneous equation is

a[1a[1 o[lo[1\; 0 o a d ) B
(o amom) Gy~ avang) ™ o0 =00

where the delta function can be represented as

d* )
6(){) = p el(Pox1—P1x0+P2X3—P3xz+(Pox1—P1xo+P2x3—Psxz))
(2m)*

has a solution

d4p e i(pox1—P1X0+P2X3—P3X2+(PoX1—P1X0+P2X3—D3%X2))

p(x) = )t (P1D2 — PoP3) (P1D2 — Pop3) — M?

For a free particle the eigenfunctions and eigenvalues solving these equations should coincide,
but in the presence of an external field the eigenvalues and the corresponding eigenfunctions will
differ because of the above mentioned difference in summation in one case of vector components and
in the other case of spinor components.
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While the Dirac equation is sometimes referred to as extracting the square root of the Klein-
Gordon equation, here we see a different way of doing it.
Let us check the truth of the relation

(P1Pz — PoP3) (P1P2 — PoP3) = Po2 _Plz _Pz2 _P32
4(PoPy — PyP; — P,P, — P3P3) =
= (Pobo + P1P1 + D2P2 + P3P3) (PoPo + P1P1 + P2P2 + P3P3)
— (Pop1 + P1Po + P2p3 + P3p2) (Pob1 + P1Po + D2P3 + P3P2)
+ (=PoP1 + P1Po — P2P3 + D3P2) (—DoP1 + P1Po — P2P3 + P3D2)
— (Popo — P1P1 + D2P2 — P3P3) (PoPo — P1P1 + P22 — P3P3)
(PoPo + P1p1 + P2p2 + P3p3) (Popo + P1p1 + D2P2 + P3p3)
— (PoPo — P1P1 + P2P2 — P3P3)(PoPo — 1Py + P2P2 — P3P3) =
= PoPo(P1p1 + D22 + P3ps) + Dip1 (oo + D22 + P3P3) + D2p2(PoPo + PiP1 + P3P3)
+ D303 (PoPo + P1P1 + P2P2) — PoPo(=P1P1 + P2P2 — D3p3) + P1p1(Bobo + P2P2 — PaPs)
— P202(DoPo — P1P1 — P3P3) + D3Pz (PoPo — D1p1 + D2D2)
= PoPo(P1P1 + P3p3) + P1p1(PoPo + D2P2) + D202 (P1P1 + P3Ps) + P3ps(PoPo + P2P2)
— DoPo(—=P1P1 — P3P3) + P1P1 (PoPo + D2P2) — P2p2(—P1P1 — D3Ps3)
+ P3p3(PoPo + P2P2)
= PoPo(P1P1 + P3p3) + P1p1(Bobo + P2p2) + D202 (P1p1 + P3p3) + P33 (Bopo + P2p2)
+ Dobo(P1p1 + P3p3) + P11 (PoPo + P2P2) + P2P2 (P1P1 + PaPs) + Paps(PoPo + P2P2)
—(@op1 + P1Po + P2P3 + P3p2) (Pop1 + P1Po + D2P3 + P3p2)
+ (=PoP1 + P1Po — P2P3 + P3P2) (—PoP1 + P1Po — P2P3 + P3p2) =
= —PoP1(P1Po + P2P3 + DsP2) — Pipo(Pop1 + P2p3 + P3P2) — P23 (DoP1 + PiPo + Psp2)
— P3P2(PoP1 + P1Po + D2P3) — PoP1(P1Po — P2P3 + P3p2) + P1po(—PoP1 — P2P3 + P3P2)
— P2p3(—Pop1 + P1Po + P3b2) + P3p2(—Pop1 + P1Po — P2P3)
= —PoP1(P1Po + P3P2) = P1Po(PoP1 + P2P3) — D203 (P1Po + P3P2) — PaP2(PoP1 + P2P3)
= Dop1(P1po + P3P2) + P1Po(—PoP1 — P2P3) — P23 (+P1po + P3P2)
+ P3p2(=PoP1 — P2P3)
4(PoPy — P1P, — PP, — P3Ps) =
= Dobo(P1p1 + P3p3) + P1p1(Popo + P2P2) + P22 (P1p1 + P3p3) + P3ps(Popo + P2p2)
+ PoPo(P1P1 + P3p3) + P1P1(BoPo + P2p2) + D202 (P1p1 + Pap3) + Pap3(PoPo + P2p2)
— PoP1(P1Po + P3p2) — P1Po(PoP1 + P2p3) — D2p3 (1o + PaP2) — P3Pz (PoP1 + P2p3)
= DoP1(P1Po + P3P2) + P1Po(—PoP1 — P2P3) — P2P3(P1Po + P3P2)
+ D3P2(—PoP1 — P2P3)

To obtain this result, we did not have to make assumptions about commutability of the spinor
components among themselves. Accordingly, a similar expression takes place for the phase of a plane
wave in vector space

4(PoXo — P1X1 — P,X; — P3X3) =
= PoPo(X1x1 + X3x3) + P1p1 (XoXo + Xzx) + P2p2 (X1X1 + X3x3) + Paps (Koxo + Xzx2)
+ DoPo (¥1x1 + X3X3) + P11 (XoXo + X2%2) + P2p2 (X1 %1 + X3x3) + D3ps(Xoxo + Xzx2)
— Dop1 (X1X0 + X3X2) — P1Po (Xox1 + Xzx3) — P2p3 (X1 %0 + X3x2) — Pab2 (Xox1 + Xzx3)
— Pop1 (41 xg + X3x2) + D1po(—Xox1 — Xzx3) — P2p3(X1Xo + X3x3)
+ D302 (—Xox; — X3x3)

Further we assume that the components of the momentum spinor commute, which takes place

for a free particle, then we obtain
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4(PyPy — PyPy — PP, — P3Ps) =
= PoPo(P1P1 + P3P3) + P11 (Pobo + P2p2) + P22 (P1p1 + Psps) + Psps(@opo + P2p2)
+ DoPo (P11 + P3p3) + P1P1(PoPo + P2p2) + P2p2 (P11 + P3p3) + P3ps(Pobo + P2p2)
— PoP1(P1Po + P3P2) — P1Po(PoP1 + P2P3) — P2P3(P1Po + P3P2) — PsP2(Pop1 + P2P3)
— Pop1(P1po + P3P2) + P1Po(—Pop1 — P2P3) — P2P3(P1Po + P3P2)
+ D302 (—Pop1 — P2P3)
= 2PoPo (P11 + P3p3) + 2P1p1 (PoPo + P2p2) + 2P2p2 (P1P1 + P3ps) + 2P3p3(PoPo + P2P2)
— PoP1(P1Po + P3P2) — P1Po(PoP1 + P2P3) — P2P3(P1Po + P3P2) — PsP2(Pop1 + P2pP3)
— PoP1(P1Po + P3P2) + P1Po(—PoP1 — P2P3) — P2Ps(P1Po + P3P2)
+ D3p2(—PoP1 — P2P3)
= 2Popo(P1P1 + P3p3) + 2P1p1(PoPo + D2P2) + 2P202(P1P1 + P3Ps) + 2P3p3(PoPo + P2P2)
— 2pop1 (P1po + P3p2) — 2P2p3 (B1po + D3p2) — 2Pop1 (P1Po + D3p2)
— 2p2p3(P1po + P3P2)
= 2PopPo(P1p1 + P3P3) + 2P1p1(PoPo + D2p2) + 2P202(P1P1 + PaPs) + 2P3p3 (Popo + P2p2)
— 2pop1 (P1Po + P3P2) — 29203 (B1Po + P3P2) — 2Pop1 (Prpo + P3p2)
— 2p2p3(P1po + P3P2)
= 2PoPo (P3P3) + 2P1p1(B2p02) + 2202 (B1p1) + 20303 BoPo) — 2PoP1 (B3D2) — 20203 (PiPo)
— 2pop1(P3p2) — 2P2P3(P1Po)

= 4Popo(P3P3) + 40101 (D2P2) — 4Pop1 (D3P2) — 4P203(P1P0)
On the other hand, we can write

mm = (p1p2 — PoP3) P1P2 — PoP3) = P1D2P1P2 — P1P2PoP3 — PoP3P1P2 + PoP3PoP3

Thus, the results of calculations coincide.

Let us compare the phases of plane waves in vector and spinor spaces. Let us hypothesize that
the plane wave in spinor space has a more complicated form than it was supposed earlier in the
paper, namely, it contains an additional conjugate multiplier

exp (_i (PoX1 — P1Xo + D2X3 — P3X2) (PoX1 — P1Xg + P2X3 — P3x2))

The phase of the wave in this form is closer to the generally accepted phase of a plane wave in
vector space. But the phases calculated by two methods do not coincide with each other, although
both of them are invariant under Lorentz transformations

(PoX1 — P1Xo + D2X3 — P3X2) (PoX1 — D1Xo + P2X3 — D3Xz) # PoXo — P1X;y — PX; — P3X5

Let us slightly modify the expression for the phase of the plane wave
( 0 0 0 0

dx; 0x, a_xoa_x3) exp[(PoX1 — P1xXo + P2X3 — PaX2) (PoX1 — PiXo + PaX3 — P3Xz)] =

((_P3)P0(Pox1 — P1Xo + D2X3 — P3Xz) (DoX1 — DP1Xg + P2X3 — P3X2) + Py
= P2(=p1) (PoX1 — P1Xo + P2X3 — P3X2) (PoX1 — P1Xo + P2X3 — P3X3) — P1)
exp[(poX; — P1Xo + DXz — P3X3) (PoX1 — D1Xo + P2X3 — D3X2)]

= ((=p)pof GOF ) +po — 2 (—p)F I (X) — 1)

exp[(Pox1 — P1Xo + P2X3 — P3X2) (PoX1 — D1Xo + P2X3 — P3X2)]

= ((Pzpl — pspo) f R f(X) + po — P1)
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exp[(PoX1 — P1Xo + D2X3 — P3X2) (PoX1 — D1Xo + P2X3 — D3X2)]
where
f(X) = (pox1 — P1Xo + P2X5 — D3X2)
Let’s change the order of derivatives
( Jd 0 Jd 0

ox, 0%, - 6_3630_%) exp[(pox1 — P1xo + D2X5 — D3%2) (PoX1 — P1Xo + P2X3 — P3X2)] =

(Po(—P3)(PoX1 — DP1Xo + P2X3 — P3x2) (PoX1 — P1Xo + P2X3 — P3Xz) — P3
= (=pV)P2(Pox1 — P1Xg + P2X3 — P3%X2) (PoX1 — P1Xo + P2X3 — P3X2) + P2)
exp[(pox1 — P1Xo + P2X3 — P3X2) (PoX1 — P1Xo + P2X3 — P3X2)]
= (Po(_P3)mf(X) — b3 — (_pl)sz(x)m + pz)
exp[(pox1 — P1%o + P2X3 — P3X2) (PoX1 — P1Xo + P2Xs — P3Xz)] =

= ((pﬂ’z - P0p3)f(x)m —p3+ pz)

exp[(pox1 — P1Xo + PaXz — P3X2) (PoXy — P1Xo + P2Xs — P3X2)]
and write the difference of the two equations

< ad o0 ad d ) ( ad 0 ad d )
0x; 0x, 0xy0x3 0x,0x; 0x30x,

exp[(oX; — P1Xo + P2X3 — P3X2) (PoX1 — P1Xo + D2X3 — P3Xz)] =

[((P2p1 - p3po)f(x)m +po— P1) - ((pﬂ’z - P0p3)f(x)m —pst pz)]

exp[(Pox1 — P1Xo + P2X3 — P3X2) (PoX1 — D1Xo + P2X3 — P3X2)]
= [po — P2 + 3 — P41}

exp[(pox1 — P1xo + P2X3 — P3X2) (PoX1 — Pr%Xo + PaX3 — P3X,)]
Add an imaginary unit to the phase

( a o0 ad o0 ) ( ad o0 Jd d )
0x, 0x, 0xy0x3 0x,0x; 0x30x,

exp[—i(pox, — P1Xo + P2X3 — P3X2) (PoX1 — D1Xo + P2X3 — P3Xz)] =

= [(=@2p1 = P3P fRF &) = o + iP1) = (=(P1p2 = PoP3) R F (X) + ips — ip,)]
exp[—i(poxy — P1Xo + PaX3 — P3X2) (PoXy — P1Xo + P2X3 — P3Xa)] =
= i[p = po + 1 — 3]
exp[—i(pox1 — P1%o + P2X3 — P3X3) (PoX1 — P1Xo + P2X3 — P3xa)]
Thus, we obtained a differential equation with an eigenvalue independent of coordinates
ilp; = po + 1 — sl

to which corresponds the eigenfunction

exp[—i(poxy — P1Xo + D2X5 — P3X2) (PoX1 — P1Xo + P2X3 — P3x2)]
which is a plane wave with imaginary phase and bounded amplitude.

Now we can define the function

d4p exp[—i(pox1 — P1Xo + DP2X3 — P3X2) (PoX1 — D1Xo + P2X3 — P3X2)]
(2m)* i[p, — po +p1 — D3]
which satisfies to equation

D(x) =

where
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d*p .
o(x) = f@exp[—l(poxl — P1Xo + D2X3 — P3X2) (PoX1 — DP1Xo + P2X3 — D3X2)]

thus, D(x) has the properties of the Green's function.

4. Path Integral and Second Quantization in Spinor Coordinate Space

Based on the above, we can modify the theory of the path integral. We will consider it in the
notations in which it is presented in [9]. For a free scalar field with sources J(X) the path integral has
the form

20) = [ Do) exp(is @0 = [ Do) exp (i | d*X TP +100PCOD)

= [ pocoem i [ ex{3((52) - (52) - (22) - (52) - meor)
+](X)<p(X)}>

It includes the action of
S = [ EXLE) +IXpX)

and the Lagrangian density for the free field

ct000 =3((z) (3 (5 (G —rewcor)

For convenience and clarity, the following notations are introduced
(09)* = 0,900"p = n""0,90,¢ = (99)* = (0:9)* — (0,0)* — (330)*

() -G8 -Ge) -G
—\ax, X, X, X,
d

d, = —
s X,

For the general case the Lagrangian density has the form
1 2
L)) =5 (09 ))" - V(e (X))

where V((p (X))—polynomial over the field ¢(X).
Substituting the Lagrangian into the Euler equation

6L 6L

% 5Gu) b9 "

the field equation of motion is obtained.
The free field theory is developed for a special kind of polynomial

1
V(@) = 5m*e?

1
L(p) = 5[(0p)* —m?¢?]

0L _10(9)* _15[(009)” = (019)* ~ (320)* = (0:9)") _  18(3u0)” _
5(0u9)  26(0,0) 2 539 T28@)
5L 1 ,60° 5
o]

In summary, Euler's equation defines the equation of motion
90(909) — 06(Bo9) — 05 (8op) — 0y (8pp) + m*p =0
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05p —0fp — 059 — 059+ m?@ =0
0%¢p = 05 — 07 — 03¢ — 0%
29 +mip=0
02+ m*)p =0
The notations used here are
0%¢p = 05 — 07 — 03¢ — 0%
9% = 02 — 92 — 92 — 2

Thus, there is a correspondence of the Lagrangian and the equation of motion for the free field

1
L(p) = 7[(800 )" = (210 0)” = (8:0(%)) ~ (359 (X)” ~ m2p(X)?]
£(9) = 5[09)* ~m*g?]

1
L(p) = E[(amp)z — (0,90)? — (0,9)* — (039)* — m?¢?]

95 p(X) — 01p(X) — 079(X) — 039 (X) + m?p(X) = 0
Our proposal is to replace the Lagrangian in vector coordinate space by the Lagrangian in spinor
coordinate space. For this purpose, we use the equation of motion in spinor coordinate space and we
want to find the Lagrangian for which the Euler equation defines this equation of motion
( a 0 0

ad
%, 0%, 9%, 0% 5) 00 +mo () = 0

(0,0, — 0403)(x) + mp(x) =0
,_ oL 8L _
H8(0,0(x) Sp(x)

For the sake of clarity, we use the same notation for the spinor coordinate derivative as for the

vector coordinate derivative; the context allows us to distinguish between them
P d
u
0xy

et us write the Lagrangian plus sources in the form

1
Lipx)) = 71010(09:0(0) = 8,9 ()39 ()] = V(9 () + (X))

And let's substitute the Lagrangian into the Euler equation
P 0L +a 0L +a oL +a 6L 6L
°6(0) 160 768(9)  8(d) b

1 oL
2 [_60(03‘P(X)) + 0;(0,9 (X)) + 0, (01 9(%))— 63(60(P(X))] - % =0
For the case of a free field the derivative operators commute, so we can write

6L
7220() ~ 202000 — () = 0

(6 a d 6) ) ( )_0
axlaxz 6x06x3 pux h

(i)

0x4 0x, E)xo 0x;

It is pleasant that the Euler equation in invariant form works also in this situation, so that we
obtain the desired form of the equation of motion in the spinor coordinate space. It is important that
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the proposed Lagrangian has a relativistically invariant form, even in the general case, and not only
at commuting derivatives. The polynomial has the form

V) = 3mp0* + 5 9 + T o +
2 3! 4!
In the case of a free field we restrict ourselves to the first term of the polynomial
1
V(p) =5 me(x)*

Then the Lagrangian density and the equation of motion for the scalar field in spinor coordinate
space have the form

1
[0, 0(x)0, 9 (x) — 0y (X) 039 (x))] — 3 me(x)?

N| =

Llpx)) =

1
5(6162 + 0,0, — 0903 — 0300)(X) + mp(x) =0
For a free field when the derivative operators commute, we obtain
(010, = 0903)9(x) + mo(x) = 0

In the spinor equation of motion there is a plus sign before the mass, although in the rest of the
paper there was a minus sign. To return to the minus sign it is enough to put a plus sign in front of
the polynomial V(¢) in the Lagrangian.

Now we have to find the path integral, which, along with the Lagrangian, includes the sources

2G) = [ Do exp (i [ a*x(2ip@) + 7090 00))
_ 1 1
— [ o exp (i | a*x{510:0000,00 ~ D000, - 5 mp(?

+@0))

The components of spinors are complex, and we have already noted that the derivatives on
complex variables are applied to the degree functions, which, most likely, can describe physical fields,
respectively, the finding of an indefinite integral for the function of a complex variable can be treated
similarly, i.e. as an indefinite integral from the degree function.

It is possible to recover Planck's constant, which provides a transition to the classical limit

2) = [ Do e (5 [ 220 )

One of the steps in computing the path integral in [9] is to find the free propagator from Eq.
—(0*+m*))DX-Y) =6(X-Y)
the solution of which has the form
d4p e IPX-Y)

DX-Y) =
( ) (2m)* P2 —m? +ic

herewith
d*r .
vy — iP(X-Y)
5X-Y) f(zﬂ)4e

In our case, we want to find

. [ 1 .
2G) = [ Do exp (i [ @*x {5 10000000 — 200 (306N - 5 me ) + 9]
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After integration by parts by analogy with [[9], Chapter 1.3] we obtain for the special case of a
free field

1
2) = [ Do exp (i [ d*x{- 50091:0, - 2,0,) + mlp) + /()
In the process of calculation, it is necessary to find the solution of the equation
—(010; = 0p03 + m)D(x —y) = 6(x —y)
For this purpose, we pass to the momentum space by means of the integral transformation
d*p .
= | ——— l(Poxl—P1x0+P2x3—P3x2+(PT))
060 = [ bz omde

The assumed propagator has the form
d*p 2i(Po(x1=-y1)=P1(x0=Y0) +P2 (x3-¥3)~P3 (x2=¥2) +(p.X~Y))

D(x~—y)=
(2m)* (p1p2 — Pop3) —m
which is verified by substitution into Eq. Here it is assumed that the representation of the delta
function
5( ) J. d*p i(po(x1=y1)—P1(X0~Y0) +P2(¥3=¥3)~P3(x2~Y2)+(P.Xx~¥))
X—y) = e .
7T ) ey

We added a conjugate phase to the exponent
(p,X) = PoX1 — P1Xo + P2X3 — D3X;
which, on the one hand, provides convergence of the integral, and on the other hand, it does not affect
the result of differentiation on variables x,.

We note at once that there is no simple correspondence between the so defined phase of a plane
wave in spinor space and the phase of a plane wave in vector space, e.g.

— 2
(Po(xl = ¥1) —p1(xo — ¥o) + P2 (x3 —¥3) —p3(x2 —¥2) + (P, X — Y)) # PoXog — P Xy — P,X; — P3X5

but both parts of the inequality are invariant under Lorentz transformations.
One can see the difference between the propagators, since in one case m? is real and positive,
while in spinor space m is complex in general. We can use the relation
1 _ (p1P2 — PoP3) + _ (P12 — Pop3) + ™
(P1p2 —Pop3) — M B ((P1P2 —Ppop3) + M )((Pﬂ’z —pop3) —m ) - P2-m?+ (m —m)(p1p2 — Pop3)

_ (p1p2 —pops) + M
- P2 — m?

where
P? = pZ—P?— P} —P?

in which it is taken into account that the fermion mass is real. Now the propagator has the form

4 (01 — 1) 4+ W S
D(x) = d”p (p1p2 p0p3) tm ei(Poxl—Plxo"'szs—Psxz+(P.X))
(2m)* P2 —m?

The derivatives of the scalar field on spinor coordinates can be expressed through the derivatives
on vector coordinates

dp(x) _ 9p(X())

dop (%) = oxg o%g
B 6(p(X(x)) 0X,(x) N 6(p(X(x)) X, (x) N ago(X(x)) 0X,(x) N ago(X(x)) 0X5(x)
09X, ax, X, dx, X, ax, 0X, dx,

09Xy, O0pXy Opix; O0¢ X
09X, 2 90X, 2 09X, 2 0X3 2
dp Xy Op X  0¢ix; 09X

) =
WX =52 Tax, 2 Tax, 2 Tox, 2
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dp Xy 09X, 0¢iX, 0¢ X
X)) =t — = —
X, 2  0X, 2 90X, 20X 2

0px; O0p X3 0@ iX3 09 X;

00 = 5% 2 Tax, 2 Tax, 2 T ox, 2

0p x5 0pX; 0@ ix; 09 X3

00 = 5% 2 Tax, 2 "9X, 29X, 2

If in the right part to represent the wave function as a plane wave in vector space
P(X) = exp(PoXo — P1X1 — PX; — P3X3)

then in the left part it should be represented as a plane wave of a special form in spinor space

p(x) = exp ((P0x1 — P1Xo + D2X3 — P3X2) (DoX1 — P1Xo + P2X3 — p3x2))

Only in this case the left and right parts will be dimensionally consistent, e.g.

0190(x) = (PoX1 — P1Xo + D2X3 — P3X2)Po

Op% _ % 1 __
X, 2 Po— = Z(popo +P1p1 + P2P2 + D3P3) %o
In any case, a complete coincidence will not be obtained due to the mismatch of dimensionless

exponents of the exponents

(Pox1 — P1xXo + P2X3 — P3X2) (PoX1 — P1Xo + PaXz — P3xa) # PoXo — PoXy — P,X, — P3X3

Since we call the field under consideration a scalar field, we expect its value to be invariant to
Lorentz transformations. But how to formalize this statement and to what exactly does this
transformation apply? We propose to consider that the value of a scalar field is the scalar product of
the representatives of a spinor field, which is the most fundamental field in nature, and vectors,
tensors and, among others, scalars are formed from the spinors representing it. The scalar product is
defined by means of the metric tensor of the spinor space. From any two spinors we can obtain a
scalar, in general the complex case. But if we want to obtain a scalar with real values, we must impose
some restrictions on the original spinors. For example, to any spinor u we can correspond a scalar U
taking real values, whose value does not change under the action of the Lorentz transformation on
the spinor and the action of the same transformation on the conjugate spinor

U=—i(u"Z,0) =u’S,u = (N*u)'S,(N *u)
U=—i(up*Uy — Uy *Ug + Uy * Uz — Uz * Up)

When a spinor and its conjugate spinor are simultaneously rotated or boosted by some angle,
the scalar undergoes a rotation or boost by zero angle.
We can find the derivatives of the scalar by the components of the coordinate spinor

U(x) <6u(x) 6@)

T
0 T
ox, ox, ) S u+ux) 52< ox,

The components of the coordinate spinor are complex quantities, the derivative on them is taken
formally, since physical fields can be represented by power functions of the components of the
coordinate spinor and its conjugate.

