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Abstract: Cooperative non-orthogonal multi access communication is a promising paradigm for the future 
wireless networks because of its advantages in terms of energy efficiency, wider coverage, and interference 
mitigating. In this paper, we study the secrecy performance of a downlink cooperative non-orthogonal 
multi access (NOMA) communication system under the presence of an eavesdropper node. Smart node 
selection based on feed forward neural networks (FFNN) is proposed in order to improve the physical layer 
security (PLS) of a cooperative NOMA network. The selected cooperative relay node is employed to enhance 
the channel capacity of the legal users, where the selected cooperative jammer is employed to degrade the 
capacity of the wiretapped channel. Simulations of the secrecy performance metric namely the secrecy 
capacity (CS ) are presented and compared with the conventional technique based on fuzzy logic node 
selection technique. Based on our simulations and discussions the proposed technique outperforms the 
existing technique in terms of the secrecy performance.

Keywords: Physical layer security (PLS), cooperative relay transmission, non-orthogonal multiple access 
(NOMA), fuzzy logic, feed forward neural networks (FFNN) secrecy capacity.13

1. INTRODUCTION14

The increasing growth of wireless communication systems has led to eavesdropping attacks. In order to15

overcome this issue, the enhancement of security in wireless networks becomes an essential factor.16

1.1. MOTIVATION AND RELATED LITERATURE17

The concept of physical layer security (PLS) has been proposed to complement the traditional security18

solutions such as the cryptographic techniques [1], by exploiting the physical layer properties of the wireless19

communication network. The baseline of Shannon’s cipher system [2] and the developments of Aaron Wyner’s20

Wiretap channel [3] introduce the interests of using the physical wireless characterization to enhance the21

security of data transmission [4].22

Cooperative relay communication is a promising concept for wireless networks due to the advantages of23

energy efficiency, increasing the coverage and mitigating the interference [5]. The authors of [6] suggest the24

use of jamming signals generated from the destination node to attack an un-trusted relay that is assumed to25

be the eavesdropper node. The secrecy performance of this strategy is analyzed in terms of the secrecy outage26

probability (SOP) metric. The authors of [7] illustrate the benefits and uses of the untrusted relay node in27

cooperative networks. Moreover, several strategies have been considered in the literature in order to improve28

the PLS such as cooperative jamming [8]-[9], cognitive radio [10], and energy harvesting [11].29

NOMA is an essential enabling technology for the fifth generation (5G) wireless networks to meet the30

heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high31

throughput [12]. The key idea behind NOMA is to serve multiple users in the same resource block, such as a32
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time slot, subcarrier, or spreading code. The NOMA principle is a general framework, and several recently33

proposed 5G multiple access schemes can be viewed as special cases. In [13], the authors consider the use of34

a relay node with two protocols (amplify-and-forward, and decode-and-forward) in a cooperative NOMA35

system. The authors of [14] investigate the optimal designs of a NOMA system in terms of the transmission36

rates, power allocation for each user, and the decoding factor. In [15], NOMA system is considered in large37

scale communication system. In this strategy, the PLS is implemented by using artificial noise generated from38

each user node.39

Smart node selection is an essential and useful strategy in cooperative NOMA communication networks40

in terms of enhancing the secrecy performance, saving power and expanding the coverage area. In [16],41

the authors consider the combination of cooperative relay and jammer selection based on the buffer-aided42

cooperative node selection scheme. The secrecy performance of this strategy is analyzed in terms of SOP43

metric. Recently, the integration of cooperative node selection with the artificial intelligence based on fuzzy44

logic controller strategy has been proposed to enhance the accuracy of the cooperative node selection strategy.45

Motivated by this integration, the authors of [17] propose a relay selection algorithm for a cooperative wireless46

sensor networks using fuzzy logic in order to enhance the lifetime and throughput of the network. In [18],47

the authors propose a relay selection scheme for multi-user cooperative network, where the cooperative48

relay node is selected based on fuzzy logic employed at the base station node. The authors consider four49

criteria (SNR, social norm, distance and relays protocol) in the relay selection process based on the channel50

state information (CSI) available at the base station. Authors of [19] use a relay selection strategy based on51

fuzzy logic with optimal power allocation and adaptive data rate. The authors considered two cases based52

on the geographical location of the nodes, where in the first case the distance between the source, relay and53

the destination are unknown. However, in the second case each node is assumed to know the geographical54

location of the other nodes.55

Machine learning is a widely growing field in recent modern technologies. This technology has56

been integrated with various fields such as, security [20], signal and image processing [21], and wireless57

communication networks [22]. In security, machine learning techniques such as neural networks have58

been investigated and illustrated in considerable researches. In [23], the authors use the artificial neural59

networks (ANNs) technique as a relay selection method in a detect-and-forward multi-relaying network. The60

aim of using this method is to enhance the physical layer security of the network. Thus, the transmission61

between a source and a destination is secure in the presence of an eavesdropper node. Authors of [24] exploit62

two machine learning based physical layer security techniques namely, Naïve Bayes (NB) and support63

vector machine (SVM). The authors investigate the benefits of machine learning approach in order to64

improve the physical layer security in the presence of MIMO-Multi-antenna eavesdropper nodes. In wireless65

communication networks, machine learning approach has been used in several researches such as channel66

estimation [25], power allocation [26], and best antenna selection [27].67

Based on [17], the network lifetime and end-to-end throughput is enhanced by using node selection68

based on artificial intelligence strategies. To the best of the authors’ knowledge, applying the smart node69

selection based on neural network methods in cooperative NOMA system under the physical layer security70

has not been adequately investigated in the literature. In this paper, the smart node selection based on feed71

forward neural networks integrated with the null-steering jamming strategy in a cooperative NOMA network72

is analysed to select the best cooperative relay or jammer nodes in the presence of an eavesdropper node.73

