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Article 
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Abstract: Atypical hemolytic uremic syndrome (aHUS) is a rare and life-threatening disease characterized by 

microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury, necessitating differentiation 

from other thrombotic microangiopathy disorders. Definitive biomarkers for disease diagnosis and activity are 

currently lacking, and identifying molecular markers is essential. We conducted single-cell sequencing on 

peripheral blood mononuclear cells from 13 aHUS patients, 3 aHUS family members, and 4 healthy controls. 

Analysis included clustering, cell type annotation, pseudotime estimation, and cell-cell communication. 

Immune cell populations differ among aHUS, aHUS families, and healthy controls. Disease activity and 

treatment influence T, NK, B, and monocyte subpopulations, with increased intermediate monocyte levels 

distinguishing aHUS from controls and aHUS groups with varying disease activity. Subclustering revealed 

differential gene expression in patients compared to controls; higher expression of mitochondria-related genes 

suggests cell metabolism may influence clinical course. Pseudotime trajectory analysis demonstrated unique 

immune cell differentiation, and cell-cell interaction analysis identified distinct signaling pathways among 

patients, family members, and controls. This single-cell sequencing study is the first to confirm immune cell 

dysregulation in aHUS pathogenesis, offering valuable insights into molecular mechanisms and potential new 

diagnostic and disease activity markers.  

Keywords: hemolytic uremic syndrome; complement; single cell sequencing  

 

1. Introduction 

Atypical hemolytic uremic syndrome (aHUS) is a rare, severe thrombotic microangiopathy 

characterized by hemolytic anemia, thrombocytopenia, and acute kidney injury. Diagnosis is difficult 

due to nonspecific markers and rapid progression, leading to multi-organ failure and increased 

mortality. [1]  

aHUS is linked to complement system dysregulation, involving alternative pathway mutations 

or regulator abnormalities. Activation can be triggered by factors like infection, pregnancy, or specific 

drugs, causing complement deposition, immune cell recruitment, and clot formation. [2] Patients may 

have multiple genetic variations, [3] and while plasma exchange is not consistently effective, anti-

complement therapy is often needed. Around 35-50% of aHUS patients lack detectable pathogenic 

genes [4,5] but respond to anticomplement therapy. In the absence of a definitive biomarker for 

disease activity assessment, clinicians rely on symptom alleviation and hemolysis markers; however, 
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this approach frequently results in merely maintaining pace with disease progression rather than 

achieving control. Consequently, identifying a molecular marker is of utmost importance. Given the 

complement's role in immune homeostasis, [6] we hypothesize immune cell dysregulation 

contributes to aHUS. Using single-cell RNA sequencing (scRNA-seq), we analyzed peripheral blood 

mononuclear cells (PBMCs) from aHUS patients, aHUS family members, and healthy controls, 

comparing immune cell dysregulation and investigating disease activity and treatment differences. 

Our study is the first to examine immune cell regulation in aHUS, providing insights into 

pathogenesis and clinical implications. 

2. Results 

2.1. The demography of studied cases  

Table 1 presents the clinical features of 13 aHUS patients, diagnosed by hemolytic anemia, 

thrombocytopenia, and acute kidney injury, excluding infectious, autoimmune, or malignant 

etiologies. Patients' ages spanned from 30-81 years with balanced gender distribution (7:6). All 

exhibited extrarenal manifestations, with 9 (69.2%) stable and 4 (30.8%) unstable cases. Treatment 

involved plasma exchange alone (5 cases, 38.5%) or combined with anti-complement therapy (8 cases, 

61.5%).  

Table 1. Characteristics of 13 aHUS patients. 

Case Age Gender TMA involvement organ Treatment Disease activity  

a1 39 M 
Kidney、 Brain、 Lung、

Heart 
PE Stable 

a3/a5 81 M Kidney、Heart 
a3 before 1st PE 

a5 after PE 

Unstable 

 

