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Article
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Abstract: Opioid addiction disorder (OAD) affects millions of people worldwide. While it is known that OAD

originates from many factors, including social and environmental factors, the role of genetic variants in developing

the disease has also been reported. This study aims to investigate the genetic variants that may be associated with

the risk of developing OAD upon exposure. Twenty-three subjects who had previously been given opioid-based

painkillers to undergo small surgical treatment were recruited at Prisma Health Upstate clinic and elsewhere.

Eleven of them were considered non-persistent opioid users (controls), and 12 of them were persistent opioid

users (cases) after an initial surgery and at the time of sample collection. The subjects were asked to provide

saliva samples, which were subjected to DNA sequencing at Clemson University Center for Human Genetics, and

variant calling was performed. The GWAS for genes known to be associated with OAD resulted in 13 variants

(intronic or SNV) with genome-wide significance (raw p-value < 0.01) and two missense variants, rs6265 (Val66Met

in BNDF isoform a) and rs1799971 (Asn40Asp) in OPRM1 previously reported in the literature. Furthermore,

extending the GWAS to find all the genomic variants and filtering the variants to include only variants found

in cases (persistent opioid users) but not in controls (non-persistent opioid users) resulted in 11 new variants

(p-value< 0.005). Considering that OAD is a complex disease and the effect may come from different variants in

the same genes, we performed a co-occurrence analysis of variants on the genes and identified four genes, LRFN3,

ZMIZ1, RYR3, and OR1L6 with three or more variants in the case subjects but not in control individuals.

Keywords: case-control genome-wide association study; protein-protein interaction network and genetic variants;

functional enrichment analysis

1. Introduction

Opioid addiction disorder (OAD) affects millions of people worldwide, and it has immense
and multifaceted adverse socio-economic impacts affecting individuals, families, communities and
economies [1,2]. The impacts involve drug overdose deaths [3], increased healthcare costs [4], low
productivity [5], heightened criminal justice involvement [6,7], and broader societal challenges. Human
studies consistently show that the heritability of opioid addiction is substantial [8,9]. Twin studies
estimate the heritability of opioid use disorder (OAD) to be between 40% and 60% [8,9]. Family studies
also suggest that first-degree relatives of individuals with OAD have a higher risk of developing the
disorder [10]. Identifying genetic variants and genes linked to elevated risks can be used to develop a
better understanding of the biology of OAD. It can be further utilized in screening people for their
genetic susceptibility to OAD and to avoid prescription of opioid-based painkillers to limit the risks of
developing OAD. The two popular approaches to association studies are (a) Candidate gene studies,
which are hypothesis-driven studies that analyze genes with known connections to a phenotype, and
(b) Genome-wide association studies (GWAS), which are statistical analyses of polymorphisms across
a genome for association studies. Both approaches have been used to study genetic association with
OAD in the past [11–26].

Several candidate gene studies aim to identify the genetic variants related to OAD [11–21] have
reported several genetic variants on genes. For example, the mu-opioid receptor gene (OPRM1), and
the variant rs1799971 (A118G), have been associated with differences in opioid effects and addiction
risk [14,15,20]. Studies show that individuals with the G allele may experience altered drug effects and
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a higher risk for OAD [27]. Likewise, the dopamine receptor D2 gene (DRD2) has been implicated
in the reward system’s role in addiction. Variants like the Taq1A polymorphism are associated with
an increased risk of addiction due to their impact on dopamine receptor availability and function
[11,12,18,19]. The delta-opioid receptor (DOR), encoded by the OPRD1 gene, has been investigated
in the context of opioid addiction, though it is less studied compared to the mu-opioid receptor [16].
Research indicates that DOR plays a role in modulating mood, anxiety, and stress responses, all of
which are factors in addiction vulnerability. Variants in the OPRD1 gene have been linked to altered
responses to opioids, suggesting that DOR could influence individual susceptibility to OAD [16,17].
Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for brain plasticity, learning,
and memory [28]. Alterations in BDNF expression and function have been associated with various
neuropsychiatric conditions, including addiction [29]. Studies suggest that BDNF plays a role in the
brain’s reward system and its response to opioids. Genetic variations in the BDNF gene may influence
the risk of developing OAD by affecting neural plasticity and resilience to stress [13,19].

A handful of case-control genome-wide association studies (GWAS) have also been reported using
varied cohorts consisting of populations of varied ethnicity, sex, and whether the controls were exposed
to opioids [22–26]. For example, Nielsen DA et al. performed a GWAS on subjects of European origin
with 104 heroin-dependent patients and 101 controls [22]. They compared the frequencies of 10,000
SNPs but failed to find any significant associations. However, they extended the cohort consisting of
subjects of African and European descent and a larger pool of 100,000 SNPs in methadone-maintained
325 heroin addicts and 250 controls [23]. After the multiple testing corrections, only a single intergenic
variant, rs10494334, was found significant in European subjects, while none in subjects of African
descent.

