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1 Abstract: Cooperative non-orthogonal multi access communication is a promising paradigm for the future
> wireless networks because of its advantages in terms of energy efficiency, wider coverage, and interference
s mitigating. In this paper, we study the secrecy performance of a downlink cooperative non-orthogonal
+  multi access (NOMA) communication system under the presence of an eavesdropper node. Smart node
s selection based on feed forward neural networks (FFNN) is proposed in order to improve the physical layer
s security (PLS) of a cooperative NOMA network. The selected cooperative relay node is employed to enhance
7 the channel capacity of the legal users, where the selected cooperative jammer is employed to degrade the
s  capacity of the wiretapped channel. Simulations of the secrecy performance metric namely the secrecy
o  capacity (Cs) are presented and compared with the conventional technique based on fuzzy logic node
10 selection technique. Based on our simulations and discussions the proposed technique outperforms the
11 existing technique in terms of the secrecy performance.

12 Keywords: Physical layer security (PLS), cooperative relay transmission, non-orthogonal multiple access
13 (NOMA), fuzzy logic, feed forward neural networks (FFNN) secrecy capacity.

s+ 1. INTRODUCTION

"

15 The increasing growth of wireless communication systems has led to eavesdropping attacks. In order to
1e overcome this issue, the enhancement of security in wireless networks becomes an essential factor.

1z 1.1. MOTIVATION AND RELATED LITERATURE

18 The concept of physical layer security (PLS) has been proposed to complement the traditional security
10 solutions such as the cryptographic techniques [1], by exploiting the physical layer properties of the wireless
20 communication network. The baseline of Shannon’s cipher system [2] and the developments of Aaron Wyner’s
22 Wiretap channel [3] introduce the interests of using the physical wireless characterization to enhance the
22 security of data transmission [4].

23 Cooperative relay communication is a promising concept for wireless networks due to the advantages of
2a  energy efficiency, increasing the coverage and mitigating the interference [5]. The authors of [6] suggest the
2s use of jamming signals generated from the destination node to attack an un-trusted relay that is assumed to
26 be the eavesdropper node. The secrecy performance of this strategy is analyzed in terms of the secrecy outage
27 probability (SOP) metric. The authors of [7] illustrate the benefits and uses of the untrusted relay node in
2s cooperative networks. Moreover, several strategies have been considered in the literature in order to improve
20 the PLS such as cooperative jamming [8]-[9], cognitive radio [10], and energy harvesting [11].

30 NOMA is an essential enabling technology for the fifth generation (5G) wireless networks to meet the
;1 heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high
32 throughput [12]. The key idea behind NOMA is to serve multiple users in the same resource block, such as a
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33 time slot, subcarrier, or spreading code. The NOMA principle is a general framework, and several recently
.« proposed 5G multiple access schemes can be viewed as special cases. In [13], the authors consider the use of
s arelay node with two protocols (amplify-and-forward, and decode-and-forward) in a cooperative NOMA
se  system. The authors of [14] investigate the optimal designs of a NOMA system in terms of the transmission
37 rates, power allocation for each user, and the decoding factor. In [15], NOMA system is considered in large
3s  scale communication system. In this strategy, the PLS is implemented by using artificial noise generated from
3o each user node.

40 Smart node selection is an essential and useful strategy in cooperative NOMA communication networks
a1 in terms of enhancing the secrecy performance, saving power and expanding the coverage area. In [16],
«2 the authors consider the combination of cooperative relay and jammer selection based on the buffer-aided
a3 cooperative node selection scheme. The secrecy performance of this strategy is analyzed in terms of SOP
.2 metric. Recently, the integration of cooperative node selection with the artificial intelligence based on fuzzy
s logic controller strategy has been proposed to enhance the accuracy of the cooperative node selection strategy.
4 Motivated by this integration, the authors of [17] propose a relay selection algorithm for a cooperative wireless
+z sensor networks using fuzzy logic in order to enhance the lifetime and throughput of the network. In [18],
s the authors propose a relay selection scheme for multi-user cooperative network, where the cooperative
4 relay node is selected based on fuzzy logic employed at the base station node. The authors consider four
so criteria (SNR, social norm, distance and relays protocol) in the relay selection process based on the channel
51 state information (CSI) available at the base station. Authors of [19] use a relay selection strategy based on
s2 fuzzy logic with optimal power allocation and adaptive data rate. The authors considered two cases based
ss on the geographical location of the nodes, where in the first case the distance between the source, relay and
sa the destination are unknown. However, in the second case each node is assumed to know the geographical
ss location of the other nodes.

56 Machine learning is a widely growing field in recent modern technologies. This technology has
s7 been integrated with various fields such as, security [20], signal and image processing [21], and wireless
ss communication networks [22]. In security, machine learning techniques such as neural networks have
so been investigated and illustrated in considerable researches. In [23], the authors use the artificial neural
eo networks (ANNSs) technique as a relay selection method in a detect-and-forward multi-relaying network. The
s1 aim of using this method is to enhance the physical layer security of the network. Thus, the transmission
s2 between a source and a destination is secure in the presence of an eavesdropper node. Authors of [24] exploit
es two machine learning based physical layer security techniques namely, Naive Bayes (NB) and support
ea vector machine (SVM). The authors investigate the benefits of machine learning approach in order to
es improve the physical layer security in the presence of MIMO-Multi-antenna eavesdropper nodes. In wireless
ss communication networks, machine learning approach has been used in several researches such as channel
ez estimation [25], power allocation [26], and best antenna selection [27].

o8 Based on [17], the network lifetime and end-to-end throughput is enhanced by using node selection
eo based on artificial intelligence strategies. To the best of the authors’ knowledge, applying the smart node
7o selection based on neural network methods in cooperative NOMA system under the physical layer security
7» has not been adequately investigated in the literature. In this paper, the smart node selection based on feed
72 forward neural networks integrated with the null-steering jamming strategy in a cooperative NOMA network
73 is analysed to select the best cooperative relay or jammer nodes in the presence of an eavesdropper node.