a4 66 M Kidney、Brain、Heart PE + anti C5 Stable 

a7 36 F 
Kidney、Heart、Pancreas、

Eye 
PE + anti C5 Stable 

a8 33 F 
Kidney、 Brain、 Lung、

Heart 
PE Unstable 

a9 62 F Kidney、Brain、Heart PE + anti C5 Unstable 

a10 39 M 
Kidney、 Brain、 Lung、

Heart、Eye 
PE + anti C5 Stable 

a11 30 F 
Kidney、 Brain、 Lung、

Heart、Eye、Bowel 
PE + anti C5 Stable 

a12 42 F 

Kidney、 Brain、 Lung、

Heart、Pancreas、Liver、

Eye、Skin 

PE + anti C5 Stable 

a13 53 M Kidney、Brain、Heart PE + anti C5 Stable 

a14 70 M Kidney、Brain、Heart PE Unstable 

a16 62 F Kidney、Heart PE Stable 

a17 49 F 
Kidney、 Brain、 Lung、

Heart、Pancreas、Liver、Eye 
PE+ anti C5 Stable 

1 F, female; M, male; PE, plasma exchange; anti-C5, anti-complement therapy. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2023                   doi:10.20944/preprints202305.1104.v1

https://doi.org/10.20944/preprints202305.1104.v1


 3 

 

2.2. The immunological landscape of immune cells from aHUS, aHUS family and healthy  

We conducted scRNA-seq on PBMCs from aHUS patients (N=13), family members (N=3), and 

healthy controls (N=4) to examine immune cell heterogeneity in aHUS (Figure 1a). After 

preprocessing and quality control, we obtained single-cell transcriptomes of 112,191, 24,848, and 

37,539 immune cells from aHUS patients, family members, and healthy controls, respectively. This 

enabled distinguishing among groups, disease activity, and treatments (plasma exchange only, 

combined anti-complement therapy). 

Using SCTransform normalization and robust principal component analysis (rPCA) in Seurat, 

we identified 32 PBMC cell subpopulations in aHUS patients. SingleR annotation predicted B cells, T 

cells, monocytes, macrophages, dendritic cells, NK cells, megakaryocytes, granulocytes, and 

progenitors (Figure 1b). The analysis of 5 B cell subpopulations displayed high diversity in aHUS 

patients and families, influenced by disease activity and treatment (Figure 1c, d, and e). Investigation 

of 16 T and NK cell subpopulations also revealed significant diversity (Figure 1f), impacted by disease 

activity and treatment (Figure 1g, and h). In 7 monocyte subpopulations, aHUS patients had more 

intermediate monocytes than healthy controls (Figure 1i). Additionally, intermediate monocytes 

increased in combined treatment compared to plasma exchange alone (Figure 1j), with higher 

numbers in unstable aHUS group (Figure 1k). 

 

Figure 1. The immune cell phenotype of aHUS patients, aHUS family, and healthy controls were 

investigated using scRNA-seq analysis of PBMCs. The study design is presented in (a). UMAP 

coordinates showing the distribution of immune cells in PBMCs are presented in (b). The relative 

abundance of subpopulations of B cells is shown in (c), while the impact of aHUS disease activity on 

B cell subpopulations is presented in (d), and the influence of aHUS treatment on B cell 
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subpopulations is shown in (e). Similarly, the diversity of T and nature killer (NK) cells is shown in 

(f), and the impact of aHUS disease activity on T and NK cells is presented in (g), while the influence 

of aHUS treatment on T and NK cells is shown in (h). The analysis of monocyte series, including 

monocytes (Mono.), macrophages (Ma.), and dendritic cells (DC), is presented in (i), while the impact 

of aHUS disease activity on these cells is presented in (j), and the influence of aHUS treatment on 

these cells is shown in (k). 

2.3. Cell populations in PBMCs  

2.3.1. Comparing aHUS patients, aHUS family, and healthy controls 

Utilizing Wilcoxon rank sum tests, we discovered significant increases in various immune cell 

populations, such as plasmablasts, intermediate monocytes, terminal effector CD4 T cells, Th1 cells, 

Th1/Th17 cells, Th17 cells, effector memory CD8 T cells, central memory CD8 T cells, and terminal 

effector CD8 T cells in aHUS patients compared to controls (P <0.05, Figure 2a, b, c, d, e, f, g, h, and 

i). Notably, aHUS families showed intermediate cell population levels between aHUS patients and 

healthy controls for plasmablasts, intermediate monocytes, terminal effector CD4 T cells, Th1 cells, 

effector memory CD8 T cells, and terminal effector CD8 T cells. 

Non-switch memory B cells and plasmacytoid dendritic cells were more abundant in controls 

than in aHUS patients and families (P <0.05, Figure 2j and k). Intermediate and classical monocytes 

were higher in patients compared to families (P <0.05, Figure 2l, and m), while non-classical 

monocytes were lower in patients compared to families (P <0.05, Figure 2n). 