Gelernter J et al. reported a GWAS on 5432 African American and 6877 European American
subjects [24]. Analysis using the Diagnostic and Statistical Manual of Mental Disorders 4th edition
(DSM-IV) symptom counts for opioid dependence or case-control status was performed on sub-groups
and meta-analysis on the entire cohort. In the final meta-analysis, a variant rs62103177 in KCNG2
was found to be genome-wide significant. Other variants as rs60349741 in KCNC1 and rs114070671 in
APBB2 had genome-wide significance in combined analysis but only nominally in meta-analysis [24].

Defining controls merely based on the DSM definition has a caveat that the subjects not exposed
to opioids cannot develop OAD, even though they carry the risk-associated variants. In a study of
European Americans consisting of 1290 cases and 1768 opioid-exposed controls, an SNP, rs12442183,
110 kb downstream to RGMA, was found to be significantly associated with OAD [25]. Further,
microarray data analysis suggested that rs12442183 is an expression quantitative trait locus (eQTL) for
the RGMA gene. However, previously reported variants on KCNG2, KCNC1, and APBB2 didn’t have a
significant association despite the study using the overlapping sample with the previous study [25,30].

In another study comparing the daily injection opioid users (cases: n=1167) vs. the opioid abusers
who never injected opioids daily (controls: n=161), a variant rs1436175 in the gene CNIH3 showed
genome-wide significance. Five other variants, rs10799590, rs12130499, rs298733, rs1436171, and
rs1369846, in CNIH3, reached genome-wide significance in a meta-analysis of the discovery cohort and
two independent populations [26,30].

The studies mentioned above [22–26], consolidated together, indicate that clear external replication
of GWAS findings is rare. The following factors contribute to this situation: (a) OAD is a complex
psychiatric disease with relatively low heritability, and there is no single variant with a large effect size
that can be detected in small cohorts (b) previous OAD GWAS were relatively small compared with
those for legal substance use disorders and (c) in published work relevant to opioid use, there was
considerable phenotypic heterogeneity across samples [30], and (d) OAD is likely highly polygenic
and individual loci contributions are too small for detection in studies with limited sample size.

With the above issues in mind, we present a case-control study of twenty-three individuals
who had been previously given opioid-based painkillers to undergo small surgical treatment and
were recruited at Prisma Health Upstate clinic and elsewhere. Eleven of them were considered non-
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persistent opioid (controls), and twelve of them were persistent opioid users (cases) after an initial
surgery and at the time of the sample collection (details in section 4.1). The subjects were asked to
provide saliva samples, which were subjected to DNA sequencing at Clemson University Center for
Human Genetics, and variant calling was performed (details in section 4.2). The variants are analyzed
to identify their association with OAD.

2. Results

The first task of our study is to check if previously reported variants can be found in our cohort.
For this purpose, from the literature, we compiled a list of genes harboring variants reported to have
associations with OAD (Table 1). Then, we present the results of variants found on the listed genes in
our present study. Two of the variants with coding consequence (rs6265 in BDNF and rs1799971 in
OPRM1) show some indication of the association to OAD, though the p-values are not small enough
(raw p-values are < 0.3) to call these significant. Then the search is extended to variants with no direct
coding consequences on these genes, and several such variants on DRD3, KCNG2, and NRXN3 are
found with (significance p-values < 0.01) for the association with OAD (section 2.1). The next task is to
search for genetic variants across the whole genome, where the alternate alleles are exclusively found
in cases but not in any of the control subjects (section 2.2). We hypothesize that several variants on the
same gene may be working together to compromise the function of a gene, and to test it, we performed
a co-occurrence analysis of variants on the genes. In co-occurrence analysis, multiple variants on the
same genes are assumed to have additive impairments on the function of the gene, and these variants
are grouped and analyzed for their functional consequences. This analysis identified LRFN3, ZMIZ1,
RYR3, and OR1L6 with three or more variants on them and alternate alleles frequency sum greater or
equal to 14 (section 2.2.1), which potentially may have an association with OAD.

Table 1. List of genes reported in literature harboring variants associated with OAD risk.