1.2. MAIN CONTRIBUTIONS74

Unlike the summarized papers above, this paper investigates the secrecy capacity of a cooperative75

NOMA communication network integrated with a smart node selection strategy based on feed forward neural76

networks. The main contributions of this paper are summarized as follows.77

• We integrate the use of jammer and relay nodes to degrade the capacity of the eavesdropper node and78

enhance the capacity of the user node respectively. We use the null-steering beamforming technique to79

direct the shared jamming signal towards the eavesdropper node.80
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• We employ the feed forward neural network (FFNN) strategy in order to select the best cooperative node81

for the relaying or jamming techniques. This approach is compared with another selection approach82

based on fuzzy logic strategy.83

The rest of this paper is organized as follows. Section 2 demonstrates the system model and the signal84

transmission. Section 3 presents the node selection strategies. Section 4 explains the secrecy performance85

analysis of the system model. Section 5 shows the results and discussions of the paper. Finally, section 686

presents the conclusion of this paper.87

2. SYSTEM MODEL88

We consider a secure non-orthogonal multi access (NOMA) system, where a base station (Bs )89

communicates with a strong user (User1) (good channel conditions) and a weak user (User2) (poor channel90

conditions) in the presence of a passive eavesdropper node which is able to monitor the main channel,91

as shown in Figure 1. The cooperative helper nodes (R1,R2, ...,RN ) are employed to enhance the secrecy92

performance of the communication scenario. In this system model, the users and the eavesdropper nodes93

are equipped with a single antenna. However, the helper nodes are equipped with M antennas. Moreover, the94

transmission time is divided to time frames in which each time frame is divided into two time slots (phases).95

In this system model, we assumed that the eavesdropper node is a passive communication node which96

has no access to the information signal transmitted to the receiver node. Moreover, we assumed that the97

eavesdropper node has the ability of differentiating and detecting the superimposed data transmitted from98

the base station to the users [28]. This assumption provides the lower bounds for the practical scenario, where99

the eavesdropper node is given a strong decoding capabilities.100

Figure 1. System model

2.1. COOPERATIVE HELPER (RELAY AND JAMMER) NODES101

Cooperative communication techniques are employed either to strengthening the legal main channel102

of the user nodes (by using cooperative relay nodes) or to degrade the illegal wiretapped channel of the103

eavesdropper node (by using cooperative jammer node) [29]-[30]. The use of these techniques enhances104

significantly the secrecy performance of the NOMA system. In this paper, we used both techniques in order105

to have a secure communication between the base station and the user nodes. Moreover, the eavesdropper’s106

channel state information (CSI) is assumed to be available at the base station and the cooperative helper107

nodes [32]. The cooperative helper node is selected as a cooperative relay node or a cooperative jammer by108

using a node selection method based on fuzzy logic and feed forward neural networks strategies.109

In this paper, the relay is assumed to be a half-duplex two-way with an amplify-and-forward protocol.110

The relay is used as transmission node between the base station and the users with no direct channel between111
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base station and users. Thus, the communication happens in two time slots (phases) as illustrated in Figure 1.112

Moreover, the cooperative relay node is used in order to enhance and improve the channel capacity of the113

user nodes.114

In this work, the cooperative jammer node uses the CSI information to build a jamming-null-steering115

beamforming strategy, where the shared jamming signals generated by the users are directed to the116

eavesdropper node. However, the shared jamming signals are nulled in the directions of the legal user117

nodes. This strategy ensures that the communication channel between the friendly jammer and the legal user118

nodes is not available. Thus, the channel capacity of the eavesdropper node is degraded without affecting the119

legal user nodes. The jamming-null-steering beamforming at the jammer node is expressed as,120

N BE =
(IM −W )hR j ,E∥∥∥(IM −W )hR j ,E

∥∥∥ (1)

where, IM is the identity matrix with M ∗M , W is the projection matrix to the orthogonal subspace121

of the legal user nodes with W = G
(
G H G

)−1
G H , G =

[
hR j ,U1 hR j ,U2

]
, and hR j ,U1 , hR j ,U2 and hR j ,E are the122

channel gains between the friendly jammer node and the legal user nodes (U1,U2) and the eavesdropper123

node respectively.124

2.2. CHANNEL ASSUMPTIONS125

In this model, the communication links between the nodes are assumed to be Rayleigh fading channel126

with exponential path loss. The coefficient of a channel link between two nodes is expressed by hab , where a127

is the node where the transmission starts and, b is the node where the transmission ends. These coefficients128

are modelled as constant and identically distributed at the transmission phases. Moreover, the channel state129

information (CSI) of the users and the eavesdropper nodes are assumed to be perfectly available at the base130

station and the cooperative helper nodes. However, In practice, the user nodes estimate the absolute values131

of the CSI from the cooperative nodes to the eavesdropper node then feed it back to the base station via the132

cooperative nodes. Furthermore, the noise is assumed to be a complex additive white Gaussian noise (AWGN)133

with zero mean and unit variance.134

2.3. SIGNAL TRANSMISSION MODEL135

This section explains the flow of the transmitted superimposed information signal from the base station136

to the user nodes via the cooperative relay node and under the protection of the cooperative jammer node.137

In the first phase, the base station transmits the superimposed information signals to the helper nodes.138