7a  1.2. MAIN CONTRIBUTIONS

75 Unlike the summarized papers above, this paper investigates the secrecy capacity of a cooperative
7z NOMA communication network integrated with a smart node selection strategy based on feed forward neural
7z networks. The main contributions of this paper are summarized as follows.

78 * We integrate the use of jammer and relay nodes to degrade the capacity of the eavesdropper node and
70 enhance the capacity of the user node respectively. We use the null-steering beamforming technique to
80 direct the shared jamming signal towards the eavesdropper node.
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81 ¢ We employ the feed forward neural network (FFNN) strategy in order to select the best cooperative node
82 for the relaying or jamming techniques. This approach is compared with another selection approach
a3 based on fuzzy logic strategy.
8a The rest of this paper is organized as follows. Section 2 demonstrates the system model and the signal

es transmission. Section 3 presents the node selection strategies. Section 4 explains the secrecy performance
ss analysis of the system model. Section 5 shows the results and discussions of the paper. Finally, section 6
sz presents the conclusion of this paper.

ss 2. SYSTEM MODEL

80 We consider a secure non-orthogonal multi access (NOMA) system, where a base station (By)
so communicates with a strong user (User;) (good channel conditions) and a weak user (User,) (poor channel
o1 conditions) in the presence of a passive eavesdropper node which is able to monitor the main channel,
o2 as shown in Figure 1. The cooperative helper nodes (R, R, ..., Ry) are employed to enhance the secrecy
o3 performance of the communication scenario. In this system model, the users and the eavesdropper nodes
9« are equipped with a single antenna. However, the helper nodes are equipped with M antennas. Moreover, the
os transmission time is divided to time frames in which each time frame is divided into two time slots (phases).
%6 In this system model, we assumed that the eavesdropper node is a passive communication node which
oz has no access to the information signal transmitted to the receiver node. Moreover, we assumed that the
os eavesdropper node has the ability of differentiating and detecting the superimposed data transmitted from
oo the base station to the users [28]. This assumption provides the lower bounds for the practical scenario, where
100 the eavesdropper node is given a strong decoding capabilities.

v

Base station

« » Shared jamming signals (first phase)
3 Information signal (first phase)

—> Jamming signal of the users (first phase)

— > Bestrelay signal (second phase)
== == = Bestjammer signal (second phase)

—— —> Wiretapped signal (second phase)

Figure 1. System model

101 2.1. COOPERATIVE HELPER (RELAY AND JAMMER) NODES

102 Cooperative communication techniques are employed either to strengthening the legal main channel
103 Of the user nodes (by using cooperative relay nodes) or to degrade the illegal wiretapped channel of the
s eavesdropper node (by using cooperative jammer node) [29]-[30]. The use of these techniques enhances
105 significantly the secrecy performance of the NOMA system. In this paper, we used both techniques in order
106 to have a secure communication between the base station and the user nodes. Moreover, the eavesdropper’s
107 channel state information (CSI) is assumed to be available at the base station and the cooperative helper
e nodes [32]. The cooperative helper node is selected as a cooperative relay node or a cooperative jammer by
100 Using a node selection method based on fuzzy logic and feed forward neural networks strategies.

110 In this paper, the relay is assumed to be a half-duplex two-way with an amplify-and-forward protocol.
11 Therelay is used as transmission node between the base station and the users with no direct channel between
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112 base station and users. Thus, the communication happens in two time slots (phases) as illustrated in Figure 1.
13 Moreover, the cooperative relay node is used in order to enhance and improve the channel capacity of the
114 user nodes.

115 In this work, the cooperative jammer node uses the CSI information to build a jamming-null-steering
116 beamforming strategy, where the shared jamming signals generated by the users are directed to the
117 eavesdropper node. However, the shared jamming signals are nulled in the directions of the legal user
e nodes. This strategy ensures that the communication channel between the friendly jammer and the legal user
110 nodes is not available. Thus, the channel capacity of the eavesdropper node is degraded without affecting the
120 legal user nodes. The jamming-null-steering beamforming at the jammer node is expressed as,

(Im— W) hg; E

NBg= —
H (Im—-W) hRj,E”

ey

121 where, I); is the identity matrix with M * M, W is the projection matrix to the orthogonal subspace
122 of the legal user nodes with W = G(GHG)_1 GH G= [hRj,U1 hR]._UZ], and hg,u,, hr;v, and hg, g are the
123 channel gains between the friendly jammer node and the legal user nodes (U, Uz) and the eavesdropper
124 node respectively.

125 2.2. CHANNEL ASSUMPTIONS

126 In this model, the communication links between the nodes are assumed to be Rayleigh fading channel
127 with exponential path loss. The coefficient of a channel link between two nodes is expressed by h,j, where a
12s  is the node where the transmission starts and, b is the node where the transmission ends. These coefficients
120 are modelled as constant and identically distributed at the transmission phases. Moreover, the channel state
130 information (CSI) of the users and the eavesdropper nodes are assumed to be perfectly available at the base
131 station and the cooperative helper nodes. However, In practice, the user nodes estimate the absolute values
132 of the CSI from the cooperative nodes to the eavesdropper node then feed it back to the base station via the
133 cooperative nodes. Furthermore, the noise is assumed to be a complex additive white Gaussian noise (AWGN)
132 with zero mean and unit variance.

135 2.3. SIGNAL TRANSMISSION MODEL

136 This section explains the flow of the transmitted superimposed information signal from the base station
137 to the user nodes via the cooperative relay node and under the protection of the cooperative jammer node.
138 In the first phase, the base station transmits the superimposed information signals to the helper nodes.

