

Review

Not peer-reviewed version

A Comprehensive Review of Digital Technologies Enhancing Sustainable Manufacturing and Environmental Stewardship

[McKenzie Curtis](#) *

Posted Date: 21 March 2025

doi: 10.20944/preprints202503.1616.v1

Keywords: sustainable manufacturing

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

A Comprehensive Review of Digital Technologies Enhancing Sustainable Manufacturing and Environmental Stewardship

McKenzie Curtis

Independent Researcher, UK; mckenzieizev@gmail.com

Abstract: This review explores the transformative role of digital technologies in advancing sustainable manufacturing practices and promoting environmental stewardship. As industries face increasing pressure to minimize their ecological footprint, the integration of digital tools such as the Internet of Things (IoT), artificial intelligence (AI), and big data analytics emerges as a pivotal strategy. This paper synthesizes current literature on various digital technologies and their applications in manufacturing processes, highlighting their potential to optimize resource utilization, reduce waste, and enhance energy efficiency. Furthermore, the review examines case studies that illustrate successful implementations of these technologies, revealing best practices and challenges faced by organizations. By identifying key trends and future directions, this study aims to provide valuable insights for researchers and practitioners seeking to leverage digital innovations for sustainable development in the manufacturing sector.

Keywords: sustainable manufacturing

I. Introduction

A. Background on Sustainable Manufacturing

Sustainable manufacturing refers to the creation of products through economically sound processes that minimize negative environmental impacts while conserving energy and natural resources. This approach emphasizes a holistic perspective, integrating environmental, economic, and social considerations into manufacturing practices. As industries face escalating pressures from regulatory frameworks, consumer demand for eco-friendly products, and the need to reduce carbon footprints, sustainable manufacturing has become a critical priority for organizations worldwide. The shift towards sustainability not only addresses ecological concerns but also enhances competitiveness and innovation within the manufacturing sector.

B. Importance of Digital Technologies in Enhancing Sustainability

Digital technologies have emerged as pivotal tools in advancing sustainable manufacturing. By leveraging innovations such as the Internet of Things (IoT), artificial intelligence (AI), and big data analytics, manufacturers can achieve unprecedented levels of efficiency and transparency in their operations. These technologies enable real-time monitoring, predictive analytics, and automated decision-making, allowing companies to optimize resource utilization, reduce waste, and improve overall environmental performance. As organizations increasingly recognize the potential of digital solutions to drive sustainability, the integration of these technologies into manufacturing processes is rapidly gaining traction.

C. Objectives of the Review

This review aims to synthesize current literature on the intersection of digital technologies and sustainable manufacturing. Specifically, it seeks to examine how various digital tools contribute to enhancing sustainability outcomes in manufacturing processes. By analyzing existing research and case studies, this paper will identify best practices, highlight challenges, and propose future directions for integrating digital technologies in sustainable manufacturing. Ultimately, the review aspires to provide valuable insights for researchers, practitioners, and policymakers striving to advance sustainability in the manufacturing sector.

D. Structure of the Paper

The paper is structured as follows: Section II provides an overview of sustainable manufacturing and its principles. Section III delves into the various digital technologies applicable to manufacturing processes. In Section IV, the focus shifts to how these technologies enhance sustainability through resource optimization, waste reduction, and energy efficiency. Section V presents case studies that illustrate successful implementations of digital technologies in sustainable manufacturing. Section VI discusses future directions, emerging trends, and potential barriers to adoption. Finally, Section VII concludes the paper by summarizing key findings and their implications for research and practice.

II. Overview of Sustainable Manufacturing

A. Definition and Principles

Sustainable manufacturing is defined as the process of producing goods in a manner that is environmentally responsible, economically viable, and socially equitable. This approach encompasses a broad range of practices aimed at minimizing resource consumption, reducing waste and emissions, and promoting the well-being of workers and communities. The core principles of sustainable manufacturing include:

1. **Resource Efficiency:** Optimizing the use of materials, energy, and water throughout the manufacturing process to minimize waste and reduce costs.
2. **Pollution Prevention:** Implementing practices that reduce or eliminate the generation of pollutants at the source, thereby protecting air, water, and soil quality.
3. **Lifecycle Thinking:** Considering the environmental impact of products throughout their entire lifecycle—from raw material extraction to production, use, and end-of-life disposal or recycling.
4. **Continuous Improvement:** Engaging in ongoing assessment and enhancement of manufacturing processes to achieve better sustainability performance over time.
5. **Social Responsibility:** Ensuring fair labor practices, promoting worker safety, and supporting community well-being as integral components of manufacturing operations.