Gene Chra Gene
BP(beg)b

Gene
BP(end)c

Variant (rsID) Sample population Opioid
exposed
controls

Reference

OPRM1 chr6 154039240 154132356 rs1799971 EuAd, AfAe Yes [14,15,20]
OPRD1 chr1 28812170 28871267 rs2236861 EuA, AfA; EuA, AfA Yes; No [15,16]
DRD2 chr11 113409605 113475398 rs1799978 Eu f , NaAmg, Asnh,

Peri
Yes [19]

BDNF chr11 27654893 27700455 rs6265 Eu f , NaAmg, Asnh,
Peri

Yes [19]

APBB2 chr4 40810027 41214542 rs114070671 EuAmk, AfAmm No [24]
KCNG2 chr18 79797938 79900100 rs62103177 EuAm, AfAm No [24,31]
KCNC1 chr11 17734781 17783057 rs60349741 EuAm, AfAm No [24]
CNIH3 chr1 224616317 224740554 rs1436175,

rs10799590,
rs12130499,
rs298733,
rs1436171, and
rs1369846

EuAun Yes [26]

RGMA chr15 93035271 93089211 rs12442183 EuAm Yes [25]
DRD3 chr3 114127580 114179052 rs324029 and

rs2654754
EuAm, AfAm No [32,33]

DRD4 chr11 637269 640706 rs1800955 Chinese males No [34,35]
NRXN3 chr14 78170373 79868291 rs8019381 p Caucasians No [36,37]

a Chromosome; b Gene’s beginning base position; c Gene’s ending base position; d European ancestry; e African
ancestry; f European; g Native South/North American; h Asian; i Persian; k European-American; m African-American; n

European-Australian; p Associated to substance use disorder

The OAD is a complex phenotype, and it may not result from a single variant or single gene, but
a network of genes-/protein-interactions is perturbed due to several variants on multiple genes. To
investigate it, we also performed the network analysis of protein-protein interaction (PPI) and network
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analysis of the genes harboring single or multiple variants suggesting an association with OAD. We
identified a large, connected component of PPIs involving more than half of the genes of interest (GOI)
(section 2.3). Finally, we perform a gene function enrichment and pathway analysis to identify the
molecular processes, biological function and interaction pathways that may be affected due to the
presence of variants in the cases but not in controls and discuss the results (section 2.4).

2.1. Variants on Genes Reported in the Literature with Association to OAD

We begin our association analysis to OAD with the set of genes reported in the literature to be
associated with OAD. Thus, we analyzed gene variants (Table 1) to test their association with OAD in
our samples. We extracted the variants within extended gene loci, for each gene, an extended region
with 5 kb upstream and 5 kb downstream, including the gene boundary, is defined. The effects of
variants are predicted using the Variant Effect Predictor (VEP) version 111 [38] about human genome
assembly GRCh38.

A total of 6903 variants, including 67 novel, variants effects were predicted, consisting of one
stop_gained, one inframe_insertion, one inframe_deletion, 58 missence_variant and 56 synonymous_variant
with coding consequences. Further association testing is performed using PLINK v1.90b7.2 [39] of
these variants. However, none of the variants with coding consequences could reach the genome-
wide association significance (raw p-value < 0.01). In contrast, 13 variants (intronic or SNV) showed
genome-wide significance (Table 2). The validation of intronic variants’ association with OAD requires
further study. Considering this, we focused on only variants with the most severe consequence
(coding consequences), but none showed significance for genome-wide association to OAD. However,
two variants, rs6265 (C>T at 11:27658369) on BDNF, a missense coding variant (Val66Met in BNDF
isoform a, previously reported [19]), and rs1799971, a missense variant on OPRM1 (118A>G) changing
Asn40Asp in mu-opioid receptor (also previously reported [14,15,20]), have a raw p-value < 0.30,
after relaxing the p-value to call association. Here, we understand that a raw p-value of 0.30 is not
significant to ascertain an association. However, this very weak indication aligns with the previously
reported studies. The large p-value of these variants’ association with OAD can be attributed to the
small cohort used here.

Table 2. The non-coding consequence variants reaching significance (raw p-value < 0.01) with associa-
tion to OAD in the extended genes loci that are listed in Table 1.

Chra Variantb or
rsID

BPc Gene F_Ad F_Ue Conseqn. f χ2 p-
value

ORg

3 TGAAA>T 114142739 DRD3 0.0909 0.5455 ivh 10.48 0.0012 0.0833
18 rs76838079 79873271 KCNG2 0.3182 0 iv 8.324 0.0039 NA
3 rs73232565 114124222 - 0 0.2727 - 7.527 0.0061 0
11 rs3051820 17785864 - 0.2727 0.6818 - 7.379 0.0066 0.175
4 rs1011069 41217734 - 0.2727 0 - 6.947 0.0084 NA
14 rs143010574 79227804 NRXN3 0.2727 0 gutvi, iv 6.947 0.0084 NA
4 rs7695309 41216892 - 0.3636 0.0455 - 6.844 0.0089 12
14 rs7145683 79241818 NRXN3 0.3636 0.0455 gutv, iv 6.844 0.0089 12
14 G>GA 79242068 NRXN3 0.3636 0.0455 gutv, iv 6.844 0.0089 12
14 rs12889183 79360638 NRXN3 0.5 0.1364 iv 6.705 0.0096 6.333
14 rs11625994 79364803 NRXN3 0.5 0.1364 iv 6.705 0.0096 6.333
14 rs8008332 79365491 NRXN3 0.5 0.1364 iv 6.705 0.0096 6.333
14 rs2167150 79367835 NRXN3 0.5 0.1364 iv 6.705 0.0096 6.333

a Chromosome; b rsID if found is listed otherwise the variant is listed in this column in form X>Y, where X is reference allele
while Y represents alternate allele; c Base position; d minor allele frequency in cases; e minor allele frequency in controls; f

variants’ consequence; g odds ratio; h intronic variant; i genic upstream transcript variant