130 The received signal at each helper node is written as,

XBs,r; =\/ PBs@u, hps g, Bu, X1 +\/ Ppsau, hps g, Bu, X2 + s r; 2)

140 where, Pps is the power of the base station,a,, and a,, are the power allocation coefficient for user;
11 and user; respectively, x; and x; are the information to user; and user, respectively, hps g, is the channel
112 gain between the base station and the helper node, the subscript i stands for the number of the cooperative
s helper node, By, By, are the maximum ratio transmission beamforming vector build by the base station
1as  for the strong user and the weak user respectively, and nps g, is the AWGN noise from the base station to
1ss  the helper node. At the same phase, user; and user, generate jamming signals and share these signals. The
16 shared jamming signals are given as,

Ju, = \/ Py By up J1 + My

]uz = Puz huz,ul j2 +nug,u1 (3)

147 where, P, and P,, are the powers of the users respectively, j; and j, are the artificial jamming signals
s from user; and user; respectively, hy, ,, and hy, ;, are the channel gains between the users, and n,, ,, and
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10 My, are the AWGN noise between the users. The shared jamming signals are transmitted by the strong user
150 to the helper nodes. The received jamming signal at each helper node is given as,

]ul,Ri = (]ul +]u2) hul,Ri +nu1,R,~ (4)

151 where, hy, g, is the channel gain between the strong user and the helper node and ny, g, is the AWGN
152 noise from the strong user to the helper node.

153 At this stage each helper node is aware of the received signals from the legitimate nodes. These signals
152 are summarised as follows.

155 ¢ The superimposed information signal transmitted by the base station. Equation 2 illustrates the
156 superimposed information signal received at the helper nodes.

157 * The shared jamming signal transmitted by strong user. Equations 3 and 4 demonstrate the shared
158 jamming signal received at the helper nodes.

150 In the second phase, the selected cooperative relay node amplifies-and-forwards the superimposed

10 information signal to the user nodes. The amplification factor (Ar) is expressed as [33],

Ppg,
F= 3 5 5)
PBS|hBS,Rs| + Py |hu1:Ri| +to
161 where, Pp, is the power of the selected cooperative relay node, the subscript s stands for the selected
1.2 cooperative relay node, and o denotes the variance of the AWGN noise.
163 The forwarded signal to the strong user (user) is expressed as,
A
YRsl,:ul = [AFhRsvul (XBS:RS)] +nRs:ul (6)
164 The forwarded signal to the weak user (user) is expressed as,
A
Y, = [AFhR u, (XBs,r,)] + 0Rg s )
165 At the same phase, the eavesdropper wiretaps the main channel in order to receive the transmitted

166 signal from the cooperative relay to the user nodes. However, the selected cooperative jammer node directs
1e7  the shared jamming signal towards the eavesdropper node. The received signal at the eavesdropper node
16 under the protection of the selected cooperative jammer node is given as,

YIQ,FE = Aphpg,eXps,r, + AR, EJu;,r; NBE + R E (8)
160 where, NBg is the jamming-null-steering beamforming vector build by the selected cooperative jammer

170 node, hg, g is the channel gain between the selected cooperative jammer node and the eavesdropper node,
171 and the subscript j stands for selected cooperative jammer node.

172 3. SMART NODE SELECTION STRATEGIES

173 In this section, we illustrate the cooperative node selection based on fuzzy logic (FL) and feed forward
172 neural network (FFNN) strategies.

s 3.1. FUZZY LOGIC SELECTION

176 Figure 2 demonstrates the general flowchart of the fuzzy logic strategy used to select the best cooperative
177 relay and jammer node respectively.
178 Based on Figure 2, three main steps are required to select the best cooperative relay or jammer nodes

170 based on the fuzzy logic controller strategy.
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Gtart the node selection schemD

]
i=1

I

Gather the required inputs based on the available channel state
information at the base station

Cooperative relay selection scheme based on fuzzy logic strategy
(Table I)
v

Cooperative jammer selection scheme based on fuzzy logic strategy
(Table IT)

i=i+1

NO

Yes

Select the cooperative helper as a relay node or a jammer node

CEnd the node selection schemD

Figure 2. Flowchart of cooperative node selection based on fuzzy logic

10 3.1.1. Required input gathering

181 At the end of each time frame the base station gathers the estimated information of network users, and
> at the beginning of each time frame the base station selects the best cooperative relay enhance the legal
1s3  channel capacity and the best cooperative jammer to degrade the wiretapped channel capacity. To this end,

1

[

1sa  the base station should estimate five parameters namely, signal to noise ratio for the legal users (SNRy),
1ss  power amplification factor (PAF), the distance between the cooperative helper and legal user nodes (Dy),

16 signal to noise ratio for the eavesdropper (SN Rg),and the distance between the cooperative helper and the

®

1s7  eavesdropper (Dg). These parameters are gathered with the help of the channel state information (CSI)

@

1.s  available at the base station. In order to use these parameters in the fuzzy logic model, we normalized the

0

180 each parameter value to the interval [0,1].
190 e Signal to noise ratio (for the legal users SNRy)

101 Signal-to-noise ratio is the main criterion in the process of helper selection. The SNR values for the
192 system model shown in Fig 1 are calculated as,

Fu = A2Pgsay, |hrou | |hask, | @
(42 gy | +1) 02
Fu, = AZPpsau, |hp, | | hssk,|° 10)
AZFPBsaul |hR[,u2 |2 |hBS,Ri |2 + (AZF ihRi,uz |2 + 1) o?
103 We mapped the maximum normalized SN Ry into low, medium and high as shown in Figure 3 (a). The

10  maximum SNR is chosen as,

SNRy = max{&y,, &y} (€8]


https://doi.org/10.20944/preprints201912.0003.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 December 2019