The received signal at each helper node is written as,139

XBS,Ri =
√

PBS au1 hBS,Ri BU1 x1 +
√

PBS au2 hBS,Ri BU2 x2 +nBS,Ri (2)

where, PBS is the power of the base station,au1 and au2 are the power allocation coefficient for user1140

and user2 respectively, x1 and x2 are the information to user1 and user2 respectively, hBS,Ri is the channel141

gain between the base station and the helper node, the subscript i stands for the number of the cooperative142

helper node, BU1 , BU1 are the maximum ratio transmission beamforming vector build by the base station143

for the strong user and the weak user respectively, and nBS,Ri is the AWGN noise from the base station to144

the helper node. At the same phase, user1 and user2 generate jamming signals and share these signals. The145

shared jamming signals are given as,146

Ju1 =
√

Pu1 hu1,u2 j1 +nu1,u2

Ju2 =
√

Pu2 hu2,u1 j2 +nu2,u1 (3)

where, Pu1 and Pu2 are the powers of the users respectively, j1 and j2 are the artificial jamming signals147

from user1 and user2 respectively, hu1,u2 and hu2,u1 are the channel gains between the users, and nu1,u2 and148
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nu2,u1 are the AWGN noise between the users. The shared jamming signals are transmitted by the strong user149

to the helper nodes. The received jamming signal at each helper node is given as,150

Ju1,Ri =
(

Ju1 + Ju2

)
hu1,Ri +nu1,Ri (4)

where, hu1,Ri is the channel gain between the strong user and the helper node and nu1,Ri is the AWGN151

noise from the strong user to the helper node.152

At this stage each helper node is aware of the received signals from the legitimate nodes. These signals153

are summarised as follows.154

• The superimposed information signal transmitted by the base station. Equation 2 illustrates the155

superimposed information signal received at the helper nodes.156

• The shared jamming signal transmitted by strong user. Equations 3 and 4 demonstrate the shared157

jamming signal received at the helper nodes.158

In the second phase, the selected cooperative relay node amplifies-and-forwards the superimposed159

information signal to the user nodes. The amplification factor (AF ) is expressed as [33],160

AF =
√√√√ PRs

PBS
∣∣hBS,Rs

∣∣2 +Pu1

∣∣hu1,Ri

∣∣2 +σ
(5)

where, PRs is the power of the selected cooperative relay node, the subscript s stands for the selected161

cooperative relay node, and σ denotes the variance of the AWGN noise.162

The forwarded signal to the strong user (user1) is expressed as,163

Y AF
Rs ,u1

= [
AF hRs ,u1

(
XBS,Rs

)]+nRs ,u1 (6)

The forwarded signal to the weak user (user2) is expressed as,164

Y AF
Rs ,u2

= [
AF hRs ,u2

(
XBS,Rs

)]+nRs ,u2 (7)

At the same phase, the eavesdropper wiretaps the main channel in order to receive the transmitted165

signal from the cooperative relay to the user nodes. However, the selected cooperative jammer node directs166

the shared jamming signal towards the eavesdropper node. The received signal at the eavesdropper node167

under the protection of the selected cooperative jammer node is given as,168

Y AF
Rs ,E = AF hRs ,E XBS,Rs +hR j ,E Ju1,R j N BE +nRs ,E (8)

where, N BE is the jamming-null-steering beamforming vector build by the selected cooperative jammer169

node, hR j ,E is the channel gain between the selected cooperative jammer node and the eavesdropper node,170

and the subscript j stands for selected cooperative jammer node.171

3. SMART NODE SELECTION STRATEGIES172

In this section, we illustrate the cooperative node selection based on fuzzy logic (FL) and feed forward173

neural network (FFNN) strategies.174

3.1. FUZZY LOGIC SELECTION175

Figure 2 demonstrates the general flowchart of the fuzzy logic strategy used to select the best cooperative176

relay and jammer node respectively.177

Based on Figure 2, three main steps are required to select the best cooperative relay or jammer nodes178

based on the fuzzy logic controller strategy.179
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Figure 2. Flowchart of cooperative node selection based on fuzzy logic

3.1.1. Required input gathering180

At the end of each time frame the base station gathers the estimated information of network users, and181

at the beginning of each time frame the base station selects the best cooperative relay enhance the legal182

channel capacity and the best cooperative jammer to degrade the wiretapped channel capacity. To this end,183

the base station should estimate five parameters namely, signal to noise ratio for the legal users (SN RU ),184

power amplification factor (PAF ), the distance between the cooperative helper and legal user nodes (DU ),185

signal to noise ratio for the eavesdropper (SN RE ),and the distance between the cooperative helper and the186

eavesdropper (DE ). These parameters are gathered with the help of the channel state information (CSI)187

available at the base station. In order to use these parameters in the fuzzy logic model, we normalized the188

each parameter value to the interval [0,1].189

• Signal to noise ratio (for the legal users SN RU )190

Signal-to-noise ratio is the main criterion in the process of helper selection. The SNR values for the191

system model shown in Fig 1 are calculated as,192

ξu1 =
A2

F PBS au1

∣∣hRi u1

∣∣2 ∣∣hBS,Ri

∣∣2(
A2

F

∣∣hRi u1

∣∣2 +1
)
σ2

(9)

ξu2 =
A2

F PBS au2

∣∣hRi ,u2

∣∣2 ∣∣hBS,Ri

∣∣2

A2
F PBS au1

∣∣hRi ,u2

∣∣2 ∣∣hBS,Ri

∣∣2 +
(

A2
F

∣∣hRi ,u2

∣∣2 +1
)
σ2

(10)