2.3.2. Comparing stable and unstable aHUS patients, aHUS family, and healthy controls  

Intermediate monocytes were significantly enriched in the unstable aHUS group, followed by 

the stable group, aHUS family, and controls (P <0.05, Figure 2o). Conversely, classical monocytes 

were enriched in the stable group compared to the unstable group (P <0.05, Figure 2p). Plasmablasts, 

non-Vd2 gd T cells, and effector memory CD8 T cells increased in the unstable group, followed by 

the stable group, aHUS family, and controls, with significant differences between the control and 

unstable groups (P <0.05, Figure 2q, r, and s). 

Plasmacytoid dendritic cells were more abundant in the healthy group, followed by the aHUS 

family, stable group, and unstable group (P <0.05, Figure 2t), with the unstable group showing 

significantly lower levels compared to the control group. For non-switched B cells, the stable group 

had significantly lower levels compared to the control group (P <0.05, Figure 2u). 

2.3.3. Comparing different treatment in aHUS patients, aHUS family, and healthy controls 

In this subgroup analysis of aHUS treatment, intermediate monocyte enrichment showed an 

increasing trend from the plasma exchange group to the combined plasma exchange with anti-

complement therapy group, aHUS family group, and healthy control group (Figure 2v). The 

difference was only statistically significant (p<0.05) between plasma exchange and healthy control 

groups, with no significant difference between the two treatment groups. Plasmacytoid dendritic cell 

abundance exhibited an increasing trend from the healthy control group to the aHUS family group, 

followed by the combined therapy group and plasma exchange group, with the highest levels in 

controls and the lowest levels in the plasma exchange group (Figure 2w). The combined therapy 

group exhibited significant enrichment of follicular helper T cells, Th1/Th17 cells, and Th17 cells 

compared to the plasma exchange group (Figure 2x, y, and z1, P <0.05). Non-switched memory B 

cells were significantly less abundant in the combined therapy group compared to the control group 

(Figure 2z2, P <0.05).  
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Figure 2. Significant abundance of cell subpopulations between PBMCs from aHUS, aHUS family and 

healthy subjects. (a-n) Significant abundance of cell subpopulations in PBMCs from aHUS in unstable 

and stable disease activity, aHUS family and healthy subjects. (o-u) Significant abundance of cell 

subpopulations compared between PBMCs from aHUS treatment with plasma exchange alone, 

treatment combine with plasma exchange and anti-complement therapy, aHUS family and healthy 

subjects. (v-z2) *P < 0.05; **P < 0.01. 
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2.4. Cell subclusters in PBMCs  

2.4.1. Comparing aHUS patients, aHUS family, and healthy controls 

This study identified significant differences in immune cell subclusters among aHUS patients, 

aHUS family members, and healthy controls. In aHUS patients compared to healthy controls, we 

observed increased levels of classical monocytes (subclusters 6, 7) with higher RPS27 and IFI27 

expression, central memory CD8 T cells (subcluster 3) with higher CXCR4 expression in patients and 

family members, non-Vd2 gd T cells (subcluster 4) with higher SYNE2 expression, Th1 T cells 

(subcluster 3) with higher MT-CYB expression, and Th17 cells (subcluster 4) with higher MT-ATP6 

expression (Figure 3a, b, c, d, and e). 

Conversely, in healthy controls compared to aHUS patients, increased levels were found for 

central memory CD8 T cells (subcluster 1) with higher EIF3E expression, Th1 cells (subcluster 0) with 

higher RPS27 expression, non-classical monocytes (subcluster 5) with higher LYPD2 expression, 

terminal effector CD4 T cells (subcluster 3) with higher KLRD1 expression, and Th17 cells (subcluster 

3) with higher ACTG1, CD52, and LGALS1 expression (Figure 3b, d-g). Gene expression levels for 

each cell type were illustrated using dot plots, and findings are summarized in Table 2.  

 

Figure 3. (a-g) The figure presents boxplots displaying the subcluster significant abundance of various 

immune cell types (classical monocytes, central memory CD8 T cells, non-Vd2 gd T cells, Th1 cells, 

Th17 cells, non-classical monocytes, and terminal effector CD4 T cells) between PBMCs of individuals 

with aHUS, aHUS family, and healthy subjects. Dot plots of the gene expression profiles of the top 10 

marker genes in each subcluster are also provided. Statistically significant differences are indicated 

by *P < 0.05 and **P < 0.01. 
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Table 2. Significantly difference in Cell subclusters in aHUS and healthy controls. 

