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Abstract: In CNS drug discovery, estimation of brain exposure of lead compounds is critical for their 
optimization. Compounds need to cross the blood-brain barrier (BBB) to reach the pharmacological targets in 
the CNS. The BBB is a complex system involving passive and active mechanisms of transport and efflux 
transporters such as P-glycoproteins (P-gp) and breast cancer resistance protein (BCRP), which play an 
essential role in CNS penetration of small molecules. Several in vivo, in vitro and in silico methods are available 
to estimate human brain penetration. Preclinical species are used as in vivo models to understand the unbound 
brain exposure by deriving the Kp,uu parameter, the brain/plasma ratio of exposure corrected with the plasma 
and brain free fraction. MDCK-mdr1 (Madin Darby canine kidney cells transfected with the MDR1 gene 
encoding for the human P-gp) assay is the most commonly used in vitro assay to estimate compound 
permeability and human efflux. The in silico methods to predict brain exposure, such as CNS MPO, CNS BBB 
scores and various Machine Learning models, help save costs and speed up compound discovery and 
optimization at all stages. These methods enable the screening of virtual compounds and building of a CNS 
penetrable compounds library as well as optimization of lead molecules for CNS penetration. Therefore, it is 
crucial to understand these methods' reliability and ability to predict CNS penetration. We review the in silico, 
in vitro and in vivo data and their correlation with each other and assess published in silico approaches to predict 
the BBB penetrability of compounds. 

Keywords: The Blood-Brain Barrier (BBB); CNS drug discovery; passive diffusion; active transport; 
efflux transporters; influx transporters; P-glycoproteins (P-gp); breast cancer resistance protein 
(BCRP); in silico models  

 

1. Introduction 

In central nervous system (CNS) drug discovery, estimating brain exposure of lead compounds 
is critical for their optimization. Compounds need to cross the blood-brain barrier (BBB) to reach the 
pharmacological targets in the CNS. The BBB is a complex physical barrier that surrounds most of 
the blood vessels in the brain and prevents the permeation of harmful molecules from circulating 
blood into the brain (see Figure 1 (a)). The tight junctions of the BBB severely restrict paracellular 
transport, whereas specialized transporters, pumps, and receptors regulate the transcellular 
transport of metabolic nutrients and other essential molecules. Small lipophilic molecules can 
passively diffuse across the lipid bilayer but are often returned to the blood by efflux pumps [1,2]. 
Due to the impermeability of the CNS, it is a challenge for most molecules to gain access to the brain, 
although several molecules do transfer from the blood to the brain. Several mechanisms are 
potentially involved in this process [3]. While passive diffusion is a major mechanism of penetration 
of drugs into CNS, efflux by several transporters such as P-glycoprotein (P-gp), breast cancer 
resistance protein (BCRP) and members of the multidrug resistance protein (MRP) family at the BBB 
limit concentration of drugs in the CNS [4-6]. Influx transporters such as OCT1 and OCT2 surrogate 
penetration of bulky and charged molecules across BBB (see Figure 1 (b)). P-gp and BCRP are 
relatively well characterized among these efflux transporters, with considerable overlap among their 
substrates. P-gp (also known as MDR1 (multidrug resistance protein 1) and ABCB1 (ATP-binding 
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cassette sub-family B member 1)) is widely expressed at BBB. In the last 20 years, with the availability 
of the P-glycoprotein (P-gp) knockout mouse model, numerous studies conducted in P-gp knockout 
versus wild-type mice observed significant P-gp efflux of drugs [7]. Thus, the efflux of drugs by P-gp 
has been regarded as an essential factor determining the drug concentration in the brain. Further, 
over the past few decades, it has also become clear that reliance on total drug level in the brain is 
often misleading and that unbound drug concentration is more predictive of target occupancy and, 
ultimately, in vivo efficacy [8]. These developments led to the use of MDR1-MDCK in vitro assay to 
estimate the permeability and efflux of lead molecules and in vivo (rat or mouse) models to determine 
unbound brain exposure of lead molecules.  

 

Figure 1. (a) The endothelial tight junctions of the BBB (shown in brown) severely restrict paracellular 
transport, whereas specialized transporters, e.g., P-gp (green diamond) and BCRP (blue oval) (efflux 
transporters); OCT1 (orange triangle) and OCT2 (yellow hexagon) (influx transporters) regulate the 
transcellular transport of metabolic nutrients and other essential molecules across BBB. Enclosed in 
the basal lamina, pericyte cells partially surround these BBB endothelial cells. The complex tight 
cellular network of BBB is further maintained by astrocytes' end feet. Astrocytes maintain the cellular 
link between neurons and microglial cells. The transport across BBB involves concentration gradient-
driven passive diffusion and active transport employing various efflux and influx transporters in the 
endothelial cell membrane. (b) Schematic of plasma and brain compartments presenting different 
modes of transport across BBB, i.e., passive diffusion and active transport using efflux (e.g., P-gp, 
BCRP) and influx (e.g., OCT1, OCT2) transporters. Kp,uu represents the unbound brain to unbound 
plasma drug concentration ratio where Cu,b and Cu,p represent unbound drug concentration in brain 
and plasma, respectively. Different brain compartments, i.e., Blood BBB, CSF, BCSFB, ISF and ICF, 
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correspond to blood, blood-brain barrier, cerebrospinal fluid, blood-cerebrospinal fluid barrier, 
interstitial fluid and intracellular fluid, respectively. 