The variants with no direct coding consequence found significant in extended gene loci of genes
listed in Table 1 are shown in Table 2. These variants may have an impact on the genes by altering
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the expression of the genes. We found some variants, though not the listed variants, in genes DRD3
[32,33], KCNG2 [24,31], and NRXN3 have been reported in the literature to have an association with
OAD [36,37].

2.2. Genes with Alternate Allele Exclusively in Cases but Not in Controls

We extended our search to include all the genomic variants found in the samples. The variant
effect is predicted using VEP version 111 [38] for 20,910 variants found in the sample. Afterward,
all the variants are ranked based on the severity of the predicted consequence and filtered to satisfy
two requirements: (a) only variants for which all controls have homozygous reference alleles, and (b)
only variants in the OAD group have the alternative alleles. A variant’s association with phenotype
OAD is considered significant when the raw p-value is less than 0.05. It resulted in 158 variants,
with significance within 126 genes. In the case of these variants with significance, the alternate allele
frequency ranged from 11 to 4 in case samples and zero in controls. A list of such variants with
association to OAD with only high-significance (raw p-value < 0.005) is provided in Table 3.

Table 3. The variants across the genome are ranked by consequence and filtered as per significance
associated with OAD.

Chra Variantb or
rsID

BPc Gene C_Ad Conseqn.e χ2 p-value

12 rs773026868 50352078 FAM186A 11 fsv f 13.25 0.000272
11 rs60494098 9091455 SCUBE2 10 mvg 12.94 0.000321
1 rs10907376 223394461 CCDC185 9 mv 11.31 0.000769
13 C>A 29324631 MTUS2 8 mv 9.778 0.001766
7 rs3750050 77627396 PTPN12 7 mv 8.324 0.003912
7 rs1046515 140694787 ADCK2 7 mv 8.324 0.003912
16 rs308925 77735937 NUDT7 7 mv 8.324 0.003912
2 A>G 207613128 METTL21A 7 mv 8.324 0.003912
6 rs1048886 70579486 SDHAF4 7 mv 8.324 0.003912
16 rs3869427 69954416 CLEC18A 7 mv 8.324 0.003912
1 rs147489167 248574363 OR2T34 7 mv 8.324 0.003912

a Chromosome; b rsID if found is listed otherwise the variant is listed in this column in form X>Y, where X is reference allele
while Y represents alternate allele; c Base position; d alternate allele count in cases; e varinats’ consequence; f frameshift variant;
g missense variant

So far none of the genes listed in Table 3 has been directly linked to addiction. However, in a study
of attention-deficit hyperactive patients, gene MTUS2 showed the highest variation frequency [40].
Studies have suggested the association of MTUS2 with psychological disorders [40]. The suggested
association of MTUS2 to the psychological disorder may indirectly relate to addiction-like traits, but
further exploration in this regard is needed to test this possibility.

2.2.1. Co-Occurrence of Variants on Genes and Association to OAD

So far, our focus has been on finding common genetic variants that may be associated with OAD.
However, the OAD phenotype may result from the altered function of one or more proteins, and alter-
ation could be caused by different variants within the same proteins, not necessarily identical variants
in the affected individuals. It is also possible that there are multiple mechanisms and disruptions of
pathways that can result in OAD. This led us to focus on proteins or genes and their combinations,
instead of individual variants. Considering it, we analyzed the co-occurrence of multiple variants
within the same gene/protein. The alternate alleles count of all gene variants exclusively in cases
is aggregated by summing it, among the total 126 genes harboring variants associated with OAD,
considering the significance (raw p-value < 0.05). Eighteen genes have multiple variants exclusively
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in cases, including 12 genes with two variants, three genes with three variants and three genes with
greater than three variants.

The following genes harbor the most severe consequence (transcript ablation, splice acceptor
variant, splice donor variant, stop gained/lost, frameshift variant, start lost, transcript amplification,
feature elongation, or feature truncation) variants with alternate allele frequencies sum greater or
equal to 10, ZMIZ1, LRFN3, OR1L6, RYR3, PWWP2B, ZNF92, CYP4F12, FAM186A, SCUBE2, NUTM2D.
The number of variants, count of alternate alleles in cases and list of predicted consequences for the
variants are provided in Table 4. Considering the significant raw p-values of the genes listed in Table 3
or Table 4 consisting a total 18 genes is compiled, we will call these as genes of interest (GOI) hereon
for further analysis.