We mapped the maximum normalized SN RU into low, medium and high as shown in Figure 3 (a). The193

maximum SNR is chosen as,194

SNRU = max
{
ξu1 ,ξu2

}
(11)
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(a) Membership function for SN RU (b) Membership function for PAF

(c) Membership function for DU

Figure 3. Membership function for cooperative relay input fuzzy sets

• Power amplification factor (PAF )195

Power amplification factor is a direct aspect to enhance the capacity of the main communication196

channels between the selected cooperative relay node and the legal user nodes. Equation (5) is used in order197

to calculate the power amplification factor. We mapped the normalized power amplification factor into low,198

medium, high and very high as shown in Figure 3 (b).199

• Distance between the cooperative helper and legal user nodes (DU )200

The helper location has significant impact on average achievable rate at the receiver nodes. The distances201

between the helper nodes and the legal user nodes are calculated as,202

DU1 =
√(

XU1 −XRi

)2 + (
YU1 −YRi

)2

DU2 =
√(

XU2 −XRi

)2 + (
YU2 −YRi

)2
(12)

where, XU1 , XU2 and XRi are the coordinates of the horizontal axis for user1, user2 and the cooperative203

helper node i , and YU1 , YU2 and YRi are the coordinates of the vertical axis for user1, user2 and the cooperative204

helper node i . In this work, we choose the minimum distance between the cooperative helper and legal205

nodes. The minimum distance is given as,206

DU = min
{
DU1 ,DU2

}
(13)

We mapped the normalized minimum distance (DU ) into long, medium and short as shown in Figure 3207

(c).208

• Signal to noise ratio (for the eavesdropper SN RE )209
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(a) Membership function for SN RE (b) Membership function for DE

(c) Membership function for RS

Figure 4. Membership function for cooperative jammer input fuzzy sets

The SNR values for the eavesdropper node is expressed as,210

ξE = A2
F PBS am

∣∣hRi ,E
∣∣2 ∣∣hBS,Ri

∣∣2

A2
F

∣∣hRi ,E
∣∣2 Ju1,Ri |N BE |2 +

(
A2

F

∣∣hRi ,E
∣∣2 +1

)
σ2

(14)

where, m ∈ (U1,U2). We mapped the normalized SN RE into low, medium and high as shown in Figure 4211

(a).212

• Distance between the cooperative helper and the eavesdropper (DE )213

The distances between the helper nodes and the eavesdropper node are calculated as,214

DE =
√(

XE −XRi

)2 + (
YE −YRi

)2 (15)

We mapped the normalized distance (DE ) into long, medium and short as shown in Figure 4 (b).215

• The cooperative helper node is selected as the best relay (RS )216

In this work, the priority is given to the relay selection. In other words, the output for the degree of relay217

node relevance is fed as an input for the jammer node selection. Hence, if the cooperative helper node is218

selected as a relay then the degree of jammer relevance for that node is very bad. We mapped the relay node219

selection into true and false as shown in Figure 4 (c).220

This step is summarized as follows.221

• The required parameters are gathered based on the available channel state information (CSI) at the222

base station node.223

• Each parameter is mapped in a fuzzy set. the fuzzy sets are as follows.224
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(a) Cooperative relay (b) Cooperative jammer

Figure 5. Membership function for degree of cooperative node relevance

– SN RU ∈ { Low, Medium, High }225

– PAF ∈ { Low, Medium, High, Very high }226

– DU ∈ { Long, Medium, Short }227

– SN RE ∈ { Low, Medium, High }228

– DE ∈ { Long, Medium, Short }229

– RS ∈ { True, False }230

3.1.2. Process of Fuzzification231

In this step, we use the fuzzy inference system (FIS) to obtain the fuzzy sets Zr and Z j that maps232

the degree of relevance for relay and jammer respectively. However, these fuzzy sets are a description of233

fr (SN RU ,PAF ,DU ) and f j (SN RE ,DU ,RS ) functions. The relevance fuzzy sets are given as.234

Zr ∈ { Very bad, Bad, Medium, Good, Very good }

Z j ∈ { Very bad, Bad, Medium, Good, Very good}
(16)

where, very bad, bad, medium, good, and very good are the degree of relevance for each cooperative235

node. In other word, if the degree of relaying relevance for any cooperative node is very good, then the236

probability of selecting this node as a relay is high. Figure 5 shows the membership function for the relay237

and jammer nodes relevance fuzzy sets respectively. In this work, we use AND logic in determining the fuzzy238

rules and in order to map the input fuzzy sets (SN RU ,PAF ,DU ,SN RE ,DU ,RS ) into the relevance fuzzy sets239

(Zr , Z j ). Table 1 summarizes the fuzzy rules for the cooperative relay selection scheme.240

Table 1. Rules for relay selection scheme

Power amplification factor
SNR Distance Low Medium High Very High
Low long Very bad Bad Bad Medium
Low Medium Very bad Bad Bad Medium
Low Short Very bad Medium Medium Medium
Medium long Very bad Medium Medium Medium
Medium Medium Bad Medium Good Good
Medium Short Bad Medium Good Good
High long Bad Medium Medium Good
High Medium Medium Good Good Very Good

High Short Medium Good
Very
Good

Very Good

In this paper, we have 36 fuzzy rules for the cooperative relay selection scheme and 18 fuzzy rules for the241

cooperative jammer selection scheme. Note that the priority is for the cooperative relay selection scheme, so242
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the cooperative relay node is selected first, then the cooperative jammer node is selected. Table 2 summarizes243

the fuzzy rules for the cooperative jammer selection scheme.244

Table 2. Rules for jammer selection scheme

The node is selected as relay
SNR Distance True False
Low long Very bad Medium
Low Medium Very bad Good
Low Short Very bad Very good