A reliable in silico method for predicting the brain penetration of lead compounds would provide 
significant value and acceleration to drug discovery programs, save precious in vivo resources, and 
prioritize leads for in vivo assessment. The challenges faced in developing such in silico models arise 
from the complexity of the BBB involving multiple transporters and the influence of multiple 
pharmacokinetic parameters. Also, the available datasets for training models are small and do not 
cover the entire drug space. Also, only a subset of compounds in these datasets has both in vitro and 
in vivo data. Nevertheless, prediction models are being built as they are crucial for assessing the CNS 
penetrability of compounds in commercial libraries, virtual libraries and molecules generated by AI-
enabled de novo design methods. Numerous in silico methods have been developed to predict brain 
exposure using different classification and/or regression algorithms. The type of experimental data 
used to build prediction models changed from the simple classification of BBB+ (for penetrating 
compounds) and BBB- (for non-penetrating compounds) to Kp (logBB, the brain-to-plasma ratio of 
the total drug concentration) to more recent Kp,uu (the unbound brain-to-unbound plasma 
concentration ratio). In many publications, the easily accessible and abundant classification data 
(BBB+ for penetrating and BBB− for non-penetrating compounds), often estimated by the presence or 
absence of CNS activity, are used. Earlier QSAR and Machine Learning prediction models utilized 
LogBB (logarithm of the ratio of total steady-state concentration in the brain to that in blood at a given 
time, also referred to as Kp) and LogPS (logarithm of the permeability surface area product) data. 
LogBB lacks information regarding the free drug concentration available for transport across the BBB, 
and LogPS does not incorporate BBB transporter-mediated efflux. These models were extensively 
reviewed elsewhere [9] and are not discussed in this review as there has been a paradigm shift away 
from optimizing Kp toward Kp,uu in CNS drug discovery. Free tissue drug concentration, Kp,uu, is 
considered to be the therapeutically relevant metric for estimating free drug concentration at the 
receptor site over the time course of its action, not the total drug concentration, Kp, based on the free 
drug hypothesis [8,10,11]. From a compartmentalized CNS drug distribution model (see Figure 1(b)), 
steady state Kp,uu can be presented in terms of passive diffusion (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), active influx clearance 
(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), active efflux clearance (𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), brain interstitial fluid bulk flow clearance (𝐶𝐶𝐶𝐶𝑏𝑏𝑖𝑖𝑖𝑖𝑏𝑏), and 
brain metabolic clearance (𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚). 𝐶𝐶𝐶𝐶𝑏𝑏𝑖𝑖𝑖𝑖𝑏𝑏  and 𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 , become insignificant and can be 
disregarded for molecules having high permeability and low metabolic clearance. Kp,uu parameter 
presents efflux and influx permeation across BBB relative to passive diffusion. Passive diffusion, 
active efflux and active influx correspond to values of unity, below unity and above unity, 
respectively. Kp,uu can be understood as a measure of lateral efficacy of various efflux and influx 
transporters independent of the extent of brain or plasma tissue binding (eq 1). 𝐾𝐾𝑝𝑝,𝑖𝑖𝑖𝑖 =

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝐶𝐶𝑏𝑏𝑖𝑖𝑖𝑖𝑏𝑏 + 𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 (1)  

The closer the Kp,uu value is to 1, the less peripheral body burden is required to achieve 
efficacious free concentration in the brain. Generally, a Kp,uu >0.3 in the rat is considered adequate, 
although this value depends on the drug's potency and other ADME properties. Therefore, this 
review will focus on the models that utilize the preclinical in vivo Kp,uu data and the MDR1-MDCK 
in vitro data in validation and training sets, as well as the physicochemical properties, different 
multiparameter scores and the prediction models that distinguish CNS and non-CNS drugs. The 
applicability and limitations of different in silico methods will also be discussed.  

2. Physicochemical Properties of CNS Drugs 

Despite significant challenges in designing compounds that cross the BBB, multiple classes of 
drugs cross BBB as they are known to treat CNS diseases, and many more CNS drugs are in clinical 
development [12]. The principal medicinal chemistry strategy in drug discovery has been to optimize 
the physicochemical properties of compounds to maximize CNS penetration.  
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Since the publication of Lipinski's rule of 5 in 1997 that defined desirable physicochemical 
properties (MW < 500 Da, log P < 5, HBD < 5, and HBA < 10) for oral bioavailability of a drug candidate 
[13], several groups attempted to map the physicochemical space of CNS drugs employing different 
approaches. Hansch et al. [14] studied a dataset of 201 barbiturates having preclinical in vivo efficacy 
data and found the in vivo efficacy of the drug to have a parabolic dependency on LogP and suggested 
LogP = 2 optimal for in vivo activity. The improved chance of CNS penetration was predicted for the 
following desirability ranges: MW < 450, PSA < 90 Å2 and Log D [1,4] for a dataset of 125 CNS and 
non-CNS drugs analyzed by Van der Waterbeemd et al. [15]. In a study of 776 CNS and 1590 non-
CNS oral drugs that reached at least phase 2 clinical trials, Kelder et al. [16] suggested an upper polar 
molecular surface area (PSA) limit of < 60-70 Å2 for most CNS drugs. Doan et al. [17] have indicated 
that physiochemical properties of CNS drugs differ substantially from non-CNS drugs having CNS 
dataset mean values of cLogP (3.43), cLogD (2.08), HBD (0.67), PSA (40.5 Å2) for a dataset containing 
48 CNS and 45 non-CNS drugs. Norinder et al. [18] based on a literature review, have suggested that 
a molecule having O + N < 5, or cLogP − (O + N) > 0, has an improved chance of CNS penetration. 
The physiochemical property space suggested by Didziapetris et al. [19] for better CNS penetration 
while avoiding P-gp efflux liability: MW <400, pKa <8, N+O < 4. Leeson et al. [20] suggested mean 
values of 310 (MW), 4.32 (O + N), 2.12 (HBA), and 4.7 (RB) for CNS drug molecules based on a review 
of a dataset of 329 oral drugs marketed during 1983-2002. The recommended attributes of successful 
CNS drugs suggested by Pajouhesh et al. [12] for a study of a dataset of marketed CNS drugs were 
MW < 450; H-bonds < 8; pKa 7.5−10.5; HBD < 3; HBA < 7; RB < 8; cLogP < 5; PSA < 60−70 Å2. Based on 
a medicinal chemistry literature review, Hitchcock et al. [21] recommended physicochemical property 
ranges for improving BBB penetration: MW < 500, PSA < 90 Å2, cLogD (pH 7.4) [2,5], cLogP [2,5], and 
HBD < 3.  