Table 4. Details of co-occurring variants on genes, where the sum of alternate allele count in cases are
greater or equal to 10 but zero in controls.

Chra Gene #variantsb list of C_Ac list of Consequencesd

10 ZMIZ1 7 5, 5, 5, 4, 4, 4, 4 fsve, mv f , fsv, fsv, fsv, fsv, fsv
19 LRFN3 6 5, 5, 5,5, 5, 5 idg, pavh, iik, fsv, fsv, fsv
9 OR1L6 4 4, 4, 4, 4 mv, mv, mv, mv
15 RYR3 3 5, 5, 4 fsv, fsv, sgm & fsv
10 PWWP2B 3 4, 4, 4 sg, mv, fsv
7 ZNF92 2 6, 6 mv, mv
19 CYP4F12 3 4, 4, 4 mv, mv, sdvn & ntvp

10 NUTM2D 2 5, 5 mv, mv
a Chromosome; b number of variants; c alternate allele counts in cases for each variant; d variants’ consequence; e frameshift
variant; f missense variant; g inframe deletion; h protein altering variant; k inframe insertion; m stop gained; n splice donor
variant; p nmd transcript variant

So far, among the genes/proteins listed in Table 4, none has been directly associated with addiction.
However, some of these have been known to be associated with functions relevant to OAD. For
example, LRFN3 (Leucine Rich Repeat And Fibronectin Type III Domain Containing 3), also known
as SALM4 (Synaptic Adhesion-Like Molecule 4), is part of the LRFN family, which is involved in
synaptic adhesion and regulation of excitatory synapses [41]. SALMs, including LRFN3/SALM4, play
important roles in synaptic development and plasticity [42], which are critical processes in learning,
memory, and behavior—all relevant to addiction. Similarly, RYR3 (Ryanodine Receptor 3) is part of
the ryanodine receptor family, which functions as intracellular calcium channel that releases calcium
from the endoplasmic reticulum into the cytoplasm [43,44]. Calcium signaling is critical for various
cellular processes, including neuronal activity, synaptic plasticity, and neurotransmitter release [45].
ZMIZ1 (Zinc Finger MIZ-Type Containing 1) is a transcriptional coactivator that interacts with the
androgen receptor and other transcription factors [46], and the androgen receptor has been implicated
in reward-related behaviors, including aggression and stress responses, which can influence addiction
[47]. In summary, the genes listed in Table 4 can potentially influence addictive behaviors in direct
or indirect ways and in individual- or cohort-specific manners. This led us to further analyze the
interaction networks of these genes and investigate their collective behaviors and plausible linkage to
opioid addiction.

2.3. PPI Network Analysis of Genes of Interest

To gain insight into the functions involving the proteins in GOI, we built a protein-protein
interaction (PPI) network based on the STRING database [48] as detailed in section 4.4. We observe
a total of seven connected components. Connected components 2 through 7 are small and shown in
Figure 1; all other genes form a large connected component, marked as component-1. Component-1
consists of six genes listed in Table 3 and five genes harboring multiple variants listed in Table 4. This
indicates that genes in component-1 are functionally interdependent, and any perturbation to this
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network of PPIs can potentially be associated with altered function and, thereby, some phenotype. To
further investigate this hypothesis of perturbation of the PPI network and association with OAD, we
performed a functional enrichment analysis of the genes in the network.

Figure 1. Protein-Protein interaction (PPI) network of high confidence (normalized interaction score >
0.8, details in section 4.4) PPIs subset from STRING database. The genes harboring a single variant
with a very high alternate allele count exclusively (Table 3) in cases are shown with orange oval nodes,
while genes harboring multiple variants with a high alternate allele count exclusively in cases (Table 4)
are shown in green oval nodes/genes. All other gray nodes are either immediate neighbors (directly
interacted by PPIs) of green or orange nodes or nodes having at least two neighbors in the list of
selected nodes/genes. Finally, the subnetwork is created using selected nodes and all the edges.

2.4. Gene Ontology and Functional Enrichment Analysis

The functional enrichment analysis was performed using the g:Profiler’s webservice[49], and its
results are summarized in Figure 3 and Table 5.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 October 2024 doi:10.20944/preprints202410.0378.v1

https://doi.org/10.20944/preprints202410.0378.v1


8 of 16

Table 5. Description of annotated terms shown in Figure 2. Terms relevant to addiction are shown with underlined-text.

