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Abstract: Intestinal parasitic infections pose a significant public health challenge in Northern Nigeria, with 

prevalence rates ranging from 20% to 70%. Traditional diagnostic methods, primarily microscopic examination 

of stool samples, face limitations such as low sensitivity and high costs. This research addresses these 

challenges by proposing an Artificial Intelligence (AI)-based platform for the identification and counting of 

intestinal parasites. A total of 651 samples were collected from the 7 Northern State of Nigeria along with 

questionnaire collecting data on demographic, socio-economic, hygiene habits and environmental factors. 

Leveraging the You Only Look Once (YOLO) V8 model, trained on a dataset of 360 pre-processed and 467 

annotated images, the AI model demonstrated promising performance metrics. Information-Theory-Based 

approaches including (CIFE, CMIM, DISR and ICAP) were used on various machine learning models (Naïve 

Bayes, Random Forest, Support Vector Machine and Decision Tree) to analyse the risk factors associated with 

the parasitic disease. The precision-recall curve, average precision, mean average precision, and F1 score 

indicated reliable detection and classification across various parasite classes. The accuracy (97%) and AUC 

(99%) scores shows that CIFE with Random Forest has the best performance indicating the significant risk 

factors associated with the parasitic diseases. The model exhibited a well-balanced trade-off between precision 

and recall, showcasing its potential as a cost-effective and accessible tool for improving the diagnosis and 

treatment of intestinal parasitic infections in resource-limited settings. 

Keywords: intestinal parasitic infections; Artificial Intelligence (AI); machine learning; You Only 

Look Once (YOLO) V8; CIFE; CMIM; DIRS; ICAP 

 

1. Introduction 

Intestinal parasitic infections are a major public health problem in Northern Nigeria, with a high 

prevalence among both urban and rural populations. According to a study conducted by the Federal 

Ministry of Health in Nigeria (Olowokure et al., 2013), the prevalence of intestinal parasites in the 

country ranges from 20% to 50%. In Northern Nigeria, the prevalence of intestinal parasitic infections 

is particularly high, with some studies reporting rates as high as 70% (Adebisi et al., 2017). The most 

common types of intestinal parasites found in Northern Nigeria include Schistosoma mansoni, 

Ascaris lumbricoides, Taenia saginata, Entamoeba histolytica, and Giardia intestinalis (Okoh et al., 

2011). These parasites can cause a range of symptoms, including diarrhea, abdominal pain, and 

malnutrition, and can lead to serious complications if left untreated (Okoh et al., 2011). 

A study by Adebisi et al. (2017) found that the prevalence of Schistosoma mansoni and Ascaris 

lumbricoides among school-aged children in Northern Nigeria was 40.5% and 32.9%, respectively. 

Another study by Okoh et al. (2011) found that the prevalenceof Taenia saginata among adult cattle 

slaughterers in Northern Nigeria was 31.3%. These studies indicate that intestinal parasitic infections 

are prevalent among different population groups in Northern Nigeria, highlighting the need for 

effective diagnostic and treatment methods. 
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The traditional method of diagnosing parasitic infections in Northern Nigeria is through 

microscopic examination of stool samples by trained medical personnel. However, this method is 

often limited by the lack of expertise and shortage of medical staff in laboratory, which can lead to 

difficulties in terms of identification and counting the parasites. For example, a study by Olowokure 

et al. (2013) found that the sensitivity of microscopy for identifying intestinal parasites was only 

57.1%, indicating that many cases of infection may be missed using this method. In addition to the 

limitations of microscopy, the cost of laboratory testing can also be a barrier for many individuals, 

particularly in resource-limited settings (Adebisi et al., 2017). 

Given these limitations, there is a clear need for alternative diagnostic methods that are accurate, 

cost-effective, and accessible, especially in resource-limited settings. 

Artificial Intelligence (AI) has the potential to overcome these limitations by providing a more 

accurate, cost-effective, and accessible method of identifying and counting parasites (Aydin et al., 

2018). Recent studies have shown that AI-based approaches have the potential to improve diagnostic 

accuracy for parasitic infections (Jain et al., 2018). For example, a study by Aydin et al. (2018) 

demonstrated that an AI-based model was able to accurately identify and classify parasitic eggs in 

fecal samples with high sensitivity and specificity. Similarly, a study by Jain et al. (2018) showed that 

an AI-based model was able to accurately identify and classify different types of intestinal parasites 

from microscopic images. 