It was realized that CNS drugs occupy considerably smaller chemical space than oral drugs 
designed for peripheral targets [22]. Indeed, CNS drugs tend to be smaller with higher lipophilicity 
and lower polar surface area (PSA) than non-CNS drugs (see Table 1).   

Table 1. Mean (Range) of Physical Chemical Properties of CNS and Non-CNS Drugs (copied from 
Pajouhesh et al. [12]). 

Physical Chemical Properties CNS Non-CNS 

Molecular weight 319 (151–655) 330 (163–671) 
ClogP 3.43* (0.16–6.59) 2.78* (−2.81–6.09) 
ClogD 2.08 (−1.34–6.57) 1.07 (−2.81–5.53) 
PSA 40.5 (4.63–108) 56.1 (3.25–151) 

Hydrogen bond donors 0.85* (0–3) 1.56* (0–6) 
Hydrogen bond acceptors 3.56 (1–10) 4.51 (1–11) 

Flexibility (rotatable bonds) 1.27* (0–5) 2.18* (0–4) 
Aromatic rings 1.92 (0–4) 1.93 (0–4) 

In the broadest sense, moderately lipophilic drugs cross the BBB by passive diffusion, and the 
hydrogen bonding properties of drugs can significantly influence their CNS uptake profiles. Polar 
molecules are generally poor CNS agents unless they undergo active transport across the CNS. Size, 
ionization properties, and molecular flexibility are other factors observed to influence the transport 
of a compound across the BBB. The design of CNS drug candidates with intracellular targets may 
benefit from increased basicity and/or the number of hydrogen bond donors [23]. However, it should 
be noted that the "older" CNS drugs modulate ion channels, monoamine GPCR and transporter gene 
families with common pharmacophoric features of small lipophilic amines [24]. This scenario is 
rapidly changing as CNS drug discovery efforts have been shifting towards emerging therapeutic 
areas such as neurodegeneration and neuro-oncology with novel "non-traditional" CNS targets. The 
compounds targeting these new targets are relatively larger and more polar ligands with wider 
chemical diversity. It is, therefore, possible that the current understanding of the allowed 
physicochemical properties space of CNS drugs may expand.  
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3. BBB Penetration Scoring Schemes for Predicting Brain Penetrance across BBB Primarily by 