What are the advantages of the transition from path integral in vector space to path integral in
spinor space? A possible answer is that there are new conditions for working with divergent integrals.
Now integration is performed over spinor space, so that in the numerator there is a four-dimensional
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differential element d*p instead of element d*P in the case of vector space. The spinor element has
the order of magnitude P? instead of P* for the vector element, whish decreases the order of
magnitude of the numerator, while the order of magnitude of the denominator does not change.

If the spinor coordinate space is indeed more fundamental, and the vector coordinate space is

an offspring of it, then we ma y benefit from this transition in any case.

Now let us move from the scalar field to the field of an electron, that is, the field of a particle

with half-integer spin. We will use gamma matrices in the Weyl basis

O RO O

010 0 0
00 1 v_[ o o0
00 0 n=lo -1
10 0 -1 0
0 0 0 —i 0 0
00 i 0 v_[0 o0
0 i 0 0 ¥3=1-1 0
- 0 0 0 0 1

S OO

Let us consider the linear combination of these matrices with components of the momentum

vector as coefficients, substituting the expressions of the vector components through the components

of the momentum spinor

YoPo+viPi+viP +yiPs =

0 0 1 0 0 0 0 1 0 0 0 —i 0 0 1 0
0 0 0 1 0 0 1 0 0 0o i O 0O 0 0 -1 _
1000/t lo 2100/ Flo i oo0)2F|\Z1 00 o7
01 0 O -1 0 0 O —i 0O 0 O 0 1 0 0
0 0 Py + P; P, —iP,
0 0 P1 + lPZ PO - P3 _
PO - P3 _P1 + le 0 0 -
—P,—iP,  Py+P 0 0
0 o £_0P0 +£_2P2 __mlh __P_2P3
o 0 0 o —P1Po — P3P- P1iP1 tPsPs | _
ip: +P3ps  Pobr + Pabs 0 0
P1Po + D3P2  DoPo t P2P: 0 0
0 0 P_o_Po __P_0P1 0 0 P_z_Pz __EI%
. 0 0_ —P1Do P11 . 0 0_ —DP3D2 p3ps | _
PiP1  PoP1 0 0 Psbs D23 0 o0
P1Do PoPo 0 0 DP3P2 DP2D2 0 o0
0 0 %_po __%pl
0 o0 —P1Po P11 +
p1P1 — [P1P1 — D1p1] P1Po — [P1Do — Pop:] 0 0
PoP1 — [PoP1 — D1Po] PoDo — [PoPo — Popol 0 0
0 0 p2P2 —P2Ps3
0 o0 —D3D2 D3P3 _
P3Pz — [p3P3 — P3ps] P3Pz — [P3P2 — D2ps] 0 0
p2P3 — [P2P3 — D3p2] p2P2 — [P2P2 — D22 0 0
0 0 PoPo  —PoP1 0 0 P2b2 —PaPs
0 0 —DP1Po P1P1 n 0 o0 —D3DP2 DP3P3
P1E pl@ 0 o0 P3P__3 p3p__2 0 0
PoP1  PoDo 0 o0 b2P3 DP2D2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 _ 0 0 0 0
[p1P1 —Pipi]  [P1Po—Dori] 0 0 [psPs —Paps]l  [pspz—Pzpsl 0 0
[PoP1 —P1Po]l  [PoPo —Pope]l 0 O [p2Ps —Pap2]l  [p2Pz —Pzp2] 0 0

= SV(p) — KV (p)
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Let us represent the matrix SV(p) as a sum of direct products of spinors
0 2 0 a
s =9 | @5.75,00 + | P 0,0, p0, - 0) #5.93,00) +| P3| (0,0,p,, —
(p) pl (pli Po, Y, ) + 0 ( YU, Do, pl) + p3 (p3' P2, Y, ) + 0 ( U, D2, p3)
Po 0 P2 0

For a free field the components of the momentum spinor commute, therefore
YoPo + v/ P+ vy P, +yiPs =SV (p)
Complex mass
m = Ppi1P2 ~ PoPs3

does not change at rotations and boosts for an arbitrary complex spinor. Moreover, by a direct check

it is possible to check that for an arbitrary spinor
SV(p)S¥(p) = mml = m?1
For a free field, when all components of the momentum spinor commute, we can write the
relativistic equation of motion of the fermionic field
SVSV(x) = mml@(x)
Where the matrix of derivatives SV is obtained from the matrix SV(p) by substitutions
p1 = —0o Po—= 01 p3—=—0; P2 = 03

Pi=>=0 Po—0 Pio—0; P2—0

_ de(x)
dup(x) = —=
# 0%,
0 A 0 03
v 0 = d, 0 RN 9,
s" = _a, (—9,,01,0,0) + 00 (0,0,0,,9,) + —a, (-9,,05,00) + 02 (0,0,05,0,)
04 0 03 0

However, it is generally accepted to write for this field another equation, the Dirac equation,
which does not possess the invariance property anymore
(§" —mDex) =0

And for the more general case, when the momentum components do not commute, we need to

write the equation
SV —K"—mhex)=0

0 0 0 0 0 0 0 0
wey<| . 00 o0 0} [ 0o 0 0 0
[p1P1 — P1p4] [P0 —Pop1] 0 0 [p3Ps — Psps] [pspz —P2p3s] 0 0O
[PoP1 — P1Do] [PoPo — PoPol O 0 [p2P3 — P3P-] [p2p; — P2p2] O 0
0 0 0 0
v o 0 0 o 0 0
K* = [6060 - 6060] [_6061 + 6160] 0 o0
[-0:00 + 30|  [3,0,—0,0,] O O
0 0 0 0
0 0 0 0
+ [0,0, — 8,0, ] [-0.0;+33:0,] 0 o
[-050; + 9,05]  [050;—-305] O 0

Further we will consider the equation of motion for a free field
SV -mhex) =0
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We again want to find the path integral

2G) = [ o) exp (i [ dx2(p00) + 7009 x0))
for which we need the Lagrangian, from which the Euler equation is derived equation of motion
S —mhex) =0

It is suggested to use the Lagrangian

1 1
L= E(p(x)TSV(P(X) - Em(p(x)T(p(x)

Let us substitute the Lagrangian into the Euler equation and obtain the equation of motion

o 0L 8L oL . 6L oL
°6() 80 78(0,)  C8(0s) S

1
557e(x) +me(x) =0
Since the Lagrangian includes, along with the derivatives of d,, the derivatives of 9,, itislogical
to use a different definition of Euler's equation
9, o + 0, o + 0, o +0; i +0, o +0, o + 03 o +0; or o,
6(0)  "6(d) 60 8(01) “6(2)  T6(d) T6(d:)  T6(0;) d¢

Then for the free field case when the derivative operators commute with each other, we obtain

the equation of motion
$Ye(x) + me(x) =0

If the derivative operators do not commute, additional terms will appear in the equation of
motion in the form of matrices similar to the KV matrix, and these additional terms will not
necessarily coincide with K. In this connection it is necessary to consider the Lagrangian as more
fundamental notion than the equation of motion and to derive the equation of motion from the
Lagrangian, i.e. to take as a basis not the derivation of the equation of motion in momentum space,
with what we started, but to take as an axiom the form of the Lagrangian in the form of field
derivatives in the relativistically invariant form. Then, if to follow the invariance principle quite
strictly, we should start from the product of two matrices, i.e. to use the Lagrangian

1
L=5[e0"s"S"ex) — m*e(x) ()]
Or, not limited to fermions,
1
L=5le00"S"S"@x) — mme )" @]

Nevertheless, further we will search for the path integral in the simplest case with the originally
proposed Lagrangian and in addition assume commutativity of all derivative operators

2G) = [ Do) exp (i [ 4| 500075 060 ~ 3m@ (0000 + 107 @00

After integration by parts, we presumably obtain

2G) = [ Dot exp (i [ dtx{- 3000TIS” + miloG) +j(000))

Then it is necessary to find the solution of the equation
—(SV + mDHD(x) = I5(X)

For this purpose, we pass to the momentum space by means of the integral transformation

d0i:10.20944/preprints202401.1032.v6
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4
(p(X) = f ((217:;4 (p(p)ei(Poxl—P1x0+P2x3—P3x2+(l’7))

We get the equation
(s¥(p) —mNDY(p) =1
with the decision
SV(p) + mI
14 —
b ) = P2 —mm
Indeed
(8" (@) ~mD)S' @) + 7D _ (P2 —mm)l
P2 —mm ~ P2—mm
Here we use the equality, which is valid for an arbitrary complex spinor p

SV (p) —mD(SY(p) + mI) = P2l — (m — m)SV(p) — mml = (P? — m?)I

P, = Ep*Sﬂp
P? = P? — P} — P} — P2

It is based on the correlation verified earlier in our work

(P1p2 — Pop3) (P1Pz — Pob3) = P§ — Pf — P§ — P3
it is also taken into account that we consider fermions whose mass is real.
As a result, the propagator has the form
d*p SV(p) +ml
(2m)* P2 —mm
here we assume the validity of the relation

e i(pox1—P1X0+P2X3—D3X2+(PX))

DV(x) =

5(x) :j d4p ei(P0x1—P1xo+P2x3—P3x2+(l’7))
(2m)*

In the case of a fermion, the mass in integration is a fixed real quantity, and it can be considered
negative for the electron and positive for the positron. Theoretically, the mass can be complex or
purely imaginary. If we put mass equal to zero, it may be possible to apply this Lagrangian to describe
massless particles. I wonder if there are particles with complex or purely imaginary mass. In the latter
case, the square of the mass will still be positive and the particle will satisfy the Klein-Gordon
equation. Such particles can interact among themselves, but not with particles whose mass is real.

Let's return to the question about the use of completely relativistically invariant Lagrangian

1
L=5 [@x)TSVS"(x) —m?*e(x)"@(x)]

Let's find the product of matrices

SY(p)S'(p) =

0 Do 0 P2
O ) 125, 0.0) +{ 1 00,0, ~p0) + | 2 | @5.52,0,0) + | TP* | (0.0,p,,~p3)
pl 1 oY 0 Wy PO 1 p3 32M2,Y 0 Wy P2, 3
Po 0 P2 0
0 Do 0 P2
0 ) @5,50,00) + | P (00,00, —p) + | .0 | @5.72,00 + | TP | 0.0,p,—ps) | =
pl 1 oY 0 NS N 1)) 1 p3 3»M2)Y 0 »WY V2 3
Po 0 D2 0

0 a

mm—mm)£ (0,0,p2,=p3) + (pops —P1p2) | " | (P3,P2,0,0) +
Po 0
0 P2

(P3P0 — P2P1) p03 (0,0,p9, —p1) + (P201 — P3P0) _53 (p1,P0,0,0) =
D2 0


https://doi.org/10.20944/preprints202401.1032.v6

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 March 2025

49 of 101
0 Po 0
_ [0 _ _ -1 — =10 _ p3 — —
m pl (0101 pZI p3) m 0 (p3r erOvO) m p3 (010' pO' pl) +m (pll pO'OJO) -
Do 0 D2
0 0 p_
m| | 0,0,p2,—ps) - pl @.72,00) — | p) | ©0,p0,—p) +| “¥* | 77.75,00)
Po D2 0
= mS"V(p)
The assumption that the following equalities hold is used
D1P2 — PoP3 = P2P1 — P3Po =M
P1D2 — PoDP3 = P2P1 — DP3Do =M
m=m
Further we find the product of matrices
SV (P)S""(p) =
0 a 0 a
0 1(0,0,p2—p5) — | ' | @5,52,00) — | 2 ] 0,0,p0,—p) + | “F* | 1,5, 0,0)
pl V2, 3 0 3 P2,Y, p3 Y Poy 1 0 1KoY
Do 0 D2 0
0 Po_ 0 Pz_
0 1(0,0,p2—p5) — | ' | @5,52,00) — | 2 | 0,0,p0,—p) + | “F* | 1,5, 0,0)
pl V2, 3 0 3 P2,Y, p3 Y Poy 1 0 1KoY
Do 0 D2 0
0 o
= (P2p1—P3Po) (P?) (0,0,p2, —p3) + (P3P0 — D2P1) _5’1 (93,P2,0,0)
Po 0
0 "
+(Pops — P1P2) <p03> (0,0, 0, =p1) + (P2P1 — P3Po) _g * | @1,90,0,0)
D2 0
0 0
=m[.2)0,0p,-ps) =1, 00,0,py,—p))
p1 Y, P2, —P3 D3 Yy Po, —P1
1Y)
a
+m (P1, Do, 0,0) _51 (P3,P2,0,0)
O 0
0 0 0 0 0 0 0 0
- m 0 0 0 0 0 0 0 0
0 0 PiP2 —PiPs 0 0 P3bo P3DP1
0 0 Dobz —Pobs3 0 0 P2Po —P2P1
P21 DP2b0 0 O PoDs pov2 0 O
+mi| P3P —P3sPo 0 O|_|[—-PiPps —Pib2 0 O
0 0 0 0 00 0 0
0 0 0 0 0 0 0 0
0 0 0 P2P1 — Pob3 0 0 0
—md[0 O 0 0 ~P3Po + P10z 0 0
0 0 p1P2 —P3Po 0 0 0 0
0 0 0 —PoP3 + p2p1 00 0 0
mm 0 0 0
_| 0 mm 0 0
0 0 mm 0
0 0 0 mm
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Again we use the equality
(p1p2 — Pop3) (P1D2 — DoP3) = P§ — Pf — P§ — P§ = P?
and consider that the mass of the fermion is real, i.e.
P1P2 — PoP3 = P1P2 — PoP3
(P1p2 — PoP3) 1Pz — PoP3) = (P1bz — DoP3) (P1Pz — Pobs) = P?
therefore, the relations are valid
P2 0 0 0
Vv Vv (0 P2 0 0 |_
0 0 0 P?
($"V(p) = mD(S"(p) + mI) = P’ —m’[ = (P? —m?)I
S (p) —mI)(S*Y (p) +ml)
P2 —m2 =1
But the main advantage of the obtained matrix is the following
0 P_o_ 0 P_z_
S"® = 1 | 0022 =p) = D | @ 52,000 = 1) | 00p0—p) +| " | 70,000 =
Do 0 D2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 PiP2 —PiP3 0 0 D3P0 —P3P1
0 0 DPoP2 —Pobs3 0 0 DP2b0p —DP2P1
pz_P_z_ P_z_Po 0 0 P_()_P_s_ P_O_P_z_ 0 0
+| TPsP1 —P3Po 0 0)_|[|-—-pPips —pip2 0 O
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 P2P1 — Pob3 0 0 0
|00 00 4 0 ~p3bo + Pib2 0 0
0 0 piP2—DPsPo 0 0 0 0 0
0 0 0 —PoP3 + P2P1 0 0 0 0
m 0 0 0
[0 m 0 0
0 0 m O
0 0 0 m

This matrix does not change at rotations and boosts, so it can be stated that the equation of
motion, e.g., in the form of

m 0 0 0
w_[0 m 0 0 _
S 00 m o]|PX=0
00 0 m
where
0 a7 0 %
s = 9 ]©00.6,0,) - % ) (-2,,3,00) - 5, |00,0,00) + % | (=3, 00)
01 0 03 0

is truly relativistically invariant, respectively we can use the invariant Lagrangian

1
L=2 [@X)TS"(x) —mex)"@(x)]

to which corresponds the relativistically invariant propagator of the boson having a real mass, which
is negative for the electron and positive for the positron
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d*p S"V(p) + ml

e i(pox1—P1X0+P2X3—P3x2+(pX))
(2m)* P2 —m?

D"V (x) =

Let us compare the propagator in spinor space with the propagator of the fermion given in [[9],
formula I1.2.22 and formula I1.5.18]

d4P e—iPX d4P ylipﬂ + ml

_ o—iPX
2m)* y*B, —ml 2m)* P2 —m?2
u

D(X) =

In [9] this formula is obtained by applying the second quantization procedure or using
Grassmann integrals. The results are similar, but the integration here is performed in the vector
momentum space. The Dirac equation and the corresponding Lagrangian are not relativistically
invariant. Besides, here the mass is considered always real and positive, but then it is not clear how
electron and positron differ from the point of view of this formula.

Let us consider in detail the derivation of the expression for the fermion propagator in [[9], Sec.
I1.2]. It is based on the assumption of relativistic invariance of the Dirac equation and therefore the
calculations are carried out in the rest frame, and then the result is extended to an arbitrary frame of
reference. Thus for the field spinor u the spinor u_= u'y? is defined and it is asserted that the value
of
10 0 0
01 00
00 -1 0

00 0 -1
is a Lorentz scalar. But it is not so, since in the spinor space the scalar is formed exclusively by the

utyu = uf u

scalar product of two spinors, where the metric tensor of the spinor space is included

0 1 0 0
+ _,+(—-1 0 0 O
u'Xyyu=u 0 0 0o 1|4
00 -10

there are no other ways to construct a scalar in the spinor space.

Nevertheless, this fact and the fact of non-invariance of the Dirac equation itself do not cancel
the value of the second quantization procedure and the final form of the fermion propagator, which
allows to make accurate predictions of the experimental results.

We hope that the proposed Lagrangian for the spinor coordinate space can find application in
the calculation of the path integral, but already in the spinor space. Whether such a calculation in
spinor space has an advantage over the calculation of the path integral in vector space can be shown
by their real comparison.

By analogy with the propagator of a photon, more precisely of a massive vector meson, given in
[[9], formula 1.5.3]

d*P  —n,,+ B,Py/m?
(2m)* Pz —m?

we can assume the propagator form in the spinor space without revealing for compactness the

e iPX

Dy X) =

expression of the momentum vector components through the momentum spinor components

d4p —Mya + PVP}L/"l2

ei(pox1—171x0 +p2x3—P3x2+(pX))
(2m)*  P?2—mm

Dy, x) =

Among other things, the equation

m 0 0 0
(5 72 8) oo
00 0 m

can be modified to take into account the electromagnetic potential, the electron charge is taken as a
unit
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Po = 01 + ag p1 = —0p + a4 pz = 03+ a, ps > —0; +a;
Poo01+@% P10 —0t@G P00+ aG P30+
0 0, +a
sV = _ao(lal (0,0,0; + ay, 0, — az) — a_oga_l (-9, +@3,0; +az,0,0)
0, + ay 0
0 J; +a,
- _622_% (0,0,0, + ag, 3, — a,) + 3_2601_3 (=03 + @7, 0, +a5,0,0)
d; +a, 0

and apply, in particular, to analyze the radiation spectrum of a hydrogen-like atom.
Let us formulate again the difference between the equations, the second of which is derived from

the Dirac equation with gamma matrices in the Weyl basis

/ m 0 0 0 \
w_[0 m 0 0 _
S 00 m o)|P®=0
0 0 0 m
SV —mDex) =0
The difference is, the matrix S"Y(p) (p) remains unchanged under any rotations and boosts
applied to the spinor p, while the matrix SV(p) (p) changes under any rotations and boosts.

0 % 0 %
0 ), —~— 3 0 ), —~— 3
s'=| _g, | (-90,91,00) + %o (0,0,0,,00) +| _5 |(=92,95,00) + 602 (0,0,05,0)
61 0 a3 0
0 7 0 %
0 N P 0 i -
SVV = _60 (0;01 63r02) - a(;) (_62r 03,0,0) - _62 (0;01 al: aO) + 602 (_60, al: 010)
0, 0 03 0

Equally radically different are the corresponding Lagrangians and propagators.
By analogy with [9, Chapter II.2] we will carry out the procedure of second quantization of the

fermion field. Let us write the equation

m 0 0 O
w_[0 m 0 0 _
S 00 m of|P®=0
0 0 0 m
in the momentum space, for which we apply the integral transformation
d*p

(p(p)ei(Poxl —P1X0+P2X3—P3X2)

o) =j @n)*

Let's substitute the wave function into the equation and obtain

m 0 0 O
vv [0 m 0 O _
0 0 0 m
0 a 0 a
SYVP) = p | 00,p2-p) = TP | 72,52,00) — | 0 | (00,00, —p0) +| P | (5. 5,0,0)
pl I, U2, 3 0 3 PV2,Y p3 Y Pos 1 0 1KoY
Po 0 D2 0
Let us define two sets of four reference spinors
0 Do 0 23
_( 0 _| Pt _| 0 _| —Ps
ul = Py u2 = 0 u3 = Ps u4 = 0

Po 0 D2 0
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P1 0 P3 0
_[Po _ 0 _| P2 _ 0
vl = 0 V2 = P_o_ v3 = 0 v4 = p_z_
0 —P1 0 —P3
vi=yJul v2=yfu2 v3i=yJul3 v4=ylus
where
0 0 1 0
v_(0 0 0 1
Yo=11 0 0 o0
01 0 O
And let's express the matrix through them
0 a 0 a
$7@) = 2 00,02 -p5) = | P | #5.52.00) — | 2 | 0.0,p5,—p) +| "P* | 51,50, 0,0)
pl I, U2, 3 0 3FP2)Y p3 W Koo 1 0 v rPoYy
Do 0 D2 0

=ul(p)v4*(p) —u2(p)v3*(p) —u3(p)v2*(p) + ud(p)vi*(p)

Developing the idea of invariance, we pass to the set of reference spinors with wider filling, but
continuing to form matrices possessing the invariance property

—P3 b2 4! Po
_ | 7Pz _| ~P3 _ | ~Po _ | 7P
ul = Py uz2 = Do u3 = Ps u4 = D,
Po —P1 P2 —P3
P1 Po Ps3 D2
_ | Po _| 7P _ | P2 _ | ~P3
Vi=ips| V2={-p.| v3={p] V4=|-n
D2 p3 Po P1
Let's express through the reference spinors the matrix
—P3 4!
R _ | 7Pz —Po
SR =\ p,” | o —PuD2,—P3) = p, | P2 —P3P0, —P1)
Po D2
P1 P3
+{ D) 0o =3 —po p0) = | b2 | o, =1, —P23)
D2 Do
= ul(p)u4’(p) — u3d(p)u2’(p) + vi(p)v4’ (p) — v3(p)v2' (p)
—P3 —P1
R _[| P2 —Po
SEP) =\ p,” | o —PLP2—P3) = p, | P2 —P3,Po, —P1)
Do b2
P1 D3
p p
+ pg (P2, —P3, —Po, P1) — Pi (Po, —P1, —P2, P3)
D2 Po
—P3Po P3P1 —DP3P2 DP3P3 —P1P2 P1P3 —P1iPo P1P1
—P2Po P2P1 —P2P2 P2P3 ) [ “PoP2 PoP3 —PoPo PoP1

P1Po —P1P1 P1P2 —P1P3 P3P2  —P3P3s P3Po —P3P1
PoPo —PoP1 PoP2 —PoP3 D202 —DP2P3 P20 —P2P1

P1bP2 —P1P3s —PiPo PiP1 P3Po —P3P1 —DP3P2 P3P,

+ PoP2  —PoP3 —DPoPo PoP1 | _ [ P2Po —P2P1 —DP2P2 D2P3
P3Pz  —P3P3 —P3Po P3P1 P1Po —PiP1  —PiP2 DPiPs3