Medium long Very bad Bad
Medium Medium Very bad Medium
Medium Short Very bad Medium

High long Very bad Very bad
High Medium Very bad Bad
High Short Very bad Bad

3.1.3. Process of defuzzification245

This section illustrates the process of obtaining the output (degree of (relay or jammer) relevance). In246

order to obtain the outputs of the fuzzy logic system we used the process of crisp output center of sum247

defuzzification method denoted as zcr i sp . Firstly, the fuzzy logic controller calculates the geometric centre of248

area defined as CO A for all the membership function of the relay and jammer degree of relevance [34]. The249

geometric centre of area is given as,250

COAZr =
∫
µZr (Zr )Zr dZr∫
µZr (Zr )dZr

COAZj =
∫
µZ j (Z j )Z j dZ j∫
µZ j (Z j )dZ j

(17)

Finally, the controller calculates weighted average for the geometric centre of area for all the membership251

function of the relay and jammer degree of relevance. The weighted average for the geometric centre of area252

is given as,253

zcrispr =
∑N

i=1 COAzri
·Azri∑N

i=1 Azri

zcrispj =
∑N

i=1 COAz ji
·Az ji∑N

i=1 Az ji

(18)

where, A is the area under the scaled membership functions for the relay (Azri
) and jammer (Az ji

) degree254

of relevance and within the range of the output variable.255

3.2. MACHINE LEARNING-BASED FEED FORWARD NEURAL NETWORK SELECTION256

In this paper, a machine learning FFNN-based algorithm is proposed in order to select the best257

cooperative relay and jammer nodes respectively. In this section, the main steps for the proposed strategy are258

explained in detail.259

3.2.1. Input Data Generation260

For training the FFNN model, cooperative relay and jammer data are generated containing L samples.261

The generated data is extracted from the known CSI at the base-station node. The generated relay data262

denoted as GDR consists of three parameters, namely SN RU , PAF , and DU . Similarly, the generated jammer263
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data denoted as GD J consist of three parameters, namely SN RE , DE , and RS . These parameters are expressed264

as,265

GDR = [SN RU ,PAF ,DU ]L (19)

GD J = [SN RE ,RS ,DE ]L (20)

where, SN RU ,PAF,DU ,SN RE ,RS and DE are the estimated information of the network users gathered266

by the base-station at the end of each frame. We normalized the generated data to the interval [0,1].267

3.2.2. Output Labelling268

In the data generated, the degree of relay node relevance and the degree of jammer relevance are chosen269

as the performance indicators for relay and jammer respectively. Each training data sample is associated with270

a performance indicator corresponding to the current sample. Table 3 illustrates the labelling of cooperative271

nodes relevance.272

Table 3. Labelling the relevance of the cooperative nodes

Cooperative (relay or jammer) relevance Label (t)
Very bad 0

Bad 1
Medium 2

Good 3
Very good 4

Based on Table 3, the training data samples are labelled according to the performance of each relay and273

jammer nodes respectively.274

3.2.3. Data Set Training275

After generating the input samples and output labels, the input-output pairs are concatenated to create276

two full data sets for relay and jammer respectively.277

Dr el ay tr ai n = {(
[GDR ]1 , t 1) ,

(
[GDR ]2 , t 2) , . . . ,

(
[GDR ]L , t L)}

(21)

D j ammer tr ai n =
{([

GD J
]1 , t 1

)
,
([

GD J
]2 , t 2

)
, . . . ,

([
GD J

]L , t L
)}

(22)

where, t L is the Lth class label.278

3.2.4. FFNN structure279

The labelled training data sets is used to train the FFNN model. The input of the models are absolute280

values of the generated data (GDR ,GD J ) and the output is the performance of the relay or jammer. The281

output of the model indicates the degree of relevance for relay and jammer respectively. Here, the basics of282

the neural network is described briefly. The structure of the FFNN model consists of multiple hidden layers,283

each hidden layer contains multiple neutral nodes. After each layer a nonlinear function (activation function)284

is implemented. Due to their efficiency in generalizing the trained model ,the nonlinear activation functions285

are the most used activation functions, the most common choices of these functions is the rectified linear286

unit (ReLU ) function expressed by,287

fReLU (x) = max(0, x) (23)
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where, x is the argument of the function. Choosing an activation function is a vital step when building288

a neural network model and ensures a good performance model . In this experiment, the ReLU function is289

applied to all hidden layers where it enables the model to learn more complex structures and generalize to290

variety of data. Our experiment is a multi-class classification case. Thus, an activation function is used at the291

output layer expressed by,292

fSo f tmax (xi ) = exp(xi )∑C
j=i exp(x j )′

(24)

where, C is the number of classes, i , j ∈ 1,2, ...,C , and xi , x j are scores of the ith class and jth class,293

respectively. The network model consists of four layers namely, input, two hidden and output layers. The294

input layer takes input parameters (GDR , GD J ) for relay or jammer nodes receptively. Figure 6 shows the295

feed forward neural networks design model.296

Figure 6. FFNN design model

Based on Figure 6, the first and the second hidden layers consist of 128, 256 neurons, respectively.297

The output layer consists of five neurons corresponding to the classes of the cooperative (relay or jammer)298

relevance. Softmax function is applied to this layer which gives us the probability distribution over all classes.299