Passive Diffusion 

Analyzing the physicochemical properties of CNS (CNS+) and non-CNS (CNS-) drugs led to the 
formulation of different scoring schemes to design CNS drugs. Recently, multiple algorithms have 
been proposed to improve RO5 for drug discovery of CNS target space. Wager et al. [25,26] developed 
an algorithm called the "multiparameter optimization (MPO)" based on a study of 119 CNS drugs 
and 108 CNS clinical candidates to suggest the optimal range of property space for different 
physicochemical properties of drug molecules. For each of these calculated properties, a range of 
values is identified as more favorable (score = 1) or less favorable (score = 0) for a CNS candidate. The 
algorithm comprises six physiochemical properties with median values for CNS drugs: MW 305.3 
Da, PSA 44.8 Å2, HBD = 1, cLogP 2.8, cLogD 1.7, and pKa = 8.4. This scoring method showed that 74% 
of marketed CNS drugs and Pfizer CNS candidates displayed a high CNS MPO score (MPO 
desirability score ≥ 4, using a scale of 0-6). However, a follow-up study involving re-examining the 
MPO score by the authors suggested that MPO score can vary substantially depending on the 
computational software and method used to calculate physiochemical properties comprising the 
MPO score (mainly LogD and pKa) [27]. Also, MPO score is congenitally biased toward lipophilicity 
parameters. MPO score also poses the risk of populating the chemical space with small molecules 
with very low molecular weights as MPO score does not apply lower limits (e.g., clogP, clogD, MW 
and pKa) but only apply upper limits to physiochemical properties used. These very low molecular 
weight small molecules may not bind to certain targets of interest with sufficient binding potency. 
MPO also does not characterize non-CNS drugs as it is based on CNS drugs (119) and CNS candidates 
(108); this could potentially make MPO less adequate to capture the physiochemical nature of BBB. 
A separate study assessing 616 compounds with measured unbound concentrations in the brain 
confirmed that a higher CNS MPO score correlated with a higher unbound concentration in the brain 
[22]. A probabilistic MPO scoring function, designated as pMPO, is based on defining the 
physiochemical properties of a dataset of 299 CNS penetrant and 366 non-CNS penetrant molecules. 
pMPO physiochemical descriptors, along with their weighing, are as follows: TPSA (0.33), HBD 
(0.27), MW (0.16), clogD (0.13) and basic pKa (0.12) [28]. Ghose et al. [29] studied a dataset of 317 CNS 
and 626 non-CNS oral drugs and have proposed property ranges for CNS penetration: TPSA < 76 Å2 
(25−60 Å2), 740−970 Å3 volume, N [1,2], linear chains outside of rings <7 [2,4], HBD <3, (0,1), and SAS 
(460−580) Å2; the ranges given in the parentheses are preferred. They optimized the relative weights 
of these parameters by comparing the physicochemical property distribution of CNS versus non-CNS 
oral drugs. Rankovic et al. [30] have mapped the physiochemical properties of a diverse corporate 
dataset from Eli Lilly based on brain-penetrant and peripherally confined molecules.  They 
developed an algorithm termed MPO_V2, which contained five descriptors. They dropped LogD 
descriptor from MPO and included double weight for the HBD descriptor (MPO_V2: ∑T0 (clogP, 
MW, TPSA, pKa, 2 HBD). However, this article was retracted[31]. Recently, Gupta et al. [32] proposed 
the Blood−Brain Barrier (BBB) Score that is composed of stepwise and polynomial piecewise functions 
with five physicochemical descriptors: number of aromatic rings, heavy atoms, MWHBN (a 
descriptor comprising molecular weight, hydrogen bond donor, and hydrogen bond acceptors), 
topological polar surface area, and pKa. The BBB Score outperformed (AUC = 0.86) the CNS MPO 
approach (AUC = 0.61).   

The ease of calculation of the CNS MPO, CNS MPO_V2, CNS pMPO and CNS  BBB scores and 
their capability to predict BBB penetration of compounds can aid in mapping the property space of 
large commercial and virtual compound libraries to help lead optimization. CNS MPO and CNS BBB 
scores are widely utilized for CNS drug discovery programs. Figures 2 and 3 represent 100% stacked 
bar graphs for low to high CNS MPO, MPO_V2, pMPO and BBB scores for a dataset of CNS and non-
CNS drugs. Ideally, a CNS MPO, MPO_V2, and BBB score in the range of (4,6] should correlate to a 
CNS drug, and a CNS MPO, MPO_V2 and BBB score of (0,4] should correspond to a non-CNS drug. 
pMPO outputs a score in the range of (0,1], which has been scaled to (0,6] to compare against other 
scores. However, the CNS BBB score performs better in identifying a higher percentage of CNS 
compounds than other scores. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 January 2024                   doi:10.20944/preprints202401.1443.v1

Text Replaced�
Text
[Old]: "Pri-178 marily" 
[New]: "Primarily"



Font "PalatinoLinotype-Roman" changed to "PalatinoLinotype-Bold".
Font-color changed.

Text Deleted�
Text
"179"

Text Deleted�
Text
"180"

Text Deleted�
Text
"181"

Text Replaced�
Text
[Old]: "tar-182 get" 
[New]: "target"



Font-color changed.

Text Replaced�
Text
[Old]: "optimi-183 zation" 
[New]: "optimization"



Font-color changed.

Text Deleted�
Text
"184"

Text Deleted�
Text
"185"

Text Deleted�
Text
"186"

Text Deleted�
Text
"187"

Text Deleted�
Text
"188"

Text Deleted�
Text
"189"

Text Deleted�
Text
"190"

Text Deleted�
Text
"191"

Text Deleted�
Text
"192"

Text Replaced�
Text
[Old]: "cal-193 culate" 
[New]: "calculate"



Font-color changed.

Text Deleted�
Text
"194"

Text Deleted�
Text
"195"

Text Replaced�
Text
[Old]: "mo-196 lecular" 
[New]: "molecular"



Font-color changed.

Text Deleted�
Text
"197"

Text Replaced�
Text
[Old]: "mo-198 lecular" 
[New]: "molecular"



Font-color changed.

Text Deleted�
Text
"199"

Text Deleted�
Text
"200"

Text Deleted�
Text
"201"

Text Replaced�
Text
[Old]: "Molecules 2023, 28, x FOR PEER REVIEW 6 of 21" 
[New]: "5"



Font "PalatinoLinotype-Italic" changed to "PalatinoLinotype-Roman".
Font-color changed.

Text Deleted�
Text
"202"

Text Deleted�
Text
"203"

Text Deleted�
Text
"204"

Text Deleted�
Text
"205"

Text Deleted�
Text
"206"

Text Deleted�
Text
"207"

Text Deleted�
Text
"208"

Text Deleted�
Text
"209"

Text Replaced�
Text
[Old]: "out-210 side" 
[New]: "outside"



Font-color changed.

Text Replaced�
Text
[Old]: "paren-211 theses" 
[New]: "parentheses"



Font-color changed.

Text Replaced�
Text
[Old]: "compar-212 ing" 
[New]: "comparing"



Font-color changed.