D2P2  —DP2P3 —DP2P0  DP2P1 PoPo —PoP1  —DPoP2 DPoP3
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—D3Po t P1P2 0 0 0
_ 0 P2P1 — PoPs 0 0
0 0 P1D2 — P3Do 0
00 0 —PoP3 + P21
P1D2 — P3Po 0 0 0
i 0 —PoP3 + P2P1 00
0 0 —P3Po+D1D2 0
0 0 0 P2P1 — PoP3
m+m 0 0 0
_ 0 m+m 0 0
0 0 m+m 0
0 0 0 m+m
and matrix
Po D2
S ® = | 1) (=ps 1201 p) = [ 2 | (~p1, —Po P53, 12)
R P2 3 21 PO po 1’ 03 P2
—P3 —P1
D2 Po
+ _gi (1,00, P3,02) — _gi (p3, 2, D1, Po)
P1 D3
= u4(p)ul’(p) — u2(p)u3’(p) + v4(p)vi’(p) — v2(p)v3' (p)
Do b2
Se® = | 1) (=ps 12010 = [ 1 | (=p1, —Po P53, 12)
R P2 3 2 P11 PO pO 1 0 M3 P2
—P3 —P1
|%) Po
-p -p
+ —pz (pli Po, P3, p2) - —p; (p3! P2, P1s pO) =
P1 P3
—PoP3 —PoP2 PoP1 PoPo —P2P1 —DP2P0  P2DP3 D2D2
_ | Pib3 P1iP2  —P1iP1 —P1Po | _ | P3P P3Po  —P3P3 —DP3D2
—P2P3 —P2P2 DP2P1 D2Po —PoP1  —PoPo  PoP3 PoP2
D3P3 P3Pz —P3P1 —P3Po P1P1 P1iPo  —P1P3  —DP1P2
P2P1 P2Po P2D3 DP2D2 PoD3 PoD2 PoP1 PoPo
+ —P3P1 —P3Po —P3P3 —P3P2|_ | ~P1iP3 —PiP2 —PiP1  —P1DPo
—PoP1  —PoPo —PoP3 —DPobP2 —D2P3  —D2P2 —DP2P1 —P2DPo
P1P1 P1Po D1P3 D1D2 D3P3 D3Pz P3P1 P3Po
—PoD3 + P2P1 0 0 0
— 0 P1P2 — P3Po 0 0
0 0 P2P1 — PoD3 0
0 0 0 —P3Po + P1P2
D2P1 — PoP3 0 0 0
" 0 —P3Po + P1P2 0 0
0 0 —PoP3 + P2P1 0
0 0 0 P1P2 — P3Po
m+m 0 0 0
_ 0 m+m 0 0
0 0 m+4+m 0
0 0 0 m+m
here

m = p1P2 — PoP3

Let us decompose the fermion field into plane waves with operator coefficients
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d*p
o) = [ oy
[dl (p)ul(p) + id,(p)u3(p) + ib,(p)uZ(p) + bl(p)E(p)] o (Pox1-P1x0+Pax3 ~p3x +(p))
+d,(p)vi(p) + id;(p)v3(p) + ibs(p)v2(p) + bs(p)v4(p)

[bi“ (P)ul(p) + ib;(p)u3(p) + id;(P)u2(p) + di (p)u4(p) ] TSI )
+b;(p)v1(p) + ib;(p)v3(p) + id3(p)v2(p) + di(p)v4(p)

Let's impose the anticommutation conditions on the operator coefficients

b, (p)bi(p") + bi(p")b:(p) = 6(p —P")
di(p)di(p") +di(p')di(p) = 6(p — p")
d,(p)d;(p") + d3(p")d.(p) = 6(p — p")
b,(p)b3(p") + b;(p')b2(p) = 6(p — p)
ds(p)d3(p") + d3(p")ds(p) = 6(p —p")
b3 (p)b3(p") + b3 (p)bs(p) = 5(p —p')
by(p)bz(p’) + bi(p")bs(p) = 6(p —p')
dy(p)di(p) + di(p)ds(p) = 6(p — p')

b;(p")b1(p) + by (p)bi(p’) = 6(p" — p)
di(p)d,(p") +di(p)di(p) = 6(p' —p)
d3(p)d2(p") + d(p")d;(p) = 6(p' — p)
b;(p)b,(p") + by (p')b;(p) = 6(p" — p)
d;(p)ds(p") + ds(p")d3(p) = 6(p — p)
b;(p)bs(p") + b3 (p)b3(p) = 5(p' — p)
bi(p)bs(p’) + by(p")bi(p) = 6(p’ — p)
di(p)ds(p) + dy(p")di(p) = 6(p' — p)

We consider the rest anticommutators to be equal to zero. Then we can write the expression for

the anticommutator of the field

{03, 9,(x)} = ;X (x") + 9, )i ®) = (9P (x) + (@ )" X))

ij

P ") + (p(x)@"X)" =

sty

[dl (p)ul(p) + id;(p)u3(p) + ib,(p)u2(p) + by (p)u4(p)
+d,(p)v1(p) + id3(p)v3(p) + ib3;(p)v2(p) + b,y (p)v4(p)
[bi‘(p’)u1+(p’) + ib3(pHu3*(p’) + id;(pHu2”(p’) + di(p)ud” (p’ ]
+b;(p)v1*t(p') + ibs(p")v3*(p) + id5(pHIv2T (p') + d;(p")v4" (p)

e i(pox1—P1X0+P2x3—P3X2+(PX)) e —i(po’x1'—p1"x0" +p2" x3"—p3 %2+ (p" X))

[dl(p’)ul(p’) +id,(pu3(p’) + ib,(pUZ(p') + by (pHud(p) |\ '
+d,(p)v1(p") + id3(pIV3(p") + ib3(pIVZ(p") + bu(p)v4(p")
[ bi (p)ul*(p) + ib;(p)ud*(p) + id;(p)u2’(p) + d; (p)u4’ (p) ]
+d;(p)v1*(p) + id;(p)v3*(p) + id5(p)v2' (p) + d;(p)v4 (p)

e i(po'x1"—p1 %0 +p2 x5 —p3' %"+ (p’ X)) e —i(pox1—p1Xo+P2X3-p3x2+(pX))

[ b; (p)u_l_(p) + ib; (p)u_i(p) + id;(p)u2(p) + di(p)u4(p) ]
+b;(p)v1(p) + ib3(p)v3(p) + id3(p)v2(p) + di(p)v4(p)

[dl(p')ulT(p’) +idy(p")u3’ (p") + ib,(pHu2*(p') + by (p"Hus* (p’ ]
+d,(pIVLT(p") + id3(p")v3"(p") + ib3(p))V2* (") + by(p V4™ (")

e —i(poX1—P1Xo+P2X3—P3X>2 +(P.X))e i(po'x1"—p1 %0  +p2 x3"—p3 %" +(p" xN)
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[bi“ (pHul(p’) + ib;(pHud(p’) + id;(pu2(p’) + d; (p")ud(p’) ] !

+b;(p")vI(p") + ib;(p)v3(p') + id3(p")v2(p’) + d;(p')v4(p")
d,(p)ul’(p) + id,(p)u3” (p) + ib,(p)u2*(p) + b, (p)u4*(p)

\ +d,(p)v1” (p) + id3(p)v3T(p) + ib3(p)v2*(p) + by(p)v4* (p) /

e~ i(Po'x1"=p1"x0" +p2" 3" - 13" x5 +(B'XN) o i(PoX1~P1X0+D2 X3~ P32+ (X))

[ d,(p)d;(pHul(p)ud’ (p") + d1(p')di(p)(ul(p')u4T(p))T
—d,(p)d;(pHud(p)u2’(p’) - dz(p’)dé(p)(u3(p’)u2T(p))T +-

d4 ' ei(Poxl—Plxo+P2x3—P3x2+(P:X))e—i(Po’xlr—m’xo’ﬂ?z x3'—p3" %, + (' X))

d4
ﬂ 2ot 2o | . - + - ;
b, (p)b; (pHud(p)ul*(p") + by(p'bi(p))(ud(pHul*(p))

AY ) ! 14 * Y ! T
|—b, (p)b; (p")u2(p)u3*(p’) — b, (p")b;(p) (u2(pHu3*(p)) + -
ei(Po'xll—P1’x0’+P2’x3’—P3'x2’+(P"X’))e—i(Poxl—P1x0+P2x3—P3x2+(DT))

N3+ 1 ! * ! 31 ! T
b; (p)b, (p")ul(p)ud*(p") + bi(p")b, (p) (ui(p’)us* (p))

AT ! * i 32 i T
[ —b; ()b, (pHu3(p)u2* (p') — b3(p")b, (p)(u3(pHu2*(p)) + -
d4p d4. ’ e—i(l’ox1—P1x0+P2x3—Psxz+(PT))ei(P0’x1’—P1’x0’+P2’x3 -p3' %, +(p'xX))

+[[ s ¥
(2m)* 2m)* |, . — , N g T\ T
di(p)d, (pu4(p)ul’(p’) + d;(p")d; (p)(ud(pHull (p))

|—d;(p)d, (pu2(p)us” (p") — d3(p')d, (p) (u2(p )u3’(p)) + -

e—i(Polxlr—Pllxol"'Pz’xs -p3'x"+(p’ X'))el(l’ox1 P1X0+P2x3—P3x2+(pX))

d, (p)d; (pHul(p)ud’ (p") + d; (p")d;(p)(u4(p)ul’(p"))
|—d,(p)d;(pHu3(p)u2’(p’) — dz(p’)dé(p)(u2(p)u3T(p’)) + -
d4p d4p' ei(poxl—p1x0+p2x3—p3x2+(pT))e—i(po’xl’—pl’xo’+p2 x3'—p3'xz +(p' %))
- ﬂ @n)* 2m)* p— LI ,
b, (p)b; (pud(p)ul*(p’) + by (p'bi(p))(ui(p)ud*(p"))
| —b,(p)b;(pHuZ(p)u3*(p’) — b, (p")b;(p) (U3(p)u2*(p")) + -

ei(P0’x1’—P1’x0’+P2’x3’—P3’X2’+(P"X’))e —i(pox1—Pp1X0+D2X3-P3x2+(PX))

bi (p)by (p"Hul(p)ud*(p’) + bi(p")b; (p) (ud(p)ul*(p"))
[—b3(P)b,(pu3(p)u2* (p') — b3(p")b, (p) (uZ(p)u3*(p")) + -
d4p d4 ’ e—i(Pox1—P1xo+P2X3—Psxz+®)ei(Po’x1’—P1’X0’+Pz’xsl—P3’x2’+(P',X'))

ff Cemt et |, *
d; (p)d, (p"u4(p)ul’(p") + d;(p")d; (p)(ul(p)ud”(p"))

|—d3(p)d, (pHu2(p)u3’(p’) — d3(p)d, (p)(u3(p)u2’(p")) + -

e —i(P0’x1’—P1’x0’+1’2’x3’—1’3’X2’+(P"X'))e i(pox1—P1Xo+P2x3—P3x2+(pX))

[ ul(p)ud’(p) + - ]
—u3(p)u2’(p) + -
f d4p ei(po (x1=%1")=p1(x0—%0")+P2(*3—x3")—p3(x2—2x2 ’)+m)
= | 5z +
(@m* u4(p)ul*(p) + -
[—ﬁ(p)u3+(p) + ]
[ o —i(Po(x1=x1")=P1(x0~%0")+p2(¥3~23")~p3(x2 —x2")+(px—x") |
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[ ul(p)us*(p) + - |
[—u3(p)uz*(p) + -]
J_ d4p e—i(Po(xl—xll)—Pl(xo—x0’)+P2(x3—x3’)—P3(x2—x2’)+(P.TX"))
— n
@m AUl (p) + - |
[—u2(p)u3’(p) + -
L eL‘(po(x1—x1')—p1(xo—xg')+p2(x3—x3')—p3(xz—xz')+(p,x——x’)) |
[u1(p)u4’ (p) — u3(p)uz’(p) + - +]
lu4(p)ul’(p) — u2(p)us’(p) + - +1
d4p ei(Po(x1—x1')—P1(xo—xo')+P2(X3—x3')—l73(xz—xz')+m)
— +
O™ U (p) - WZp)u3* (p) + 4]
[ul(p)us*(p) — u3(p)u2*(p) + - +|
e—i(Po(x1—x1’)—P1(x0—x0’)+P2(xs—x3’)—P3(x2—x2’)+(I’.XA—X’))_
[ [ul(p)u4T(p) —u3(p)u2’(p) + vi(p)v4" (p) — v3(p)v2'(p) +]]
u4(p)ul’(p) — u2(p)ud’(p) + v4(p)vi’ (p) — v2(p)v3'(p)
d4p ei(Po(x1—x1’)—P1(xo—x0’)+P2(x3—X3’)—Ps(xz—xz’)+(p.X—X'))

W ) + o + +_ + v? +
[u4(p)u1 (p) —u2(p)ud*(p) + v4(p)v1*(p) — v2(p)v3*(p) +
ul(p)us*(p) — u3(p)uz*(p) + vi(p)v4*(p) — v3(p)v2*(p)
e—i(Po(xl—x1’)—l’1(x0—xo’)+pz(xg—xg')—pg(xz—xz')+(p,x—x’))

d*p
(2m)*

(SR(p) +SR(p))e(i(l’o(xl—x1’)—l’1(xo—xol)+1’2(x3—x3’)—l’3(x2—x2’)+(P‘X—X'))) +

d4'p __ — (i YA ! e NN v/
[ e (52000 + 37 (e e~(0otramx )l sl 1 o330)
T

. m 0 0 O
d p 4 0 m 0 0 e(i(po(xl—xl’)—pl(xo—xo’)+p2(x3—x3')—p3(x2—xz')+(p,x—x’))) +
2o* {0 0 m 0
0 0 0 m
. m 0 0 O
d p 4 0 m 0 0 e—(i(po(xl—xl’)—pl(xo—xo’)+p2(x3—x3')—p3(x2—xz’)+(p,x—x’)))
2m)* 0 0 m O
(2m)
0 0 0 m

=4mI§(x' —x) + 4miId(x — x")
We will consider this relation as a proof of the anti-symmetry of the fermion wave function
under the stipulated anticommutation relations.
It is important that all the above deductions are valid in any frame of reference, while the proof
of anticommutativity of the fermion field in [9] is carried out for the rest frame.
Let us calculate the total energy of the fermion field

E=P = f d*x @* (S ()

. ' d'p’
= Jax [ 5 @)t 2yt
[di(p’)uf(p’) —id;(p")u3*(p’) — ib;(p")u2” (p') + bi(p")u4’ (p’
+d;(p"vit(p") — id3(p")v3* (p') — ib;(p")v2' (p') + bi(p)v4 (p
[b1 (pHul’(p") — ib,(pHu3™(p") — id,(p"Yu2*(p") + d, (p")ud* (p’
+b,(p)v1" (p") — ib3(p")v3T (p") — id3(p")v2* (p') + d,(p')v4* (p
[d1 (p)ul”(p) + id,(p)ud”(p) + ib,(p)u2*(p) + by (p)ud*(p)
+d,(p)v1T(p) + id;(p)v3” (p) + ib;(p)v2*(p) + by(p)v4* (p)
[ b; (p)ul*(p) + ib;(p)u3*(p) + id;(p)u2” (p) + d; (p)u4’ (p)
+bi(p)v1*(p) + ib;(p)v3*(p) + id5(p)v2' (p) + di(p)v4 (p)

] e —i(pox1—-P1xo+P2x3—p3x2+(P' X))
)

] ei(P(’)x1 —p1X0+PyX3-P3%2+(p' X))
)

l(D0x1 —P1X0+P2x3-P3x2 (X))

—l(Pox1—P1xo +p2x3—p3x2+(pX))
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. d*p d*p’
=< || PORR
[dl(p Jul*(p’) —id;(p")usd*(p’) — ib;(pHu2’ (p') + b; (pHu4’ (p") ]
+di(p)v1*(p) — id;(p")v3*(p") — ib3(p)v2" (p") + b3 (p"Iv4" (p")
[d1 (P)ul(p) + id,(p)u3d(p) + ib,(p)u2(p) + by (p)u4(p) ]
+d,(p)v1(p) + id;(p)v3(p) + ib3(p)v2(p) + bs(p)v4(p)
e—i(p(’)xl—p{xowéxs—péxz+W)ei(poxl—ple+sz3—p3Xz+(pT))
b, (p"ul’(p") — ib,(pHu3™(p") — id,(p")u2*(p") + d; (p"us*(p’ ]
+b,(p V1" (p") — ibs(p)v3T (p) — id3(p)v2* (p') + ds(p")v4* (p")
[ bi (p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + di (p)u4(p)
+b;(p)vi(p) + ib3(p)v3(p) + id3(p)v2(p) + dy(p)v4(p)
ei(P(’Jxl—Pix0+P£x3—P§x2+(p":x))e—i(Poxl—P1x0+P2x3—P3x2+(PT))
d*p d*p’
B ff (2n)* 2n)*
[ [di(p’)uf(p’) — id;(p")u3*(p") — ib;(p")u2” (p") + by (p")u4’ (p’ ] ]
+di(p")v1*(p") — id3(p")v3*(p") — ib3(p)v2" (p') + b3 (p")v4" (p")
[dl (P)ul(p) + id,(p)u3(p) + ib,(p)u2(p) + by (p)u4(p) ]
+d,(p)v1(p) + id3(p)v3(p) + ib3(p)v2(p) + b,(p)v4(p)
5(p' - p)
by (pHul”(p') — ib,(p")u3" (p) — id,(p"Hu2*(p’) + d, (pHud* (p’ ]
+b,y(p")V1T (p") — ib3(p"IV3T (p) — id3(p"Iv2*(p') + du(p')v4* (p")
[ b;(p)ul(p) + ib;(p)u3d(p) + id;(p)u2(p) + d; (p)u4(p)
+b;(p)v1(p) + ib;(p)v3(p) + id;(p)v2(p) + dy(p)v4(p)

s(p—p")

[ di(p)d;(p)ul*(p)ul(p) + d;(p)d;(p)ud* (p)ud(p)
+b, (p)b; (p)ul” (p)ul(p) + b;(p)b,(p)ud” (p)ud(p)
+b,(p)b;(p)u3” (p)u3(p) + b;(p)b,(p)u2’ (p)u2(p)

_d'p | +d;(p)d,(p)u3* (p)u3(p) + d,(p)d; (p)u2* (p)u2(p)

@2m)* [ +di(p)d.(p)vi* (p)vi(p) + di(p)di(p)v4* (p)v4(p)

+b,(p)b;(p)v1T (p)v1(p) + bi(p)b,(p)v4" (p)v4(p)

+b3(p)b3(P)v3T (p)v3(p) + b3(p)bz(p)v2T (p)v2(p)

L +d3(p)d;(p)v3* (p)v3(p) + d3(p)d3(p)v2* (p)v2(p)

b, (p)bi(p) + bi(p)b,(p) + di(p)d,(p) + d;(p)di(p)
d'p eo(p) +b,(p)b3(p) + b3 (P)b2(p) + d;(p)d,(p) + d,(p)d;(p)
m)* ° P b, ()by(p) + bi(p)ba(p) + d;(p)da(p) + dys(p)di(P)
+bs(p)b3(p) + b3(p)bs(p) + d3(p)ds(p) + d3(p)d3(p)
d*p d*x [ d*p
=8 [ s s =8 [ 52 [ S B eow)

eo(P) = PoPo + P1P1 + P22 + P3p3
Each summand in brackets represents the operator of the number of particles with a certain

here

reference spinor. The operator's action consists of consecutive application of the annihilation operator
and the operator of the birth of a particle. On initial examination, it would appear that the energy
associated with zero-point fluctuations in the vacuum has been overlooked. However, an
examination of the final expression reveals that the field always possesses a constant energy,
regardless of the particles that contribute to it. This constant energy of the field can be interpreted as
the energy of zero-point fluctuations of the vacuum.
The following relations were taken into account in the derivation

by (p)bi(p) + bi(P)b:(p) = 6(0)  bi(p")by(p) + by (P)bi(p) = 6(0)

d;(p)di(p) + di(p)d,(p) = 6(0)  di(p)d:(p) + d;(p)d;i(p) = 6(0)

d,(p)d;(p) + d3(p')dz(p) = 6(0)  dz(p)d2(p) + d2(p)d;(p) = 5(0)

b, (p)b2(p) + bz(p)b2(p) = 6(0)  by(P)b2(P) + b2 (p)b2(P) = 6(0)

d;(p)d;(p) + d3(p)d;(p) = 6(0)  d3(p)ds;(p) + d3(p)d;(p) = 5(0)
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b3(p)b3(p) + b3(p)b3(p) = 5(0)  b;(p)bs3(p) + b3(p)b3(p) = 6(0)
by(p)bi(p) + bi(P)bs(p) = 6(0)  bi(p)bs(p) + bs(p)bi(p) = 5(0)
dy(p)di(p) + di(p)d,(p) = 6(0) dggp)d4(p) + d,(p)di(p) = 6(0)
X
°O= | Gy

Other components of the total field momentum are calculated by the formula
- [ @x * w3500
Total momentum
T = (Po, Py, P2, P3)
is a vector in Minkowski space. The density of the current as a function of coordinates is
e e
=+—¢" +—F
Ju= - @" (S0 = £ - ()

where

F;L x) = (P+ (X)S,u(p(x)
is a four-dimensional probability density current, which is transformed as a four-dimensional vector

by Lorentz transformations. Multiplication by =+ mi transforms it into a four-dimensional current
e

density.
Let us perform a series of transformations analogous to those presented by Dirac in [10, Lecture
11]

_ d4x + _ 1 d4x N R
P, = fW<p (x)S,@(x) —ﬁIW(P (X)So[S"@(x)]

me 2n )4

21n n)* U

1 d* d* d*
= o [ e SIS @@ = [ 5 0 @S0®) = [ 557 0 Bre®)

4
@+ (x)S, U(STI;“ SR(p)(p(p)ei(poxl—plxowzxa—p3x2+@)]

(2 )4(P (X)S el(P0x1 P1Xo+P2X3— P3X2+(PX))] SR(]J)(P(]J)

d4
= [ G W @00(®) + 01 Do) + 0T B)0 @) + 03 P03 (B)]

For an arbitrary component of the total momentum we have

d'p
W= f 2 @ P)S.e(p)

Following Dirac's argument in [10], the value of

d4
Py=H= f (27:)94 s Meo(P) + of P o1 (p) + 03 (P)P2(P) + @3 (P 3 (p)]

can be treated as either a Hamiltonian or a total energy operator, with ¢, (p) representing the birth
operator and ¢, (p) representing the annihilation operator.

In [10] the quantization procedure includes the use of one definite Lorentzian reference frame,
i.e. it is not invariant. In our case all deductions are valid in any reference frame in the spinor space,
and it means invariance to change of reference frames in the Minkowski space also.