Also, understanding the risk factors associated with Intestinal Parasitic Infections (IPIs) is 

imperative for developing effective prevention and intervention strategies. Socioeconomic factors, 

water and sanitation conditions, hygiene practices, and environmental elements play pivotal roles in 

the transmission and prevalence of these infections (Abdulhadi, 2017). Recognizing these risk factors 

enables public health initiatives to be tailored to specific populations and regions, addressing the root 

causes of IPIs (Sadauki et al., 2022). Moreover, an in-depth understanding of risk factors facilitates 

targeted educational campaigns, fostering awareness and behavioral changes that can contribute to 

the overall reduction of IPIs (Younes et al., 2021).  

Historically, the identification of risk factors for intestinal parasitic infections has relied on 

traditional statistical methods (Zafar et al., 2022). While these methods have provided valuable 

insights, they are not without limitations. Conventional statistical approaches often struggle to 

handle complex, nonlinear relationships and interactions among variables (Kattula et al., 2014). 

Moreover, these methods may face challenges in dealing with high-dimensional data, especially 

when the number of potential risk factors is substantial (Ranganathan et al., 2017). The need for expert 

input in selecting variables and potential biases in data interpretation are additional drawbacks 

(Zafar et al., 2022). As highlighted, traditional statistical approaches may not fully capture the 

complexities of risk factor identification, necessitating more advanced and sophisticated 

methodologies.  

To overcome the limitations of traditional statistical methods, machine learning (ML) 

approaches, specifically feature selection techniques, offer a promising avenue (Oh et al., 2022) for 

identifying and understanding risk factors associated with Intestinal Parasitic Infections (IPIs) 

(Ranganathan et al., 2017). Advanced ML algorithms, such as Random Forest, Decision Tree, Naive 

Bayes, and Support Vector Machine, combined with feature selection methods like Conditional 

Infomax Feature Extraction (CIFE) by Ling & Zang (2006), Conditional Mutual Information 

Maximization (CMIM) by Fleuret (2004), Double Input Symmetric Relevance (DISR) as proposed by 

Meyer et al. (2008), and Interaction Causality and Prediction (ICAP) by Jakulin (2005), provide a 

robust framework for extracting relevant variables and relationships from complex datasets. These 

techniques enhance the accuracy and efficiency of risk factor identification, allowing for a more 

nuanced understanding of the multifaceted nature of IPIs. The integration of machine learning in risk 

factor analysis holds significant promise in advancing our comprehension of the determinants of 

intestinal parasitic infections in Northern Nigeria, contributing to more effective diagnosis and 

preventive strategies. 

2. Methodology 
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2. Sample Collections 

A total of 651 fecal samples were collected and preserved from both government and private 

schools across Northern Nigeria, following the guidelines recommended by the World Health 

Organization (WHO) in 2013. The sampling was conducted in seven states: Jigawa, Kaduna, Kano, 

Katsina, Kebbi, Sokoto, and Zamfara, with each state further divided into three clusters 

corresponding to their Senatorial Zones. In total, 31 samples were collected from each Senatorial 

Zone, and 93 samples from each state. The collection process included the administration of a 

questionnaire to gather information from each participant. 

The Formalin-Ether-Sedimentation technique was employed, involving the addition of a small 

quantity of feces to formalin and ether to preserve and concentrate the parasites within the samples. 

Research assistants, recruited for the study, facilitated the collection of these samples. Subsequently, 

all fecal samples were transported to the Biology Department Laboratory at Federal University 

Dutsin-ma for further investigation. 

2.2. Data Collection 

A comprehensive set of questionnaires was administered to gather data on various aspects, 

including demographic information, socioeconomic status, hygiene habits, and environmental 

factors, as presented in Table 1. The data provided information on the associated risk factors of 

Intestinal Parasites in Northern Nigeria. 

Table 1. Risk Factors for Intestinal Parasitic Infection in Northern Nigeria. 

Demography Socioeconomic Hygiene Habits Environmental 

State Type of Toilet 
Hand washing after 

Toilet Use 

Taking-off Shoes while 

Playing  

Age Water Source 
Using Soap for Hand 

washing after Toilet 
Playing with Soil 

Father Education Presence of Pet at home 
Hand Washing before 

Eating 
Eating while Playing 

Mother Education  Fingernails Cleanliness Open Defecation 

Farther Occupation  Eating of Raw Vegetables  

  Sucking Fingernails  

2.3. Parasitic Examination 

For helminthes and eggs examination were done according to the technique proposed by Amin 

et al. (2020). The stool samples were examine using the iodine concentration method for parasitic 

eggs. The samples were then prepared and suspended in a formalin solution, then filtered and 

combined with ethyl acetate before centrifugation. Following centrifugation, the remaining sediment 

was examined microscopically to identify parasitic eggs. For the helminths examination, a swabbed 

sample was combined with saline and placed on a slide, ensuring no air bubbles were present. Direct 

microscopic examination was performed to detect helminth ova.  