195

201

202

203

204

206

7 0f 20

l-=
++-3++ Medium

! ‘Low
!
i High
I
{
I

{ | =¥~ Very high

o

sl

o

sl

o

6L

o

6L

o

41

o

41

o
o
o

2+ \

Degree of membership (Power amplification factor)

-

Degree of membership (Maximum SNR at legal nodes)

4 || Y I S W G ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
e

Maximum SNR at legal nodes Power amplification factor

M-

(a) Membership function for SNRy; (b) Membership function for PAF

=

&
]
1
1
1
1

a

o
@

o
>

o
=

o
o

Degree of membership (Minimum distance to the users)

0.4 0.5 0.6 0.7 0.8 0.9 1
Minimum distance to the users

o
o
°
o
[Np
o
@

(c) Membership function for Dy

Figure 3. Membership function for cooperative relay input fuzzy sets

¢ Power amplification factor (PAF)

Power amplification factor is a direct aspect to enhance the capacity of the main communication
channels between the selected cooperative relay node and the legal user nodes. Equation (5) is used in order
to calculate the power amplification factor. We mapped the normalized power amplification factor into low,

medium, high and very high as shown in Figure 3 (b).
 Distance between the cooperative helper and legal user nodes (Dyy)

The helper location has significant impact on average achievable rate at the receiver nodes. The distances
between the helper nodes and the legal user nodes are calculated as,

Dy, = \/(XUl - XRi)Z + (YUI B YRi)z
Dy, = \/(XUZ - XRi)z + (YUZ - YRi)Z

where, Xy, Xy, and X, are the coordinates of the horizontal axis for user, user, and the cooperative
helper node i, and Yy, Yy, and Yg, are the coordinates of the vertical axis for user;, user, and the cooperative
helper node i. In this work, we choose the minimum distance between the cooperative helper and legal

(12)

nodes. The minimum distance is given as,
DU =min{DU1,DU2} (13)

We mapped the normalized minimum distance (D) into long, medium and short as shown in Figure 3

(c).

* Signal to noise ratio (for the eavesdropper SNRg)

d0i:10.20944/preprints201912.0003.v1
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Figure 4. Membership function for cooperative jammer input fuzzy sets
The SNR values for the eavesdropper node is expressed as,

AgPsam |he, | |hps,x, |

E= A2|h 2 2 2 2 2
2 | T, INBiI? + (42 | g, g +1) 0

(14

where, m € (U;, Uz). We mapped the normalized SNRf into low, medium and high as shown in Figure 4
(a).

¢ Distance between the cooperative helper and the eavesdropper (Dg)

The distances between the helper nodes and the eavesdropper node are calculated as,

Dg= \/(XE—XRi)er(YE—YRi)Z (15)

We mapped the normalized distance (Dg) into long, medium and short as shown in Figure 4 (b).

¢ The cooperative helper node is selected as the best relay (Rs)

In this work, the priority is given to the relay selection. In other words, the output for the degree of relay
node relevance is fed as an input for the jammer node selection. Hence, if the cooperative helper node is
selected as a relay then the degree of jammer relevance for that node is very bad. We mapped the relay node
selection into true and false as shown in Figure 4 (c).

This step is summarized as follows.

¢ The required parameters are gathered based on the available channel state information (CSI) at the
base station node.
» Each parameter is mapped in a fuzzy set. the fuzzy sets are as follows.


https://doi.org/10.20944/preprints201912.0003.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 December 2019

233

234

241

242

9 0f 20

(== -Very bad ---3¢--Bad

Medium — 3~ Good —/ -Very good|
1H - -5 %

F——% A--A

Bl e 0]

o
>

o

41

o

Degree of membership (Degree of relay node relevance)

\
'
i
2t 1
\

\

\

Degree of membership (Degree of jammer node relevance)

F

I
!
{
i
i
I
!
!
i
/
*
*
06

e
07 08 09 1 0 04 02 03 04 05
Degree of jammer node

03 04 05
Degree of relay node relevance

A
0.7 0.8 0.9 1
vance

3 o
T o

(a) Cooperative relay (b) Cooperative jammer

Figure 5. Membership function for degree of cooperative node relevance

— SNRy € { Low, Medium, High }

- PAF € { Low, Medium, High, Very high }
- Dy € { Long, Medium, Short }

- SNRE € { Low, Medium, High }

- Dg € { Long, Medium, Short }

— Rg € { True, False }

3.1.2. Process of Fuzzification

In this step, we use the fuzzy inference system (FIS) to obtain the fuzzy sets Z; and Z; that maps
the degree of relevance for relay and jammer respectively. However, these fuzzy sets are a description of
fr(SNRy, PAF, Dy) and f;(SNRg, Dy, Rs) functions. The relevance fuzzy sets are given as.

Z, € { Very bad, Bad, Medium, Good, Very good }

16
Zj € {Very bad, Bad, Medium, Good, Very good} (16)

where, very bad, bad, medium, good, and very good are the degree of relevance for each cooperative
node. In other word, if the degree of relaying relevance for any cooperative node is very good, then the
probability of selecting this node as a relay is high. Figure 5 shows the membership function for the relay
and jammer nodes relevance fuzzy sets respectively. In this work, we use AND logic in determining the fuzzy
rules and in order to map the input fuzzy sets (SNRy, PAF, Dy, SNRg, Dy, Rg) into the relevance fuzzy sets
(Zy, Z;). Table 1 summarizes the fuzzy rules for the cooperative relay selection scheme.