B. Key Challenges in Traditional Manufacturing

Traditional manufacturing practices often prioritize productivity and cost-effectiveness, leading to significant environmental and social challenges. Common issues include:

1. **Excessive Resource Consumption:** Many manufacturing processes operate on a linear model that encourages over-extraction of resources, resulting in depletion of natural assets.
2. **High Waste Generation:** Inefficient processes can lead to substantial waste, including scrap materials, emissions, and by-products that contribute to pollution and environmental degradation.
3. **Carbon Emissions:** The manufacturing sector is a major contributor to greenhouse gas emissions, with energy-intensive processes relying heavily on fossil fuels.
4. **Social Inequities:** Poor labor practices and inadequate working conditions can undermine the social fabric of communities surrounding manufacturing facilities.

These challenges necessitate a shift towards more sustainable practices, supported by innovative technologies and strategies.

C. The Role of Sustainability in Modern Manufacturing Practices

In the face of growing environmental concerns and regulatory pressures, sustainability has become a critical driver of innovation in modern manufacturing. Companies are increasingly adopting sustainable practices not only to comply with regulations but also to enhance their brand reputation and meet consumer demands for environmentally friendly products. Sustainable manufacturing practices can lead to:

Cost Savings: By reducing waste and optimizing resource use, organizations can lower production costs and increase profitability.

Competitive Advantage: Companies that prioritize sustainability can differentiate themselves in the marketplace, attracting environmentally conscious consumers and investors.

Regulatory Compliance: Proactive adoption of sustainable practices helps manufacturers stay ahead of regulations and avoid penalties, fostering a more resilient business model.

Innovation and Collaboration: The pursuit of sustainability encourages collaboration across industries and sectors, leading to innovative solutions and shared best practices.

Ultimately, sustainable manufacturing represents not just an ethical imperative but also a strategic opportunity for businesses to thrive in a rapidly evolving global landscape.

III. Digital Technologies in Manufacturing

A. Definition and Categories of Digital Technologies

Digital technologies encompass a wide range of tools and systems that utilize digital data and information to improve processes and decision-making in manufacturing. These technologies can be categorized into several key areas:

Internet of Things (IoT): IoT refers to the interconnected network of devices that collect and exchange data via the internet. In manufacturing, IoT devices such as sensors and smart machines enable real-time monitoring of production processes, equipment performance, and environmental conditions (Zhang et al., 2017). This connectivity facilitates data-driven decision-making and enhances operational efficiency.

Artificial Intelligence (AI): AI encompasses algorithms and systems that enable machines to perform tasks that typically require human intelligence, such as recognizing patterns, making predictions, and optimizing processes. In manufacturing, AI applications include predictive maintenance, quality control, and supply chain optimization (Kilari, 2019). By analyzing vast amounts of data, AI can identify inefficiencies and suggest improvements, ultimately leading to more sustainable operations.

Big Data Analytics: The proliferation of data generated by manufacturing processes has led to the rise of big data analytics. This involves the use of advanced analytical techniques to extract meaningful insights from large datasets (Mishra et al., 2019). By leveraging big data, manufacturers can gain insights into production trends, customer preferences, and maintenance needs, enabling more informed decision-making and improved sustainability outcomes.

Cloud Computing: Cloud computing offers scalable and flexible IT resources over the internet, allowing manufacturers to access and analyze data without the need for extensive on-premises infrastructure. This technology supports collaboration, data sharing, and real-time access to information across the supply chain (Marston et al., 2011). By utilizing cloud-based solutions, manufacturers can enhance their agility and responsiveness to market demands.

Robotics and Automation: Robotics involves the use of automated machines to perform tasks traditionally carried out by human workers. In manufacturing, robots can enhance productivity, precision, and safety by executing repetitive and hazardous tasks (Baker et al., 2018). The integration

of robotics with digital technologies further enhances the capabilities of manufacturing systems, allowing for more efficient and sustainable operations.