The final output of the network is the class with the maximum probability value.300

3.2.5. FFNN training301

In this section, the process of setting the training parameters of our FFNN model is described. In total,302

two data sets were generated using two groups of data samples, 60000 samples of relay data (GDR ) and303

60000 samples of jammer data (GD J ). Two models were trained using the two data sets of relay and jammer304

respectively. The training data sets were split into the training set and the testing set. The training set was305

used to train the model parameters and the testing set was used to evaluate the trained model. In this FFNN306

model, cross entropy is applied as the loss function for our FFNN model. Therefore, the loss function for each307

ith sample of input GDR of relay data and each jth sample of input GD J of jammer data is formulated as,308

LossR

(
t i ,o

(
GD i

R ,W ,b
))

=− log
(
o

(
GD i

R ,W ,b
))

Loss J

(
t j ,o

(
GD j

J ,W ,b
))

=− log
(
o

(
GD j

J ,W ,b
))

(25)

where, o
(
GD i

R ,W ,b
)

is the output that is predicted by the model for the best cooperative relay node.309

The target of the training process is to find the suitable parameters W and b that minimize the average loss310

“cost function” of entry training data sets, the cost function is defined as,311

LR (Θ) = 1

M

M∑
i=1

Loss
(
t i ,o

(
GD i

R ,W ,b
))
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L J (Θ) = 1

M

M∑
j=1

Loss
(
t j ,o

(
GD j

J ,W ,b
))

(26)

where the set Θ = {W ,b} contains every training parameter of the FFNN model. Every parameter is312

generally adjusted iteratively using the gradient descent methods. At each iteration, every parameter is313

adjusted simultaneously as,314

Θm+1 =Θm −η∇ΘL(Θ), (27)

where ∇Θ represents as the gradient operator with respect to Θ, η is the learning rate, and m is the315

iteration number (250 iterations). Backpropagation is used to update the weights W and biases b of the neural316

network using the local error of the network. During training the network, when a prediction is made for317

the input values, the actual output values are compared to the predicted values and an error is calculated.318

The calculated error is then used to update the weights W and biases b of the network starting at the layers319

connected directly to the output nodes and then proceeding further backward toward the binput layer. In320

other words, the backpropagation is used to calculate the gradients efficiently which is then used to train the321

network, by adjusting the weights W and biases b throughout the network to get the desired output.322

In this experiment , Adam optimization algorithm was applied to the FFNN model because it is a323

first-order gradient-based optimization algorithm, thus reducing computational complexity [17]. In addition,324

the dropout technique is applied in this FFNN model in order to reduce the overfit in training and improve325

generalization of the model (0.5 dropout was chosen), for which the proposed FFNN model performs well.326

Finally, after training and testing the two models of relay and jammer respectively , the FFNN models are327

frozen and can be used to select the best cooperative helper node as a relay or jammer.328

4. SECRECY PERFORMANCE ANALYSIS329

In this section, we illustrate the secrecy performance metric in terms of the secrecy capacity for the330

system model shown in Figure 1 assisted with the fuzzy logic and the feed forward neural network strategies.331

The secrecy capacity metric is defined as the maximum capacity rate difference between the channel capacity332

of the legitimate users and the channel capacity of the eavesdropper node. The channel capacity of the strong333

user (user1) is given as,334

ζu1 =
1

2
log2

(
1+ξu1

)
(28)

where, ξu1 is the signal to noise ratio (SNR) at the strong user expressed in equation (9). The strong user335

is able to decode the weak user’s information signal and suppressed it by using the successive interference336

cancellation (SIC) strategy. The channel capacity of the weak user (user2) is given as,337

ζu2 =
1

2
log2

(
1+ξu2

)
(29)

where, ξu2 is the signal to interference plus noise ratio (SINR) at the weak user expressed in equation338

(10). The weak user is not able to decode the strong user’s information signal, so the strong user’s information339

signal is an interference to the weak user. The channel capacity of the eavesdropper node is given as,340

ζE = 1

2
log2 (1+ξE ) (30)

where, ξE is the signal to jamming plus noise ratio (SJNR) at the eavesdropper node expressed in equation341

(14). We assume that the eavesdropper node is able to distinguish the superimposed mixture signal by using342

the parallel interference cancellation (PIC) strategy.The secrecy capacity for each user is formulated as,343

[
ζE

u1

]+ = max
{[
ζu1 −ζE

]
,0

}
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[
ζE

u2

]+ = max
{[
ζu2 −ζE

]
,0

}
(31)

In order to evaluate the accuracy of the proposed cooperative node selection strategy, the error analysis344

is carried on by comparing the secrecy capacity achieved based on the fuzzy logic and the FFNN strategies345

with maximum secrecy capacity of the system model.346

In this paper, the maximum secrecy capacity is achieved when the eavesdropper node does not exist.347

The maximum secrecy capacity at each user is respectively formulated as,348

[
ζmax

u1

]+ = max
{[
ζu1

]
,0

}
[
ζmax

u2

]+ = max
{[
ζu2

]
,0

}
(32)

In this section, the accuracy percentage (Ap ), and the root mean square error (RMSe) equations for349

both users are respectively given as,350

Apum
=

1−
∣∣∣∣∣∣
∣∣∣[ζmax

u1

]+− [
ζE

um

]+∣∣∣[
ζmax

um

]+
∣∣∣∣∣∣
×100% (33)