Table 1. Rules for relay selection scheme

d0i:10.20944/preprints201912.0003.v1

Power amplification factor

SNR Distance | Low Medium | High Very High
Low long Verybad | Bad Bad Medium
Low Medium | Verybad | Bad Bad Medium
Low Short Verybad | Medium | Medium | Medium
Medium | long Verybad | Medium | Medium | Medium
Medium | Medium | Bad Medium | Good Good
Medium | Short Bad Medium | Good Good
High long Bad Medium | Medium | Good
High Medium | Medium Good Good Very Good
High Short Medium | Good \C/;(:,)rgr d Very Good

In this paper, we have 36 fuzzy rules for the cooperative relay selection scheme and 18 fuzzy rules for the
cooperative jammer selection scheme. Note that the priority is for the cooperative relay selection scheme, so
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2a3  the cooperative relay node is selected first, then the cooperative jammer node is selected. Table 2 summarizes
24 the fuzzy rules for the cooperative jammer selection scheme.

Table 2. Rules for jammer selection scheme

The node is selected as relay
SNR Distance True False
Low long Very bad Medium
Low Medium | Verybad Good
Low Short Very bad Very good
Medium long Very bad Bad
Medium | Medium | Verybad Medium
Medium Short Very bad Medium
High long Very bad Very bad
High Medium | Verybad Bad
High Short Very bad Bad

2a5  3.1.3. Process of defuzzification

246 This section illustrates the process of obtaining the output (degree of (relay or jammer) relevance). In
2a7  order to obtain the outputs of the fuzzy logic system we used the process of crisp output center of sum
2as  defuzzification method denoted as z,;sp. Firstly, the fuzzy logic controller calculates the geometric centre of
249 area defined as COA for all the membership function of the relay and jammer degree of relevance [34]. The
20 geometric centre of area is given as,

Z)Z,dZ,
COAzr:f,qu( r) r r
Sz, (Z)dZ,
Uz, (Z)ZidZ;
COAZJ» — M a7
f Hz; (Z))dZ;
251 Finally, the controller calculates weighted average for the geometric centre of area for all the membership

252 function of the relay and jammer degree of relevance. The weighted average for the geometric centre of area
253 is given as,

Y X COA, A,

Zcrispy =

N
Z’ i=1 Azf i
I COAg;, -Ag, (18)
Zcrisp; = T <N .
: Z i=1 Az Jji
254 where, A is the area under the scaled membership functions for the relay (Azri) and jammer (A, ji) degree
2ss  Of relevance and within the range of the output variable.
286 3.2. MACHINE LEARNING-BASED FEED FORWARD NEURAL NETWORK SELECTION
257 In this paper, a machine learning FFNN-based algorithm is proposed in order to select the best

258 cooperative relay and jammer nodes respectively. In this section, the main steps for the proposed strategy are
250 explained in detail.

260 3.2.1. Input Data Generation

261 For training the FFNN model, cooperative relay and jammer data are generated containing L samples.
22 The generated data is extracted from the known CSI at the base-station node. The generated relay data
263 denoted as GDp consists of three parameters, namely SNRy;, PAF, and Dy. Similarly, the generated jammer
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26« data denoted as GDj consist of three parameters, namely SNRg, Dg, and Rg. These parameters are expressed

265 dS,
GDpg = [SNRU,PAF,DU]L (19)
GDj = [SNRg, Rs, D]t (20)
266 where, SNRy,PAF, Dy, SNRE, Rs and Dp, are the estimated information of the network users gathered

267 by the base-station at the end of each frame. We normalized the generated data to the interval [0,1].

26s  3.2.2. Output Labelling

260 In the data generated, the degree of relay node relevance and the degree of jammer relevance are chosen
270 as the performance indicators for relay and jammer respectively. Each training data sample is associated with
271 a performance indicator corresponding to the current sample. Table 3 illustrates the labelling of cooperative
272 nodes relevance.

Table 3. Labelling the relevance of the cooperative nodes

Cooperative (relay or jammer) relevance | Label (t)
Very bad 0
Bad 1
Medium 2
Good 3
Very good 4
273 Based on Table 3, the training data samples are labelled according to the performance of each relay and
274 jammer nodes respectively.
275 3.2.3. Data Set Training
276 After generating the input samples and output labels, the input-output pairs are concatenated to create

277 two full data sets for relay and jammer respectively.

Dretay train = {(IGDRI", '), (IGDR)*, %),..., (IGDRI", ")} @D
Djammer train = {([GD]]I ’ tl) ’ ([GD]]Z; tz),---, ([GD]]L» tL)} (22)
278 where, t~ is the Lth class label.
279 3.2.4. FFNN structure
280 The labelled training data sets is used to train the FFNN model. The input of the models are absolute

21 values of the generated data (GDpg, GDj) and the output is the performance of the relay or jammer. The
2s2  output of the model indicates the degree of relevance for relay and jammer respectively. Here, the basics of
2s3  the neural network is described briefly. The structure of the FFNN model consists of multiple hidden layers,
2sa each hidden layer contains multiple neutral nodes. After each layer a nonlinear function (activation function)
2ss  is implemented. Due to their efficiency in generalizing the trained model ,the nonlinear activation functions
286 are the most used activation functions, the most common choices of these functions is the rectified linear
2s7  unit (ReLU) function expressed by,

freru (x) = max (0, x) (23)
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288 where, x is the argument of the function. Choosing an activation function is a vital step when building
20 aneural network model and ensures a good performance model . In this experiment, the ReLU function is
200 applied to all hidden layers where it enables the model to learn more complex structures and generalize to
201 variety of data. Our experiment is a multi-class classification case. Thus, an activation function is used at the
202 output layer expressed by,

exp(x;)
fsoftmax(Xi) = —g————— (24)
Zj:i exp(xj)’
203 where, C is the number of classes, i,j € 1,2,...,,C, and Xj, Xj are scores of the ith class and jth class,

20 respectively. The network model consists of four layers namely, input, two hidden and output layers. The
20s input layer takes input parameters (GDg, GDj ) for relay or jammer nodes receptively. Figure 6 shows the
200 feed forward neural networks design model.