ID Source Term ID Term name Padj(query)

1 KEGG KEGG:04020 Calcium signaling pathway 1.780 × 10−15

2 KEGG KEGG:04713 Circadian entrainment 8.371 × 10−14

3 GO:BP GO:0014808 release of sequestered calcium ion into cytosol by sarcoplasmic reticulum 1.334 × 10−12

4 KEGG KEGG:04728 Dopaminergic synapse 8.377 × 10−12

5 GO:BP GO:0051208 sequestering of calcium ion 2.017 × 10−11

6 KEGG KEGG:04340 Hedgehog signaling pathway 4.704 × 10−11

7 GO:CC GO:0033017 sarcoplasmic reticulum membrane 3.405 × 10−10

8 WP WP:WP3929 Chemokine signaling pathway 9.043 × 10−10

9 KEGG KEGG:04921 Oxytocin signaling pathway 1.489 × 10−9

10 KEGG KEGG:04915 Estrogen signaling pathway 4.481 × 10−9

11 REAC REAC:R-HSA-5578775 Ion homeostasis 5.472 × 10−9

12 GO:BP GO:0010646 regulation of cell communication 9.459 × 10−9

13 KEGG KEGG:05032 Morphine addiction 1.816 × 10−7

14 KEGG KEGG:05034 Alcoholism 2.403 × 10−7

15 GO:MF GO:0005219 ryanodine-sensitive calcium-release channel activity 4.909 × 10−7

16 REAC REAC:R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 1.062 × 10−6

17 GO:MF GO:0140096 catalytic activity, acting on a protein 9.842 × 10−7

18 GO:BP GO:0006942 regulation of striated muscle contraction 2.257 × 10−6

19 GO:BP GO:0036211 protein modification process 9.419 × 10−6

20 GO:BP GO:1901564 organonitrogen compound metabolic process 9.464 × 10−6

21 GO:CC GO:0098797 plasma membrane protein complex 8.009 × 10−6

22 KEGG KEGG:05031 Amphetamine addiction 6.351 × 10−6

23 REAC REAC:R-HSA-180292 GAB1 signalosome 5.328 × 10−5

24 REAC REAC:R-HSA-111885 Opioid Signalling 2.349 × 10−4

25 GO:MF GO:0005509 calcium ion binding 2.788 × 10−4

26 GO:MF GO:0005102 signaling receptor binding 2.920 × 10−4

27 GO:BP GO:0009725 response to hormone 5.256 × 10−4

28 WP WP:WP3680 Physico chemical features and toxicity associated pathways 2.095 × 10−4
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Figure 2. Summary of Gene Ontology and functional enrichment of Genes in PPIs network of GOIs
performed using g:Profile webserver. Highly significant (considering the adjusted p-value), but non-
redundant terms in the enrichment are annotated. The description of annotation labels to terms is
provided in Table 5.

Figure 3. The distribution of percent of total PPIs as a function of scores: (a) combined_score and (b)
Normalized score(norm_score) listed in STRING database for humans. The kernel density of the percent
of PPIs is shown in a logarithmic scale to highlight distributions in low percent regions (in inset) within
respective plots. The thresholds in this work are marked with dashed-vertical lines in both cases.

From the enrichment analysis, the calcium transport, regulation and binding, enzyme binding,
transmembrane transporter binding, and signaling receptor binding emerge as the high-confidence
molecular function from gene ontology. While, signaling and amino-acid modification as the top
biological function. The GO:cellular-component is the membrane and channels, which host most of
the signaling and transmembrane proteins to carry the signaling in cells.

The KEGG pathway analysis shows enrichment in Calcium signaling pathways, circadian entrain-
ment, dopaminergic synapses, morphine addiction and alcoholism (Figure 2 and Table 5). This further
supports that the variants of GOIs are impairing or abolishing the function of the proteins, which in
turn compromises the protein’s normal function in the PPI network since these proteins are involved
in crucial reward pathways and addiction. Therefore, the association of these genetic variants to OAD
risk is highly plausible, and further study is needed to confirm this.

3. Discussion

Opioid addiction disorder (OAD) is a complex phenotype with significant heritability estimated
to be between 40% and 60%. The heritability raises the genetic susceptibility of individuals carrying
the associated variants in their genome. In the past, several candidate gene studies and genome-wide
association studies have implicated the association of variants on genes to OAD. Though, they have
rarely been replicated in other studies. It has been pointed out that this situation can be due to the
following limitations of the studies: (a) the cohort sizes used in these studies are relatively small
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compared to those used for substance use addiction, (b) the DSM definitions have been used to label
controls, which may not be appropriate and thus diluting the association results, and (c) the ethnicity
of populations of cohorts varied in different studies, which brings another variability in the study.
Another limitation of some of the previous studies is that the controls were not exposed to substances
of interest. Such controls could potentially carry genetic variants, making them predisposed to OAD,
but they have never been exposed to drugs.