Text Deleted�
Text
"213"

Text Deleted�
Text
"214"

Text Deleted�
Text
"215"

Text Deleted�
Text
"216"

Text Deleted�
Text
"217"

Text Deleted�
Text
"218"

Text Deleted�
Text
"219"

Text Deleted�
Text
"220"

Text Deleted�
Text
"221"

Text Deleted�
Text
"222"

Text Deleted�
Text
"223"

Text Deleted�
Text
"224"

Text Deleted�
Text
"225"

Text Deleted�
Text
"226"

Text Replaced�
Text
[Old]: "optimi-227 zation." 
[New]: "optimization."



Font-color changed.

Text Replaced�
Text
[Old]: "pro-228 grams." 
[New]: "programs."



Font-color changed.

Text Deleted�
Text
"229"

Text Deleted�
Text
"230"

Text Deleted�
Text
"231"

Text Deleted�
Text
"232"

Text Deleted�
Text
"233"

Text Replaced�
Text
[Old]: "per-234 centage" 
[New]: "percentage"



Font-color changed.

Text Deleted�
Text
"235"

Text Deleted�
Text
"236"

https://doi.org/10.20944/preprints202401.1443.v1


 6 

 

 In addition to scoring methods, Quantitative Structure-Activity Relationship (QSAR) and 
Machine Learning (ML) algorithms were successfully applied to predict BBB permeability. The 
derivation of QSAR and ML models involves calculating molecular descriptors, fitting them to 
experimental values using a statistical algorithm on a training dataset, and predicting experimental 
values of the test dataset. ML methods such as s Support Vector Machine (SVM), Decision Tree (DT) 
and K-Nearest Neighbor (KNN) that combine property-based descriptors with molecular 
fingerprints of compounds predict the classification of CNS and non-CNS drugs with high accuracy 
[33]. Chen et al.[34] and Varadharajan et al.[35] employed machine learning algorithms (Random 
Forest (RF) and Support Vector Machine (SVM)) to develop direct and indirect regression models 
based on Kp,uu, Kp,brain, Vu,brain and fu,pl using. For 173 compounds in the training set [34], their 
model used a total of 196 descriptors. Their model predicted Kappa2 descriptor, i.e. the measure of 
molecular linearity being strongly correlated while poor reliability on lipophilicity of a molecule as 
predicted by Fridén et al. [36]. Similarly, Saxena et al. [37] published accurate classification models 
using different ML algorithms using physicochemical properties, Molecular ACCess Systems keys 
fingerprint (MACCS) [38] and substructure fingerprints. A Deep Learning method was shown to 
achieve better accuracy than the ML methods on three different datasets [39]. Alsenan et al. [40] 
published a highly accurate deep-learning model based on a recurrent neural network. Zhang and 
Ding [41] deployed SVM and Greedy Algorithms to identify key features of CNS Drugs. An excellent 
review of classification models using different datasets and ML algorithms is published by Saxena et 
al. [42]. These qualitative classification models are helpful for the quick screening of large compound 
databases at early-stage drug discovery. 

 

Figure 2. Relative distribution of CNS class of compounds: CNS+ (green) and non-CNS- (red). The 
MPO, MPO_V2, pMPO and BBB scores range from 0 to 6 (a score within a range of (4,6] means better 
CNS penetration). Original pMPO scores range between 0 to 1. To be consistent with MPO scores, we 
scaled the pMPO scores from 0 to 6. 
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Figure 3. Relative distribution of CNS class of compounds: CNS+ (green) and non-CNS- (red). The 
MPO, MPO_V2, pMPO and BBB scores range from 0 to 6 (a score in the range of (4,6] means better 
CNS penetration). Original pMPO scores range between 0 to 1. To be consistent with MPO scores, we 
scaled the pMPO scores from 0 to 6. Percentage of CNS drugs and non-CNS drugs correctly identified 
(for CNS: MPO, MPO_V2, pMPO, BBB Score [4,6]; for non-CNS: MPO, MPO_V2, BBB Scores [0,4)) in 
their respective CNS and non-CNS database is plotted on 100% stacked bar graph for MPO, MPO_V2, 
pMPO and BBB Scores. 