For intestinal protozoa, the technique of Fasipe et al. (2020) was employed. Stool samples were 

examined for the presence of parasitic eggs using formal ether concentration techniques. On gram of 

feces was suspended in 5ml of 10% SAF solution and mixed thoroughly. The sample mixture was 

decanted and a drop of the precipitate was picked using a pipette and then placed on a clean 

microscope slide and microscopic examination of stool samples for the presence of intestinal 

protozoan cysts or trophozoites was done by direct saline-Logol’siodine wet mount method 

(Cheesbrough, 2006). 

2.4. Parasitic Image Capture 

To capture images, a high-resolution microscope camera was employed. The Olympus DP74 

microscope camera, with a resolution of 16 megapixels and the capability to capture high-quality 
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images at different magnification levels (Olympus, 2021), was utilized. The camera was directly 

connected to the microscope, facilitating the straightforward capture and digitization of image. After 

each image, ATLAS pictorial guide for Intestinal Identification was employed to identify each image 

and categorized based on the parasitic eggs and or parasites. These images were subsequently 

employed for the training and evaluation of the AI model. 

2.5. Image Data Pre-Processing and Annotations 

The objective of image pre-processing was to enhance image quality, eliminate unwanted noise 

that could adversely affect the AI model's performance, and provide the model with labeled data for 

learning to identify various parasite types in the images. 

Following the guidelines of Kuzborskij et al. (2020), the image pre-processing was done. This 

involved drawing image bounding boxes on each parasites, focusing specifically on the area of 

interest, which in this context was the different species parasites and the parasitic eggs. Techniques 

such as histogram equalization and contrast stretching were applied to enhance image visibility and 

emphasize the distinct features of the parasites. Additionally, color normalization was employed to 

ensure consistent color representation of parasites across all images. 

For image annotations, the methodology proposed by Kuzborskij et al. (2020) was adopted. 

Specifically, the tool LabelImg was utilized to draw bounding boxes around parasites and classify 

them into different categories as presented in (Figure 1). The annotation process was carried out with 

the classified images initially identified using ATLAS pictorial guide for Intestinal Identification. This 

ensured the accuracy and consistency of annotations across all images. 

 

Figure 1. Pre-Processed Image with Bounding Boxes Annotation. 

2.6. Risk Factors Assessment 

To assess risk factors, the study employed four information-theoretical-based approaches. These 

approaches include Conditional Infomax Feature Extraction (CIFE), Conditional Mutual Information 

Maximization (CMIM), Double Input Symmetric Relevance (DISR), and Interaction Causality and 

Prediction (ICAP) respectively. 
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The risk assessment was conducted using 10 thresholds to identify the 10 most significant risks 

determined by each method. The selected factors were then utilized for machine learning 

classifications 

2.7. Building AI Model 

2.7.1. Parasitic Detection 

The AI model was implemented using You Only Look Once (YOLO) V8. YOLO, as described by 

Redmon et al. (2016), is a real-time object detection algorithm designed to identify and localize objects 

in an image. 

The architecture of YOLO is founded on a single convolutional neural network 

(CNN) trained end-to-end to predict the class probability and bounding box 

coordinates for each object in an image. The algorithm partitions an image into a 

grid of cells, with each cell responsible for predicting the object present in it (Redmon 

et al., 2016). 

In the context of identifying intestinal parasites, the CNN was trained on pre-processed and 

annotated images of parasites. The model was train to detect and classify various types of parasites 

present in the images. Once the model was trained, it became capable of detecting and classifying 

new images of parasites not included in the training dataset, as outlined by Jain et al. (2018). 

2.7.2. IPI Disease Prediction 

The model was trained by incorporating each of the ten significant factors derived from CIFE, 

CMIM, DIRS, and ICAP. The assessment of children's intestinal parasitic infection status employed 

Random Forest Classification, Support Vector Machine, Gaussian Naïve Bayes, and Decision Tree 

algorithms. This choice was made due to the utilization of advanced machine learning approaches, 

which operate under the premise that computers can discern intricate patterns and interactions 

within datasets using mathematical rules and statistical assumptions (Ranganathan et al., 2017). 