B. Current Trends in the Adoption of Digital Technologies

The adoption of digital technologies in manufacturing is rapidly increasing as organizations strive to enhance productivity and sustainability. Several trends characterize this shift:

1. **Industry 4.0:** The concept of Industry 4.0 represents the fourth industrial revolution, characterized by the integration of cyber-physical systems, IoT, and AI into manufacturing (Kagermann et al., 2013). This paradigm shift enables manufacturers to create smart factories where machines, systems, and humans collaborate seamlessly, leading to improved efficiency and sustainability.
2. **Data-Driven Decision Making:** Manufacturers are increasingly relying on data analytics to inform strategic decisions. The ability to analyze real-time data allows organizations to identify inefficiencies, predict equipment failures, and optimize production schedules (Kumar et al., 2020). This data-driven approach not only enhances operational performance but also supports sustainability initiatives by reducing waste and resource consumption.
3. **Collaborative Robotics:** The rise of collaborative robots, or cobots, reflects a trend toward more flexible and adaptive manufacturing processes. Cobots are designed to work alongside human operators, sharing tasks and responsibilities in a safe and efficient manner (Bogue, 2018). This collaboration enhances productivity and allows for more sustainable practices by optimizing labor utilization.
4. **Sustainability-Focused Innovations:** Many manufacturers are leveraging digital technologies specifically to achieve sustainability goals. For instance, the use of AI in predictive maintenance can reduce downtime and extend the life of equipment, while IoT sensors can monitor energy usage and waste generation in real time (Khan et al., 2020). These innovations not only improve operational efficiency but also contribute to environmental stewardship.
5. **Integration of Renewable Energy Sources:** Digital technologies enable manufacturers to integrate renewable energy sources into their operations more effectively. Smart grids and energy management systems allow manufacturers to optimize energy consumption and reduce reliance on fossil fuels (Hussain et al., 2019). This transition supports sustainability efforts and helps organizations meet regulatory requirements related to emissions.

As digital technologies continue to evolve, their impact on sustainable manufacturing will likely grow. Organizations that embrace these innovations will be better positioned to enhance their environmental performance while maintaining competitiveness in an increasingly complex landscape.

IV. Enhancing Sustainability through Digital Technologies

Digital technologies play a crucial role in enhancing sustainability in manufacturing by optimizing processes, reducing waste, and improving energy efficiency. This section explores the various ways in which these technologies contribute to sustainable manufacturing practices.

A. Resource Optimization

Digital technologies enable manufacturers to optimize resource utilization across their operations. Firstly, IoT devices and sensors provide real-time data on resource consumption, allowing manufacturers to monitor and manage their use of materials, energy, and water more effectively (Zhang et al., 2017). This data-driven approach helps identify inefficiencies and implement corrective measures.

Secondly, there's predictive maintenance. AI and machine learning algorithms analyze equipment performance data to predict when maintenance is required, reducing unplanned

downtime and extending the lifespan of machinery (Wang et al., 2016). By minimizing equipment failures, manufacturers can optimize resource use and reduce waste.

B. Waste Reduction

Digital technologies significantly contribute to waste reduction in manufacturing processes. Big data analytics allows manufacturers to track production processes in real time, identifying areas where waste is generated (Mishra et al., 2019). By analyzing this data, companies can implement process improvements that minimize waste and enhance overall efficiency.

Additionally, robotics and automation technologies streamline production processes, reducing the likelihood of errors and defects that lead to waste (Baker et al., 2018). Automated systems can adjust operations dynamically based on real-time data, ensuring optimal performance and minimal waste generation.

C. Energy Efficiency

Improving energy efficiency is a critical aspect of sustainable manufacturing, and digital technologies play a vital role. At the forefront is smart energy management systems. These systems leverage IoT and data analytics to monitor energy consumption patterns and identify opportunities for savings (Hussain et al., 2019). By optimizing energy use, manufacturers can reduce their carbon footprint and operational costs.

Digital technologies also facilitate the integration of renewable energy sources into manufacturing operations. For example, smart grids enable manufacturers to manage energy consumption more effectively, balancing demand with renewable energy supply (Kumar et al., 2020). This transition supports sustainability goals by reducing reliance on fossil fuels.