Input layer Hidden layers Output layer
128

256
N

Figure 6. FFNN design model

207 Based on Figure 6, the first and the second hidden layers consist of 128, 256 neurons, respectively.
20 The output layer consists of five neurons corresponding to the classes of the cooperative (relay or jammer)
200 Televance. Softmax function is applied to this layer which gives us the probability distribution over all classes.
300 The final output of the network is the class with the maximum probability value.

so1  3.2.5. FFNN training

302 In this section, the process of setting the training parameters of our FFNN model is described. In total,
303 two data sets were generated using two groups of data samples, 60000 samples of relay data (GDg) and
30 60000 samples of jammer data (GDj). Two models were trained using the two data sets of relay and jammer
305 respectively. The training data sets were split into the training set and the testing set. The training set was
306 Used to train the model parameters and the testing set was used to evaluate the trained model. In this FFNN
30z model, cross entropy is applied as the loss function for our FFNN model. Therefore, the loss function for each
se  ith sample of input GDp, of relay data and each jth sample of input GD; of jammer data is formulated as,

Lossg (ti, o(GDg, w, b)) = —log(o(GD;}, w, b))

Lossy (tj,o(GD}., w, b)) = —log(o (GD?,W, b)) (25)

300 where, o (GDJ’;?, W, b) is the output that is predicted by the model for the best cooperative relay node.
s10  The target of the training process is to find the suitable parameters W and b that minimize the average loss
su “cost function” of entry training data sets, the cost function is defined as,

Lp(©) = 1\_1/1 ZAiLoss(ﬂ',o(GD;,w, b))
=
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1M ; i
L©= ZLoss(t],o(GD],W,b)) 26)
j=1
312 where the set ® = {WW, b} contains every training parameter of the FFNN model. Every parameter is

a1s generally adjusted iteratively using the gradient descent methods. At each iteration, every parameter is
s12  adjusted simultaneously as,

"l =" -pVoL(@), @7

315 where Vg represents as the gradient operator with respect to 0, 7 is the learning rate, and m is the
;16 iteration number (250 iterations). Backpropagation is used to update the weights W and biases b of the neural
;17 network using the local error of the network. During training the network, when a prediction is made for
;18 the input values, the actual output values are compared to the predicted values and an error is calculated.
s10  The calculated error is then used to update the weights W and biases b of the network starting at the layers
320 connected directly to the output nodes and then proceeding further backward toward the binput layer. In
;21 other words, the backpropagation is used to calculate the gradients efficiently which is then used to train the
322 network, by adjusting the weights W and biases b throughout the network to get the desired output.

323 In this experiment , Adam optimization algorithm was applied to the FFNN model because it is a
324 first-order gradient-based optimization algorithm, thus reducing computational complexity [17]. In addition,
;25 the dropout technique is applied in this FFNN model in order to reduce the overfit in training and improve
326 generalization of the model (0.5 dropout was chosen), for which the proposed FFNN model performs well.
sz Finally, after training and testing the two models of relay and jammer respectively , the FFNN models are
s2s  frozen and can be used to select the best cooperative helper node as a relay or jammer.

s20 4. SECRECY PERFORMANCE ANALYSIS

330 In this section, we illustrate the secrecy performance metric in terms of the secrecy capacity for the
s:1 system model shown in Figure 1 assisted with the fuzzy logic and the feed forward neural network strategies.
332 The secrecy capacity metric is defined as the maximum capacity rate difference between the channel capacity
a33  of the legitimate users and the channel capacity of the eavesdropper node. The channel capacity of the strong
s3a  user (user) is given as,

1
Cuy = Elogz (1+¢&w) (28)

335 where, ¢, is the signal to noise ratio (SNR) at the strong user expressed in equation (9). The strong user
336 is able to decode the weak user’s information signal and suppressed it by using the successive interference
;37 cancellation (SIC) strategy. The channel capacity of the weak user (user») is given as,

1
(u, = E1og2 (1+¢y,) (29)

338 where, ¢, is the signal to interference plus noise ratio (SINR) at the weak user expressed in equation
330 (10). The weak user is not able to decode the strong user’s information signal, so the strong user’s information
sa0  signal is an interference to the weak user. The channel capacity of the eavesdropper node is given as,

1
(p= EIOgZ(l +¢E) (30)

341 where, ¢ is the signal to jamming plus noise ratio (SJNR) at the eavesdropper node expressed in equation
sa2  (14). We assume that the eavesdropper node is able to distinguish the superimposed mixture signal by using
sa3  the parallel interference cancellation (PIC) strategy. The secrecy capacity for each user is formulated as,

[¢E,]" = max{[¢,, -], 0}
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+
[¢h,]” =max{[¢u, —¢&],0} 630
344 In order to evaluate the accuracy of the proposed cooperative node selection strategy, the error analysis

sas s carried on by comparing the secrecy capacity achieved based on the fuzzy logic and the FFNN strategies
a6 with maximum secrecy capacity of the system model.

347 In this paper, the maximum secrecy capacity is achieved when the eavesdropper node does not exist.
sas The maximum secrecy capacity at each user is respectively formulated as,

[¢ia™]" = max{[¢u,],0}

[Cin®]" = max{[¢4,],0} (32)

u

340 In this section, the accuracy percentage (Ap), and the root mean square error (RMSe) equations for
sso  both users are respectively given as,

’[ max|t _ [(E +
u Um
=[1- x 100% (33)

Pum [(lrtnygx]Jr

£ (lem) - (8, 1)

RMSey,, = X (34)
351 where, K is the maximum repetition based on the maximum transmit power.
ss2 5. RESULTS AND DISCUSSION
353 In this section, the numerical results are obtained and discussed to evaluate the secrecy performance of

ssa the proposed cooperative NOMA assisted with null-steering beamforming jamming and node selection based

[d

sss on FFNN technique. The simulation setup parameters of the proposed technique are summarized in Table 4.