RMSeum =

√√√√∑K
k=1

([
ζmax

um

]+− [
ζE

um

]+)2

K
(34)

where, K is the maximum repetition based on the maximum transmit power.351

5. RESULTS AND DISCUSSION352

In this section, the numerical results are obtained and discussed to evaluate the secrecy performance of353

the proposed cooperative NOMA assisted with null-steering beamforming jamming and node selection based354

on FFNN technique. The simulation setup parameters of the proposed technique are summarized in Table 4.355

Table 4. SIMULATION SET UP PARAMETERS

PARAMETER DETAILS
Cooperative nodes Five cooperative nodes
Nodes locations Illustrated in Figure 7
Power allocation for the strong user 0.2
Power allocation for the weak user 0.8
Total transmission power 30 dBm
Path loss coefficient 3.5
Noise density -60 dBm
Channel model Slow fading Rayleigh channel
Defuzzification process Crisp output center of sum

Figure 7 shows the geographical locations of the cooperative NOMA system for all the nodes. These356

locations are used in order to simulate the experiments (1 and 2).357

Table 4 and Figure 7 illustrate that five cooperative helper nodes are used in order to complete the358

relaying and jamming processes. However, the data relaying process is done by a single cooperative relay node359

selected by using a smart node selection strategy discussed in section 4. Similarly, jamming the eavesdropper360

node is done by a selected cooperative jammer node.361

The distances between the base station and the cooperative helper nodes are assumed to be362

non-equidistant to the distances between the relay nodes and the legal users. The eavesdropper is positioned363

at a fixed coordinates (1500, -200) about 1513.28 meters away from the base station.364
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Figure 7. Locations of the nodes for the experiments

In this section, we evaluate the smart node selection by two experiments. Each experiment discusses365

smart node selection based on FFNN and fuzzy logic strategies.366

5.1. EXPERIMENT 1 (PROPOSED SMART NODE SELECTION BASED ON FFNN STRATEGY)367

In this experiment, we propose a machine learning based on FFNN strategy to select the best cooperative368

(relay, jammer) node. This strategy is proposed in order to enhance the physical layer security of the369

cooperative NOMA system shown in Figure 1.370

Table 5 illustrates the cooperative relay selection based on FFNN strategy. The relay selection criteria are371

extracted based on the known CSI at the base-station.372

Table 5. Cooperative relay selection based on feed forward neural networks

Relay selection criteria
Node SN RU PAF DU Relevance Selection

1 0.8684 0.7213 0.7284 Very good Selected
2 0.8522 0.6953 0.6429 Good
3 0.4855 0.6844 0.5890 Medium
4 0.3010 0.6920 0.5759 Medium
5 0.1717 0.5429 0.6061 Bad

Based on Table 5, we observe that the first cooperative node gives the best relay relevance (very good) in373

comparison with the other cooperative nodes, hence it is selected by the base-station as the best cooperative374

relay node. Table 6 illustrates the cooperative jammer selection based on FFNN strategy.375

Table 6. Cooperative jammer selection based on feed forward neural networks

Jammer selection criteria
Node SN RE DE RS Relevance Selection

1 0.8981 0.6960 True Very bad
2 0.4372 0.6472 False Bad
3 0.2122 0.6037 False Medium
4 0.1197 0.5667 False Medium
5 0.0860 0.5375 False Very good Selected

In this paper, the priority is given to the relay selection. Hence, the first cooperative node is not selected376

as the best jammer node. However, we observe that the fifth node provides the best jammer relevance377
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compared to the other cooperative nodes. Thus, it is selected as by the base-station the best cooperative378

jammer node.379

5.2. EXPERIMENT 2 (SMART NODE SELECTION BASED ON FUZZY LOGIC SCHEME)380

In this experiment, we use a smart node selection based on the fuzzy logic strategy to select the best381

cooperative (relay, jammer) node. Table 7 illustrates the cooperative relay selection based on fuzzy logic382

strategy. The relay selection criteria are the same as the criteria used in Table 5.383

Table 7. Cooperative relay selection based on fuzzy logic selection scheme

Relay selection criteria
Node SN RU PAF DU Relevance Selection

1 0.8684 0.7213 0.7284 Good
2 0.8522 0.6953 0.6429 Good Selected
3 0.4855 0.6844 0.5890 Medium
4 0.3010 0.6920 0.5759 Bad
5 0.1717 0.5429 0.6061 Very bad

Based on Table 7, we observe that the first and second cooperative nodes give the best relay relevance384

(good) in comparison with the other cooperative nodes. However, fuzzy logic controller selects the second385

node as the best cooperative relay node. This is due to the distance significance compared to the first node.386

Table 8 illustrates the cooperative jammer selection based on the fuzzy logic strategy.387

Table 8. Cooperative jammer selection based on fuzzy logic selection scheme

Jammer selection criteria
Node SN RE DE RS Relevance Selection

1 0.8981 0.6960 False Bad
2 0.4372 0.6472 True Very bad
3 0.2122 0.6037 False Medium
4 0.1197 0.5667 False Good
5 0.0860 0.5375 False Very good Selected

Based on Table 8, we observe that the fuzzy logic controller selects the same cooperative jammer node388

selected by the proposed FFNN strategy.389

The outputs of these experiments are summarized as follows.390

• The proposed FFNN strategy selects the first cooperative helper node as the relay node.391

• The fuzzy logic scheme selects the second cooperative helper node as the relay node.392

• Fifth cooperative helper node is selected as the jammer node by both approaches.393

Figure 8 depicts the secrecy performance in terms of secrecy capacity within a range of total transmission394

power from 0 dBm to 30 dBm. The secrecy performance of the cooperative NOMA system is analysed for the395

proposed FFNN based node selection strategy and the fuzzy logic based node selection scheme.396