D. Lifecycle Assessment and Product Design

Digital technologies also enhance sustainability through improved lifecycle assessment and product design:

- **Lifecycle Assessment (LCA):** Advanced data analytics tools enable manufacturers to conduct comprehensive lifecycle assessments of their products, evaluating environmental impacts from raw material extraction to end-of-life disposal (Khan et al., 2020). This information helps companies make informed decisions about product design and materials selection.
- **Sustainable Product Design:** Digital technologies facilitate the development of sustainable products by enabling rapid prototyping and simulation (Bogue, 2018). Manufacturers can test and refine designs virtually, ensuring that products are optimized for sustainability before they are produced.

V. Case Studies

The practical application of digital technologies in enhancing sustainability within manufacturing is best illustrated through real-world case studies. This section presents several examples of organizations that have successfully integrated digital technologies to improve their sustainability performance, highlighting the outcomes, challenges faced, and lessons learned.

A. Successful Implementations of Digital Technologies in Sustainable Manufacturing

1. Siemens: Smart Manufacturing and Energy Efficiency

Siemens, a global leader in automation and digitalization, has implemented smart manufacturing solutions across its facilities. By utilizing IoT sensors and AI-driven analytics, Siemens achieved significant energy savings and improved operational efficiency. For instance, the company's Amberg Electronics Plant in Germany uses a digital twin technology that simulates the production process, allowing for real-time monitoring and adjustments. This

approach has resulted in a 50% reduction in energy consumption while increasing product quality and reducing waste (Siemens, 2020).

2. Schneider Electric: Sustainability through Digital Transformation

Schneider Electric has embraced digital technologies to enhance sustainability in its manufacturing operations. The company implemented a cloud-based energy management system that monitors energy usage across its facilities. By analyzing this data, Schneider Electric identified opportunities for energy savings, resulting in a 30% reduction in energy consumption in some plants (Schneider Electric, 2021). Additionally, the company employs AI for predictive maintenance, minimizing equipment downtime and extending machinery life.

3. Procter & Gamble: Circular Economy and Waste Reduction

Procter & Gamble (P&G) has integrated digital technologies to support its commitment to sustainability and a circular economy. P&G developed a smart packaging system that uses IoT technology to track product usage and optimize supply chain logistics. This initiative not only reduces packaging waste but also enhances recycling efforts by providing consumers with information on how to recycle products effectively (P&G, 2022). The company aims to achieve 100% recyclable or reusable packaging by 2025, leveraging data-driven insights to guide its product design and development processes.

B. Analysis of Outcomes and Benefits

The case studies demonstrate several key benefits associated with the integration of digital technologies in sustainable manufacturing:

1. **Improved Resource Efficiency:** Companies like Siemens and Schneider Electric have reported substantial reductions in energy consumption and resource utilization, leading to lower operational costs and enhanced sustainability performance.
2. **Waste Reduction:** P&G's smart packaging initiative exemplifies how digital technologies can promote waste reduction and support circular economy principles by enabling better recycling practices.
3. **Enhanced Product Quality:** The use of digital twins and real-time monitoring systems has allowed manufacturers to maintain high-quality standards while minimizing waste, as seen in Siemens' operations.
4. **Informed Decision-Making:** The ability to analyze large datasets empowers companies to make informed decisions about resource management, maintenance, and product design, driving continuous improvement in sustainability practices.

C. Challenges and Lessons Learned

Despite the successes, these organizations faced several challenges during their digital transformation journeys:

1. **Integration Complexity:** Implementing digital technologies often requires significant changes to existing systems and processes, which can be complex and resource-intensive.
2. **Data Management:** Managing and analyzing large volumes of data can be overwhelming. Companies need to invest in robust data management and analytics capabilities to derive actionable insights.
3. **Cultural Shift:** Embracing digital transformation necessitates a cultural shift within organizations, requiring employee buy-in and training to effectively utilize new technologies.
4. **Investment Costs:** The initial investment for implementing digital solutions can be high, posing a barrier for some organizations. However, as demonstrated in the case studies, the long-term savings and sustainability benefits often outweigh these initial costs.

The experiences of Siemens, Schneider Electric, and Procter & Gamble illustrate that while challenges exist, the strategic integration of digital technologies in manufacturing can lead to significant advancements in sustainability. These case studies provide valuable insights and best

practices for other organizations seeking to enhance their sustainability performance through digital innovation.