3. Active Transport across BBB (Efflux Transporters, Influx Transporters and Kp,uu) 

Kp,uu (the unbound brain-to-unbound plasma concentration ratio) is an important parameter 
to estimate the unidirectional or bidirectional active transport of drugs across BBB via specified influx 
and efflux transporters. As discussed in equation 1 above, Kp,uu presents a measure of lateral efficacy 
of various efflux and influx transporters independent of the extent of brain or plasma tissue binding. 
Quantitative prediction of Kp,uu by QSAR and ML methods has been challenging [43,44]. The limited 
size of the training sets of compounds combined with highly variable (fivefold) experimental Kp,uu 
data is the main reason for the moderate performance of the models. Three experimental techniques 
are usually employed to estimate experimental Kp,uu: (a) microdialysis, (b) brain homogenate and 
(c) brain slice method. Each method has advantages and challenges; the variability within 
experimental results exists even within the same method based on the different experimental set-up, 
preclinical species and protocol used. A detection probe is implanted into the brain by surgery to 
estimate the unbound concentration of a molecule in the microdialysis method, which is considered 
an in vivo gold standard for measuring Kp,uu [45-47]. However, this method poses many technical 
challenges, including recovery of microdialysis probe while working with lipophilic drugs, high 
resource and time demanding, involves risk of brain injury and subsequent increase in BBB 
permeability; additionally, it necessitates use of lots of animals leading to ethical concerns, making it 
less applicable in the initial phases of drug discovery [48-50]. The brain homogenate method 
introduced by Kalvass et al. [51] involves dialyzing into a 96-well equilibrium dialysis apparatus a 
small sample of brain homogenate infused with the molecule. This method is used for high 
throughput screening of CNS drugs; unbound brain concentration is calculated from total steady-
state brain concentration and free fraction [52]. One drawback of this method is that binding 
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properties of brain tissue could be changed during brain homogenization, unfolding new binding 
sites and resulting in underrepresenting available free fraction [53]. In this review, we have compiled 
Kp,uu values from Summerfield et al. [54,55] and Culot et al. [56]. In the brain slice method of 
calculating Kp,uu, animal brain slices (usually rat or mouse) are infused with test molecules 
incubated at 37°C in either plasma or buffer solution. The test amount of buffer or plasma solution at 
designed time points is withdrawn. Kp,uu is calculated as a ratio of in vivo total brain to plasma 
concentration (Kp) and in vitro unbound brain volume of distribution (Vu, brain) and the unbound 
fraction of drug in plasma (fu, plasma) in the incubated brain slices. The brain slice method has the 
advantage over other methods as the cell structure in brain tissue is maintained in brain slices, and 
this method could be developed as a high throughput screening method [53,57,58].  

Frieden et al.[36] and Culot et al.[56] have calculated Kp,uu for a dataset of 41 molecules, 
including substrates of various efflux transporters P-gp, BCRP, multidrug resistance-associated 
proteins (MRPs)) and influx transporters (organic anion transporters (OATs), organic anion 
transporting polypeptide (OATPs), and organic cation transporters (OCTs)), making the selection 
important for BBB penetration study.  

Accurate in silico prediction of Kp,uu using various in silico methods has been challenging as 
limited experimental data for Kp,uu is available in the literature, and only a few in silico models of 
Kp,uu with moderate accuracy have been reported [23,34-36,59-61]. Poor performance of global 
models of Kp,uu is understandable as (a) the training datasets do not have good coverage of chemical 
space, and (b) models need to account for multiple factors that affect brain penetration, e.g., 
experimental protocols and animal species, as explained above. In some cases, the higher-than-
expected accuracy of ML models may be due to model overfitting [62]. Two pioneer Log Kp,uu QSAR 
models employing the PLS method for a training set of 41 marketed drugs having experimental (brain 
slice method) Kp,uu range of 300-fold have been developed by Fridén et al. [36]. The first model had 
16 molecular descriptors, and the second only had a number of hydrogen bond acceptor descriptor 
with R2 of 0.45 and 0.43, respectively. The indirect regression model employing Fridén et al. [36] 
Kp,uu dataset showed reasonable accuracy with an R2 of 0.74 [59]. However, when validated against 
the dataset given by Summerfield et al. [44], this model resulted in poor performance. Loryan et al. 
[23] have trained a PLS regression QSAR model on a dataset of 39 Kp,uu values using two molecular 
descriptors (vsurf_Cw8 and TPSA) having moderate accuracy (R2 = 0.82 and RMSE = 0.31). However, 
this model's performance was unsatisfactory when validated against the Fridén et al. [36] dataset. 
Zhang et al. [61] developed a binary Kp,uu classification model on a dataset containing 677 and 169 
molecules in training and test sets, respectively, which showed similar accuracy (R2 ~ 0.75).  

Integrating Kp,uu in silico models with the knowledge of molecule interactions in BBB efflux 
and influx transporters [63], which influence brain permeability, can improve Kp,uu model 
performance [64]. Of the many influencing factors such as active uptake, brain metabolism, bulk flow, 
passive permeability, etc., efflux by several membrane transporters, such as P-gp has a dominant role 
[61,65]. P-gp is widely expressed at BBB. It transports molecules against a concentration gradient 
utilizing the energy of ATP hydrolysis (See Figure 4). 
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Figure 4. The schematic diagram of the proposed mechanism of P-gp (MDR1) is represented. 
Transmembrane (TBDs) and nucleotide (NBDs) binding domains of P-gp are presented in green and 
red, respectively. The P-gp substrates are shown by black triangles, which cross the BBB membrane 
by passive diffusion or active transport. The inward-facing, ADP-bound state structure (i) changes 
conformation, the NBDs dimerize, and the TMDs re-orientate to extracellular space to adopt an 
outward-facing (ATP-bound state) (ii).  The extracellular segment's transmembrane helices in the 
outward-facing conformation of P-gp reorient to release the substrate. Upon ATP hydrolysis, the 
transporter is reoriented to the inward-facing structure, and two phosphate molecules are released. 