Unlike an epidemiological or statistical approach, machine learning does not depend on strong 

assumptions about data linearity or the mutual dependence of predictor variables. Instead, it relies 

on iterative computing techniques to extract insights from extensive datasets. Recent studies have 

employed diverse machine learning methods to accurately predict and identify relevant risk factors 

for disease outcomes. 

2.7.3. Indicators for Model Performance Evaluation 

In assessing the detection of malaria parasites in this study, metrics such as the precision-recall 

(P-R) curve, average precision (AP), and mean average precision (mAP) were utilized. Precision, a 

measure of accuracy in information retrieval contexts where precision and recall are often considered 

together, quantifies the ratio of relevant targets accurately identified among the returned results to 

the total number of targets returned for a specific query. The evaluation includes terms like true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN) to describe classification 

outcomes. TP signifies the correct prediction of positive instances as positive, TN denotes the correct 

prediction of negative instances as negative, FP indicates negative instances incorrectly predicted as 

positive (false positives), and FN represents positive instances incorrectly predicted as negative (false 

negatives). The precision formula is expressed as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Additionally, the recall rate, measuring the proportion of relevant targets among all relevant 

targets, is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
   

In certain cases, specific values offer a clearer representation of the test model's performance 

than a graphical representation. Average precision (AP) is commonly used for this purpose, 

calculated using the formula: 

𝐴𝑃 =  ∫ 𝑝(𝑟)𝑑(𝑟)
1

0

 

In this formula, 'p' represents precision, 'r' represents recall, and precision is a function of recall. 

Therefore, the average precision corresponds to the area under the precision-recall (P-R) curve, and 

mAP (mean average precision) is the average of the average precision values across all categories. 

3.0. Results and Discussion 

3.1. Intestinal Parasitic Detection 

A total of 467 parasites across difference eggs and species were identified.  The highest recorded 

count was observed in A. lumbrioides (Fertilized Eggs), totalling 141 parasite eggs, followed by 80 

parasites for S. mansoni and 54 parasites for Taenia spp. Additionally, 37 parasites were identified for 

A. lumbrioides (Decorticated Eggs), and 34 for A. lumbrioides (Unfertilized Eggs). On the lower end of 

the spectrum, E. histolytica exhibited 36 recorded parasites, Fasciola spp. showed 33 parasites, S. 

haematobium had 32 parasites, and Hookworm presented the least with 25 recorded parasites as 

shown in (Figure 2).  

 

Figure 2. Dataset Distributions. 

The scatter plot which depicts the size (width and height) of nine different categories of objects, 

including the eggs and different parasites. The x-axis represents the width of the objects, and the y-

axis represents the height. Each data point is represented by a circle, and the size of the circle 

corresponds to the number of objects in that category with that particular width and height. The 

largest circle in the plot is at around (0.6, 0.4), which means there are many objects in that category 

that are 0.6 units wide and 0.4 units high. It is also worth noting that the data points are clustered 
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into groups. This suggests that natural groupings of the objects based on their size being recognized 

to improve prediction of the parasites by YOLO. 

The train/box loss, train/cls loss, and train/dfl loss metrics of the different aspects of the model's 

loss during training show decrease over time, indicating that the model is learning to make better 

predictions (Figure 3). Similarly, the val/box loss, val/cls loss, and val/dfl loss metrics of the model's 

loss on a validation dataset implying that the model has good generalization to unseen data (Figure 

3). The decrease of the validation metrics over time, is not as much as the training loss 

metrics. However, this could be explain by the fact that the validation dataset is usually more 

challenging than the training dataset. 

 

Figure 3. Model Training Performance Metrics. 

The metrics/precision and metrics/recall metrics indicates a good measure of how well the model 

is able to correctly identify objects (precision) and how many true objects it misses (recall) during the 

training. Both metrics show increase over time, indicating that the model is getting better at detecting 

objects. Similarly the metrics/mAP50 and metrics/mAP50-95 metrics provides measure of the mean 

Average Precision (mAP) at different Intersection over Union (IoU) thresholds indicating better 

performance as presented in (Figure 3). 

The parasitic detection model exhibits strong performance across various parasite classes, 

achieving an F1 score of 90.0% at a predictions confidence of 56.4%. This indicates a well-balanced 

trade-off between precision and recall, showing the model's reliability in accurately detecting and 

classifying parasites as presented in (Figure 4). The Precision Confidence Curve for all the classes was 

1.00 at 0.991 indicating that every positive prediction made by the model is correct. There are no false 

positives. The Recall Confidence Curve shows the recall for all classes of 0.98 at 0.00 indicating that 

the model is capturing a high proportion of the actual positive instances no matter how small 

confidence. 
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Figure 4. Performance Evaluation Metrics (A) F1-Confidence Curve, (B) Precision-Confidence Curve, 

(C) Recall Confidence Curve and (D) Precision-Recall Curve. 