The following relations are used in the transformations

SRp(x) = 2me(x)

1
o) = %SRtp(X)

d0i:10.20944/preprints202401.1032.v6


https://doi.org/10.20944/preprints202401.1032.v6

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 March 2025

60 of 101

d*p ) S
= i(pox1—P1X0+P2x3-P3x2+(pX))
o(x) f 2y ¢(ple

4.1
*p) = J-(C;Tx)‘t @(x") e~ Pox1-P1x0+p2x3-P3x; +(pX")

d*x' ; ! ’ I [ B iy
6(p) = J. e~ i(Pox1—P1xg+P2x3-p3xy+(pX"))
(2m)*

5(x) :f d4p ei(Pox1—P1xo+sz3—p3xz+m)
(2m)*

4
(p+(p) = J. ((217_[3)(4 (p"'(X)ei(Poxl—P1x0+P2x3—P3x2+(l’7))

4

d
SR(p(x) ZJ-(ZHZ))‘}

SR (p) (p(p)e i(Pox1—P1X0+P2x3—P3x2+(PX))

SR(p) = 2mI
[ do
-0 —d
_az (01'00' 63162) - _a;
0, 03
—60 _62
d d
+ _(’;2 (63' 62' _61' _60) - _50
03 0,
—Ps3 —P1
SR(p) = —D2 _ oy _| "Po _ _
P) =\ p," |®o—PuP2—P3) = p, | P2 —P3P0, 1)
Po D2

P1 (%]

p p
+ pg (P2, —P3, Do, P1) — Pi (o, —P1, —P2,P3)

P2 Do
The chain of reasoning can be organized in a slightly different way as well

SR = (03, 0,,04,0,)

(61: 60: _63: —62)

_ d*x + B 1 1 d*x . ior
Py —f(m)m ®)So@x) =-—-— ) [SRe)]T[SRe(x)]

+

11

" 2m2m (2 ) U Gy S @(p)e Phrpirowins rin )
mam T V3

4
[] (Czl 1))4 SR(p)(p(p)ei(Pox1—P1x0+P2x3—P3x2+(P7))]
T

1 1
SR(p’ ’ —l(pox1 P1X0+Pyx3—D5x2+(p’ x))
" 2m2m (2n)4 U G 5 PIe )]

U @ §4 SR(p)cp(p)]ei(erf’l’fo+1”2"3‘1"3’fz+m
T

11 d*p’ GR ey’ , R 5
| [ sre| [ s*wrew|sw -p

1 1 [ d%p’ SR o457
T 2mz2m) o)t j 2n)* [S*PHe@HITIS*(P)e(P)s(p' — p)

11 d'p
C2m2m) (2m)*

[SE@)eMI*[S*(P)e(p)]
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11 d*p R R
= 2mzm | @yr @@ ST S" P e®)]
1 1 [ d* . .
=2mam) o ¢® BIQIRR NI
1 1 [ d* I
T om2m @)+ o) *[2(p1p, — pgpo)l] [2(p1P2 — P3Po)! 1@ (P)
1 1 d*p -
=mm) @t @(P)* (P1P2 — P3P0) (P12 — P3P0 @(P)

11 d%
T mm) (2n)*

(P§ =Pt —P; = P}) @(p)*o(p)

4
= f%(p(p)*q)(p)
Here it is taken into account that
S*(p) = 2(P1P2 — P3Po)!
(P1p2 — PoP3) (P1P2 — Pops) = P§ — Pf — P} — P{ = mm =
= (SoPo — $1P1 — S3P; — S3P3)(SoPo + S1P1 + SoP, + S3P3)

Let us draw an analogy between our approach and the relations given in [[11]], Volume 1,
Chapter 3, Section 3.3.1]. There it is noted that the birth and annihilation operators of the fermionic
field must satisfy such commutation relations that the equality expressing translational invariance is
satisfied

P(X +A) = eP'A @(X)e A
which in differential form is written as
au(p(x) = i[P;u (X))

The coordinates here are the components of the Minkowski vector space. On the basis of these
relations the anticommutation relations between the birth and annihilation operators are derived.

At substantiation of the Schrodinger equation we have to assume that the zero component of
momentum, i.e. energy, commutes with the rest of the momentum components, which allows us to
represent the exponent of the sum as a product of exponents.

el (PoXo—P1X1-P2X3-P3X3) — oi(PoXo)o—1(P1X1+P2X3+P3X3)
and consider time and energy separately from spatial coordinates and momenta. In this case it is
possible to independently perform translation in time and space.
@(X + A) = ¢! (Poo) o —i(P1A1+P2 42 +P343) (o (X) o i(P1AI+P2 Az +P3A3)
= @ i(P1A1+P2A3+P3A3) [ei(Pvo)(p(X)e—i(Pvo)]e—i(Pvo)ei(P1A1+P2A2+P3A3)
In the spinor coordinate space, we can express the translational invariance of the field operator
by the relations
(P(X + a) = ei(Poal—P1a0+P2a3—P3a2+(P7)) (p(x)e—i(Poal—P1a0+P2a3—P3az+@)
0@ () = i[=p, @] 9:0(%) = i[po, ¢(X)]
0,9(X) = i[-p3, @(X)]  030(X) = i[p2, @(X)]
[p1,%0] =i [Po, %, ] = —i
[ps, 2] =i [P, x3] = —i

It is interesting to find out in what relation these translational operators are - one operator acts
in vector space, the other in spinor space. In both cases the following interpretation can be given.
Suppose we know the result of an operator acting on an arbitrary state at a point in space 1, and we
want to know the result of its action on a state at point 2. Then we translate the state from point 2 to
point 1, act on it by the operator, and transfer the obtained result back to point 2.

Both operators act on the same state, but in one case the state is labeled by spinor coordinates
and in the other by vector coordinates. The translation mechanism of the operators is essentially the
same, but it is not possible to replace the action of one translation operator by some combination of
actions of the other. Because of this, the question arises as to which of these operators better describes
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nature. Our point of view is that the translation operator in spinor space is primary, and the operator
in vector space just successfully copies it, without being exact, but being some approximation. It
attracted the attention of physicists first because vector space is more accessible for investigation.
When integrating over a four-dimensional vector space in some cases there is a divergence, then use
renormalization. When integrating over four-dimensional spinor space, the differential element has
two orders of magnitude of the vector momentum component smaller, while the denominator in the
integrand remains of the same order as when integrating over vector space. This difference possibly
affects the convergence.
Let us calculate the total mass of the fermion field

M=fwmﬂm¢®=

d*p’

fd4 ﬂ. (2m)* (27{)4
[dl(p’)ulT(p’) + id,(p")u3”(p") + ib,(pHu2*(p’) + by (pud* (p’ ]
+d,(pHv1T(p') + id;(p")v3T (p") + ib3(p"Iv2*(p") + by(p"Iv4* (p")

[ b;(p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + d;(p)u4(p) ]
+b;(p)vi(p) + ib;(p)v3(p) + id;(p)v2(p) + d;(p)v4(p)

e i(pox1-P1X0+P3X3-P3X2 +(P'.X))e —i(pox1-P1%0+P2X3-P3x2+(PX))

. d4p d4pl

+deﬂam%m¥

[bi‘(p’)u1+(p’) + ib3(pHud*(p’) + id3(pHu2’ (p) + d; (p")ud’ (p’ ]

+b;(p)v1*(p’) + ib3(p)v3* (p") + id;(p")v2T (p") + di(p")v4" (p")
[d1 (P)ul(p) + id;(p)u3(p) + ib,(P)u2(p) + b, (p)ﬁ(p)]
+d,(p)vi(p) + id;(p)v3(p) + ibs(p)v2(p) + by(p)v4(p)

e—i(P(’)x1—P{xoﬂiéxs—l’éxzﬂpl'X))ei(Poxl—Plxo"’szs—Psxz‘*m
s
(2m)* (2m)*
[d1(P')U1T(P') +id,(p")u3”(p) + ib,(pHu2*(p’) + by (p)ud* (p’ ]
)

+d,(pIVLT(p") + id3(p")V3"(p') + ib3(p")V2* (") + by(p))VA™ (p

[bi“ (p)u_l_(p) + ib; (p)u_i(p) + id;(p)u2(p) + di(p)u4(p)
+b;(p)v1(p) + ib3(p)v3(p) + id3(p)v2(p) + di(p)v4(p)

s(p—-p")

d*p d*p’

+ ff ) 2n)*

[bI (pHul*(p") + ib;(pHu3*(p’) + id;(pHu2"(p") + dj(p")ud” (p’ ]

+b;(p)v1*(p’) + ib3(p)v3*(p") + id;(p")v2T (p") + di(p")v4" (p")
[dl (p)ul(p) + id,(p)u3(p) + ib,(p)u2(p) + b, (p)ﬁ(p)]
+d,(p)v1(p) + id3(p)v3(p) + ibs(p)vZ(p) + b,(p)v4(p)

s5(p'—p)
d1(p)d;(p)ul’ (p)u4(p) + by (p)b; (p)us* (p)ui(p)
= f d*p |~d,(p)d3(P)u3” (p)u2(p) — b, (p)b; (PIuz* (p)u3(p)

(2m)* | +d4(p)d;i(p)v1’ (p)v4(p) + bs(p)b;i(p)v4* (p)vi(p)
—d3;(p)d;(p)v3T (p)v2(p) — bs(p)b3(PIv2* (p)v3(p)
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b; (p) by (p)ul*(p)ud(p) + di(p)d, (p)u4’ (p)ul(p)
_d'p | —b;(p)b,(p)u3*(p)uZ(p) — d3(p)d,(p)u2(p)u3(p)
(2m)* [+b;(p)bs(p)v1* (p)v4(p) + d;(p)d,(p)v4” (p)vi(p)
—b3(p)b3(p)v3*(p)v2(p) — d3(p)d;(p)v2’ (p)v3(p)

d;(p)di(p) + b (p)bi(p) + ds(p)di(p) + bs(p)b;i(p)
APy my| PRz @IDEP) +da(P)d; (P) + ds (P)d3(P) + bs (p)D3 (P)
(2m)* +b1(p) by (p) + di(p)d,(p) + bi(P)bs(p) + di(p)d4(p)
+b;(p)b,(p) + d;(p)d,(p) + b3(p)bs(p) + d3(p)d;(p)

d*x d*p _
—(27r)4 —(27r)4 8(m + m)

= fﬂza(m +1m) 6(0) =
(2m)*

The ratios used in the derivation are
ul”(p)ud(p) = —pspo + P2p1 + P12 — Pob3 = 2m
u4’ (p)ul(p) = —pops + P1P2 + P2P1 — P3Pe = 2m

u3’(p)uz(p) = —p,p; + PoPs + P3Po — P2p1 = —2m

u2’(p)ud(p) = —p.p; + P3P + PoP3s—P1P2 = —2m
ul”(p)ud(p) = —pspo + p2p1 + P12 — Pob3 = 2m
v1'(p)v4(p) = p.p; — PsPo — PoP3 + P2p1 = 2m

ul*(p)ud(p) = =pspo + P2p1 + P1P2 — PoP3 = 27

b, (p)b;(p) + bi(p)b1(p) = bi(p)b1(p) + b1(p)bi(p) = 6(0)
d:(p)di(p) + di(p)d,(p) = di(p)d;(p) + d1(p)di(p) = 6(0)
d,(p)d;(p) + d3(p)d,(p) = b3(p)b2(p) + b2 (p)b3(p) = 6(0)
b, (p)b3(p) + b3 (P)b2(p) = d3(p)d.(p) + d,(p)d;(p) = 6(0)
d3(p)d;(p) + d5(p)ds(p) = b3(p)bs(p) + b3 (p)b3(p) = 6(0)
b3 (p)b3(p) + b3(p)bs(p) = d3(p)ds(p) + ds(p)d3(p) = 6(0)
by(p)b;(p) + bi(P)bs(p) = bi(pP)bs(p) + by(p)bsi(p) = 6(0)
ds(p)di(p) + di(p)ds(p) = di(p)da(p) + ds(p)di(p) = 5(0)
d*x

(2m)*

6(0) =

Let us give an interpretation of the operator coefficients for this approach

—Ps3 D2 —P1 Do

_ | ~Db2 _| ~Ps _ | ~Po _ | ~h1
u1—<p1> u2—<p0> u3—<p3> u4-—<p2>

Po —P1 D2 —P3

My1 = —P2P1 + P3Po = —M
Myz = —P3Po + P21 =M
Myz = —PoP3 + P1P2 =M

Myg = —P1P2 + PPz = —M

My1 = PoP3 — P1P2 = —M

Myz = P1P2 —PoP3 =M
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My3 = P2P1 —P3Pp =M

Myg = P3Pp — P2P1 = —M
d*p
0= ) oy

[dl (P)ul(p) + idy(p)u3(p) + iby(p)u2(p) + b, (p)ﬁ(p)] o i(Por1-P130+D2%3- D37+ (B))
+d,(p)v1(p) + id;(p)v3(p) + ib3(P)VZ(P) + by(P)Vv4(p)

[bi“ (p)uL(p) + ib; (PIu3(p) + id; (PIUZ(P) + di(PIUAP) | —i(pprsprxyprxs-pss+)
+b;(p)vi(p) + ib3(p)v3(p) + id;(p)v2(p) + di(p)v4(p)
—Ps3
di(p) creates and d;(p) destroys a particle ul(p) = —plzz with mass —m, spin up and
Po
momentum in the interval d*p, d;(p)d,(p) is the operator of the number of such particles
75
by(p) creates and b;(p) destroys a particle ul(p) = _p_pz with mass —m, spin up and
1
Po
momentum in the interval d*p, b;(p)b;(p) is the operator of the number of such particles
Po

d,(p) creates and di(p) destroys a particle u4(p) = pzl with mass —m, spin up and

—Ps3
momentum in the interval d*p, d,(p)d;(p) is the operator of the number of such particles
P_o_
bi(p) creates and b,(p) destroys a particle u4(p) = —p_P1 with mass —m, spin up and
2
—D3
momentum in the interval d*p, bi(p)b,(p) is the operator of the number of such particles
Note that ul(p) and u4(p)are translated into each other by a linear transformation, this is also

true for other pairs of spinors

0 0 0 1
_( 0 0 -1 0
u4 = 0 -1 0 0 ul
1 0 0 0
0 0 0 1
_( 0 0 -1 0
ul = 0 -1 0 0 u4
1 0 0 0

It is known [[9], formula II.1.30] that the charge conjugation operation transforms an electron
into a positron with a change of the sign of the charge. Let us apply the charge conjugation to the

reference spinor

00 0 —i 00 0 —i\ /~P5 Do
00 i 0\ (00 i o\[-P\_ . [-P)\__,
0 i o0 1={ 0o % o oflp |T7H p |Tud
i 0 00 —i 0 0 0/ \p —p3

Asaresult ul not only transforms to u4, but also changes a sign of mass due to the imaginary
unit in the charge conjugation matrix. This confirms our thesis that the charge conjugation
synchronously changes signs of charge and mass.

The properties of all particles and operators are summarized in a table

wave

creates destroys particle spinor vector number mass spin sign
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—D3 Py
- P
@ a@  wm=| 0] || d@de  -m up +
Po _P3
Po Py
= ~P
a@  de  wm=| ] | ] a@de  -m up -
—P3 P3
—Ps Py
~p; P \ _
AONEERHOROE] R I S IO O up :
Do i
Po Py
_ -9 ) _
AONEE XORERTIOES R B S I AOIX ORI woo
—Ps Ps
P1 Py
P
GE)  de) Ve = ,’Zg) S| did -m o down 4
D2 _P3
b2 Py
— ~P
d4(p) d4(p) v4(p)=<_§§> _P; d4(p)di(p) —m down -
P1 P3
P1 Py
2} b )
b ke vAE=|2 | h@bi®  -m down -
p) \-r
P2 Py
_ —pa ) _
bi(P) bi(@)  vAP) =| p, | bi®@b®  -m down +
21 Py
D1 Py
~ P
d3(p) d(p) u3(p)=<p';°> _p, | %@ m up +
pz _P3
P2 Py
- P
d,(p) d;(p)  u2(p) = p’f) _p, | %®d:®) m up -
—P1 P3
—P1 Py
—1 P _
e e wE=| ) ] keke m up :
2 —Fs
D2 Py
_ —p7 —p _
e he  we=| ) | B @R  m woo
—P1 Ps
P3 Py
P
d;(p) ds(p)  v3(p) = §§> _p, | 4:®4ds;®P) m down +
Po —P;
Po Py
- P
d(p)  di(p) v2(p)=<_§;> 5| a®ae  m down -
p3 Py
Ps Py
b( * _ E Pl * — _
3(p) b3(p) v3(p) =| 5 P, b3 (p)b3(p) m down
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P\ [P
* "y 2 —P, * —
ORI AORRIOE] By I R A OTA ORI down
P/ \P

Here the column “vector” shows the vector obtained from the corresponding spinor by the
formula of the form
U1, = %u1+5#u1
and
P = 1 t
[ 2 p S,up

Although we have used the term vector for quantities like U1, they are not really vectors in the
sense that if a Lorentz transformation is applied to a coordinate spinor and hence a coordinate vector,
the true vector must undergo the same transformation. For a momentum vector this is the case, but
if the sign of one or more components in the momentum vector is changed, it will no longer be
transformed according to this law. For example, charge conjugation changes the signs of some
components

CTSeC =S, CTS,C=-S, CTS,C=S, CTS;C=-5,
so the electron current and the positron current cannot be vectors at the same time, and in fact, as can
be seen from the table, neither is a vector.

By the words d;(p) destroys the particle ul(p) it should be understood that this operator
transforms this particle into the particle u4(p), and the operator dj(p) performs the reverse
transformation of u4(p) into ul(p). The action of the operator d;(p) on any other particle gives
zero. Since both these particles have the same mass, the total mass of the fermionic field does not
change from these transformations. The mass m itself can have any sign or even be complex.

Although we call the spinors presented in the table particles, they actually describe the same
particle whose characteristic property is a mass with a certain sign. A particle with mass of opposite
sign is described by the other sixteen spinors. Let's compare the momenta of two particles with

different mass signs
Po

p
p; P1P2 — PoP3 =M

D3
(%)

p
pi P3Po — P2P1 = —M

P1

If we add sixteen spinors of the field of one particle with sixteen corresponding spinors of
another particle, it will look the same as if the momenta of the particles were summed directly. It is
clear that the momenta themselves cannot be directly summed, but summing the fields does not look
impossible and leads to the same result as adding the momenta directly. The result can be represented
as a sum of two other momenta, the mass of each of which is zero

Po D2 Po t+ D2 Po D2
Py, (Ps)_ (P Tz | _ (P N
D2 Po P2 + bo Po D2
D3 P1 D3 + P1 P1 D3

Perhaps, such summation is an adequate model for describing the phenomenon of annihilation
of particles with different masses. As an illustrative example, consider the case of an electron and a
positron at rest
Po
P
P
—Po

P1P1 — Po(—Po) = m
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"

_ppoo —PoPo —P1iP1 =—M

P1
Po i po + 1 Po 1
P1 Do\ _| Pr—=D0 |_ [P —Po
00 R A R S A Y R
—Po P1 —PDo + 1 P1 —DPo.

As a result of addition and separation, two photons with zero mass are obtained, having
oppositely directed spatial components of the momentum vector, i.e. flying apart. At this interaction
the total energy, the total momentum and the total mass are conserved. We can also say that the total
charge is conserved, although in our interpretation the charge is not a numerical characteristic that
can be calculated, the sign of the charge is determined by the structure of the spinor. In turn, this
structure is determined precisely by the sign of the mass. Thus, a change in the sign of the mass leads
ultimately to a change in the sign of the charge.

In the table below two last columns with a set of spinors and vectors corresponding to the
particle with opposite sign of mass are added. It is supposed that at annihilation the spinors of the
particle and antiparticle, which are in the same row of the table, are summed. The set of 16 spinors
remains the same, but the order of their arrangement changes when the sign of mass changes.

creates destroys particle spinor vector mass  spin v:%\:]e antiparticle spinor vector
—Ds3 Py —P1 Py
* _ | ~P2 Py _ _ | ~Po Py
di(p)  di(p) ul(p) =| p, P, m.up +oul(p) =| o, P,
Po —P5 P2 —P;
Po Py D2 Py
" _| ~Ph1 —P _ _| ~P3 —P;
di(p)  di(p) u4(p)= ( P, ) P, m. . up - uap) =| ) P,
_p3 P3 _pl P3
_m PO __1 PO
* - _ _E Pl = — _ __0 Pl
bi(p)  bi(p) ul(p) = 2 P, m.up - ul(p) = P P,
P/ \-Py P/ \-Py
Po Py 2 P,
* — o~ _ | TPt —P; = — -~ _ | ~P3 —P;
bl (p) bl (p) u‘l'(P) - p—z_ P2 m Up + U4(P) - p—o_ PZ
—Ds3 Py —P1 Ps
P1 Py D3 P,
x _ | Po Py _ _ | P2 Py
di(p)  da(p)  v1i(p) = p3) P, m down +  vi(p)= p1> P,
pZ —P3 pO _P3
D2 Py Po Py
% _ | ~Ps —P _ _ P1 —P;
dy(p)  di(p) va(p) = <_p0> P, m down - v4(p) = <_p2> P,
pl P3 p3 P3
2y Py D3 Py
. — Do P _ — Dy P
by(p)  bi(p)  Vvi(p) = % Pl —-m down - vI(p)= % P;
P2, —P; Po —P;
D2 Po Po Po
) — —P3 —P. _ — —p; —P
bi(p)  bu(p) vA(p)=| -2 Y] -m down o+ va(p)=| 1 !
~Po P, P2 P,
1 Py 3 Py
—P1 Py —ps3 P,
. _ | ~Po Py _ | 7Pp2 Py
dy(p)  dp(p) u3(p) = < Ps ) P, m up +  ud(p) = ( P, ) P,
P2 —P; Po —P;
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P2 Py Po Py

. - —P - —P
d(p)  d3(p)  u2(p) = ( |z p,|] ™ w - u@= ( K P,
D Py Ps Py

—P1 Py —Ps P,

. —= —Po Py _ — —P2 Py

b b 3 = il - 3 = il

Z(p) 2(p) u (p) D3 Pz m Up u (p) D1 P2
E _P3 @ _P3

b2 Py Po Py

* -y —D3 —P — — -0 —P.
BE  be we=( ) () m w v wme=| ) ()
_E P3 _E P3

D3 Py P1 Py

. P P
G ) V3 = (5; ] omo dom o+ va)- (52 0
Po —P; P2 —P;

Po Py P2 Py

. - —P - —P
ds(p)  di(p) v2(p) = <_£; _p,| m down - v2(p)= <_§§§ _p,
P3 P3 (%1 P3

ﬁ; Pb ﬁ; [b

. _ P P _ — Do P

bs(p) b)) VB =| 2 p | m down - VEE)=|R p
Do —F D2 —Fs

Po Py P2 Py

_ 57\ [-p _ __ -5\ [-P
HONENAOREFIOE] W) I e R O ) I
D3 Py 2 Py

It is possible to assume that the reason and condition of distinction between particles with
different charge is the presence of their non-zero mass. If the mass is zero, then in the given table
there are no differences between spinors of the particle and antiparticle, i.e. there is no mechanism
for formation of the internal degree of freedom, which we treat as charge.

Let us see what result we get if we apply another definition of anticommutativity of the
fermionic field.