To address the abovementioned deficiency, We performed the genome-wide association study of
a cohort of 23 samples, including 12 cases and 11 controls, where all controls were given opioid-based
pain killers. In our study, we could find a weak association for two variants, one on BDNF and the
other on OPRM1, when our focus was on variants only with coding consequences. Upon extending
the search to variants with no direct coding consequence, we identified variants of DRD3, KCNG2, and
NRXN3 genes with significant association with OAD. Interestingly, these genes have been predicted
to have an association with OAD. This indicates that these variants may be altering the expression
of the protein and thereby indirectly affecting the phenotype OAD. Next, we expanded our search
space for the variants to the entire genome. However, genome-wide search yields many variants.
Thus, only variants with coding consequences are prioritized in association analysis. We chose only
variants with alternate alleles in case subjects and predicted them to have an association with OAD
with significance. Several variants of the same gene protein may have a cumulative effect on the gene’s
function, thus altering its biological function. We used co-occurrence analysis to test this hypothesis.
Our co-occurrence analysis identified LRFN3, RYR3, ZMIZ1, and OR1L6 as genes harboring multiple
variants exclusively in cases. From the genes with predicted association to OAD with significance
(genes of interest/GOI), a network of protein-protein interaction is extracted based on PPIs listed
in the STRING database for humans. The network is further expanded by including genes directly
interacting with two or more genes in the GOI list. Then, the pathway and functional enrichment
of the genes in the network are done to find the pathways with significant enrichment for the genes
and their association with the OAD phenotype. We observe considerable enrichment for terms like
calcium signaling pathway, circadian entrainment, dopaminergic synapse, oxytocin signaling pathway,
estrogen signaling pathway, morphine addiction, alcoholism, and opioid signaling, which are closely
related to OAD or addiction in general.

4. Materials and Methods

4.1. Sample Collection

Local Institutional Review Board approval was obtained before subjects recruitment and enroll-
ment, and written informed consent was obtained from all eligible participants. Eligible subjects were
those over 18 who had undergone treatment for a small surgery in the past and provided informed
consent. Subjects were excluded if they had an active oral lesion, had a history of opioid abuse before
treatment of their injury, or had a history of opioid use within one year of treatment for their injury.
Subjects who provided informed consent were subsequently asked to provide a saliva sample for DNA
analysis. Twenty subjects were recruited and enrolled between November 2022 and June 2023. Twelve
subjects were persistent opioid users at the time of enrollment and saliva sample collection, whereas
the non-persistent opioid users were only eight. To make the set balanced, we collected additional
samples from researchers from the corresponding author (E.A.) department who, in the past, have
been sedated for small surgery but are not persistent users. Thus, the number of cases of non-persistent
users is eleven, very similar to the number of cases of persistent users.

Age, gender, and race demographics were recorded at the enrollment visit, in addition to details
of their orthopedic injuries. The average age of all enrolled participants was 66 years, with a minimum
age of 36 and a maximum age of 84. There were 8 females and 3 males in the non-persistent opioid
user group versus 7 females and 5 males in the persistent opioid user group.
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4.2. DNA Sequencing and Genotyping

The samples’ DNA was extracted using a modified Zymo Quick-DNA Microprep Plus Kit protocol.
Libraries were constructed using 500 ng of extracted DNA with the Tecan Revelo DNA-Seq Enz kit on
the Tecan MagicPrep NGS system. The libraries were quantified for concentration with the Invitrogen
1x dsDNA HS assay kit on the Invitrogen Qubit 4 Fluorometer. Library size was quantified using
Agilent High Sensitivity D1000 assay on the 4150 TapeStation system. Libraries were normalized to 3
nm, pooled, and sequenced on an Illumina Novaseq 6000 sequencer using an S4 flow cell and 2x150
sequencing chemistry at Clemson University Center for Human Genetics.

Raw reads were filtered for low-quality and short reads, then aligned to human reference genome
version GRCh38 to produce alignment files using the GPU-accelerated fq2bam module in the NVIDIA
Clara Parabricks suite. Base quality recalibration was performed using GPU-accelerated Genome
Analysis Tool Kit [50] BQSR module from Parabricks suite and known variant information from
Mills and 1000 Genomes Gold Standard Indel dataset and dbSNP v138 dataset. Variant calling was
performed on the recalibrated alignment files using GPU-accelerated GATK’s haplotypecaller module
from the Parabricks suite and GRCh38 reference genome. Individual sample GVCFs were combined,
indexed and joint-called using the Short Variant Discovery workflow from GATK’s Best Practices.[51]
Joint-called variants were hard-filtered using gold standard default values recommended by the Broad
Institute [52]. After that, the effects for variants are predicted using the Variant Effect Predictor (VEP)
version 111 [38] compared to standard human genome assembly GRCh38.

4.3. Variants Filtering, Effects Prediction and Association Analysis

A subset of all variants found after variant calling is extracted into a vcf file using the bcftools
module in SAMtools [53] for analyzing the association of a subset of genes listed in Table 1. The subset
.vcf file is indexed and compressed using bcftools [53]. The variant effects are predicted using Ensembl
Variant Effect (VEP) version 111 [38] with reference to human genome assembly GRCh38. We used
PLINK v1.90b7.2 [39] to test the significance of the genotype-phenotype association.