Significantly Increased Immune Cell Subclusters in aHUS Patients Compared to Healthy 

Controls with Correlated Gene Expression Increasing 

Cell Subclusters  P value  
Higher expression levels of 

gene  

Classical monocyte subclusters 6  P < 0.01 RPS27  

Classical monocyte subclusters 7  P < 0.05 IFI27  

Central memory CD8 T cells subcluster 3  P < 0.05 CXCR4  

Non-Vd2 gd T cells subcluster 4  P < 0.05 SYNE2  

Th1 cells subcluster 3  P < 0.05 MT-CYB 

Th17 cells subcluster 4  P < 0.05 MT-ATP6 

Significantly Increased Immune Cell Subclusters in Healthy Controls Compared to aHUS 

Patients with Correlated Gene Expression Increasing 

Cell Subclusters  P value 
Higher expression levels of 

gene  

Central memory CD8 T cells subcluster 1  P < 0.05 EIF3E 

Th1 cells subcluster 0  P < 0.05 RPS27 

Non classical monocytes subcluster 5  P< 0.01 LYPD2 

Terminal effector CD4 T cells subcluster 3  P< 0.01 KLRD1 

Th17 cells subcluster 3  P < 0.05 ACTG1, CD52 and LGALS1 

2.4.2. Comparing stable and unstable aHUS patients, aHUS family, and healthy controls  

Our study revealed significant differences in immune cell subclusters among unstable aHUS, 

stable aHUS, aHUS family members, and healthy controls. In unstable aHUS compared to stable 

aHUS, we observed increased classical monocytes (subcluster 4) with higher NEAT1, MT-ATP6, and 

MT-CYB expression, central memory CD8 T cells (subclusters 2) with elevated VIM expression, non-

Vd2 gd T cells (subcluster 1) with increased ACTG1 expression, and terminal effector CD8 T cells 

(subclusters 3, 5) with elevated RPL13 and KLRB1 expression (Figure 4a, b, c, and d). 

In contrast, subclusters that increased in stable aHUS compared to unstable aHUS include 

central memory CD8 T cells (subcluster 1) with higher RPL23 expression, non-Vd2 gd T cells 

(subcluster 0) with elevated GZMH expression, and Th1 cells (subcluster 0) with increased RPS27 

and RPS4X expression (Figure 4b, c, and e). These findings are summarized in Table 3. 
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Figure 4. (a-e) The figure displays boxplots of subcluster significant abundance for classical 

monocytes, central memory CD8 T cells, non-Vd2 gd T cells, terminal effector CD8 T cells, and Th1 

cells between PBMCs of individuals with unstable and stable disease activity of aHUS, aHUS family, 

and healthy subjects, along with dot plots of the gene expression profiles of the top 10 marker genes 

in each subcluster. Statistically significant differences are indicated by *P < 0.05 and **P < 0.01. 

Table 3. Significantly difference in Cell subclusters in aHUS disease activity. 

Significantly Increased Immune Cell Subclusters in unstable aHUS Patients Compared to 

stable aHUS Patients with Correlated Gene Expression Increasing 

Cell Subclusters  P value 
Higher expression levels of 

gene  

Classical monocyte subclusters 4  P < 0.05 
NEAT1, MT-ATP6 and MT-

CYB 

Central memory CD8 T cells subcluster 2  P < 0.05 VIM 

Non-Vd2 gd T cells subcluster 1  P < 0.05 ACTG1 

Terminal effector CD8 T cells subcluster 3  P < 0.05 RPL13 
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Terminal effector CD8 T cells subcluster 5  P < 0.01 KLRB1 

Significantly Increased Immune Cell Subclusters in stable aHUS Patients Compared to unstable 

aHUS Patients with Correlated Gene Expression Increasing 

Cell Subclusters  P value 
Higher expression levels of 

gene  

Central memory CD8 T cells subcluster 1  P < 0.05 RPL23 

Non-Vd2 gd T cell subcluster 0  P < 0.05 GZMH 

Th1 cells subcluster 0  P < 0.05 RPS27, RPS4X 

2.5. Trajectory analysis for B cell, T cell, and monocyte 

2.5.1. Comparing aHUS patients, aHUS family, and healthy control 

Cytopath analysis showed immune cell state dynamics in B cell, T cell, and monocyte trajectories 

(Figure 5a, b, c, and d). Naïve B cells, exhausted B cells, and non-switched memory B cells in the 

aHUS group peaked at pseudotimes 0, 9, and 12, differing from healthy controls and aHUS nuclear 

families. From pseudotimes 5-10, naïve B cell abundance was highest in healthy controls, followed 

by aHUS families, and lowest in the aHUS group (Figure 5e). 