_ (4%
o) = j )¢
[dl (p)ul(p) + idy(p)u3(p) + ib,(p)u2(p) + b;(p)u4(p) o 1(Pox1-P1%0+P2%3~p3 % +(P)
+d,(p)vi(p) + id3(p)v3(p) + ibs(p)v2(p) + b, (p)v4(p)

[bl(p)ul(p) +ib;(p)u3(p) + id;(p)u2(p) + d; (p)u4(p)] —i(poxa-p1xe+Pexs—Ds s+ B)
+b;(p)vI(p) + ib3(p)v3(p) + id3(p)v2(p) + d;(p)v4(p)

{0,0,9,x)} = 0,07,x) + §,(x)g;(x) = ((P(X)<P+(X') + (‘T’(X')‘PT(X))T)U

P (x) + (ENPTX)" =
d4p d4— !
| G
[d1 (p)ul(p) + id,(p)u3(p) + ib,(p)u2(p) + b, (p)E(p)]
+d,(p)v1(p) + id3(p)v3(p) + ib3(p)v2(p) + b,y(p)v4(p)
[di(p’)uf(p’) —id;(pHu3d*(p’) — ib;(pHu2” (p") + b (p)ud’ (p’ ]
+d;(pv1t(p) —id;(p")v3*(p') — ib;(p)v2" (p') + bi(p")v4" (p")
ei(Pox1—P1xo+P2x3—Psxz+(PT))e—i(P0’x1'—P1’xo’+P2’X3 -p3'x,"+(" X))

+
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[di(p’)u_gp’) —id; (p’)u_3_(p’) — ib;(pHu2(p’) + by (pHu4(p")
+di(p")vi(p") — id3(p)v3(p") — ib3(p"Iv2(p’) + bz (p')v4(p")
[dl (P)ul”(p) + id,(p)u3’(p) + ib,(p")u2*(p’) + bi (p)ud*(p)
+d,(p)v1T(p) + id;(p)v3”(p) + ibs(p)v2* (p) + b, (p)v4* (p)
e—i(Polxll—P1’x0’+P2 x3'-p3'x; +(P'X'))el(170x1 P1Xo+P2X3— P3x2+(PX))
+
[ bi(p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + d;i (p)u4(p) ]
+b;(p)v1(p) + ib3(p)v3(p) + id3(p)v2(p) + d;(p)v4(p)
b, (pHul’(p") — ib,(p")u3” (p") — id,(pHu2*(p") + d;(p)us* (p’ ]
+b,(pHV1T(p") — ibs(p")V3T(p') — id5(p")v2*(p') + d,(p')v4* (p')
e—i(Pox1—P1xo+l’2x3—l’3x2+m)ei(Po'x1'—P1'xo'+Pz'x3'—P3'xz'+(P'.X'))

+

[ by (pul(p’) — ib,(pu3d(p) — idy(pHu2(p") + d1(pHud(p’ ]

+by(p'IVL(P') — ibs(pIV3(p') — id3(p)V2(p") + dy(p")V4(p")

[ bi(p)ul*(p) + ib;(p)u3d*(p) + id;(p)u2’ (p) + di(p)us’ (p) ]

+b;(p)v1*(p) + ibibs, (p)v3*(p) + id;(p)v2 (p) + di(p)v4' (p)
ei(po'x1'—p1'x0'+p2’X3'—p3’xz’+(p’.—x’))e—i(poxl—p1x0+pzx3—p3xZ+m

d, (p)d; (p"ul(p)ul*(p’) + (d;(p")d; (p)ul(pHul’(p))" + -
+d,(p)d;(pHu3(p)ud*(p) + (d3(p)d, (p)ﬁ(p’)uBT(p))T +-

d*p d*p’ ei(Pox1—P1x0+P2x3—P3x2+ (X)) o —i(Po 1" ~P1 X0 +p2"x3" ~p3"x2" +(p” ®'x")

ﬂ m)* 2m)* _ * .
b, (p)b; (p)ud(p)u4’ (p") + (b; (p)by(p)ud(pHus*(p)) +--

+b,(p)b; (pHu2(p)u2”(p’) + (bZ(p’)bz(p’)u2(p')u2+(p’))T + -
ei(P0’x1’—P1’x0’+P2’x3 -p3'xz +(p’ X')) —i(pox1-P1X0+P2x3-P3x2+(PX))
b; (p)by (p")uT(p)ul’ (p') + (b (p")b; (PIul(p ul*(p))’ + -

+b;5(p)b,(pud(p)u3d’(p’) + (bz(p’)bé‘ (p)u3(p’)u3+(p))T + -
e—i(Pox1—P1xo+P2X3—P3X2+@)ei(Po x1'=p1"x0 +p2 %3 -p3' x> +(P'X'))

+
d; (p)dy (p")ud(p)ud* (p) + (dy(p')d; (p)ud(p')uda” (p))' + -
+d3(p)d, (p"u2(p)u2* (p') + (d,(p)d3 (P)uZ(p")u2” (p))’ + -

e —i(P0’x1’—P1’x0’+P2’xsl—Pslxz’+(P"X'))e i(pox1—P1Xo+P2x3—P3x2+(pX))

[ d;(p)d; (pHul(p)ul*(p’) + (d; (p)d:(P)ul(p)ul*(p)) + - ]
+d,(p)d;(p")u3(p)u3d*(p’) + (d;(p")d,(p)u3(p)u3d*(p")) + -
d4p d4. ’ ei(p0x1—p1x0+p2x3—p3x2+(pT))e—i(p0’xl’—pl'xo’+p2'x3 -p3'x"+(p'xN)

ﬂ 2m)* 2m)* _ + _
[ b,(p)b; (p)u4(p)ud” (p") + (b5 (p")b,(p)ud(p)ud’ (p’)) + - ]

+b,(p)b3(PHu2(P)uz” (p") + (b;(P")b, (PHuZ(PIu2’ (p")) + -

ei(po'xl'—pl'x0'+p2'x3'—p3'x2'+(p’,x’))e —i(pox1—p1X0+P2X3-P3%2+(PX))
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’[bi‘(p)bl(p’)ﬁ(p)uf(p’) + (by (p")bi (PUI(P)ul’ (p')(p")) + ]
+b3(P)ba (p")u3(P)u3” (p') + (b, (p")b; (PIu3(p)u3” (p")) + -

e~ i(Pox1-P1x0+P2X3-D3X2+ (X)) o (Do ¥1"~p1 %0  +p2"x3" ~p3 %2 + (07 X))

s :
(2m)* (2m) [ 4} (p)dy (p")ud(p)ud* (p") + (dy (p)d; (p)ud(p)ud* (p')) + -~ ]
+d3(p)d, (pHuz(p)u2* (p’) + (d,(p)d; (p)u2(p)uz*(p”)) + -

e~ i(Po'x1'=p1"x0" +p2 3" 13" x5 + (X)) o i(PoX1-P120 +P22X3-P3%2+(pX))

[ ul(p)ul*(p) + - ]
+u3(p)udt(p) + -

ei(Po(x1=x1")-p1(x0=%0")+p2(x3~x3")~p3(x2—x2") +(Px—x")

_ (4 N
(@ E(p)ud”(p) +

| +u2(p)u2”(p) + -

1(x0—x0")+p2(x3—x3")-p3

[ uI(p)ul”(p) + - |
[+u3(p)u3”(p) + -

1(xo—x0")+p2(x3—x3")-p3

_e—i(l’o(xl—x1’)—l’ (x2—x2")+(px—x")) |

e—i(l’o(x1—x1')—1’ (x2—x2")+(px—x"))

d*p
o4 +
(2m) ud(p)ud* (p) + - |

[+u2(p)u2*(p) + -

L ¢ i(po(x1—x1")—p1(x0—%0")+p2(x3—x3")—p3(x2—22") +(px—x")) |

[ ul(p)ul®(p) + ud(p)ud*(p) + ]
u4(p)ud*(p) + u2(p)u2*(p) + -
d4p ei(Po(x1—x1’)—P1(xo—x0')+P2(x3—x3’)—Ps(xz—xz’)+(p.X—X'))
B 2m)* 7 T +— T
u4(p)u4’ (p) + u2(p)u2’(p) +
ul(p)ul”(p) + ud(p)u3d’(p) + ]

Lo —i(po(x1—x1")—p1(x0=x0")+P2(x3—x3")—p3(x2—x2") +(px—x")) |

’[ul(p)ul"(p) +u2(p)u2*(p) + u3(p)ud*(p) + u4(p)ud* (p) +]
vi(p)vl*(p) + v2(p)v2*(p) + v3(p)v3*(p) + v4(p)v4*(p)
d* ei(po(xl—xl')—pl(xo—xo')+pz(x3—x3')—p3(xz—xz')+(p,x—x’))
(@m* [H<p)u1+<p) + UZ(p)uz* (p) + U3 (p)u3* (p) + ud(p)ud* (p) +
vi(p)vi*(p) + v2(p)v2*(p) + v3(p)v3*(p) + v4(p)v4*(p)

e ~i(po(x1=21")=p1(x0=x0")+P2(¥3~%3")~p3(x2~x2 )+ (px-x")

= f—d4p (TR(p) + TR(p))e(i(po(xl—x1’)—Pl(xo—xo’)'H”z(x3—x3’)—p3(xz—xz’)+(P,X—X')))

(2m)*
[ o () + TR e-{0nCamsa ) teomx o)l 50)
. e(p) O 0 0
— d p 4 0 e(p) 0 0 (i(Po(x1—x1’)—P1(xo—xo')+Pz(x3—x3’)—Ps(xz—le))‘*'(l’r"—x’))
(2m)* 00 ep 0
0 0 0 e(p)
) e(p) 0 0 0
d p 0 e(p) 00 e—(i(po(xl—xl’)—pl(xo—xo')+p2(x3—x3')—p3(x2—x2’)+(p,x—x’)))
(2m)* 0 0 e 0
0 0 0 e(p)

=4e(p)I6(x' —x) + 4e(p)Is(x — x')

where
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TR(p) = ul(p)ul*(p) + u2(p)u2*(p) + ud(p)u3*(p) + u4(p)us*(p)

Tr(p) = vi(p)v1l*(p) + v2(p)v2*(p) + v3(p)v3*(p) + v4(p)v4*(p)
TR(p) + Tr(p) + TR(p) + Tr(p) =

1 0 0 ©
oo [0 1 0 0
4(obo + PiPL + 2P 3P|, o 1 o | = 4@
0 00 1

In deriving this result, the following relations are taken into account
T#(p) + Tr(p) = ul(p)ul*(p) + u2(p)u2*(p) + ud(p)ud*(p) + u4(p)ud*(p)
+vi(p)v1*(p) +v2(p)v2*(p) + v3(p)v3™(p) + v4(p)v4* (p) =

—P3 D2
P2 ) (53, P2, 50,50 + | 12 | B2, —P5. Po,—P0)
D1 Po
Po —P1
—P1 Po
+ P ) pr-poms ) + | 2t | @ PP —B3) +
p3 1 03,2 pz 0 1 P2y 3
D2 —Ds3
D1 Do
p SR — - S —
pg (P1,P0, D3, P2) + _p; (Do, —P1, —P2,P3)
1Y) P3
D3 b2
+| 52 | 73525150 + | _52 | @2 —Ps, o, P1) =
P1 p3lp21p1'p0 —po p2t p3t pOtpl
Po P1
p3p__3 p3§ _Psg _p3E Pzp_z_ _p2£_3 pzp_o_ _pz_ﬁ
P2p3_ Pzpz_ _Pzﬁ _P_zpo _P3£2 P3P3_ _Pi’o P3Pi
~P1Ps3 ~P1P2 P11 P1Po PoPz_ ~PoPs  PoPo_ ~PoP1
—DPoP3 —PoP2 PoP1 PoPo —DP1D2 b1Dbs3 —P1Po P1P1
P1P__1 P1E _P1P__3 _P1E Pop_o_ _PO_P_1 Pop_z_ _Po_ﬁ
Pop1_ Popo_ _Poﬁ _P_opz _Plﬁ P1P1_ _P1_P2 P1Pi
_p3£1 _P3P_o P3& P3& Pzpi _Pz_Pl Pzpz_ _Pz_p3
—DP2P1 —P2Po D2P3 D2P2 —P3Po P3P1 —P3P2 DP3P3
P1E P1E P1E P1E Pop_o_ _Po_ﬁ _POE Pop_3_
+ POP1_ Popi Po& Po& _P1Pi P1P_1 _sz _P1ﬁ
Psﬂ Psﬁ P3P_3 P3P_2 _Pgo P2P1_ Pzpz_ _PZ_P3
P2P1 P2Do  P2DP3 D2D2 P3Po —P3P1  —P3P2 P33
P3P__3 P3P__2 P3P__1 P3@ Pzp_z_ _Pz_ﬁ _Pz_% Pzp_1_
+ Pzps_ Pzpi Pz& Pz&) _P3Pi P3P_3 P3&) _Psﬂ
P1& P1P_2 P1P_1 P1P_0 _sz POP3_ Popo_ _P<£1
PoP3 Pob2  PoP1 PoPo P1P2 —P1P3 —P1Po P1P1
PsPs P3Pz 0 0 P2P2 —P2Ps 0 0
_ [ P2P3 P2D2 _0 0 o —D3P2 pP3P3 _0 0 .
0 0 P1p_1 p1p_0 0 0 Popo_ _p(£1
0 0 PoP1 PoPo 0 0 —P1Po P1P1
P1p__1 p1p__0 0 0 pop_o_ _p@ 0 0
n PoP1  PoPo 0 o0 —DP1Po P1D1 0 o0
0 0 p3p__3 p3p__2 0 0 Pzp_z_ _pz_ﬁ
0 o0 P2P3  D2D2 0 o0 —D3DP2 P3Ds3
plE Plp__o 0 0 Pop_o_ _P(@ 0 0
n PoP1  PoPo _0 0 o —P1Po P1D1 _0 0 .
0 0 p3P_3 psp_z 0 0 Pzpz_ _pz_p3
0 o0 P2P3  D2P2 0 o0 —D3P2 DP3P3
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P3E p3§ 0 0 Pzp_z_ _PZ_E 0 0
n P2P3  D2P2 _0 0 s —D3D2 P3P3 _0 0 .
0 0 P1P1 P1Do 0 0 PoPo —PoP1
0 0 PoP1  DoDo. 0 0 —P1Do 12%2%
TR(p) + Tr(p) + TR (p) + Tr(p) =
1 0 O 0
_ __ — —[| O 1 0 0
4(oPo + P1PL + 2P P3P |, o 1 o | = 4@
0 0 0 1

The last operation of taking the value (popy + p1P1 + P2Dz + PsP3) out from under the sign of
the integral seems doubtful because of its dependence on the momentum over which the integration
is performed. If one closes one's eyes to this, as is generally accepted in the literature, in particular in
[9], this relation is taken to be interpreted as a proof of the anti-symmetry of the fermion wave
function under the stipulated anticommutation relations. The only situation where this is
unquestionably true is when considering in a rest system where boosts are excluded, energy is equal
to mass, and invariant to rotations.

It is noteworthy that the antisymmetric treatment, whether or not complex conjugation is
considered, yields a diagonal matrix that is invariant in one case but not in the other. It is encouraging
to observe that the set of reference spinors remain consistent.

It is crucial to note that the proposed invariant approach cannot be realized within the
Minkowski vector space. To achieve this, it is necessary to transition to the spinor space. This
reiterates the secondary role of the Minkowski space in comparison to the spinor space.

Dirac's equation can be expressed in both spinor and vector spaces, a fact that led Dirac to
discover it. In contrast, the invariant equation can be written in spinor space but not in vector space,
which explains why it was unknown.

Let us write down the propagator of the fermionic field and the fermionic field invariant

equation of motion using the proposed matrices

—Ps3 —P1
R _ | P2 —Po
SR =\ p,” | o —PuD2,—P3) = p, | P2 =Dz P0, —P1)
Po D2
P1 (%]
p p
+ pg (P2, —P3, Do, P1) — pi (o, —P1, —P2,D3)
D2 Po
Po D2
_| 7P —Ps3
SeP) =\ p, | (=P3,=DP2,p1P0) —| p,” | (=P —Po Pz, P2)
—P3 —P1
D2 Po
+ —gz (1,00, P3,02) — —gz (p3, 02, D1, Po)
P1 D3

The equation of motion has the form

(SR+ SR+ Sp + S — 4(m + m)I)p(x) = 0

where
_6 ) 9 3] 9 0 9 3]
- = e 2o = 53, =
Po 9%, 1 P1 9%, o D2 9% 3 D3 ax, 2
o0 _o o od_ — __oll_— —_>_a_[_]=_a—
o —6x_1_ 1 DN % o D2 T 3 D3 ~= 2
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-0 —0
SR = _ ° (31'30' 63,62) | _ ! (63»62:31:30)
do 02
0, 03
—0 —0;
a a
+ _(’lj (63! aZI _all _60) - _5 (all a()r _83, _az)
2 0
03 0,
0, 03
a d
Sgp = 0 (02, —03,—0,,0;) — : (89, =04, =05, 03)
63 al
az 60
63 al
0 d
+ _5 (=09, 8,,—0,,03) — _ao (=0, 05, —0,,0;)
1 3
—0 —0,

The equation is relativistically invariant, respectively we can use the invariant Lagrangian
L= %[q)(x)T(SR + 57 + Sp + SR @(x) — 4(m + M) @(x)T @ (x)]
to which corresponds the relativistically invariant fermion propagator
d*p S(p) + SR(p) + Sg(p) + Sg(p) + 4(m + m)I (P01 P10 +Paxspaxs+ o)
(2m)* P2 —m?

The equation can be modified to take into account the electromagnetic potential, the electron

D*(x) =

charge is taken as a unit

po — 0 + g pL— —0g+ay py > 05+ a, p3 > —0, +az
—(=0; + a3)
—(05 + a,)
SR = (_az N ai) ((61 + ay), —(—=0y + a;), (03 + ay), — (-0, + a3))
(0, + ao)

(=0, + a3)

—(—0¢ + a1)
_( _(61 + ao) ((63 + az)’ _(_az + a3), (61 + ao), —(—60 + al))
(03 +ay)

(=0, + a3)

(=0 +ay)
+ ( 0+ %) (3, + a,),~(=0, + a5),~(0 + o), (~0 +a1))
(05 + ay)

(=00 +ay)

(—62 + a3)
< (95 + az) (8, + ap), — (=0, + a;), —(85 + a3), (=0, + a3))
(01 + ao)

(05 + ay)

(61 + ao)
Sp = <("° T ) (20, + a5),— (@, + a), (0o + ap), (01 + o))
_(_az + a3)

(03 + a;)
—(=0, + a3)
(0, + ao)
—(=0o +ay)

(=(=0¢ + ay),—(01 + ao), (0, + az), (95 + a;))
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/ (03 + az)

n —(=0; + a3)
—(0; + ao)
(=0 + ay)

(0, + ao)
—(=0p+a
- _((63°+ a23) ((=0; + a3), (35 + a2), (=05 + 1), (8 + ao))
(=0; +a3)
and apply, in particular, to analyze the emission spectrum of the hydrogen-like atom.
Let us look for a representation of the electromagnetic field operator in vector space without first

referring to spinor space. Let us define four vectors expressed through the components of the

((_ao + ay), (0, + ao), (=0, + a3), (95 + az))

momentum vector

Py Py Py Py
_(~h I B 1 _| P _| B
ui=| p va=| vi=|_p va=| p
P3 P3 _P3 _P3

Why we have chosen these 4 vectors out of 8 possible combinations of signs of three spatial
components? Because they are represented in the previously given table of variants of spinor
particles. For these vectors the following relations are valid

V1+U1T — U1+ V1T + V4« V1T — V1 = V4T +
0

0
U4 +V4T — V4« U4T + U1+ U4 — U4« U1T = 8 8
0 0

S DS O
SO O

V1«U1T + U1« V1T + V4« V1T + V1 « V4T +

8Pz 0 0 0
U4 +V4AT + V4 xU4T + U1 «U4T + U4« U1T = 0 0 02 0
0 0 0 0
4Pz 0 0 0
V1+ULT +V4+VIT + U4 +VaT +U1+UaT =| O O 020
0 0 0 0
4P2 0 0 0
UL+VIT +V1+V4aT +Va+U4T +Us+utT=| 0 O 02 0
0 0 0 0

(U1 * U1T + U4 « U4T + V1 « V1T + V4 « V4T) +

8Pz 0 0 0
(U1 + V1T + V1 + U7 + V4 + U4T + U4 + V4T) = 8 8 8 8
0 0 0 o0

8P3 = U1T x U1 + U4 U4 + V17 + V1 + V4T % V4 + 4M?

(U1T + U1 + U4T U4 + V1T x V1 + V4T x V4) +
+(U1T V1 + V1T « U1 + V4T « U4 + U4T « V4) = 8P

U1T « V1 4+ V1T « U1 + V4T « U4 + U4T « V4 = 4M?
U1T « U1 + U4 « U4 + V1T « V1 + V4T « V4 = 8P — 4M?

U1T « V1 = V1T « U1 = V4T « U4 = U4T « V4 = M?
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U17 U1 =U4" « U4 = V1T + V1 = V4T « V4 = PT « P = 2P} — M?
U17GU1 = U47GU4 = V1TGV1 = V4TGV4 = M?

M? = PTGP = (P,P)

1.0 0 0
(o =1 0 o
G= (0 0 -1 0 )
0 0 0 -1
0 0
w1-uva) =0 vi-va)y=| 0
2P, 2P,
0 0

2P, 2P,
(U1+V1)=<8> (U4+V4)=<8>
0 0

Let us decompose the field into plane waves with operator coefficients and let's find the
commutation relations for them. We will use the next notation for the scalar product of vectors

(P,X) = PTGX
oo [P
*® =] oy

[dl(P)Vl(P) + b (PYUAP) | i
+d,(P)UL(P) + b, (P)V4(P)

+
bi(P)V1(P) + di(p)U4(P) T _iex
+d;(P)U1(P) + b; (P)V4(p)
d*p’
000 = [ Gre

dy(POVL(P)) + by (PIUA(P) | e
+d,(PYUL(P") + b,(P)V4A(P")
+
[ bi(POVI(P) + di(PIU(P) | _y(prx1)
+d;(P)UL(P") + bi(P")V4(P")

[0:%0, 0;X)] = 0:(X)9;(X) = 0;(X)0:X) = (@™ (X) — (9(X )" (X))")

ij
PX)@"(X) — (X" (X)) =
_ ([ a*p d'P’
B ﬂ 2n)* (2m)*
_ (dl(P)Vl(P)ei(P'X))(di(P’)UI(P’)e_i(P,'X,))T _ ((d1(P’)Vl(P’)ei(pl'x,))(dI(P)UI(P)E_i(P'X))T)T .
+( by (P)U4(P)ei(P'X))(b{(P’)V4(P’)e‘i(P"X'))T - ((b1 (P’)U4(P’)ei(P"X'))(b}‘(P)v4(P)e“'(P'X))T)T

+(b (P)VA(P)eiPX) (b3 PV (P)e (P X))" — ((b4(P’)V4(P’)ei(P"X’))(bZ(P)Vl(P)e‘i(P'X))T)T

T

7+(d4(P)U1(P)ei(P'X))(dZ(P’)U4(P’)e‘i(P"X'))T - ((d4(P’)U1(P’)ei(""X'))(dj;(P)U4(P)e‘i(P'X))T)
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d*P d*P’
ﬂ (2m)* (2m)*
[ (b;(P)V1(P)ei®X) (b, (PHVA(P )ei®' X)) — ((b}{(P’)Vl(P’)e‘i(P"X'))(b4(P)V4(P)ei(P'X))T)T

+(dj;(P)U4(P)e‘i("'X))(d4(P’)Ul(P’)ei(P"x'))T - ((dj;(P’)U4(P’)e‘i(""x'))(d4(P)Ul(P)e"(P'X))T)T

+(d;(P)UL(P)eIPX)(d, (P')V1(P')ei(P"X’))T - ((d; (PHUL(P e (P’ X))(d, (P)Vl(P)e"(P'X))T)T

| +(b; (P)V4(P)e PP (b, (PUA(P)e P X))’ — ((b;(P’)V4(P’)e—l’(""x’))( by (P)U4(P)ei(P'X))T>T_

d*P d*P'

ﬂ (2m)* 2m)*
d1(P)d; (P)V1(P)UL" (P")e! PP~ {(P'X) — g, (P")d; (P)UL(P)VLT (P)ei(P'X)e-iPX)
+ by (P)b; (P")U4(P)VAT (P")e!PRe~I(P'X) — b, (P")b; (P)V4(P)U4T (P")e!(P'X)e=i(PX)

+by(P)b;(P")V4(P)V1T (P")e!PXei(P"X) — b, (P")b; (P)V1(P)V4T (P")e!(P'X)e=i(PX)
+d,(P)d;(PYUL(P)U4T (P)e PP i(P'X) — g, (P")(P)U4(P)ULT (P")e!(P'X)e-i(PX)

d*P d*p’
ﬂ 2m)* (2m)*
b;(P)b,(P)V1(P)V4T (P)e i®Xei(P'X') _ px(p)p, (P)V4A(P)V1T (P') e (P X)iPX)
+d;(P)d,(P)U4(P)ULT (P")e {PXi(P'X) — g (P")d, (P)UL(P)U4" (P")e i(P'X)i®X)

+d; (P)d; (PYUL(P)VLT (P")e IPRI(P'X) — gi(P)d, (P)VL(P)UL" (P )e (P X)ei®X)
+b;(P)b; (P")VA(P)UAT (P")e~iPXi(P'X') — hi(P")b, (P)U4(P)V4T (P)e {(F'X)i(PX)

d*p d*p’

ﬂ (2m)* 2m)*
(d, (P)d;(P") — d;j (P")d, (P))V1(P)ULT (P")e! PN i(F'X")
+( by (P)b; (P") — bi (P")by (P)) U4(P)VAT (P")e! PV =I(P'X')