Table 4. SIMULATION SET UP PARAMETERS

PARAMETER DETAILS

Cooperative nodes Five cooperative nodes

Nodes locations Illustrated in Figure 7

Power allocation for the strong user | 0.2

Power allocation for the weak user 0.8

Total transmission power 30 dBm

Path loss coefficient 3.5

Noise density -60 dBm

Channel model Slow fading Rayleigh channel

Defuzzification process Crisp output center of sum
356 Figure 7 shows the geographical locations of the cooperative NOMA system for all the nodes. These

37 locations are used in order to simulate the experiments (1 and 2).

388 Table 4 and Figure 7 illustrate that five cooperative helper nodes are used in order to complete the
30 relaying and jamming processes. However, the data relaying process is done by a single cooperative relay node
se0  selected by using a smart node selection strategy discussed in section 4. Similarly, jamming the eavesdropper
se1  node is done by a selected cooperative jammer node.

362 The distances between the base station and the cooperative helper nodes are assumed to be
3es non-equidistant to the distances between the relay nodes and the legal users. The eavesdropper is positioned
sea  at a fixed coordinates (1500, -200) about 1513.28 meters away from the base station.
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Figure 7. Locations of the nodes for the experiments
365 In this section, we evaluate the smart node selection by two experiments. Each experiment discusses
ses smart node selection based on FFNN and fuzzy logic strategies.
367z 5.1. EXPERIMENT 1 (PROPOSED SMART NODE SELECTION BASED ON FFNN STRATEGY)
368 In this experiment, we propose a machine learning based on FFNN strategy to select the best cooperative

seo  (relay, jammer) node. This strategy is proposed in order to enhance the physical layer security of the
370 cooperative NOMA system shown in Figure 1.

371 Table 5 illustrates the cooperative relay selection based on FFNN strategy. The relay selection criteria are
372 extracted based on the known CSI at the base-station.

Table 5. Cooperative relay selection based on feed forward neural networks

Relay selection criteria
Node | SNRy PAF Dy Relevance | Selection
1 0.8684 0.7213 0.7284 | Verygood | Selected

2 0.8522  0.6953  0.6429 Good
3 0.4855 0.6844 0.5890 Medium
4 0.3010 0.6920 0.5759 Medium
5 0.1717  0.5429 0.6061 Bad
373 Based on Table 5, we observe that the first cooperative node gives the best relay relevance (very good) in

sz comparison with the other cooperative nodes, hence it is selected by the base-station as the best cooperative
s7zs  relay node. Table 6 illustrates the cooperative jammer selection based on FFNN strategy.

Table 6. Cooperative jammer selection based on feed forward neural networks

Jammer selection criteria
Node | SNRg Dg Rg Relevance | Selection
1 0.8981  0.6960 True Very bad
2 0.4372  0.6472 False Bad
3 0.2122  0.6037 False Medium
4 0.1197 0.5667 False Medium
5 0.0860 0.5375  False Very good | Selected

376 In this paper, the priority is given to the relay selection. Hence, the first cooperative node is not selected
377 as the best jammer node. However, we observe that the fifth node provides the best jammer relevance
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sz compared to the other cooperative nodes. Thus, it is selected as by the base-station the best cooperative
7o jammer node.

sso  5.2. EXPERIMENT 2 (SMART NODE SELECTION BASED ON FUZZY LOGIC SCHEME)

381 In this experiment, we use a smart node selection based on the fuzzy logic strategy to select the best
ss2 cooperative (relay, jammer) node. Table 7 illustrates the cooperative relay selection based on fuzzy logic
sss  strategy. The relay selection criteria are the same as the criteria used in Table 5.

Table 7. Cooperative relay selection based on fuzzy logic selection scheme

Relay selection criteria
Node | SNRy PAF Dy Relevance | Selection
1 0.8684 0.7213  0.7284 Good

2 0.8522 0.6953 0.6429 Good Selected
3 0.4855 0.6844 0.5890 Medium
4 0.3010 0.6920 0.5759 Bad
5 0.1717 0.5429 0.6061 Very bad
384 Based on Table 7, we observe that the first and second cooperative nodes give the best relay relevance

s (good) in comparison with the other cooperative nodes. However, fuzzy logic controller selects the second
sss node as the best cooperative relay node. This is due to the distance significance compared to the first node.
sz Table 8 illustrates the cooperative jammer selection based on the fuzzy logic strategy.

Table 8. Cooperative jammer selection based on fuzzy logic selection scheme

Jammer selection criteria
Node | SNRg Dg Rg Relevance | Selection
1 0.8981 0.6960 False Bad
2 0.4372  0.6472 True Very bad
3 0.2122  0.6037 False Medium
4 0.1197 0.5667 False Good
5 0.0860 0.5375  False Very good | Selected

388 Based on Table 8, we observe that the fuzzy logic controller selects the same cooperative jammer node
sso  selected by the proposed FFNN strategy.

300 The outputs of these experiments are summarized as follows.

301 ¢ The proposed FFNN strategy selects the first cooperative helper node as the relay node.

302 * The fuzzy logic scheme selects the second cooperative helper node as the relay node.

303 * Fifth cooperative helper node is selected as the jammer node by both approaches.

304 Figure 8 depicts the secrecy performance in terms of secrecy capacity within a range of total transmission

ses  power from 0 dBm to 30 dBm. The secrecy performance of the cooperative NOMA system is analysed for the
36 proposed FFNN based node selection strategy and the fuzzy logic based node selection scheme.

307 Based on Figure 8, we observe that the secrecy capacity for each legal user is affected by several factors
ses namely, the total transmission power, decoding abilities i.e., SIC, and strategy used for the cooperative node
300 selection. Firstly, the secrecy capacity performance for each legal user is enhanced as the total transmission
200 power and the shared-jamming power increased.