CD4 T cell trajectory analysis showed distinct abundance patterns for naïve CD4 T cells, T 

regulatory cells, Th1 cells, and Th1/Th17 cells in healthy controls, aHUS families, and the aHUS group 

across pseudotimes. During 20-25, Th2, Th17, and Th1/Th17 cells were most abundant in healthy 

controls, followed by aHUS families and the aHUS group (Figure 5f). Terminal effector CD4 T cell 

abundance exhibited a similar pattern in 35-40. At pseudotime 30, Th2, Th1, T regulatory, and 

follicular T helper cells were most abundant in the aHUS group, then aHUS families and healthy 

controls. 

In pseudotimes 0-5, naïve CD8 T cell abundance was highest in healthy controls, followed by 

aHUS families and patients (Figure 5g). The trend reversed in 5-10. No significant differences in 

plasmacytoid dendritic cells, myeloid dendritic cells, non-classical monocytes, and classical 

monocytes were observed among aHUS patients, families, and healthy controls in 0-30. However, 

intermediate monocyte abundance in aHUS patients significantly increased during 7-10, not 

observed in families or healthy controls (Figure 5h). 

2.5.2. Comparing stable and unstable aHUS patients, aHUS family, and healthy controls 

The unstable aHUS group showed a significant increase in exhausted B cells during pseudotime 

7-13 compared to stable aHUS, aHUS families, and healthy controls, followed by a decline from 13-

18. In this interval, switched memory B cell abundance was lowest in the unstable group compared 

to others. Non-switched memory B cells were more abundant in the unstable group, with the largest 

difference at pseudotime 10-15 (Figure 5i). 

Th2, Th17, and Th1/Th17 cells had the lowest abundance in the unstable aHUS group at 

pseudotime 18-22 but peaked at 28-32 for Th2, Th17, Th1/Th17, Th1, T regulatory, follicular helper T, 

and naïve CD4 T cells (Figure 5j). The stable aHUS group showed a pattern more akin to the unstable 

group than to aHUS families and healthy controls. 
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Figure 5. The trajectories for B cells (a), T cells (b, c), and monocytes (d) with different state dynamics 

of the immune cells. (e) The pseudotime interval difference and abundance of B cells, while (f) and 

(g) show the pseudotime interval difference and abundance of T cells. (h) The pseudotime interval 

difference and abundance of monocytes. The pseudotime interval difference and abundance of B cells 

(i) and T cells (j), respectively, among the unstable aHUS group, stable aHUS group, aHUS family, 

and healthy subjects. 

2.6. Immune cell interactions in blood samples from aHUS, aHUS family and healthy control  

To establish a comprehensive immune cell-complement pathway interaction network, we used 

the STRING database, integrating identified pathway interactions with aHUS-associated genes, 

including CFH, CD46, CFI, C3, CFB, THBD, CFHR1-5, DGKE, VTR, C2, C3AR1, C8B, C9, C4BPA, 
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CFD, MASP1-2, MMACHC, PLG, WT1, VWF, CR1, CXCL12, C5, TLR4, CXCR4, HASP, KNK, INF2, 

EXOSC3, TSEN2, CD36, and VTN. [2,4,5,7–16] Enriched pathways in aHUS patients include ALCAM-

CD6, IL16-CD4, APP-CD40, CD86-CTLA4, CXC, and SELPLG (Figure 6a, b, c, d, e, and f).  

ALCAM-CD6 interactions had two patterns: one resembling healthy controls and another 

similar to aHUS families. Plasmacytoid dendritic cells exhibited increased outgoing signaling in 

pattern 1, while various T cells showed increased incoming signaling in pattern 2. 

APP-CD40 interactions in aHUS patients were divided into two patterns, with pattern 2 similar 

to aHUS family and healthy controls. Classical monocytes, intermediate monocytes, megakaryocytes, 

and myeloid dendritic cells demonstrated increased outgoing signaling in pattern 1. 