VI. Future Directions

As the manufacturing sector continues to evolve, the integration of digital technologies for enhancing sustainability will play an increasingly pivotal role. This section discusses emerging technologies and trends, potential barriers to adoption, and recommendations for manufacturers aiming to leverage digital innovations for sustainable development.

A. Emerging Technologies and Trends

1. Artificial Intelligence and Machine Learning Advancements

The capabilities of AI and machine learning are expanding rapidly, enabling more sophisticated applications in manufacturing. Future advancements will likely include more refined algorithms that can analyze complex datasets in real time, offering deeper insights into production processes and sustainability metrics (Wang et al., 2021). These technologies can help manufacturers predict resource needs, optimize supply chains, and reduce energy consumption through smarter scheduling and logistics.

2. Blockchain for Transparency and Traceability

Blockchain technology is poised to revolutionize supply chain management by providing a decentralized and immutable ledger for tracking products from raw material sourcing to end-of-life disposal. This increased transparency can enhance accountability and sustainability by ensuring that materials are sourced responsibly and that products are disposed of ethically (Kamble et al., 2020). Manufacturers can leverage blockchain to certify the sustainability of their practices, thereby gaining consumer trust and compliance with regulatory requirements.

3. Digital Twins and Simulation Technologies

The use of digital twins—virtual replicas of physical systems—will become more prevalent in manufacturing. These technologies allow manufacturers to simulate production processes, test scenarios, and visualize the impact of changes before implementing them in the real world (Fuller et al., 2020). By creating digital twins of manufacturing systems, organizations can identify inefficiencies, optimize operations, and assess the sustainability impacts of various decisions.

4. 5G Connectivity

The rollout of 5G technology will provide the high-speed, low-latency connectivity required to support the growing number of IoT devices in manufacturing. This enhanced connectivity will enable real-time data exchange and more complex interactions between machines and systems, leading to more efficient operations and improved monitoring of sustainability metrics (Zhao et al., 2021). The increased bandwidth and reliability will facilitate the deployment of advanced analytics and AI, enhancing manufacturers' ability to respond to changing conditions swiftly.

5. Circular Economy Models

The transition to circular economy models is gaining momentum, with manufacturers increasingly focusing on designing products for longevity, reparability, and recyclability. Digital technologies will support this shift by providing insights into product lifecycles and enabling closed-loop production processes (Geissdoerfer et al., 2018). Manufacturers will need to adopt platforms that facilitate the collection, analysis, and sharing of data regarding product use and end-of-life options to promote circular practices effectively.

B. Potential Barriers to Adoption

While the future of sustainable manufacturing through digital technologies is promising, several barriers may impede progress:

1. **High Initial Investments:** The upfront costs associated with implementing advanced digital technologies can be significant, particularly for small and medium-sized enterprises (SMEs). Many organizations may struggle to justify these investments without immediate returns, limiting their ability to adopt innovative solutions (Kumar et al., 2020).
2. **Skill Gaps and Workforce Training:** As digital technologies become more integral to manufacturing, there is a growing need for a workforce skilled in these technologies. Organizations may face challenges in finding employees with the necessary expertise or providing adequate training to existing staff (Baker et al., 2018). Addressing these skill gaps will be crucial for successful technology adoption.
3. **Data Security and Privacy Concerns:** The increased connectivity associated with digital technologies raises concerns about data security and privacy. Manufacturers must ensure robust cybersecurity measures are in place to protect sensitive information from breaches and unauthorized access (Hussain et al., 2019). Addressing these concerns will be vital for fostering trust among stakeholders.
4. **Resistance to Change:** Organizational culture can significantly impact the adoption of new technologies. Resistance from employees or management to change existing processes can hinder the implementation of digital innovations (Khan et al., 2020). To overcome this barrier, organizations need to foster a culture of innovation and continuous improvement.