Dolgikh et al. [60] incorporated the P-gp efflux ratio in direct and indirect regression QSAR 
models for Kp,uu. The performance of the Kp,uu model improved significantly by adding P-gp efflux 
data (R2 enhanced from 0.39 to 0.53). For understanding the quantitative correlations between the 
structure of P-gp and the various molecular descriptors, different computational algorithms 
accompanying structure and ligand-based approaches [66,67], pharmacophore models [68,69] and 
machine learning methods [70] have been studied. With the availability of high-throughput P-gp 
efflux data using MDCK-MDR1 assays, there is an increasing effort to measure the efflux of a large 
number of compounds experimentally [71]. These data enabled better predictive models for P-gp 
efflux. Ohashi et al. [72] constructed regression models to predict the value of P-gp-mediated efflux 
using 2397 data entries with an extensive data set collected under the same experimental conditions. 
Most compounds in the test set fell within two- and three-fold errors in the random forest regression 
model. Available literature P-gp transporter efflux data have considerable variability as molecules 
tested using different protocols, cell lines and biological assays [73]. Broccatelli et al. [74] tested a 
dataset of 187 compounds in the Borst-derived MDCK-MDR1 cell lines to calculate P-gp Efflux Ratios 
(ERs). ER presents the ratio of the apparent permeability from the basolateral to the apical direction 
(excretory) to the apparent permeability from the apical to the basolateral direction (intake) in an 
overexpressing P-gp cell line. Molecules having ER ≥ 2 are typically considered P-gp substrates [75]. 
Available P-gp efflux data (measured in MDCK-MDR1 cells) for CNS (CNS+) and non-CNS (CNS-) 
drugs show that most CNS drugs have P-gp efflux ratio below 10. In cases where brain metabolism 
and uptake effects are negligible, it has been shown that compounds with higher efflux generally 
have lower Kp,uu values. (See Figure 5). As CNS distribution of a compound does not depend only 
on P-gp efflux, a significant percentage of compounds with lower efflux do not distribute into CNS, 
and a considerable percentage of compounds with higher efflux distribute into CNS. It is important 
to note that the analysis involves a small number of drugs (128 CNS+ and 39 CNS-) that have MDR1-
MDCK efflux data and provide qualitative guidance to utilize efflux data for selecting CNS penetrant 
compounds. 
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Figure 5. A plot of the CNS class of compounds CNS+ (green) and CNS- (red) against their measured 
efflux ratios. CNS+ compounds with good brain exposure have a higher probability of having lower 
efflux. 

These efflux transporters modulate the brain exposure of a drug without affecting systemic 
exposure. It was recognized that passive permeability and P-gp efflux impact the extrusion of drugs 
from the brain and that in vitro Efflux Ratios (ER) can predict in vivo brain penetration [17,76]. 
Incorporating in vitro P-gp efflux information into the computational models improved the 
predictive performance of a QSAR model, as explained above [77]. Recently, Gupta et al. [78] have 
augmented the previous Kp,uu models by incorporating the Kp,uu model with various efflux (P-gp, 
BCRP) and influx (Organic Cation Transporters (OCT1, OCT2) and Organic Anion Transporting 
Polypeptides (OATP2B1). The model is termed the Brain Exposure Efficiency (BEE) Score. The BEE 
algorithm is devised based on a comprehensive series of QSAR calculations and molecular modeling 
simulations and implemented as an open-source calculator for predicting the unidirectional or 
bidirectional active transport of molecules across the BBB via specified transporter proteins. BEE 
score is also implemented in MOE software as an SVL utility to predict Kp,uu and Cu,b (unbound 
concentration of the molecule in the brain) as a function of various efflux and influx transporters, 
experimental methods (i.e., Kp,uu microdialysis, brain homogenate, brain slice). Kp,uu QSAR model 
based on the brain slice method incorporating efflux and influx transporters data performed better 
than models based on literature data from microdialysis and brain homogenate methods [78]. More 
recently, Kosugi et al. [79] reported improvement in the predictivity and coverage of application by 
machine learning approaches for Kp,uu prediction by incorporating in vitro P-gp and BCRP 
activities.  

In vitro MDR1-MDCK represents a valid assay for predicting human P-gp efflux. It generally 
correlates well with in vivo Kp,uu of preclinical species, although other transporters (like BCRP) may 
cause a disconnect. Consistent Kp,uu and P-gp efflux data are available for only a limited number of 
drugs [55,80-82] and are plotted in Figure 6, showing limited data coverage of the drug space [83].  
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Figure 6. The bias of available drugs with MDCK (orange) and Kp,uu data (black). The grey and white 
dots represent CNS+ and CNS- compounds, respectively. 

4. In Silico, In Vitro and In Vivo Correlations  

A reliable in silico prediction method for CNS penetration can provide several advantages for 
discovering small molecule drugs for neurological diseases, but only if prediction results correlate 
with in vitro and in vivo measurements.  Various CNS scoring schemes are fast and easy to apply to 
screen libraries at the exploratory stage of drug discovery; however, these scores correlate to some 
extent with in vitro efflux and animal Kp,uu as illustrated by Figure 7 and 8 that plot the relative 
distribution of CNS and non-CNS drugs based on P-gp efflux ratio and rat Kp,uu corresponding to 
different CNS scoring schemes (CNS MPO, MPO_V2, pMPO and BBB Score). Ideally, CNS drugs, i.e., 
the range of scores (4,6], should be more populated with drugs having ER ≤ 3, and non-CNS drugs 
should be heavily populated in the lower ranges of scores, i.e. (0,4]. It is encouraging to see in Figure 
7 that all scoring methods do segregate the drugs with lower ER towards a higher score range (4,6], 
and the drugs with higher ER towarders lower range (0,3}, but the segregation is not perfect. There 
is a lot of room for improvement. Figure 8 presents 100% stacked bar graphs for low to high MPO, 
MPO_V2, pMPO and BBB Scores for the rat Kp,uu dataset. Ideally, any molecule with an MPO, 
MPO_V2, pMPO and BBB Score in the range of (4,6] should correspond to a CNS drug. Most CNS 
drugs have Kp,uu in a moderate range (i.e., Kp,uu of (0.1,0.3 ] or < 0.3). Ideally, the in silico scoring 
schemes plotted in Figure 8 could be interpreted as a probability of a molecule attaining a score 
between 4 and 6 to have decent Kp,uu. MPO and MPO_V2 predict 33% and 32% of drugs having 
Kp,uu > 0.3, respectively, in the range (5,6], which is very low compared to the 62% and 68% predicted 
by the pMPO and BBB Score, respectively. For MPO_V2 and pMPO, drugs in range (3,4] have poor 
predictability (nearly 50%) in differentiating between high and low Kp,uu exposure. The MPO and 
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BBB Score predict that 69% and 61% of drugs score in the (3,4] range having Kp,uu ≤ 0.1, which is an 
improvement over the MPO_V2 and pMPO scores. 