IL16-CD4 interactions in aHUS patients had two patterns. Outgoing signaling from myeloid 

dendritic cells and plasma blasts was highest in pattern 1, while intermediate monocytes, myeloid 

dendritic cells, non-classical monocytes, and classical monocytes exhibited increased incoming 

signaling. 

CD86-CTLA4 pathways in aHUS patients displayed distinct patterns with heightened outgoing 

signaling in non-classical monocytes. In the SELPLG pathway, cases a7 and a10 showed significantly 

increased outgoing signaling in megakaryocytes. CXC interactions in aHUS patients had three 

patterns. Patterns 1 and 2 demonstrated significantly reduced incoming signaling from non-switched 

memory B cells, central memory CD8 T cells, Vd2 gd T cells, Th1/Th17 cells, and Th1 cells compared 

to pattern 3 and the healthy control. Notably, case a10 exhibited significantly increased outgoing 

signaling from non-classical monocytes and incoming signaling from MAIT cells, unobserved in 

other participants. 
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Figure 6. Cell-cell interaction signaling of ALCAM-CD6 (a), IL16-CD4 (b), APP-CD40 (c), CD86-

CTLA4 (d), CXC (e), and SELPLG (f) among individuals with aHUS with varying disease activity, 

treatment, aHUS family members, and healthy controls. 

3. Discussion 

In our study, we analyzed cell subpopulations and found that aHUS patients had higher levels 

of plasmablasts, intermediate monocytes, terminal effector CD4 T cells, Th1 cells, effector memory 

CD8 T cells, and terminal effector CD8 T cells compared to aHUS families and healthy controls. In 

contrast, non-switch memory B cells and plasmacytoid dendritic cells were most abundant in healthy 

controls, followed by aHUS families and patients. Unstable aHUS group showed significantly higher 

intermediate monocyte abundance than stable aHUS, aHUS families, and healthy controls. We 

suggest intermediate monocytes as potential aHUS disease activity markers, as they are associated 

with cardiovascular and autoimmune diseases. [17–19] These monocytes also interact with 

endothelial cells, indicating a potential contribution to aHUS pathogenesis and correlation with 

endothelial cells. 

In this study, we identified significant gene upregulation in various immune cell subclusters in 

aHUS patients compared to healthy controls. Classical monocyte subclusters 6 and 7 showed 

upregulated RPS27 and IFI27 genes, while central memory CD8 T cells subcluster 3, non-Vd2 gd T 

cells subcluster 4, Th1 cells subcluster 3, and Th17 cells subcluster 4 exhibited upregulated CXCR4, 

SYNE2, MT-CYB, and MT-ATP6 genes, respectively. 

We also observed distinct gene expression patterns between unstable and stable aHUS. Unstable 

aHUS exhibited increased expression of NEAT1, MT-ATP6, MT-CYB, VIM, ACTG1, RPL13, and 

KLRB1 genes in various immune cell subclusters, while stable aHUS showed upregulated RPS27, 

RPS4X, RPL23, and GZMH genes. These genes may serve as potential clinical markers for aHUS 

disease activity. Elevated mitochondria-related gene expression suggests cell metabolism's role in 

aHUS clinical course, warranting further investigation. Notably, these gene expression patterns were 

not observed in other autoimmune diseases like systemic lupus erythematosus [20–23] or 

immunoglobulin G4-related disease [24], highlighting the unique immune cell profile in aHUS. 

Our pseudotime trajectory analysis revealed a unique point where immune cell differentiation 

in aHUS patients diverged from healthy individuals. This divergence was also apparent in some 

aHUS family members, falling between aHUS patients and healthy controls.  

In our cell-cell interaction analysis, we aimed to identify signaling pathway differences between 

healthy individuals and aHUS patients, ensuring observed complement and immune cell interactions 

were not comparable between groups. Results showed unique signaling patterns in aHUS patients, 

specifically in ALCAM-CD6, IL16-CD4, APP-CD40, CD86-CTLA4, CXC, and SELPLG pathways, 

indicating distinctions from healthy individuals. Moreover, MIF or BAFF pathways, common in SLE 

and IgG4-related diseases, weren't increased. Despite significant statistical differences, aHUS's rarity 

and limited case enrollment warrant further studies with expanded enrollment for follow-up 

research. 