+(bs(P)b;(P") — b;(P)b,(P))V4(P)V1T (P)e!PXe~i(P'X')
+(dy(P)d;(P") — d;(P")d,4(P))UL(P)UAT (P")e!PRe=i(P'X')
d*P d*p’
+ || Gy
(b;(P)bs(P") — by (P")b;(P))V1(P)V4T (P")e~i(PRei(P'X')
+(d;(P)dy(P") — dy(P")d;(P)U4(P)ULT (P)e {PX)ei(P'X')
+(di (P)dy (P") — dy (P)d; (P))UL(P)VT (P")e ~ PR (F'X)
+(b;(P)by (P") — by (P")b; (P))V4(P)UAT (P")e {PX)ei(P'X')
Let us apply the following commutation relations
d,(P)d; (P") — d; (P")d, (P) = §(P — P")
by (P)b; (P") — bi(P")b,(P) = 5(P — P")
by(P)b;(P") — b;(P")b,(P) = 5(P — P')
d,(P)d;(P") — d;(P)d,(P) = (P — P')
d,(P")d;(P) — d; (P)d, (P") = 5(P' — P)
d;(P)d; (P") — d,(P")d;(P) = —5(P' — P)
b; (P)by (P") — by (P)b; (P) = —6(P' — P)
d;(P)d,(P") — d,(P))d;(P) = —5(P' — P)
b;(P)b,(P") — by(P")b;(P) = —5(P' — P)
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3 ﬂ' d*P d*P’
) @em* 2
S(P — P)V1(P)U1T (P")e!®X-i(P'X’) _5(P' — P)V1(P)V4AT (P")eiPX)i(P'X")
+5(P — P)U4(P)VAT (P)ei®Xe-i(P'X) | [_s5(p' — P)U4(P)ULT (P')e~iPX)oi(P'X")
+8(P — P)V4A(P)V1T (P)ei®X=i(P'X) | " [_s5(P' — P)UL(P)V1T (P")e {PXei(P'X)
+8(P — P)UL(P)U4T (P)eiPX-i(P'X")| | _5(P' — P)V4(P)U4T (P")e {(PX)i(P'X)
d*P
(2m)*
V1(P)UIT(P)el(Px)e—z(px') —V1(P)V4T (P)e—iPX)(i(PX)
+U(P)V4T (el (PX))| | |—Ua(PIULT (P PXei(PX)
PVARIVIT () P (rX) | T | _ULRIVIT(R)emi PN i)
+UL(P)UAT (P)ei®PXe-i(PX) | |—va(P)U4T (P)ei(PW¢i(PX)
d*P
(2m)*
V1(P)U1" (P) V1(P)V4" (P)
+U4(P)V4" (P) | i(px—x) _ [+U4(PYUL'(P)| y(px'-x)
+V4(P)V1T(P) +U1(P)V17(P)
+U1(P)U4" (P) +V4(P)U4" (P)
.. [4P2 0 0 0 W [4PZ2 00 0
_ d*p 0 0 0 0, i(ex—x") _ a’p 0 0 0 0 ],iex'-x)
@m*| 0 0 —4PZ 0 @m*| 0 0 -—4P} 0
00 0 0 00 o0 0
4P 0 0 0 . 4P 0 0 .
0 0 0 0 a’p piPx-x) _[ 0 0 0 0 a’p pi(PX'-X)
0 0 —4pP? 0])) (2m)* 0 0 —4pP? 0])) 2m)*
0 0 o0 o0 00 0 0
4P 0 0 0 4P 0 0 0
0 0o 0 0 ) 0o 0o 0 0 ,
= S(X—X') — §X' —X)=0
0 0 —4P2 0 ( ) 0 0 —4p; ( )
00 o0 o0 00 o0 0
Here it is taken into account that
4P 0 0 0
T T T T 0 0 0 0
V1% U1T + V4« V1T + U4 + V4T + U1 « U4" = .
0 0 —4P? 0
0 0 0 0
4P 0 0 0
T T T T 0 0 0 0
U1+ V1T + V1% V4T + V4 U4" + U4+ U1T = ,
0 0 —4PZ 0
0 0 0 0

We will consider this relation as a proof of the symmetry of the wave function under the

stipulated commutation relations.
Let us find the commutation relations for the wave function and its time derivative, which in

this case play the role of canonical momentum

[0:X),¢,(X)] = 0:(X)¢,(X) — ¢,(X):(X) = (q»(X)cpT(X’) - (¢(X’)¢T(X))T)_,

9]

where
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d9;(X)
X,

$,(X) =
@097 (X) - (9(X)e™ (X)) =

_ ([ d*P d*'P
- | e
[ (d,(P)V1(P)ei®¥) ((—iPO')d;(P’)U1(P’)e—i(""x'))T - (((ipo')dl(P’)V1(P')ei(""x')) (d}‘(P)Ul(P)e‘i(P'X))T)T -
+( b;(P)U4(P)e!®X) ((—ipo’)b;(P')V4(P')e—i(P3x'))T - <((iP(;)b1 (P)U4(P)eiP X)) (b;‘(P)V4(P)e"'(P'X))T)T

+(by(P)VA(P)e®) ((—iP(;)b;;(P’)v1(P')e—i(""X'))T - (((ipo’)b4(1>’)v4(P’)ei(""X')) (b; (P)Vl(P)e‘i(P'x))T>T

T

|+(d,(P)UL(P)eiPX) ((—iPo')d;(P’)U4(P’)e—i(P"X'))T - <((iPo')d4(P’)U1(P’)ei(""x')) (d;(P)U4(P)e‘i(P'X))T)

d*p d*p’
* ﬂ Cm)* 2n)?
_ (b; (P)V1(P)e~i(PX) ((iPO’)b4(P’)V4(P’)ei("3"'))T - (((—ipo’)b;(P’)V1(P’)e—i(""x')) (b4(P)V4(P)ei(P'X))T)T _

+(d; (PYUAP)e ) ((iPy)dy(PYUL(P)el X)) — ((-iPas(Pyua(p)e ) (d4(P)U1(P)e"(P'X))T)T

. , , ooy T , , N e . 7T
+(d; (PYUL(P)e~®X) ((iP)d,(P)VL(P)e P X)) — (((—ipo)d;‘(P YUL(P)e=PX)) (d;(PIVL(P)e X)) )

T

| +(b; (P)VA(P)e~PX) ((iP))b; (P’)U4(P’)ei(""x'))T - <((—iPO')b;(P’)V4(P’)e—i(""x')) (b, (P)U4(P)ei(P'X))T)

B ﬂ a‘p da‘p’
@m)* (2m)*

(—iPy)d; (P)d; (P )VL(PYULT (P")e!®Pe=i{PX) — (ip))d; (P')d; (P)UL(P)V1T (P)el(P X)e=iPX)
+ (=iPy)b; (P)b; (P)U4(P)VAT (P")eiPXe{(PX) — (iP))b, (P")b; (P)V4(P)U4T (P)e!(P X)i(PX)
+(—iP;)b,(P)b; (P )V4(P)V1T (P)ei®Xe=i(P'X) _ (ip /)b, (P )b;(P)V1(P)V4T (P )ei(P X)e-iPX)
+(—=iPy)d,(P)d;(P)UL(P)U4AT (P )ei®Xe=i(PX) _ (ipyd,(P)d;(P)U4(P)ULT (P )ei(P X )e-iPX)

a‘p d*p’
+f @n) (2
(iPy)b;(P)by(P)V1(P)V4™ (p )e i ®XeiPX) — (—iP))b;(P")b,(P)VA(P)V1T (P) e~i(PX)ei®X)
+(iPy)d;(P)d,(P)U4(P)ULT (p e {®X)ei(P'X) — (—ip))d;(P)d,(P)UL(P)U4T (P )e~i(P'X)i®X)

+(iPy)d; (PYd; (P)UL(PIVLT (p')e PP X) — (—ipy)d;(P")d, (P)VL(P)ULT (P')e (P X)i®X)
+(iPy)b; (P)b; (P )V4(P)UAT (p )e {®X)iP'X) _ (_ip))bi(P")b; (P)U4(P)VAT (P)ei(P X)iPX)

d‘p a‘p’
B ﬂ @m*@em*

(—iPy)(d;(P)d;(P") = d;(P")d,(P))V1(P)ULT (P")ei®X)i(P'X)
+(—=iP;)( b;(P)b;(P") — b;(P")b;(P))U4(P)V4T (P")e PXe~i(PX)
+(—iPy)(by(P)b;(P") — b;(P")b,(P))V4A(P)V1T (P")ei®X)e=i(PX)
+(=iP,)(d;(P)d;(P) — d;(P")d,(P))UL(P)U4" (P)eiPX)i(P'X)
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dip d*p’
+ﬂ @m)* 2m)*

(iPy)(b;(P)by(P") — by(P")b; (P))V1(P)V4T (P)e~iPX)ci(P'X)
+(iPy) (d;(P)dy(P") — dy(P")d;(P))U4(P)ULT (P")e iPX)(i(PX)
+(iPy) (d;(P)d; (P") — dy(P))d;(P))UL(P)VIT (P )e {PX)ei(P'X)
+(iPy)(b;(P)b; (P") — by (P)b; (P))V4(P)U4" (P")e~i(PX)i(P'X)

The commutation relations remain the same
d;(P)d;(P) — d;j(P)d;(P) = 5(P —P)
b;(P)b;(P") — b;(P)by(P) = 5(P —P)
b,(P)b;(P) — b;(P)by(P) = §(P —P)
d,(P)d;(P) — d;(P)d,(P) =5(P—P)
d;(P)d;(P) — d;(P)d;(P) = —5(P - P)
b;(P)b;(P) — b;(P')b;(P) = —6(P - P)
d;(P)d,(P') — ds(P)d;(P) = —5(P' — P)
b; (P)by(P') — bs(P')b;(P) = —5(P'— P)
_ ([ d*P d*P’
B ﬂ @m)* 2m)*

5(P = P)V1(P)U1T (P)ei®X)i(P'X) —5(P' = P)V1(P)V4" (P)e iPX)i(PX)
(—ip) +6(P — P')U4(P)V4AT (P')eiPXe-i(PX) . P —5(P' = P)U4(P)U1T(P")e~i(PX¢i(P X)
—1 - l -

Y1 +5(P - P)WVAPIVIT(P)ei®P-i(PX) | T _5(p' — PYUL(P)VIT(P)e PR i(PX)
|+8(P — P)UL(P)UAT (P PX=iPX)| |—6(P" — P)V4(P)U4T (P)eiPX)ei(PX) |
atp
@n)*
V1(P)UL" (P)e!®Xe~i(PX) _V1(P)VAT (P)e~ PXi(PX)

(P +UA(P)VAT (P)ei PN~ ((PX)) Py ~U4(P)U1" (P)e /P (PX)
+VA(P)V1T (P)eiPX) e i(PX) ~U1(P)V1" (e PXei(PX)
+U1(P)U4T (P)e (P -i(PX) —V4(P)U4T (P)e I PX)i(PX)

dtp
@m)*
V1(P)U17(P) V1(P)V4" (P)
B +U4(P)V4T(P) i(PX-X) _ (i +U4(P)U1" (P) i(PX-X) _
P vapyvar ) |© P Lureyvar ) | -
+U1(P)U4" (P) +V4(P)U4™ (P)
4P 0 0 0 ip 4p? 0 0 i
; 0 0 0 0 i(PX-X) _ (4 0 0 0 i(PX'-X)
G 0 _ap? f @n)?° @\ —4P2 0 f @n)?°
0 0 0 0 0 0 0 0
4P 0 0 0 4P 0 0 0
= (=iP) 0 0 0 J5x-X)- (iP) 0 00 J5x-x)
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8, 0 0 0

0o o 00
= —iP s(X-X
Yoloo o =82 0 (x=x)

0 0 0 0

As one would expect, the field has only two degrees of freedom. This relation is valid for any
reference frame, but the values of the momentum components in each of them are different.
Let us calculate the square of the field energy

B = [ d'x @ (00X =

a‘p d'p’
- || G
[ &; (PIVIT(P) + bi (P)U4" (P) ]()
+d;(P)ULT(P') + b;(P)V4T(P)
[ b;(P)V1T(P") + d,(P")U4T(P) ] i(®'x)
+b,(P)ULT(P') + dy(P)V4T(P) ¢

[ d,(P)V1T(P) + b;(P)U4" (P) SiPX)

+d,(P)U1T(P) + b,(P)V4T (P)

[ b; (P)V1T(P) + d;(P)U4™ (P) o~
+b;(P)ULT(P) + d;(P)V4T (P)

d*P d*P’
- || G
[ [ di(P)VIT(P") + b;(P)U4T(P') ] ]
[+d;(P’)U1T(P’) + b;(P’)v4T(P')]
[ d;(P)V1(P) + b;(P)U4(P)
+d,(P)UL(P) + b,(P)V4(P)
e—i(P'X)gi(PX)
b;(P)VIT(P') + d;(P)u4a’(P’)
[+b4(P')U1T(P') +d,(P)V4"(P)
[ b; (P)V1(P) + dj(P)U4(P)
+b; (P)UL(P) + d;(P)V4(P)
ei(P'X) g =i(PX)

a‘p da*p’
- || G
[ [ d;(P)VLH(P) + b5 (P)U4T(P) | ]
Ldz(P')ur(P') ¥ bz(P'>V4T<P')]
[ d;(P)V1(P) + b;(P)U4(P)
+d,(P)UL(P) + b,(P)V4(P)
S(P—P)
b;(P)V1T(p) + d;(P)U4*(P')
[+b4(P')U1T(p') + d4(P’)v4+(P’)]
[ b;(P)V1(P) + d;j(P)U4(P)
+b; (P)UL(P) + d;(P)V4(P)
§(P'—P)
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d;(P)d; (P)V1T(p)V1(P) + d; (P)d; (P)U4T (P)U4(P)
_ [ d*P [+b,(P)b;(P)V1T (p)VL(P) + b; (P)b,(P)U4T (P)U4(P)
~ ) @) |+d;(P)d,(PYULT (p)UL(P) + dy(P)d; (P)VAT (P)VA(P)
+b,4(P)b; (P)ULT (p)UL(P) + b; (P)b,(P)VAT (P)V(P)

- f L (P)[b1(P)bi‘(P)+bi‘(P)b1(P)+dI(P)d1(P)+d1(P)d§(P)
) @m0 L+by(PYb; (P) + b (P)by(P) + d;(P)d,(P) + d,y(P)d;(P)
_ [ d'P
) @my?

E2(P) [ (b;(P)b;(P) + 6(0)) + b;(P)b,(P) + d;(P)d;(P) + (d;(P)d;(P) + §(0))
0 +(b; (P)by(P) + 5(0)) + b;(P)by(P) + d;(P)d,(P) + (d;(P)d,(P) + 5(0))

_ (4P bi (P)by(P) + d;(P)d, (P) d*p
= | G 25 i oypucwr 1 i praer )+ | G HE IO

here
E;(P) = V1T(P)V1(P) = U4T(P)U4(P) = U1T(P)U1(P) = V4T (P)V4(P) =
= PTP = 2P} — M? = 2P} — PTGP = 2P} — (P,P)

If we consider the photon field, the mass is zero, so that only the energy of the field remains in
the formula. Each summand in brackets under the integral represents the operator of number of
particles with a certain reference vector, its action consists in the consecutive application of the
annihilation operator and the particle birth operator. The last summand describes the energy of zero-

point fluctuations of vacuum. When there is no particle, we have the equality
4

d*P
£ = [t or 00 = | g7 HEERIOO)

In this connection it is logical to use the normalization for the wave operator so that the energy

of zero-point fluctuations of vacuum without taking into account the infinite component is unity
@(X)
2E,(P)

If the mass is not zero, then we can relate U1(P) and V1(P) to the current of electrons with
different spins and, respectively, relate U4(P) and V4(P) to the current of positrons with different
spins.

As we have seen, neither electron current vectors nor electromagnetic field vectors are true
vectors. When transforming the coordinate system, the same transformation acts on the components
of the momentum vector, from these transformed components in each frame of reference the
pseudovectors of the field are formed. But we know that the interaction between current and
electromagnetic field is described by an additional term in the Lagrangian of the electrodynamics
theory. This term is the scalar product of the current and the electromagnetic potential and it is
necessary for this product to be a scalar. But to form a scalar using a metric tensor, two true vectors
are needed, and these are not available. There remains only one way to provide the scalar, it is
necessary that signs of components in pseudovectors of current and field coincide, then they will
compensate each other, and in fact we will get the scalar product of two vectors, and hence we will
get a scalar.

Thus, there is a direct connection between the spinor description of the field and its vector
description. 16 pseudospinors pass into 4 pseudovectors, moreover, the modulus of the complex
mass in spinor space is equal to the mass in vector space. At all this by the value of the phase of a
plane wave in spinor space by any direct way it is not possible to calculate the phase of a plane wave
in vector space. Hence the assumption arises that operators in spinor space describe nature exactly,
while operators in vector space provide only an approximate description. This may partly explain
the problems with divergence when integrating in vector space.
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To describe the evolution of the field state, we consider the vacuum averaged expression having
the sense of the propagator. Let us explain the meaning of operators included in the field

[ a*P
009 = | G
[dl (P)V1(P) + b, (P)U4(P) $iPX)
+d,(P)UL(P) + b,(P)V4(P)

decomposition

+
[ b;(P)V1(P) + d;(P)U4(P) o—i(®X)
+d; (P)UL(P) + bi (P)V4(P)

For example, d,(P) is an operator of annihilation of a particle with pseudovector V1(P),
similarly, other operators without asterisks annihilate particles with pseudovector which stands in
expansion with these operators. Accordingly, the operator dj(P)d;(P)is the operator of the number
of particles with pseudovector V1(P).

Let us define a vacuum state of the field with zero filling numbers of particles of each of four

varieties
[¥o) = [Wo000)
by specifying its properties with respect to the action of annihilation operators
d; (P)|¥p) = 0 ds(P)|¥p) =0 by (P)|¥,) = 0 by(P)[¥,) = 0

(Wgldi(P) =0 (W5l di(P) =0 (Wg|b;(P) =0 (W5 |bs(P) = 0
It follows from these relations that
(W5 ld, (PYdi(P)|Wo) = (W5 [ d1(P), di (P)][Wo) = (W56 (P — P)[Wp)
Let us construct the amplitude of the field component, which is born at the point with
coordinates X = 0 and annihilated at the point with coordinates X

(Wilo: X p;(0)|Wo) = (Wil @™ (0)|Wo));

(PoloX)™ (0)|Wy) =

d;(P)V1(P) + b;(P)U4(P) ] [ b;(P)V1T(P') + d;(P)U4"(P) ]
)

\IIO) i(P,X)
+d;(P)UL(P) + by(P)V4(P)] [+4;(P)UL"(P') + bj(P')V4" (P

[ e

a*p d4P d;(P)d;(P)V1(P)U1"(P) + b;(P)b; (P )U4(P)V4' (P’ Si®X)
ff @m)* (27r)4 )”

+d4(P)d4(P YUL(P)U4T(P') + by(P)b; (P )V4(P)V1T (P’

d*p
(2m)*

V1(P)U1"(P) + U4(P)V4T (P)

. i®X)
o)l s u1Pyuar ) + vaP)VIT(P) |W°)e o

0 0

4Pz 0
0 0 0 ;
\\/J i(P.X)
0 0) €
0

d*p

any

0
0 —4P; 0
0 0 0

For the reasons given above, let us apply the normalization of the field operator
?X)
2E,(P)

As a result, we get

1 * T —
252 (P) (Yo loX) @™ (0)|¥y) =
4P2 0 0 O
a*p (l{]gll.yo) 0 0 0 0 eiPX) —
(m)* 42P2—M2)\ 0 0 —4P? 0 B
0 0 0 0
P20 0 0
d4P (lpg |LIJO) 0 0 0 0 ei(p‘x)
(2m)* 2P? — 0 0 —-pP? 0
0 0 0 0


https://doi.org/10.20944/preprints202401.1032.v6

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 March 2025 d0i:10.20944/preprints202401.1032.v6

83 of 101

If the mass is zero, this expression is the propagator of the photon.

Note that the matrix entering the propagator has no inverse, so we do not try to find the equation
of motion or Lagrangian, they are not necessary in this case, since we have an explicit expression for
the field operator. We do not have to worry about following the principles of Lorentzian covariance,
gauge invariance, or following ideas of symmetry. Instead, we rely only on the fulfilment of canonical
commutation relations for the field operator. The field operator is written identically in any frame of
reference, and to pass to another frame it is enough to know how the momentum vector is
transformed, which is transformed by exactly the same law as the coordinate vector, which ensures
the invariance of the phase of the plane wave. In other words, the field is not a vector but a set of
pseudovectors (pseudospinors in spinor space), only momentum and coordinate are vectors (spinor).

We can make our reasoning more intuitively clear if we define the birth and annihilation
operators of the field particle

B(X) = d+p [bj;(P)Vl(P)+dj{(P)U4(P) o-iPX)
(2m)* 1+d;(P)UL(P) + b; (P)V4(P)

aco = [ 2F [d1(P)V1(P)+b1(P)U4(P) .
(2m)* 1+d,(P)UL(P) + b,(P)V4(P)

Let us find the commutation relations between the components of these operators

[Ai(X), B]-(X')] =A;(X)B;(X") = Bi(X)A;(X) = (A(X)BT(X’) _ (B(X')AT(X))T)U
AX)BT(X') — (BXDAT(X))" =

B ﬂ d*p d*p’

(2m)* (2m)*
d,(P)d; (P’)Vl(P)UIT(P')ei(P,x)e—i(P'.x') _ di«(p’)dl(p)v1(P)U1T(P')e—i(P',x')ei(P,x)
+ by(P)b; (P)U4(P)VAT (P')ei®PX)=i(P'X) _ p=(p')p, (P)U4(P)V4T (P')e~i(FX)i®X)
+b4(p)bz(P')V4(P)V1T(P')ei(P,x)e—i(P',X') — b;(P)b,(P)V4(P)V1T(P) e—i(P'X)i(PX)
+d,(P)d; (P')Ul(P)U4T(P’)ei(P,x)e—i(P',X') _ dZ(P,)d4(P)U1(P)U4T(P')e‘i(P'-X')ei(P»X)

(d:(P)d;(P)) — d;(P)d; (P)) VA(P)ULT (P')e PR (P X)

a*p a*p’ |+ (b(P)b;(P") = bi(P))b, (P)) U4(PIVAT (P)e!PX)ei(PX)

) ﬂ Cm)* G| 4 (b,(PYb(P') — bi (P)by(P)) VA(PIVLT (P)eiPX ¢ i(F'X)
+(d,(P)d;(P) — d;(P))dy(P)) UL(P)UAT (P')e P i(PX)

(5(P - P')) V1(P)U1T(P)ei®X)e-i(P'X)
_ ff d‘p d*p’ +(6(P - P’)) U4(P)V4"(P")e!(PX¢-i(P X)
@m)* 2m)*| + (5(p _ P)) Va(P)V1T (P)elPX)o-i(P'X)
+ (S(P — P’)) U1(p)U4T(p')eimx)e—i(p’,x')

V1(P)U1T(p)ei(P.X)e—i(P,x')
[ d'P | +U4(P)VAT (P)eiPN-i(PX)
) o [ 1vaP)VIT (P)eiPX)e-i(PX)
+U1(P)U4T(P)ei(P.X)e—i(P,x’)

V1(P)U1T(P)
= d'p +U4(P)V4"(P) e—i(PX-X)
~ ) @m* [+vaP)viT(P)
+U1(P)U47 (P)
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) 4P? 0 0 0
_ d°p 0 0 0 0 e-i(PX-X)
@m*\ 0 0 —4P} 0
0 0 o0 o0
4P 0 0 0 ,
_ o o 0 0 J.dp o-i(PX-X)
0 0 —4pP} 0]) @)t
0 0 0 0
4P 0 0 0
o o 0 0 :
= s(X-X
0 0 —4P} 0 ( )
0 0 o0 o0
4P 0 0 0
, , , 0 0 0 0
A;X)B;(X) - Bj(X)A,(X) =8(X—X)
e S 0 0 —4P; 0
0 0 o0 0y

As we see, the commutation relations are satisfied for the birth and annihilation operators.