 

Figure 7. In silico methods (CNS MPO, MPO_V2, pMPO and BBB Score) segregate low vs. high efflux 
compounds, but there is much room for improvement. 

 

Figure 8. 100% stacked bar graphs for low to high MPO, MPO_V2, pMPO and BBB Scores for rat 
Kp,uu dataset. Compounds with a higher score tend to show higher unbound brain exposure. 

On the other hand, the efflux ratio correlates well with animal Kp,uu (Figure 9). 
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Figure 9. The MDR1-MDCK in vitro assay predicts good in vivo Kp,uu when ER < 3. However, 
compounds with medium efflux (3-10) also show moderate in vivo brain exposure. 

Similarly, high rat Kp,uu correlate well with human BBB penetrability. Zhang et al. [61] found 
the vast majority (>85%) of the CNS drugs show rat Kp,uu over 0.3, which is consistent with our 
analysis of the available data shown in Figure 10. 

 

Figure 10. The Kp,uu of preclinical species is an important parameter for predicting human brain 
exposure. Most of the CNS drugs show rat Kp,uu over 0.3. 

Animal Kp,uu measurements are also nontrivial, expensive, and time-consuming. Such 
measurements are made for compounds at the lead optimization of drug discovery. On the other 
hand, in vitro measurements are faster, less expensive, and utilized extensively at earlier stages of 
discovery. In silico methods that rely only on chemical structure information (like the novel Kp,uu 
prediction method proposed by Watanabe et al. [83]) are highly useful at the Hit identification and 
Hit expansion stages.  

The ultimate purpose of predictive models is to improve the odds of success of drug candidates 
for CNS diseases. Patel et al. [84] outline a parallel analysis of previously published models for 
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predicting brain penetration that utilizes MDR1-MDCK efflux data as a better predictor of brain 
penetration. They demonstrate the ability to harness lower species preclinical data to predict human 
brain availability. Sato et al. [85] described a translational CNS steady-state drug disposition model 
to predict Kp,uu across rats, monkeys, and humans using only in vitro and physicochemical data. 
This model can potentially minimize animal use and improve CNS drug discovery. 

5. Conclusions 

The successful discovery of small-molecule drugs to treat neurological disorders requires CNS 
penetration of these drugs [86]. The design of CNS penetrable molecules was initially guided by the 
physicochemical properties of a limited set of known CNS active drugs and drugs that cause side 
effects in the CNS. The CNS MPO scores and later improvements were useful in simultaneously 
optimizing multiple properties of molecules for CNS targets. However, these scores do not always 
correlate well with in vitro (P-gp efflux) and animal in vivo (Kp,uu) data. The Machine Learning and 
Deep Learning models that classify CNS and non-CNS drugs achieve higher accuracy and are 
successfully applied to screen vast chemical libraries in the early phase of drug discovery but are 
found to be less beneficial for lead optimization. The need for higher accuracy in silico models with 
broader applicability is recognized, but such efforts require much more in vitro and in vivo data. 
These findings have prompted a generation of in vivo animal Kp,uu data and in vitro efflux data on 
a large number of compounds covering the available drug-like molecule space. Biogen scientists 
recently released in vitro efflux data on 3521 compounds [71]. Such expansion of datasets will 
improve the accuracy and coverage of in silico models. Accurate assessment of a drug molecule's 
ability to cross BBB is determined by in vivo measurements. It has been established that Kp,uu data 
measured in preclinical animal studies predict human brain availability. A threshold of 0.3 for in vivo 
Kp,uu of mouse and rat are used for estimating good human brain exposure. Moreover, there is a 
good correlation between animal Kp,uu data and in vitro MDR1-MDCK efflux data, which represents 
a valid assay for the prediction of human P-gp efflux, although other species-specific transporters 
may cause a disconnect. A recent publication of the physiologically-based pharmacokinetic (PBPK) 
model shows that in vitro efflux data can be used to predict the degree of brain penetration across 
species accurately.  

Recent efforts to develop in silico models to predict CNS penetration of small molecules focused 
on applying machine and deep learning methods using animal Kp,uu and in vitro MDR1-MDCK 
efflux data has been less successful. Available Kp,uu data is still limited, and in silico models to 
predict these data with high accuracy have not yet been achieved. In addition to smaller data sets, 
higher variability of the measured Kp,uu values that are influenced by multiple factors such as 
pharmacokinetics and transporters appear to limit the accuracy of published models. Better accuracy 
is achieved for in silico models to predict in vitro efflux data that are measured accurately on larger 
sets of compounds. These in silico models are deployed to prioritize molecules with higher 
probability of success to cross BBB. 
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