4. Materials and Methods 

4.1. Patient recruitment  

In this single-center Taiwanese study, peripheral blood samples from 13 adult aHUS patients, 3 

unaffected family members, and 4 healthy subjects were analyzed using scRNA-seq. aHUS patients 

were classified into stable and unstable groups, receiving plasma exchange alone or combined with 

anti-complement therapy. Stable disease had stable TMA-related organ involvement and normal 

hemolysis markers.  

4.2. Single cell RNA-seq and data analysis 

scRNA-seq was performed as previously described. [25] Sequencer raw data was processed 

using CellRanger v3.1.0 or v6.0.2 with the GRCh38-3.0.0 reference file. Cells were selected using 
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Seurat v4.0.4 [26] in R software(www.R-project.org) based on criteria including detected genes, 

unique molecular identifiers (UMIs), mitochondrial gene read counts, and doublet identification 

using Scrublet v0.2.2. [27] Data type conversion was performed with Scanpy v1.8.1 [28] and 

SeuratDisk v0.0.0.9015 tools(https://mojaveazure.github.io/seurat-disk/). 

4.3. Single cell RNA-seq data integration and clustering 

Using the SCTransform workflow, scRNA-seq datasets were integrated, scaled, and normalized, 

considering regression variables like cell cycle stage, mitochondrial reads, gene number, and UMI 

count. The top 3,000 variable genes were selected for PCA using SelectIntegrationFeatures. A 

reference-based integration workflow with rPCA was applied, using four healthy control samples as 

reference. The top 50 PCs from PCA were used for UMAP, and the FindNeighbors function 

constructed a nearest neighbors graph for clustering analysis, all provided by the Seurat package. 

4.4. Cell type annotations 

Using SingleR v1.4.1, [29] a reference-based cell type annotation tool, cell types in the dataset 

were classified by comparing gene expression profiles and assigning nomenclature and cell ontology 

terms. Reference gene expression data were obtained from five functions provided by celldex v1.0.0 

R package. MonacoImmuneData labels were selected first, followed by Macrophages M1 and M2 

labels from BlueprintEncodeData. Lastly, cell types such as Macrophages (CL: 0000235), Lung Macro 

(CL: 0000583), INF-Macro (CL: 0000863), and Megakaryocyte (CL: 0000556) were identified using cell 

ontology terms. 

4.5. Clustering analysis 

Further clustering analysis was performed using the same parameters as before, with a 

resolution range of 0.1 to 0.5. The Seurat function FindAllMarkers was applied to identify expression 

markers for each cluster in each cell type. 

4.5. Pseudotime estimation 

Monocle 3 [30] was utilized to construct cell trajectory paths for B cells, CD4+ T cells, CD8+ T 

cells, and monocyte lineages. This involved dimensionality reduction using PCA and UMAP, 

followed by Leiden clustering. [31] Trajectory paths were built by connecting nearest neighbors in 

the UMAP graph, with the root node determined based on early-stage cell types, such as naïve B 

cells, naïve T cells, and monocytes. Cell type abundance along pseudotime from the trajectory path 

was also analyzed. 

4.6. Cell-cell communication analysis 

The CellChat v1.1.3 [32] R package was used to infer the probability of ligand-receptor signaling 

communication among all cell types in scRNA-seq datasets. Heatmaps of cell-cell interaction 

probability were generated for each sample using the ComplexHeatmap [33] R package and 

visualized with Morpheus (https://software.broadinstitute.org/morpheus) for each signaling 

pathway. 

4.7. Statistical analysis 

The abundance of cell type and further cluster are presented as percentages. Continuous data 

were compared using Wilcoxon rank sum tests with the R package ggpubr (v0.4.0) 

(https://rpkgs.datanovia.com/ggpubr), and confidence intervals were calculated using the R package 

asht (v0.9.7). [34] 
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5. Conclusions 

In this study, we present compelling evidence demonstrating that immune cell dysregulation 

plays a significant role in the pathogenesis and clinical manifestations of aHUS. Intermediate 

monocytes were identified as potential disease activity markers in unstable aHUS, while immune cell 

subclusters showed significant gene expression differences between unstable and stable aHUS, 

offering potential clinical markers. Pseudotime trajectory analysis revealed a divergence point for 

immune cell differentiation in aHUS patients versus healthy individuals. Furthermore, cell-cell 

interaction analysis showed distinct signaling pathways in aHUS patients. These findings could 

contribute to the development of new diagnostic and disease activity markers for aHUS and enhance 

our understanding of its molecular mechanisms. 
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