Based on Figure 8, we observe that the secrecy capacity for each legal user is affected by several factors397

namely, the total transmission power, decoding abilities i.e., SIC, and strategy used for the cooperative node398

selection. Firstly, the secrecy capacity performance for each legal user is enhanced as the total transmission399

power and the shared-jamming power increased.400

Based on Figure 8, we observe that the secrecy capacity of the strong user (ζu1 ) is better than the secrecy401

performance of the weak user (ζu2 ). The reason behind this is the successive interference cancellation402

technique used by the strong user. This technique enables the strong user to decode the information signal403

aimed to be sent to the weak user node. Thus, the strong user is not affected by the signal interference.404
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Figure 8. Secrecy capacity of the cooperative NOMA system assisted with smart node selection scheme

However, the weak user is affected by the strong user signal as the interference signal. Thus, the secrecy405

capacity performance is decreased at the weak user.406

Lastly, we observe that the proposed FFNN based node selection strategy provides high secrecy capacity407

performance in comparison with the fuzzy logic scheme, This is due to the high estimation accuracy408

established by the machine learning based on the feed forward neural network (FFNN) compared with409

the fuzzy logic based selection scheme. The accuracy analysis of the cooperative node selection based on410

FFNN strategy and fuzzy logic scheme is illustrated in Figure 9.411

The accuracy analysis shown in Figure 9 is carried on by comparing the maximum secrecy capacity412

performance of the cooperative NOMA system shown in Figure 1 (without considering the eavesdropper)413

with the resulted secrecy capacity for the proposed node selection based on FFNN and the fuzzy logic based414

node selection.415

Figure 9. The cooperative node selection accuracy based on fuzzy logic and FFNN

Based on Figure 9, we observe that the accuracy of using the proposed strategy (FFNN based node416

selection) in order to approach the maximum secrecy capacity (without eavesdropping) is higher than417

accuracy of the fuzzy logic based scheme. In other words, the physical layer security of the cooperative418

NOMA system model shown in Figure 1 using the proposed strategy is high in comparison with the fuzzy419

logic scheme.420
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Table 9 illustrates the RMSe analysis for the smart node selection based on FFNN strategy and fuzzy421

logic scheme.422

Table 9. Root mean square error (RMSe)

Cooperative node selection strategy
User nodes Fuzzy logic FFNN

Wiretapping strong user 0.2639 0.0846
Wiretapping weak user 0.3343 0.0859

Based on Table 9, we observe that the standard deviation (prediction errors) of the proposed strategy423

is lower than the fuzzy logic scheme for both legal user nodes. As summary of the comparison, the results424

obtained emphases that it is beneficial to use the proposed node selection based on FFNN strategy instead of425

the node selection based on fuzzy logic scheme.426

6. Conclusion427

In this paper, we proposed a strategy to enhance the physical layer security for a cooperative428

non-orthogonal multi access system. The proposed node selection strategy is integrated with a jamming429

null-steering beamforming technique in order to degrade the channel capacity of the eavesdropper node.430

Thus, enhancing the secrecy performance of the cooperative NOMA system. In conclusion, the results431

illustrate that the proposed cooperative node selection based on FFNN strategy outperforms the cooperative432

node selection based on fuzzy logic scheme due to the high estimation accuracy established by FFNN strategy.433

For future work, we will consider the assumption of unknown CSI of the eavesdropper node434

at the base-station. Moreover, we will study the effect of relay protocols (detect-and-forward, and435

compress-and-forward) on the secrecy performance analysis. Furthermore, we will apply the proposed436

strategy on large cooperative NOMA scale where multi-eavesdropper nodes are considered.437

Appendix A Trapezoidal function438

In section 3 we mapped each parameter (SN RU , PAF, DU , SN RE , DE and RS ) into a linguistic fuzzy439

sets functions. In order to describe these functions mathematically, we used the trapezoidal function. The440

trapezoidal function for the first parameter is given as [18],441

trapezoidal(snru ; v1,c1,c2, v1) =


x−v1
c1−v1

, if snru ∈ [v1,c1]

1, if snru ∈ [c1,c2]
b−snru
v2−c2

, if snru ∈ [c2, v2]

0, otherwise

(A1)

where, (v1, v2) are the valleys and (c1, c2) are the climaxes of the trapezoidal function, such that v1 <442

c1 ≤ c2 < v2. The particular case when c1 = c2, the function is not a trapezoidal function anymore, in fact it443

is a triangular function. In equation (A.1), the trapezoidal function maps the input parameter into a value444

between the interval [0,1] with degree of membership called µ(snru). Similarly, the degree of membership445

of the other input parameters are µ(snru), µ(pa f ), µ(Du), µ(snre ), µ(de ) and µ(rs ), µ(Zr ), and µ(Z j ) are the446

degree of membership for the (relay, jammer) relevance parameters. We distributed the trapezoidal function447

for the first parameter (SN RU ) as,448

Low = trapezoidal(snru ;−0.4,0,0.2,0.4) ,

Medi um = trapezoidal(snru ;0.2,0.4,0.6,0.8) ,

Hi g h = trapezoidal(snru ;0.7,0.8,1,1.1) . (A2)

Similarly, this relation can be rewritten for the other input and relevance parameters.449
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Appendix B Fuzzy logic block diagram for cooperative node selection450

Figure 10 shows the block diagram of the fuzzy logic strategy used to select the best cooperative (relay,451

jammer) node.452

Figure A1. block diagram for cooperative node (relay, jammer) selection based on fuzzy logic
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