The "all classes" curve has a relatively high AUC, suggesting that the model performs well on 

average across all classes. Most of the classes, such as “A. lumbricoides (Fertilized egg)”, 

“A. lumbricoides (Unfertilized egg)”, “Fasciola spp”, “S. haematobium”, “S. mansoni” and 

“E. histolytica”, have curves that are closer to the top-left corner with score of 0.995 each, indicating 

better precision and recall compared to other classes. Confidence for detecting “Taenia spp” recorded 

a score of 0.977, followed by “A. lumbricoides (Fertilized egg)” with a score of 0.839 and lastly, the least 

score of 0.702 was recorded for detecting Hookworm as shown in (Figure 4). The model was tested 

against unseen dataset and the results are shown in (Figure 5). 
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Figure 5. Predicted Images of various Intestinal Parasites with predication accuracy scores. 

3.2. Risk Factors Assessment 

The risk factors associated with IPIs in this study shows that the “State” variable is significant 

according to both CIFE and CMIM methods, suggesting that geographical location may play a role 

in the prevalence of intestinal parasitic infections. This aligns with existing research that indicates 

variations in parasitic infections based on regional factors such as climate, sanitation infrastructure, 

and socioeconomic conditions (Abbas et al., 2023). Age is highlighted as a significant risk factor by 

CIFE, emphasizing that certain age groups may be more susceptible to intestinal parasitic infections. 

This corresponds with established literature indicating that children and the elderly are often more 

vulnerable due to weaker immune systems and different behavioral patterns (Eberemu and Magaji, 

2017). 

Family size is identified as a significant risk factor by three out of the four methods (CIFE, CMIM, 

and ICAP), implying that larger households may be at an increased risk of parasitic infections. This 

aligns with research that associates overcrowded living conditions with higher transmission rates of 

infectious diseases (Eberemu, 2018). 

Table 2. Assessment of Risk Factors Associated with Intestinal Parasitic in North-Western Nigeria. 

Risk Factors CIFE CMIM DISR ICAP 

State * * - - 

Age * - - - 

Family Size * * * * 

Father Education * * - * 

Mother Education * * * * 

Father Occupation - * - * 

Presence of Pets at Home - - - - 

Source of Water - - * - 

Type of Toilet * * * * 

Hand Washing after Toilet Use - - - - 

Using Soap for Hand washing after Toilet - - - - 

Hand Washing before Eating * * * * 

Fingernails Cleanliness - * * * 

Eating of Raw Vegetables - - - - 

Taking-off Shoes while Playing - - - - 

Playing with Soil  * * * 

Eating while Playing * - * - 

Sucking Fingernails * - * * 

Open Defecation * * * * 

*Significant -Not Significant. 

The Parental education is significant by three methods (CIFE, CMIM, and ICAP), emphasizing 

the role of education in influencing hygiene practices and health awareness. Mother's education is 

particularly highly significant, suggesting that a mother's level of education may impact the 

household's overall hygiene practices. Father's occupation is identified as a significant risk factor by 

the CMIM method, indicating that certain occupations may pose a higher risk of exposure to parasitic 

infections. This finding supports the idea that occupational environments can contribute to the 

transmission of infectious diseases (Sani et al., 2024). 

The presence of pets at home is not deemed significant by any method, suggesting that pet 

ownership may not be a major contributor to intestinal parasitic infections in the studied population. 

The source of water is identified as a significant risk factor by the ICAP method, underscoring 

the importance of clean water sources in preventing parasitic infections. This aligns with established 
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literature on waterborne diseases and the critical role of safe water supply in public health (Sani et 

al., 2024). 

The type of toilet is recognized as a significant risk factor by three methods (CIFE, CMIM, and 

ICAP), emphasizing the importance of proper sanitation facilities in preventing parasitic infections. 

This finding supports existing research on the link between inadequate sanitation and the prevalence 

of intestinal parasites (Abbas et al., 2023). 

Handwashing practices are consistently identified as significant risk factors by all four methods, 

particularly handwashing before eating and after using the toilet. Fingernail cleanliness is 

highlighted as a significant risk factor by CMIM and DIRS methods, emphasizing the importance of 

maintaining clean fingernails to reduce the risk of parasitic infections (Eberemu, 2018). 