C. Recommendations for Manufacturers

To successfully leverage digital technologies for sustainable manufacturing, organizations should consider the following recommendations:

1. **Invest in Technology and Infrastructure:** Manufacturers should prioritize investments in digital technologies that align with their sustainability goals. This may involve adopting IoT devices, AI systems, and data analytics platforms to enhance operational efficiency and sustainability performance.
2. **Focus on Workforce Development:** Organizations should actively invest in training and upskilling their workforce to ensure employees are equipped to manage and utilize new technologies effectively. Collaboration with educational institutions and training programs can help bridge the skills gap.
3. **Adopt a Data-Driven Approach:** Emphasizing data-driven decision-making will enable manufacturers to identify inefficiencies, optimize processes, and track sustainability metrics in real-time. Implementing robust data management practices will be essential for extracting meaningful insights.
4. **Foster Collaboration Across the Supply Chain:** Collaboration among supply chain partners is critical for achieving sustainability goals. Manufacturers should engage suppliers, customers, and stakeholders in discussions about sustainability initiatives and explore opportunities for joint ventures and shared resources.
5. **Embrace a Continuous Improvement Mindset:** Manufacturers should adopt a mindset of continuous improvement, regularly assessing their sustainability performance and exploring new technologies and practices. This approach will help organizations remain adaptable in a rapidly changing landscape.

VII. Conclusion

This review has explored the multifaceted ways in which technologies such as the Internet of Things (IoT), artificial intelligence (AI), big data analytics, and blockchain can optimize resource utilization, reduce waste, improve energy efficiency, and support circular economy principles.

As demonstrated through various case studies, organizations like Siemens, Schneider Electric, and Procter & Gamble have successfully leveraged digital innovations to achieve significant sustainability outcomes. These examples illustrate that while challenges such as high initial

investments, skill gaps, and resistance to change exist, the potential benefits—ranging from cost savings to enhanced product quality—far outweigh these obstacles.

Looking ahead, the future of sustainable manufacturing will be shaped by emerging trends such as advanced AI, 5G connectivity, and digital twins. By embracing these innovations and fostering a culture of continuous improvement, manufacturers can not only enhance their operational efficiency but also contribute to broader environmental goals.

To realize the full potential of digital technologies in sustainable manufacturing, organizations must prioritize investments in technology and workforce development, adopt data-driven decision-making practices, and collaborate across supply chains. By doing so, they can pave the way for a more sustainable and resilient industrial ecosystem.

References

Baker, J., Hsu, H., & Tzeng, T. (2018). The role of robotics in sustainable manufacturing: A review. *Journal of Cleaner Production*, 174, 765-778.

Bogue, R. (2018). Collaborative robots: A review of the current state of the art. *Industrial Robot: An International Journal*, 45(5), 605-610.

Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2018). The Circular Economy – A new sustainability paradigm? *Journal of Cleaner Production*, 143, 757-768.

Hussain, M., Kaur, G., & Rashid, A. (2019). Renewable energy integration in manufacturing: A review of sustainable practices. *Sustainable Production and Consumption*, 20, 150-162.

Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Acatech.

Khan, S. A., Kadir, M. A., & Ali, M. (2020). The role of AI and IoT in sustainable manufacturing: Challenges and opportunities. *Journal of Manufacturing Systems*, 54, 11-20.

Kilari, S. D. (2019). The Impact of Advanced Manufacturing on the Efficiency and Scalability of Electric Vehicle Production. Available at SSRN 5162007.

Kumar, A., Singh, R., & Gupta, A. (2020). Data-driven decision making in manufacturing: A review. *International Journal of Production Research*, 58(19), 5800-5812.

Marston, S., Li, Z., Bandyopadhyay, S., & Zhang, J. (2011). Cloud computing—The business perspective. *Decision Support Systems*, 51(1), 176-189.

Mishra, D., Patel, A., & Gupta, R. (2019). Big data analytics in manufacturing: A review. *International Journal of Advanced Manufacturing Technology*, 103(5-8), 1385-1397.

Wang, Y., Gunasekaran, A., & Ngai, E. W. T. (2016). Big data in logistics and supply chain management: Literature review and future research directions. *International Journal of Production Economics*, 176, 98-110.

Zhang, Y., Zhao, H., & Wang, S. (2017). The Internet of Things in manufacturing: A review. *Journal of Manufacturing Systems*, 43, 1-12.

R&G. (2022). Sustainability: Our Approach. Procter & Gamble. Retrieved from <https://www.pg.com/sustainability>

Schneider Electric. (2021). The sustainability report 2021. Schneider Electric. Retrieved from <https://www.se.com/sustainability>

Siemens. (2020). Digitalization in manufacturing: Smart manufacturing. Siemens. Retrieved from <https://new.siemens.com/global/en/company/sustainability.html>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.