401 Based on Figure 8, we observe that the secrecy capacity of the strong user ({,) is better than the secrecy
a2 performance of the weak user ({,,). The reason behind this is the successive interference cancellation
203 technique used by the strong user. This technique enables the strong user to decode the information signal
w02 aimed to be sent to the weak user node. Thus, the strong user is not affected by the signal interference.
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Figure 8. Secrecy capacity of the cooperative NOMA system assisted with smart node selection scheme

s0s However, the weak user is affected by the strong user signal as the interference signal. Thus, the secrecy
w06 capacity performance is decreased at the weak user.

407 Lastly, we observe that the proposed FFNN based node selection strategy provides high secrecy capacity
208 performance in comparison with the fuzzy logic scheme, This is due to the high estimation accuracy
200 established by the machine learning based on the feed forward neural network (FFNN) compared with
a0 the fuzzy logic based selection scheme. The accuracy analysis of the cooperative node selection based on
a1 FFNN strategy and fuzzy logic scheme is illustrated in Figure 9.

a12 The accuracy analysis shown in Figure 9 is carried on by comparing the maximum secrecy capacity
a1z performance of the cooperative NOMA system shown in Figure 1 (without considering the eavesdropper)
a1a  with the resulted secrecy capacity for the proposed node selection based on FENN and the fuzzy logic based
a1 node selection.

Accuracy [%]

v —-—=- Accuracy of FFNN selection (strong user)
50 .x" """"" Accuracy of FFNN selection (weak user)

. - Accuracy of fuzzy logic selection (strong user)
o *==¥-= Accuracy of fuzzy logic ion (weak user)

40 I L I I L
0 5 10 15 20 25 30

Total transmission power [dBm]

Figure 9. The cooperative node selection accuracy based on fuzzy logic and FFNN

416 Based on Figure 9, we observe that the accuracy of using the proposed strategy (FFNN based node
a1z selection) in order to approach the maximum secrecy capacity (without eavesdropping) is higher than
a1is accuracy of the fuzzy logic based scheme. In other words, the physical layer security of the cooperative
a0 NOMA system model shown in Figure 1 using the proposed strategy is high in comparison with the fuzzy
a20 logic scheme.
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a21 Table 9 illustrates the RMSe analysis for the smart node selection based on FFNN strategy and fuzzy
a2z logic scheme.

Table 9. Root mean square error (RM Se)
Cooperative node selection strategy
User nodes Fuzzy logic FFNN
Wiretapping strong user 0.2639 0.0846
Wiretapping weak user 0.3343 0.0859
423 Based on Table 9, we observe that the standard deviation (prediction errors) of the proposed strategy

a2¢ is lower than the fuzzy logic scheme for both legal user nodes. As summary of the comparison, the results
425 Obtained emphases that it is beneficial to use the proposed node selection based on FFNN strategy instead of
«2¢ the node selection based on fuzzy logic scheme.

427 6. Conclusion

428 In this paper, we proposed a strategy to enhance the physical layer security for a cooperative
420 non-orthogonal multi access system. The proposed node selection strategy is integrated with a jamming
a30  null-steering beamforming technique in order to degrade the channel capacity of the eavesdropper node.
a1 Thus, enhancing the secrecy performance of the cooperative NOMA system. In conclusion, the results
432 illustrate that the proposed cooperative node selection based on FFNN strategy outperforms the cooperative
433 node selection based on fuzzy logic scheme due to the high estimation accuracy established by FFNN strategy.
434 For future work, we will consider the assumption of unknown CSI of the eavesdropper node
435 at the base-station. Moreover, we will study the effect of relay protocols (detect-and-forward, and
43¢ compress-and-forward) on the secrecy performance analysis. Furthermore, we will apply the proposed
437 strategy on large cooperative NOMA scale where multi-eavesdropper nodes are considered.

a3s  Appendix A Trapezoidal function

439 In section 3 we mapped each parameter (SNRy, PAE Dy, SNRE, Dg and Rg) into a linguistic fuzzy
a0 sets functions. In order to describe these functions mathematically, we used the trapezoidal function. The
a1 trapezoidal function for the first parameter is given as [18],

oo, ifsnry el el
. 1, if snry € [c1, 2]
trapezoidal (snry; v1,€1,62, V1) =4 p_snr . " (Al)
oo ifsnry€lc, vo]
2—C2
0, otherwise
442 where, (v1, v2) are the valleys and (c;, ¢») are the climaxes of the trapezoidal function, such that v; <

a3 (] < ¢y < V2. The particular case when c; = ¢, the function is not a trapezoidal function anymore, in fact it
aas is a triangular function. In equation (A.1), the trapezoidal function maps the input parameter into a value
s between the interval [0,1] with degree of membership called u(snry,). Similarly, the degree of membership
ass  Of the other input parameters are p(snry), u(paf), u(Dy), p(snre), p(d,) and u(ry), wZ;), and u(Z;) are the
w7 degree of membership for the (relay, jammer) relevance parameters. We distributed the trapezoidal function
aas  for the first parameter (SNRy) as,

Low = trapezoidal (snry,;—0.4,0,0.2,0.4),
Medium = trapezoidal (snr,;0.2,0.4,0.6,0.8),

High = trapezoidal (snr,;0.7,0.8,1,1.1). (A2)

420 Similarly, this relation can be rewritten for the other input and relevance parameters.
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w0 Appendix B Fuzzy logic block diagram for cooperative node selection

51 Figure 10 shows the block diagram of the fuzzy logic strategy used to select the best cooperative (relay,
a2 jammer) node.
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Figure Al. block diagram for cooperative node (relay, jammer) selection based on fuzzy logic
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