4.4. PPIs Network Construction and Analysis

The Protein-Protein Interactions data for humans is downloaded from STRING database [48].
Considering the large number of human PPIs listed in STRING and varying degrees of confidence in
PPIs, we started filtering in only high-confidence PPIs based on absolute combined_score, including
only interactions with combined_score greater than a threshold.

However, we noticed that filtering based on absolute combined_score excluded all the interactions
of proteins that had no partner with combined_score greater than the chosen threshold. However, such
filtering excluded some of the GOIs altogether. To avoid such stringent absolute combined_score based
filtering, we used normalization of combined_score, carried as follows. The combined_score is normalized
by the max combined_score for the gene among all its interacting genes. Such normalization is carried out
to ensure that high-confidence PPIs can be included in a subnetwork featuring only high-confidence
interactions Figure 3. The percentage of PPIs keeps decreasing as a function of combined_score and
reaches a minimum of around 800; after that, it starts increasing, implying there are high-confidence
PPIs pairs with scores greater than 800; based on this, we choose combined_score=800 as the threshold
for unnormalized scores (Figure 3). We observe a similar trend for normalized scores as well, and
around norm_score=0.8, again the percent PPIs start increasing; thus, we choose 0.8 as a threshold for
the norm_score to find the filtered subset of the STRING database consisting of 19,622 nodes and 204,572
edges (after removing self-loop and duplicate edges) for further analysis using Cytoscape-v3.10.2 [54].

We start with creating a subnetwork of PPIs for GOIs. Initially, the genes listed in Table 3 or Table
4 and any immediate neighbor to these are also selected. Further, any node within a distance of one
and has at least two neighbors in the selected nodes set is also considered part of the subnetwork to
extend the network of PPIs of GOIs. Finally, the subnetwork is created using selected nodes and all the
edges. The created subnetwork consisted of 146 nodes and 390 edges, as shown in Figure 1.
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4.5. Gene Ontology and Functional Enrichment

The g:Profiler [49] carries the enrichment of the genes/proteins list provided as input against the
data sources: Gene ontology (molecular function, biological process and cellular component), biological
pathways (KEGG, Reactome and WikiPathways), regulatory motifs in DNA (TRANSFAC, miRTarBase),
protein databases (Human Protein Atlas and CORUM), and human phenotype ontology (HP). We used
the list of genes present in the connected component-1 of the network for the enrichment analysis. The
gene ids are: Gn148400, Gn132535, Gn139549, Gn198838, Gn157322, Gn145687, Gn089250, Gn105426,
Gn103254, Gn140368, Gn172824, Gn109971, Gn166444, Gn110031, Gn129007, Gn133835, Gn137486,
Gn203740, Gn188612, Gn141480, Gn141738, Gn160691, Gn237172, Gn175470, Gn050820, Gn139197,
Gn153485, Gn167378, Gn152229, Gn221886, Gn206069, Gn088832, Gn120899, Gn213965, Gn204256,
Gn132589, Gn197037, Gn177885, Gn116030, Gn221874, Gn176533, Gn067365, Gn214562, Gn119782,
Gn178372, Gn189350, Gn198363, Gn078369, Gn169717, Gn165059, Gn137312, Gn169083, Gn244462,
Gn197122, Gn162521, Gn184292, Gn142875, Gn203791, Gn143318, Gn143801, Gn198626, Gn142949,
Gn196218, Gn139160, Gn166321, Gn180900, Gn168214, Gn188322, Gn188100, Gn169398, Gn166407,
Gn108175, Gn141404, Gn186439, Gn146757, Gn185522, Gn183310, Gn183715, Gn080815, Gn184716,
Gn100077, Gn178363, Gn173020, Gn175356, Gn072062, Gn171806, Gn171813, Gn169925, Gn169885,
Gn170606, Gn164690, Gn163501, Gn162928, Gn161533, Gn160014, Gn156521, Gn150787, Gn146700,
Gn146648, Gn144401, Gn141736, Gn140876, Gn089159, Gn138798, Gn141867, Gn118729, Gn137727,
Gn136943, Gn136159, Gn135617, Gn130950, Gn130726, Gn127947, Gn127588, Gn108788, Gn126243,
Gn112874, Gn004468, Gn103653, where prefix Gn is used in listing here in place of ENSG00000 for
brevity. The enrichment query parameters are as follows: version e111_eg58_p18_f463989d; date
9/30/2024, 8:18:46 PM; organism hsapiens; query length 122; all results false; ordered false; no iea false;
sources GO:MF, GO:CC, GO:BP, KEGG, REAC, TF, MIRNA, HPA, CORUM, HP, WP; multiquery false;
numeric ns ENTREZGENE_ACC; domain scope annotated; measure underrepresentation false; significance
threshold method g_SCS; user threshold 0.05; no evidences false; highlight results true. The results are
summarized and discussed in the result section.
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