Let us define the total particle number operator in the form
N;i(X) = B;(X)A;(X)

N = [ @x 504X
Let's find the commutator

[N B;(X)] = f d*X {B;(X)4:(X)B; (%) — B;(X) B;(X)A;(X)} =
[ X {5,(x)4:(x)820 - 5(X)B,C04,(x )} =

[ X 5,06) (46,00 - 5,00 ()} =

4P2 0 0 0 4P2 0 0 0
, N for 0 0 o o 0 0
X (B;(x)s(x -=x)}| ¢ 0 = B,(X
f 18;(X)a( Moo o —4P} 0 A —4P; 0
0 0 0 0/ 0 0 0 0/

Let's define the vacuum state using the relations
di(P)[Wo) =0 by (P)[Wo) =0 dy(P)[Wo) =0 by(P)[¥p) =0
which implies
A;(X)[Wo) = 0

Nji[Wo) = f d*X B,(X)A,(X)|Wy) = 0

Let's act on vacuum by the birth operator and for the obtained state we find eigenvalues of the

particle number operator
4P 0 0 o0

0 0 _ap o] BOO=[NeBE] =N - BCON,
0o 0 o oy
4P2 0 0

0 0 0

0

0 —
0 0 _apz | BOOI) = NiBOOI¥) — BOONI%)
0 0 o 0/y
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4P 0 0 o0
0 o0 0 0
N;i(B;(X)|¥o)) = B;(X)[Wo)
J ( J 0 ) 0 0 _4_P22 0 ( J 0 )
0 0 0 0/
If we apply normalization
AX)  B(X)

2E,(P)  2E,(P)
then the eigenvalues will have the form

P2 0 0 0
1 0 o 0 O
N;:(B;(X)|¥)) = ———— B:(X)|W,
(B = 0 o o] BN
0 0 0 0

ij

Note that in the case of the photon field, the matrix, taking into account the normalization,
contains elements whose modulus is less than or equal to %, since at zero mass Pf < P? .

The fact that for the birth and annihilation operators commutation relations are fulfilled, allows
to conclude that quanta of the field obey Bose statistics, therefore a single action of the birth operator
increases the number of particles in the field by one, and the action of the annihilation operator
decreases this number by one. Hence, by means of these operators it is possible to write the
propagator not only for the case when the initial and final states are vacuum, but also for the initial
state with an arbitrary number of particles

T . Pk 0 0 0
(PABT 1) _ (P (i) [0 0 0 0) e
4E3(P) 2m*2p2—M2{ 0 0 P 0
0 0 o0 o
For illustration let us consider a one-particle state
[W;) = B;(X)|W)
Pz 0 0 O
1 00 0 0
Ni|¥;) = v
ll 1) 2.P02 — M2 0 0 _ 22 0 | 1)
00 o0 o

and act on it with the birth operator. Again, let's take into account

P20 0 0
b o0 00V gy = NGB X = NiB (X) — B (XN
sl 5 b e o) B0 = N B) = N~ BCow,
0 0 o oy
P 0 0 0
! 0 0 0 0V px)W,)=N,B X)W} — B;(X)N;;| W
| 0 e o] EOOND = NB OO - BN
00 o o,
P20 0 O
_ 00 0 0
—IVjiBj(X)l\I]1>_Bj(X)W 0 0 —p2 0 [\Wq)
0 0 0 0

The result is
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PP o 0 0
o o 0 0
N;B;X)|¥;) =2 ——— B; (X)W
ji j( )l 1) 2P02—M2 0 0 —P22 0 ]( )l 1)
0 0 o0 0y

The eigenvalue of the particle number operator has increased, instead of a one-particle state we
have a two-particle state

[W,) = B;(X)|W;)

P20 0 0
0 0 0 0
Ny W) =2—— V7
il'¥2) 2p2-M2\ 0 0 -P? 0 I72)
0 0 0 0oy

Further application of the birth operator increases the number of particles to any value. Now let
us find a commutator for the annihilation operator, without taking into account the normalization
for the moment

[Ny, Ai(X)] = f d*X {B;(X)A4,(X)A,X) — A,X)B;(X)A,(X)} =
f d*X {B;(X)A:X)4;(X) — 4,X)B;(X)A(X)} =

f a*X {(B;(X)4:(0) - 4, B;(X)) 4,(X)} =

4P2 0 0 0 4P2 0 0 0
, , , 0 0 o o 0 0
a*X {—5(X - X)4;(X 0 0 = —A,(X
f t-a( )4 (X)) 0 0 —4P} 0 (%) 0 0 —4P} 0
The ratios have been taken into account here
4P 0 0 0
’ ’ ’ 0 0 0 0
A;(X)B;(X)—B;(X )4;X) =6(X—-X
0 0 0 0/ i
4PZ 0 0 0
, , . 0 0 0 0
B:(X)A4;(X) —A;(X)B;(X ) =-6(X—-X
]( ) l( ) z( ) ]( ) ( ) 0 0 —4P22 0
o 0 o oy

Let's act on the two-particle state by the annihilation operator and for the obtained state we find
the eigenvalues of the particle number operator

4P 0 0 0
o 0o 0 0

- A,(X) = [N, 4,X)] = N 4,(X) — 4, (X)N;,
0 0 —4P22 0 z( ) [ jir l( )] ji l( ) l( ) ji
0 0 0 0/
20 0 0
o o 0 0 _

| o o _4p? 0 A (X)|W,) = N; A;(X)[W,) — A;(X)N;;|W,)
0 0 0 0/
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4P 0 0 0 4P 0 0 0
0 0 0 0 0 0 0 0
Ni(4,X) W) = — A X)|Y,) +2 A X)WV
i (A X)[W2)) 0 0 —ap? 0 i(XW,) + 0 0 —ap2 0 (A:X)[W2))
0 0 0 0 ij 0 0 0 0 ij

Here, the fact that without taking into account the rationing

4P 0 0 0
o 0o 0 0
N;i|W,) =2 v
]ll 2) 0 0 —4P22 0 I 2)
0 0 o0 0y

Thus, the annihilation operator reduces the number of particles and puts the field into a single-
particle state.

Separate application of the birth and annihilation operators more corresponds to the ideology of
second quantization than their use only as a sum, i.e. only as a field operator

¢X) = AX) + B(X)
In particular, since
(WsloX)ep (0)[¥o) = (¥5|AX)BT (0)[¥)
then the propagator really acquires the sense of the amplitude of the probability that the particle is
born at the origin and annihilated at the point with coordinates X.

Moreover, now the propagator can be not bound to the vacuum state, but can be applied to the
field state with arbitrary number of particles n>0. The application of the sum of operators to some
state makes sense only in the case when all operators except one give as a result zero. Therefore, at
the usual approach we have to work only with the vacuum state so that at calculation of the
propagator the annihilation operator gives zero. In our approach this restriction is removed, the
operators are not summed, but only multiplied, and they can be applied to a state with any number
of particles. For this purpose, let us take into account the following relations

(W(P,dy);|d;(P)d;(P)[W(P, dy),) = (W(P,dp);|di(P)d;(P)|W(P,dy)y)
= (W(P,d));|6(P — P)|W(P,dy),) = (W(P);|6(P — P)|W(P),)

(W (P, by)y,|b;(P)b; (P)|[W(P, by),) = (¥ (P, by);, |bi (P)by(P)|W(P, by)y,)
= (W(P,by);|6(P — P)|W(P, by),,) = (¥(P);,|6(P — P)|W(P),)

(W (P,d);|ds(P)d;(P)[W(P,dy),) = (W(P,dy);|d; (P)dy(P)|W(P, dy)y)
= (W(P,dy);|6(P — P)|W(P,dy)n) = (W(P);|6(P — P)|W(P),)

(W (P, by);|ba(P)b; (P)|W(P, b)) = (W (P, by);|b; (P)by(P')|W (P, by)y,)

= (W(P, by, §(P—P)|w(P),)

§(P—P')|W(P,by),) = (V(P);

. d*P d*P’
(W, 1A)B"(0)|W,) = ﬂ ey

[ d;(P)V1(P) + b;(P)U4(P) [ b;(P)V1T(P) + d;(P)U4T(P")
+d,(P)UL(P) + by(P)V4(P)I [+d;(P)U1T(P) + bj(P V4 (P')

a*p d*p’

- || ey
d;(P)d;(P)V1(P)U1T(P') + b;(P)b; (P )U4(P)V4T(P')
[+d4(P)d;(P’)U1(P)U4T(P’) + by(P)b;(P)V4(P)V1T(P)

(W(P)y ” W(P), ) el®X

(W(P);, ” W(P),)e!®PX

B d*p
~ ) @n)t

V1(P)U17 (P) + U4(P)V4T(P)

(TP +U1(P)U47(P) + V4(P)V1T(P)

| wep),) et
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0 0
0 0
—4p?
0 0

d*P 4

ot W(P),) e ®X

(w(P);, g
0

0
0
0
0
4P0 0 0 0
J-(Z )4 (‘I’(P)M‘I—’(P) )< (()) 0 0 el(PX)
0

—4P; 0
0 0
. 0 0 0
d*pP 0 0 0 0 .
— \I]* \\7) i(P.X)
(¥l ">f(2n)4 0 0 —4r2 0l°
0 0 0 0

The assumption used here is that the scalar products {(¥(P);,|¥(P),) = (¥;|¥,) are the same

for any values of momentum. Taking into account the normalisation
. PE 0 O
d*P (%) [ 0 o0 0
(2m)* 2P — M? 0 0 -p?
0 0 0 o0

At non-zero number of particles we can change the order of operators and first apply the

annihilation operator

(P1IAX)BT(0)|¥,) = i(PX)

o © O

d*P  d*P’

(W3 B(X)AT(0)]W,) = f f ST G

. |[ bi(P)VL(P) + d;(P)U4(P) 1[ d;(P)V1T(P") + b, (P")U4T (P’ »
O [ ruach + 11 (ervace] Luay(poust (o) + 5 (pvar ool P
d*P  d*P’
f j (2m)* (2m)*
(TP [d;‘(P)dl(P')Ul(P)Vﬂ(P)+b1(P)b1(P )V4(P)U4"(P) ” W(P),)e-iPX
"|[+d;(P)d,(P)U4(P)ULT (P') + b;(P)b,(P)V1(P)V4T (P') "

[ U1(P)V1T(P) + V4(P)U4T (P)
+U4(P)U1T(P) + V1(P)V4T(P)

- f % (WP, |[w@pe-ie®

. P2 0 0 0
a*p 0 0 0 0 .
— (VY (P);, Y(P —i(P.X)
oy (VP 0 0 _4P2 mIRIGRE
0 0
4P0 0o 0 0
0 0 0\ —iex
W(P);| W (P l
j(2)4<(>n|()> -
0 0 0
P20 0 0
0 0 0 0 —i(PX)
v W i,
= (¥l >f(,z ¥\ o o —ap? 0]°
0 0 0 0

After normalization we obtain

P20 0 0
a*tP (YY) [ o o 0 o i
W |B(X)AT(0)|¥,) = —nn iR
( nl ( ) ( )l n) (271.)4 2P02_M2 0 0 _P22 0 e
0 0 0 0

Let’s return to the previously used definition of the vacuum state by means of relations
di(P)[¥) =0 by(P)|W) =0 dy(P)|¥o) =0 bu(P)|¥)=0
di(P)d; (P)[¥o) =0 bi(P)b;(P)[Wo) = 0 di(P)ds(P)[Wo) =0 bi(P)by(P)[Wp) = 0
which implies
A;(X)|[P) =0
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NjolWy) = f d*X B, (X)4,(X)|¥,) = 0

As we have seen, the action of the birth operator transforms the zero-particle state into a one-
particle state

P20 0 0
L 00 0 0
N;i(B;(X)|Wo)) = Ny W) = M| 0 0 —p 0 |'¥;)

0 0 0 0 ij
At that, none of the operators of the number of particles with a particular value of momentum
di(P)d,(P)|¥1) bi(P)by(P)[¥1) di(P)dy(P)|¥1) bi(P)by(P)[Wy)
has no definite meaning, since the particle is only one. In this connection it makes sense not to define
the vacuum in such a detailed way, it is enough to define that the vacuum state is characterized by
only one condition

NjolWy) = f d*X B, (X)4,(X)|¥,) = 0

At this approach the field energy is not equal to the sum of energies of partial oscillations,
accordingly the question about the energy of zero-point oscillations of each oscillator constituting the
field is removed. We get rid of the problem of infinite energy of the sum of zero-point vibrations of
an infinite number of oscillators.

We would like the propagator to have properties of the Green's function, i.e., to satisfy the Klein-
Gordon equation of motion

02 0? 02 02
B <ax02 ToxZ ax? oxt
The solution of this equation has the form
d*p 2i(PX)
(2m)* P2 — P2 — P2 — P2 — M?
Therefore, we add the same multiplier to the denominator of the integrand expression

. Pg 0 0 0 -
d*P (YD) [ 0 0o 0 0 e {(PX)

(m)* 2R} —M2\ 0 0 —P} O |R}—P?—P;—P}—M?
0 0 o0 o
By analogy with the introduced birth and annihilation operators for fields in vector space, let us

describe the corresponding operators for fields in spinor space. As an initial one we use the
previously described field operator for the fermionic field

d*p
o(x) = J W
[dl (P)ul(p) + id,(p)u3(p) + ib,(p)u2(p) + b, (p)u4(p)
+d4(p)v1(p) + ids(p)v3(p) + ib3(p)vZ(p) + bs(p)v4(p)
[b1 (p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + d; (p)u4(p)
+b;(p)v1(p) + ib;(p)v3(p) + id;(p)v2(p) + d;(p)v4(p)
Let us define the birth and annihilation operators

m2>D(X) = §(X)

D(X) =

(FRIBX)AT(0)|¥,) =

ei(Pox1-P1x0+P223-P322+(p.X))

—l(Poxl —p1X0+P2x3—P3x2+(pX))

d*p
PO = | Gy
[bl(p)ul(p) +ib;(p)u3(p) + id; (p)u2(p) + d; (p)u4(p)] _i(poi—pLxo+Paxs—paxs - BT
+b;(P)VI(p) + ib3(p)V3(p) + id;(p)v2(p) + d;(p)v4(p)
_ (4P
a® = | Goy

l(poxl —p1X0+D2x3-P3x2+(p.X))

[dl (P)ul(p) + id;(p)ud(p) + ib,(P)u2(p) + by (p)ud(p)
+dy(p)v1(p) + ids(P)v3(p) + ib3(P)VZ(p) + bs(P)v4(P)
Let's find anticommutation relations between components of these operators

{a;(®), b;(x")} = a;(x)b;(x") + b;(x")a;(x) = (a(x)b(X’) + (b(x’)aT(X))T)L.j
ax)b” (x") + (b(x’)aT(X))T =

ﬂ (2m)* (‘;‘:r)’4
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{a;(x),b;(x)} = ;X b;(x") + b(x)a;(x) = (a(x)b(x') + (b(x')aT(x))T)

i

a(x)b"(x) + (b(x')aT(x))T =

d*p d*p’
ff 2m)* 2m)*
[dz(p)ul(p) + id,(p)u3(p) + ib,(p)u2(p) + b;(p)u4(p)
+dy(p)v1(p) + id;(p)v3(p) + ib;(p)vZ(p) + by(p)v4(p)
[b;(p’)ul"(p') +ib;(p)ud*(p) + id;(p)u2(p) + dj(p)ud”(p) ]
+b;(p)v1t(p) + ib;(p)v3*(p’) + id;(p)v2T(p’) + d;(p")v4a" (p)

ei(Pox1=p1x0+D2x3-P3%2+ (X)) o —i(PO,XI "—p1'x +p2 x3'-p3 ,x2,+(l’,‘x,))

+

[ bi (p )ul(p ) + ib; (p )u3(p ) + ldz(p )uZ(p ) +d; (p )u4(p
+b;(p)vi(p) + ib;(p")v3(p) + id;(p)v2(p’) + di(p’ )v4(p

[d1 (p)ul’(p) + id,(p)u3’ (p) + ib,(p)u2*(p) + b (p)u4+(p)
\ +d,(p)v1’(p) + id;(p)v3” (p) + ibs(p)v2*(p) + b4(p)v4+(p) /

e—l(l’o x1'=p1 %0 +p2 x5 —p3'x +(p'x )) i(pox1—P1%0+D2x3—D3%2+(PX))

[ d;(p)d;(p )ul(p)us’(p) ]
—d,(p)d;(p)u3(p)u2’(p’) +-
ei(Poxl—P1Xo+P2x3—P3x2+(pT))e—i(Po’xl'—Pl’x0'+P2'x3’—P3'xz'+m)
+
[ b;(p)b;(pHus(p)ul*(p)
—b,(p)b; (p)u2(p)u3*(p) + -

_ei(po'm '—p1'%9 +P2 3" -p3 %2 '+(P"X'))e —i(pox1—P1X0+P2%3-D3%2+(PX)) |

B ff (ﬁ* (Ozljrpﬂ

i (p)by () (W(p Jut* ()
|3 (p):(p) (WB(p )uz* (@) +

—i(poxl —p1X0+P2X3-P3%2+(p.X)) ei(Polxl '—p1 %9 +p2 x3"-p3 'x2'+(P',X'))

d4p d4
ff @m? 2n)? : * .
d;(p)d(p) (u4(p)u1"(p))

|~ 3(p) () (u2(p)us"(p)) +

» —i(l’olxl "—p1'x +p2 %3 -p3'x; '+(P,,Xl)) e i(pox1—p1x0+P2X3—-D3%2+(PX)) |

d (p)di (p)ul (P)ua™(p") + di (p)es () (u(p)u"(p) )’
|~ ,(p)d3 (p)u3(Iuz" (p) — di(p)da(p) (u2(p)u3"(P)) +

dip dp oi(Pox1=P1x0+p2x3- P32+ (p) o —i(P0 1 =1 X0 +p2 x5 —p3 52 +(p ')
- || G|, * _ r
b (p)b; (Pud(p)ut*(p) + b; (p)b;(p) (W1(p)ud* (p))
o~ , , ., T
|—b,(p)b; (p)uZ(p)u3*(p) — b3 (p)b (@) (u3(p)uz* () +

ei(po'n "—p1'x0 +p2 %3 ~p3'x; '+(P'.X'))e —i(pox1-P1x0+P2X3—D3%2+(PX))
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~d,(p)d;(p)u3(@)u2”(p") — d;(p)d>(p) (u3(PIu2’ (p)) + -

el (Pox1-pP1x0+p2x3-D3%2+(pX)) e—i(m)’xl "—p1'x0 +p2 %3'-p3 'xz'+(P',x'))

l d;(p)d;(p)ul(p)ud”(p) + d;(p))d; (p) (ul(p)ua’(p))

B d*p d*p’
- ff @n)* @n)* ,_ N _ ,
b (p)b; (p )uZ(p)u1*(p’) + bi(p)b: (p) (ud(p)u*(p))
—b,(p)b3 (p)uZ(p)u3*(p’) — b (p)b:(p) (WZ(PIu3*(p)) + -

ei(Po'x1 "—p1 %0 +p2 %3 -p3'x; '+(P'rxl))e ~i(pox1-P1X0+P2%3-P3%2+(P.X))

[ ul(p)ud’(p) + u4(p)ul’(p) ]
—u3(p)u2’(p) — uz(p)usd’(p) + -
d*p ei(po(x1—x1/)—p1(xo—xo’)+p2(x3—x3')—p3(x2—x2')+m"))
= [ +
em WA (p)ul* (p) + WL(p)us* (p) ]
—uz(p)u3d*(p) —u3(p)uz*(p) + -
»e—i(pg(Jq—)q')—p1(X()—XQl+m)+P2(X3—X3')—Ps(xZ—xZ')+m)_

[ [ ul(p)ud’ (p) + ud(p)ul’(p) + vi(p)v4’ (p) + v4(p)v1’(p) 1]
—u3(p)u2’(p) — u2(p)ud’(p) — v3(p)v2’(p) — v2(p)v3’(p)
d*p ei(po(x1—x1 V-p1(xo—x0 ) +p2(x3-x3)—p3(x2-22 )+ (px-X)))
B Cm)* [r =7 + utl + * v + = +
[ u4(p)ul®(p) + ul(p)ud*(p) + v4(p)vi*(p) + vi(p)v4* (p)
—u2(p)ud*(p) — ud(p)uz*(p) — v2(p)v3*(p) — v3(p)vz*(p)

e —i(Po(x1 —x1')=p1(x0=x0 )+P2(x3-x3 ) -P3(x2-%2 ’)+(P‘X—X'))

— f d4p (SR(p) + S, (p))e(i(Po(x1—xI')—m(xo—xo')ﬂﬂz(xs—xs )-p3(x2=x2 ')+(P.X—X')))
@m)*

d4p - <7 - i(p (x1=%1)-p1(x0—%0 ) +P2(x3—x3")—p3(22—2 ')+(p,x—x'))
+f(21r)4 (SR(p)+SR(p))e( o(x1=%1)=p1(x0—x0 ) +p2(x3-%3")—p3(x2—*x2 )

_ [P
-~ ) @ny

> e (i(Po(x1 —X1 ')—m (xo—xo')ﬂJz (x3—x3 ')—Ps (x2—x2 ')+(p.X—X')))
0

SQQQ

N
/
oo 3

d*p
2m)*

SS¥ o ooz o
S¥oc o3co

> e —(i(Po(xI —x1)=p1(x0=x0 )+p2(x3-x3")~p3(x2-% ')+(P,X—X')))

§|QQQ

'S
/

oS o 3

=4ml§(x —x) + 4mIS(x — x)
{ai(x'), bj(X)} = ai(X,)bj(X) + bj(X)ai(X,) = 4Re(m)5(x' - X)Sij
{b;j(x), a;(®} = bj(x)a;(®) + a;(X)b;(x") = 4Re(m)5(x — x)&;;
Besides these relations, the following ‘anti-commutation relations take place between the

components of the annihilation and birth operators
{b;(®), b;(x)} = b;(®)b;(x") + b;(x")b;(x) = 0
{a;(x),a;(x)} = a;(®)a;(x") + q;(x)a;(x) =0
Let's define operators of the total number of particles in the form

Nu® = B®a® Ny = j d*x b, (0 a; ()

Let's find the commutators
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[N;i, b;0)] = f d*x’ [by(x)a; (x)by (%) — by ()b (X )a;(x)] =
f d*x’ [by(x)a; (x)by (%) + by (x )b ()@, (x)] =
f d*x' [ (x) (@ ()b (%) + by(¥)a; (x) )| =
4Re(m) f d*x' b;(x")8(x' — x)8;; = 4Re(m);;b;(x) = [Nj;, b;(%)]
Wa9] = [ 4% [ 0)a(x)a 6 - @b x)ex)] =
f d*x’ [-b; (X a; () a; (x) — ;0 (X )y (x)] =
- f a*x' (b)) + @, (X)b;(x)) a,(x)] =
—4Re(m) f d*x' §(x' —x)8;;a;(x") = —4Re(m)5;ja;(x) = [Nj;, a;(x)]

Instead of defining the vacuum state through its properties under the action of annihilation

operators

di(p)|¥o) = da(p)|Wo) = b, (P)|Wo) = b1 (p)|¥o) = 0

d.(p)[¥o) = d3(p)|Wo) = b3 (p)|¥o) = bs(p)|¥o) = 0
which would entail the ratios

a(x)|¥) =0 NjiN’o) =0
we will not require from operators all these properties, but we will be limited by a weaker and simpler
definition of vacuum, namely, absence of particles in vacuum
Nji|LI"0) =0
Let's use the found commutator
4Re(m)d;;b;(x) = Nj;bj(x) — bj(X)Nj;
4Re(m)5ijbj(x)|lpo) = Njibj(x)llpo) - bj(X)NjillP0>
Nj;ib;(x)|W,) = 4Re(m)d;;b; (x)|Wo)
W) = bj(X)Hjo)
Njillpl) = 4Re(m)5ij|lp1>
On the obtained one-particle state let's act on the obtained one-particle state by the birth operator
again
4Re(m)6ijbj(x)|\y1) = Njibj(x)l\pl) - bj(X)Njil\pl)
4Re(m)d;;bj(x)|W1) = N;;bj(x)|W;) — 4Re(m)d;;b;(x)| V1)
Njibj ()|W1) = 2(4Re(m)6y;)b; (x)|W1)
|Wy) = b;(x)[Wy)
N;;|Wy) = 2(4Re(m)5;;)|W,)

We have obtained a state with two particles and we can thus increase the number of particles to
infinity. All particles are identical and indistinguishable from each other, each of them is in all
allowed states, of which the free field has infinitely many. Electrons in an atom have fewer allowed
states, but still any electron occupies all of them equally with the others. This theory describes both
electron and positron, the difference between them being only in the sign of the mass, it being

convenient to consider that the electron has a negative mass and the positron a positive one.
Similarly, we use the commutator of the annihilation operator

—4Re(m)é;;a;(x) = Nj;a;(x) — a;(X)Nj;
—4Re(m)6;ja; X)|W¥5) = Nja; (%)W) — a; X)N;i|W5)
—4Re(m)é;;a;(X)| V) = Njja; X)|V,) — 2(4Re(m) ;) a; (x)|W,)
Njja;(x)|W¥,) = 4Re(m)§;ja;(x)|¥>)
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Thus, the action of the annihilation operator has transformed the two-particle state into a one-
particle state. Using the same calculations, we obtain the result of the annihilation operator action on
the one-particle state

Njiai(x)|\yl) =0+*q;(x)|V7)
And in the same way we define the result of its action on the null state
Nja;(x)|Wo) = —4Re(m)d;;a;(x)|Wy) = 4Re(—m)§;ja;(x)| W)

We obtain a state with the number of particles minus one, but we see that in fact it is a state with
one particle whose mass is negative. Thus, the positron annihilation operator is also the electron birth
operator. It destroys positrons until they run out, after which it begins to give birth to electrons. The
birth operator, on the contrary, destroys electrons, and when they run out, begins to give birth to
positrons. Thus, since there are many electrons in our universe, this operator cannot give birth to
positrons because it cannot destroy all electrons due to their number. Moreover, the operator of
annihilation of positrons because of the absence of the latter, only gives birth to more and more
electrons.