Playing with soil is identified as a significant risk factor by two methods (CMIM and DIRS), 

highlighting the potential transmission of parasites through contact with contaminated soil. 

The findings regarding eating while playing, sucking fingernails, and open 

defecation suggest that these behaviors are significant risk factors for intestinal 

parasitic infections, as indicated by multiple asterisks across the feature selection 

methods (Eberemu and Magaji, 2017). 

3.3. Machine Prediction of Parasitic Disease 

The performance of the models were generally high, suggesting that the information-theory-

based feature selection methods are effective for this prediction task. Naïve Bayes performs 

consistently across different feature selection methods, with scores ranging from 0.87 to 0.90, 

although it performs slightly better with CMIM. 

Support Vector Machine (SVM) also shows consistent performance, with scores from 0.89 to 0.91. 

Interestingly, SVM performs best with the DISR feature selection method, suggesting that DISR might 

be particularly effective at identifying the most relevant features for SVM in this prediction task. 

Random Forest shows the highest variability in performance based on the feature selection 

method used, with scores ranging from 0.86 (ICAP) to 0.97 (CIFE). However, Random Forest achieves 

the highest performance of all models and methods with CIFE, indicating a potentially significant 

synergy between CIFE's feature selection capabilities and Random Forest's prediction model for this 

task. 

Decision Tree exhibits moderate performance compared to the other models, with scores 

between 0.84 (DISR, ICAP) and 0.92 (CIFE). This indicates that while Decision Trees can benefit from 

effective feature selection as seen with CIFE, they may be more sensitive to the choice of feature 

selection method than other models. 

Table 3. Accuracy Scores of Machine Learning Models for Parasitic Disease Prediction using 

Information-Theory-Based approaches. 

Items CIFE CMIM DISR ICAP 

Naïve Bayes 0.89 0.90 0.87 0.89 

Support Vector 

Machine 
0.89 0.90 0.91 0.89 

Random Forest 0.97 0.92 0.92 0.86 

Decision Tree 0.92 0.89  0.84  0.84 

For the Receiver Operating Characteristic (ROC) and Area under the Curve (AUC), Naïve Bayes 

+ CIFE has an AUC of 0.9562, which indicates a very good predictive ability. It is outperformed 

slightly by Random Forest + CIFE. Random Forest + CIFE has the highest AUC value of 0.9900, 

suggesting that this model with this feature selection method has an excellent predictive ability. 

Decision Tree models generally have lower AUC values compared to Naïve Bayes and Random 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 March 2024                   doi:10.20944/preprints202402.1217.v2



 11 

 

Forest. The best-performing Decision Tree model is when paired with CIFE, with an AUC of 0.9159 

as presented in Figure 6. 

 

Figure 6. Performances (Receiver Operating Characteristics and Area Under Curve) of the models on 

the Information-Theory-Based Approaches. Showing Random Forest with CIFE has the best 

performance. 

The performance of the models is generally high, suggesting that the information-theory-based 

feature selection methods are effective for this prediction task. The Random Forest algorithm, 

particularly when paired with CIFE, appears to be the most effective combination for predicting 

parasitic diseases in this study, achieving the highest. DISR and CMIM seem particularly effective for 

SVM and Naïve Bayes, respectively, while CIFE stands out for Random Forest, highlighting how 

different feature selection methods may favor different machine learning algorithms. This means that 

geographical location, age, family size, parental education, type of toilet, hand washing before eating, 

playing while eating, sucking fingernails as well as open defecation as identified by CIFE are the 

important risk factors associated with intestinal parasitic disease in Northern-Nigeria. 

4. Conclusion 

This study underscores the pressing need for innovative approaches to combat the high 

prevalence of intestinal parasitic infections in Northern Nigeria. The proposed AI-based platform, 

utilizing the YOLO V8 model, has shown promising results in accurately identifying and classifying 

various parasites in fecal samples. The model's robust performance metrics, including precision, 

recall, and F1 score, highlight its potential as an effective diagnostic tool. Also, the machine learning 

models shows that Information-Theory-Based approaches could provide an effective method of 

disease risk assessment in Northern-Nigeria. By overcoming the limitations of traditional methods, 

the AI model offers a more accessible and cost-effective solution. Implementation of this technology 

in healthcare settings could significantly improve the diagnosis and treatment of intestinal parasitic 

infections, particularly in regions facing resource constraints. 
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