If the mass is zero, then in any state the number of particles is zero, i.e., for example, the
electromagnetic field in spinor space, where it should be fermionic, simply has no particles. The
absence of particles does not contradict the presence of the field, which is represented by the same 16
spinors, this field obeys Fermi statistics, and it has no charge and can be treated as a Majorana
fermion. This field interacts with electrons in spinor space, and the result of the interaction manifests
itself in vector space.

With the help of the birth and annihilation operators we can write the propagator for the
situation when the initial and final states are states with arbitrary number of particles

1 0 0 O
. d*p . 01 0 0\, i(porse I
(P lax)bT(0)|¥,) = J-W (W) |W,)4Re(m) 00 1 0 ei(Pox1-P1x0+P2x3-P322+ (X))
0 0 0 1
" 1 0 0 O
* p * 0 1 0 0 —1i —_ — px)
(kpn|b(x)aT(0)|qJn) = j W (W |W,)4Re(m) 00 1 0l¢ i(Pox1—P1X0+P2X3-D3X2+(pX))
0 0 0 1

We would like the spinor propagator also to have properties of the Green's function, i.e. to satisfy
the equations which for this case are given below and which can be combined into one equation by

summation
Jd 0 ada ad
<6_x_16_x_2_6_3@6_x_3+m)D(x)=6(x)
(20202070, 7)o - 509

0%, 0%, 0%, 0%z
0 0 9 9y (o00o0] orlo[] ~ )
<(a_xla_x2 _a_%a_xg) " (a_x—la—x—z‘a—m—@) +m+ m)D(x) = 6(x)

where the delta function can be represented as

a* .
5(X) = p e i(pox1-P1X0+P2%3~P3%2+PoX1~P1X0+P2%3~DP3X2))
@m)*

The solution of the combined equation has the form

ei(Pox1-P1x0+D2x3-D322+ (X))

D(x) f d'p
X) = —— —— —
@2m)* (p1p2 — pops) + (P1P2 — Pob3) —m — M

Therefore, we must add to the denominator of the integrand an appropriate multiplier

d'p .
1 (i)

o 5

T =
(b’ ()W) J (P1p2 = Pops) + (P1P2 — Pop3) — Re(m)

SO O

8 4Re(m)e i((px-y)+(px-y))
0
1

S OO =
SO O
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100 0 . S
(PrlbGOa" )W) f 0 wywy(0 10 0 4Re(m)e (PxV @)
X)a = -_— —— —
" Y% @m* Mo 3 8 (1) g (P12 — Pop3) + (D102 — Pob3) — Re(m)

The electron and positron have different mass sign, so their propagators will be different.
Instead of the sum of equations we can use their product, then the corresponding
inhomogeneous equation

(0o 20y (2 52 2y ) -0

0x; 0%, 0x)0ixs;)\0x;0x, 0xy0x;3

has a solution

d*p e (Pox1-Dp1x0+D2x3-D3%2+PoX1—P1X0+D2X3~D3%2))

DGO = Q2n)* (P192 — Pob3) (P1P2 — Pop3) — M?

d*p e (Pox1-p1x0+D2x3-D3%2+ (PoX1-P1X0+P2X3-D3%2))

B (27-[)4 P02_P12—P22_P32_m2

Correspondingly, it is necessary to add to the propagator the denominator in any of these forms,
since it was shown earlier that for a free field
(0192 — Pops) (P12 — Pobs) = Po® — P2 — P,* — P3?
We can repeat the above calculations, keeping the annihilation operator, but defining the birth
operator differently
d*p
__Jemt
[dl (p)ul(p) + id (p)u3d(p) + iby (P)uz(p) + bl(p)lﬂ(p)] o (Pox1—P1x0+D2%3-P3x2 + (X))
+d,(p)v1(p) + id;(p)v3(p) + ibs (PIV2(p) + ba(p)v4(p)
d*p
B B b(x) = s
|:d; (p)ul_(p) - id; (p)UB_(p) - ib; (p)uz (p) + bik (p)u4(p) e—i(poxl—p1x0+p2x3—p3x2 +(p7))
+d;(p)v1(p) — id3(p)v3(p) — ib3(p)v2Z(p) + bi(p)v4(p)
As a result, we obtain the anticommutator
! ! ! ! ! T
{0:0,5;(x)} = 4,0 (x) + b (x)a;(®) = (@b + (b(x)a" (x)) )l.j
a(x)b” (x') + (b(x’)aT(x))T = 4Py 15 (x' —X) + 4Py 16 (x — x') = 8P 6(x — x')

Po = DoPo + P1P1 + P2P2 + P3P3
As before, using the birth and annihilation operators, we construct propagators for a state with

a(x) =

an arbitrary number of particles

d4p (1) (1) g g 8poei(P0x1—P1x0+sz3—p3x2+(PT))
Filab O1%) = [ oL i) Sloe T
" " (2m)* ¥o 0 1 0 1Pz — Dob3)(P1P2 — Pop3) — M?
0 0 0 1
1 0 0 O . _
b (6T (O)4) j d*p - 01 0 0 8Py e ~i(Pox1=P1xo+p2x5—p3x2 +(pX))
x)a = —
" " @m+*"n 8 8 é 2 (P1P2 — Pob3) (P1P2 — Pop3) — M?

Now instead of mass the propagator includes energy, therefore such theory is applicable also to
the field with zero mass, i.e. it can serve as a model not only for the electron, but also for the
electromagnetic field in spinor space. The only problem is that if earlier the action of the
annihilation operator on the zero-point state gave a particle with negative mass, now this action gives
a particle with negative energy, which makes the interpretation of such theory more difficult.

We can reformulate the above reasoning in a more consistent and logical form. Let us again write

down the equations

(ii —ii+ m) D(x) = 6(x)

0x, 0x, 0xy0x3

d0i:10.20944/preprints202401.1032.v6
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aflofl ofJo[l, _
(a—x_la—x_z - a_x—ga_z + m) D(x) = 6(x)

and put in correspondence with them the birth and annihilation operators, which in this version are
conjugate to each other

d*p

@m?

[dl (p)ul(p) + id,(p)u3(p) + ib,(p)u2(p) + by (p)u4(p)
+d,(p)v1(p) + ids(P)v3(p) + ib3(PIVZ(P) + by (P)V4(P)]| P1P2 — Pops — M

a(x) =

(@0 +Px)

ot
b(x) = a(x) = f ﬁ

[d;<p>u—1_<p> ~ id; (p)U3(p) ~ ib3 (PIuZ(p) + b; (P)us(p) ] e (@01 )
+d;(p)v1(p) — id;(p)v3(p) — ib;(p)v2(p) + bi(p)v4(p)| P1P2 — PoP3 — T
Then the propagator without additional assumptions will have the form

e i((px-y)+x-y)
D;j(x—y) = (¥,

d*p
T L= | /2 o .
aCOb W[l J Gt O G s~ )Gt — i — )

One can even propose to use plane waves in spinor space immediately together with the
denominator in any field operators

1 Cl(e0+ex)

8PyP1P2 — PoP3 —Mm

The considered free field propagators describe the situation when there is a point source with
coordinate x and a point sink with coordinate y. In the general case in the spinor space the
distribution of source-stocks J(x) can be given and the value of

1
W) =3 [[ d*x @y 100y - v,
which is used for finding the integral over the trajectories and which can be written using the Fourier
transform for the spinor space

d* P
Ji(p) = J (2734 Ji (e~ (@x+Bx)

L4 (PoPo + P1P1 + P2Pz + P3Ps)
W(]):——jj ] 8Py6;; —
2] @y P BP0% G, —pop) i — pops) —
In quantum field theory it is customary to calculate a similar quantity

1
w() == [[ d*x v 1,00, 0= V7,0

in which the coordinates, momenta and the Fourier transform connecting them belong to the vector

Ji(p)

space. In our opinion, the transition to spinor space, more fundamental than vector space, which is a
superstructure over spinor space, can eliminate divergences in calculating integrals in the framework
of the formalism of the integral over trajectories. In momentum space the similarity is even more
obvious, the kernels of the integrals are the same, the only difference is in the space where the
integration takes place and the way of calculating the Fourier transform - either in vector or in spinor
space

wan = L a*p Y 8 b
)= _Eff (271)411( ) PE—PZ—P7— Py _mzfj( )

W(]) - _Ejf (Zn)4jl(p) P02 _ P12 —PZZ _ P32 _mzjj(p)

The spinor space has the additional advantage that the integrand is factorised
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L _d J.(p) J;i(P)
WU)Z_Eﬂ.(Z 8P l ij -
) (p1p2 —pops —m) ~ 1Pz — Pop3 — M)
This factorization in momentum space looks like a consequence of a more fundamental property

of factorization in coordinate space
w() = =3 [[ @ aty1opy -y @)
. 2 i ij j
= =5 [[ ¢ ay o IaGob @)
1
= =5 [ @@y i o (awb®), 1| )

] @x *y 50 @e0b™ ), 0)] )

We can assume that first it makes sense to perform integration separately on x and y, and only

( f d*x JT (%) a(x)) < f d*y bT(y)/(y))

Since earlier we have obtained an explicit representation of field operators in both vector and

1 *
= _E(lpn

then to perform multiplication

1
W) =~ (% %)

spinor space, we do not need to refer to the equation of motion and the Lagrangian. Proceeding from
these representations, we define the birth and annihilation operators, and from them we construct
the propagator as a function of relative coordinates. For example, for a spinor space

d'p i((px-y)+(px-y)
Dyx—y) = f @t 8P06,,,1e‘((l’"‘ y)+px-y))

But we need to take two more steps. The first is to find an equation for which this propagator is
an eigenfunction of the relative coordinates. Two equations can be proposed for this role

o[1a[]1 o[la[l\,0 @ o 0 2\ B
(om0~ e~ 970 = 81569

((ii_ ii) - m) <6_[]6_[] _6_[]0_[]> —m | g*D,;(x) = 5;‘5(,()

0x; 0x, 0xy0x3 0x; 0x, 0Xx,0%3

It is important that in both cases the eigenvalue is a real value independent of the coordinates.
The second step is to ensure that the propagator has the properties of the Green's function, i.e., that
the right-hand side of the equation has a delta function. This is necessary so that for an arbitrary
distribution of sources we can use this propagator to construct a complete picture of the field
propagation. To satisfy these equations, we must include in the solution a normalizing multiplier of
the appropriate kind for each equation. This multiplier does not depend on the coordinates, but
depends on the momentum. As a result, we obtain the normalized propagator in two variants

dp 50 ei((p.x—y)+(p.x—y))
@m)* (p1p2 — Pop3) (P1P2 — Pob3) — m?

D, (x—y) = J

dp 50 ei((p.x—y)+(p.x—y))
@m)* (pip2 — pops — m)(P1D> — PoPs — M)

DVA(X - Y) =

In our opinion, the second variant is more preferable, since the denominator consists of two
conjugate terms, so we can consider them as an integral part of the birth and annihilation operators,
which are also conjugate copies of each other

- d*
b(x) = a(x) = f#

1 O00) 1 (put(p) + id, (p)u3(p) + iby (PUZ(P) + by (p)UA(D)
8P, P1P2 — Pop3 — m |+d,(p)v1(p) + id3(p)v3(p) + ibs(p)v2(p) + bs(p)v4(p)
The obtained results allow us to answer the question how the fermion field changes under the

action of Lorentz transformations on the coordinates. Exactly, if we move to another frame of
reference by rotations and boosts, the coordinate spinor changes. As a consequence, the momentum
spinor changes, the components of which are the coefficients of the expansion on the new coordinates,
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and the momentum spinor undergoes exactly the same transformation as the coordinates, so that the
phases of all plane waves in spinor space do not change. The components of the new momentum
spinor are substituted into the 16 spinors describing the fermion field. Thus, there is no any uniform
law of transformation of a spinor of the fermionic field, each of 16 spinors corresponding to the
particles forming it, is transformed in its own way.

However, if, following Heisenberg [[12], Chapter 3, Paragraph 1], we index the field components
differently

Po(x¥) = 8po(X)  @1(X¥) =$10(X) P2(%) = 11 (X)) P3(X) = —$01(X)

Then it can appear that this field § on the first index will be transformed by three spatial
rotations and three boosts, and on the second index it will be transformed by three rotations in
isotopic space. In this case the additional quantum number related to the sign of mass may be an
isotopic spin.

Let us suggest that the coordinate and momentum spinor spaces can also be indexed in a similar
way

Xo = Xoo X1 =X10 X2 =X11 X3= —Xo1
Po =Poo P1=Pro P2 =P11 P3= —Po1

Thus, we are in a space x that is subject to three rotations, three boosts, and three isotopic
rotations. All of these transformations are equally real, but there is an imbalance due to the luck of
isotopic boosts. After all, isotopic rotations, like spatial rotations, are generated by Pauli matrices;
these rotations also do not form a group. Therefore, the full isotopic group must also consist of three
rotations and three boosts.

Let's rewrite the previously used quantities with new variables

PoX1 — P1Xo + P2X3 — P3X2 = PooX10 — P1oXoo — P11Xo1 T PorXin
_ 0 1) (Xoo — (0 1\(Xo1
= (Poo P10) (_1 0) (Xm) + (Po1 P11) (_1 0) (E)

m = p1P; — PoP3 = P10P11 T PooPo1

—P3
_ [ D2 (—Ps —P_o) (ﬁ —%)
1 = il -
ul(p) <p1> 2 7! P11 Pio
Po
Po
_ | 7P Po D3 Poo  —Po1
u4(p)—<p2> <—P1 P_z) (—Plo P11)
—DPs3
—P3
_| P —P3 —Po Por —Poo
UI(P)—<p1> (—P_z Pz) (—Pn ,010)
Po
Po
ud(p) =| (2o ™) (Pw —Pon)
Pz_ b1 D2 P10 P11
—DPs3
D1
_{Po P —b2 P10 —P1u
Vl(p)_<l’3 <Po ﬁs) (Poo —Po1)
D2
b2
_| D3 (Pz —171) <W —ﬁ)
4 = - il -
v4(p) <_p0 —p3  —Do Po1 —Poo
b1
2
vigp) =| P <p_1 _pz) <@ :@)
P_3 Po D3 Poo Po1
D2
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P2
_[Ps (P_z —P1) P11 —P10
v4(p) (‘Po) —P; —DPo (Po1 —Poo)
D1
—P1
_ | ~Po P11 P2 —P10  —P11
u3(p)—<p3> (—Po p_3) (—Poo —P01)
D2
D2
% (Pz P1) (m P_10>
2 = M
u2(p) <p0> —Ps Po Po1 Poo
—P1
—Py
wp) = P (:p_l _pZ) (:@ :@)
D3 Po D3 Poo Po1
12
12
—, v _ | D3 IZ3 P11 Pio
u2(p)—<p_0> (—13_3 po) (,001 Poo)
—Py
D3
_ D <P3 —P_o) (—ﬁ —%)
3 = il - i
v3(p) P (23 7 P11 Pro
Do
Po
_ | —p1 Po —DP3 Poo  Por
v2(p)—<_p2 (—p1 —P_z) (—Plo —P11)
b3
D3
—/.~ _ | D2 P3 —Po —Po1  —Poo
v3(p)—<€1 <P_z P1) (Pu Pw)
Do
Po
vi(p) = | ! (e ) (o P
_Pz P1 D2 Po1 P11
D3

Summarizing, we can formulate the following theses. The initial coordinate space is described
by complex quantities, which can be represented as a square matrix

tor = (i )

The field is a superposition of plane waves with complex phase

- 0 1\X — (0 1\(Xo1
PooX10 — P1oXoo — P11Xo1 + PorXit = (Poos P10) (_1 0) ()((1)3) + (Po1, P11) (_1 O) (%)

where the momentum coefficients of the decomposition are represented as
_ (Poo ,001)
Prs =\p1o  pus

The phase of a plane wave is constructed using two metric tensors of spinor space and therefore
does not change if x,; and p,s are affected by the same transformation, which is a combination of
three rotations and three boosts with arbitrary angles at the first index and a combination of three
rotations and three boosts with arbitrary angles at the second index. Any transformation is given by
12 real values representing the angles of the turns and boosts. When we considered a four-component
spinor, we made do with 6 angles, since we took the same rotation and boost angles for both indexes.
Note also that only under this condition the mass invariance takes place.

Each plane wave in superposition has a multiplier in the form of a matrix
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501)
€11

given in the table, e.g.

)
plO

Each of these matrices can be compared to some elementary particle, and at transformation of
coordinate and momentum space it is transformed according to some inherent law. The field operator

has the form

(foo()(aﬁ) 501()(013))_ %

] L 510(1(013) _fn()(aﬁ) B (2m)? -

4 (pys) Tz ) w1 (o,5) e o)+ 22 (o5) (r o)+ 11 (o) (Zo Bi)

s (Pra) o )+ (0,0) (Gt )+ (0y0) (e T3) 00 Gl )
e ((p"" (% o)(a)+@orp () 0)(§gi))+

B ) D w ) B 2

5i (pys) (G 5)+ 03 (p,0) (o ) +id5 () (—p% L)+ i (pys) (7 7).
e—i((PooPlo)(_O1 3)(§gg)+(mm)(—01 (D(%))

In addition, a complex conjugate version of the phase should be added to both exponents, as
was done above, then there would be an imaginary value in the exponent.

For the field ¢, (xp), we can obtain the equation of motion as an equation in partial derivatives
on the complex variables y,z by substituting the derivatives on these variables instead of the

derivatives on x, in the previously discussed equations.
We can also consider the decomposition of the field by the previously considered plane waves

of the form
exp[ti(pox; — P1Xo + P2X3 — P3X2) (PoX1 — D1Xo + P2X3 — P3Xz)] =
exp[£i(PooX10 — P10Xoo — P11.Xo1 T+ Po1X11) (PooX10 — P1oXoo — P11Xo1 t Po1X11)] =
1\ (X 1\ (Xo1 1\ (Xoo
exp ["‘l ((Poo P10) ( 1 0) (X(;g) + (Po1 P11) ( 1 0) ( 01)) ((Poo P10) ( 1 0) (%)

+ (o1 1) ( 1 é)(ffgi))]

For the simpler case of a scalar field these plane waves correspond to the Green's function
_ [ d'p expl—i(pox; — p1xo + DXz — D3%2) (PoXy — P1Xo + D2X3 — P3x2)]
D(x) = 7 :
(2m) t[p2 = po + Py — 5]
satisfying the equation
( 0o 9 a 0 ) ( ) ) DG =
0x,0x, 0xy0x3 0x,0x; 0x30x, X) =600

Recall that the transition from spinor space to vector space is performed by transformations

=1pTS p X, =1xTS X
2 13 u 2 13
m = p2P2 — PoP3
M? = PyPy — PP, — P,P, — P;P;
M? = mm

Lorentz transformations are given by 2x2 matrices with a set of valid rotation angles and boosts
( ; la1202> exp < /)’1202> exp <— % ia1303) exp (%ﬁlg@)
( ; la2202> exp < /)’2202> exp < ! la2303) exp ( ﬁ2303)
N =

( 0 nZ)
Ah = lTr[s NS,NT]
v 4 u v

1
nl = exp (—Eia1101) exp ( ﬁ1101> exp

1
n2 = exp (—Eia2101) exp ( ﬁ2101> exp
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After acting on both spinors of the Lorentz transformation with 12 arbitrary angles
p'=Np x' = Nx
’ 1 T ’ ’ 1 't ’
Puzzp Sup X,L:Ex Sux
and corresponding transformations in the vector space

P' = AP X' =4X

m' = pip; — Pob3
M'? = P,P} — P}P, — PP, — PiP}

there is still equality of masses

M? =m'm’'
and invariance of the plane wave phase in spinor space

Pox1 — P1Xg + PaX3 — P3Xy = PoXy — P1Xo + P2X3 — P3X
(pox1 — pixo + pax; — p3x;) (PoX1 — P1Xo + P2X5 — P3xz)
= (Pox1 — P1Xo + P2X3 — P3%2) (PoX1 — P1Xo + P2X3 — P3X2)
(poxi — pixo + Ppx3 — p3xz) + (PoX] — P1Xg + Pyx; — P3x;)
= (PoX1 — P1Xo + P2X3 — P3X2) + (PoX1 — P1Xg + D2X3 — D3X2)
However, at arbitrary 12 angles, the mass is not invariant

m' #m
and the phase of a plane wave in vector space also changes at Lorentz transformations
PyXo — P{X{ — Py X5 — P3X5 # PyXy — Py Xy — P X, — P3 X
And only under the condition of equality of 6 corresponding angles in the transformation
matrices, i.e. under equality
nl =n2
both these invariance properties are restored.
Thus, a plane wave with invariant phase in spinor space is a more general concept than a plane
wave in vector space, although the concept of invariant mass cannot be introduced for it in the general
case.

5. Conclusions

An alternative approach to analyze relativistic and quantum effects inherent in charged particles
in the presence of an electromagnetic field is proposed. Two ways of describing the electron behavior
in the electromagnetic field are considered: by means of the vector equation, which is based on the
plane wave model for a free electron, and the spinor equation, which is based on the representation
of the electron as a plane wave in spinor space. For both equations, which are valid for a free particle,
their applicability to an arbitrary physical situation is postulated, in particular to describe the
behavior of a particle in the presence of an electromagnetic field. The presented equations are
intended to fulfill the same role as the Schrodinger equation and the Dirac equation. At the same
time, in our opinion, the spinor equations more accurately describe the details of the interaction
between fields and particles.
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