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Abstract: The efficient recognition and classification of personal protective equipment are essential for ensuring
the safety of personnel in complex industrial settings. Using the existing methods, manually performing macro-
level classification and identification of personnel in intricate spheres is tedious, time-consuming, and
inefficient. The availability of several artificial intelligence models in recent times presents a new paradigm
shift in object classification and tracking in complex settings. In this study, several compact and efficient deep
learning model architectures are explored, and a new efficient model is constructed by fusing the learning
capabilities of the individual, efficient models for better object feature learning and optimal inferencing. The
new model construct follows the contributory learning theory whereby each fussed model brings its learned
features, which are then combined to obtain a more accurate and rapid model using normalized quantization-
aware learning. During the investigation, a separable convolutional driven model was constructed as a base
model, and then the various efficient architectures combined for the rapid identification and classification of
the various hardhat classes used in complex industrial settings. A remarkable rapid classification and accuracy
were recorded with the new resultant model.

Keywords: deep learning ensemble; rapid object classification; onsite personnel identification;
normalized quantization-aware learning; complex industrial scene

1. Introduction

The concept of contributory learning, otherwise generally referred to as ensemble learning,
merges different pieces of model architectures (see Figure 1) to build a unified model that offers
superior learning features and generalization for enhanced object classification performance. Deep
artificial learning models that possess diverse processing architecture provide a more outstanding
performance against conventional or shallow object classification models. By extension, the unified
contributory learning models blend the advantages of the artificial deep learning models to derive a
final model with an improved generalization performance.

The object classification task deals with new observation categorization relying on a hypothesis
derived or learned from a collection of training data. The mapping of the features of input data to
their corresponding or fitting labels represents the hypothesis that the core objective is to relatively
approximate the actual undetermined function as closely as possible to minimize generalization
errors [1]. Despite the efforts of the single architectures to reduce the generalization errors, it is
challenging to attain a satisfactory performance, especially with inadequate, unbalanced, noisy, and
high-dimensional complex data [2]. This is orchestrated by the single models' difficulty in capturing
the multiple features embedded in the input data and their corresponding structures. It, therefore,
becomes imperative to construct a rapid, efficient model that can learn the various characteristics of
complex data efficiently.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. A cross-section of a unified model framework.

In the unified learning concept, a collection of features that passes through diverse
transformations is initially extracted and learned. Then, multiple learning models or algorithms are
deployed to generate weak predictive results based on the learned features before the fusion of the
individually learned features by an intermediate mechanism to produce a superior discriminative or
classification framework. A conventional unified learning model consists of two phases: (1) the initial
classification result production step with various weak classifies and (2) the fusion of the multiple
results to form a reliable model to produce an outcome with an appropriate mechanism. There are
several extensively deployed ensemble classification schemes in task classifications, such as random
forest [3], AdaBoost [4], gradient boosting [5], random subspace [6], etc. Through a training dataset
random sampling, the Bagging approach creates sample subsets, which are used to train basic models
for inferencing [7].

In random subspace utility, a set of feature subspaces are constructed by performing features
random sampling and training basic classifiers in their subspace domains to produce multiple results
and then unified into a single final result [6]. In Gradient Boosting, data are randomly sampled to
create a sum of the last residuals by integrating tiny models that forcefully make predictions near the
actual value [8]. The ensemble stacking approach is vital in constructing unified, efficient learning
models. This method combines the outputs of different base models using an effective selection
mechanism to yield a superior classification or predictive model.

The stacking approach deploys a meta-learning concept in task processing to fuse or integrate
base models' outputs [1]. A model blending concept is birthed when a linear model constitutes the
last decision-making portion of the stacking model. In the stacking process or stacked regression, the
dataset is divided randomly into D equal parts. Given a D' — fold cross-validation of the dataset, a
set is reserved for the proposed model test while the remaining are used for the model training. The
predictions of the various base learning models are obtained using the train test pair subsets of the
dataset, which then serve as the meta-data deployed to construct a meta-model.

These shallow algorithms lack robustness for learning fine-grained similar features and thus
significantly impact the performance of the trained model. This investigation introduces a
quantization-aware meta-learning feature-based deep learning architecture fusing method. This
method learns the object features and is lightweight and rapid in processing new objects due to
quantization.
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2. Materials and Methods

In recent years, pieces of literature on deep-learning architectural ensembles have emerged from
which our model design concept is derived. Koitka and Friedrich [9] introduced an ensembled
network based on the optimized deep convolutional artificial network for image classifications in
their work. They adopted several convolutional neural network architectures similar to our proposed
model. During the training process, pre-trained models were fine-tuned and partitioned into two
different optimal steps by initially training the logit layers for adaptation to random initialization for
the free flow of information and domain dataset. Then, the entire layers are trained by deploying a
polynomial decay optimizer.

Also, a neural ensemble-based detection of patterns was proposed to inspect specimens using a
two-level deep model architecture ensemble [9]. The first-level ensemble was used to verify a normal
cell with a superior confidence score and two expected outputs from each network. The second-level
ensemble handled defect cells emanating from the first level ensembled network. Then, the
individual network predictions were fused using the full voting ensemble technique [10]. A weighted
convolutional neural network ensemble method [11] was proposed to efficiently unify convolutional
operation probabilities' outcomes. In their work, Nguyen and Pernkopf [12] introduced a CNN-
based ensemble technique in conjunction with the nearest neighbor filter to classify acoustic scenes.
In the work, they adopted several CNN model architectures for performing single-input and multi-
input channel learning and three base models for the ensemble network construct.

In another related investigation, Fawaz, et al. [13] ensembled 60 deep-learning models to perform
time series classification tasks. Furthermore, joint training for neural network ensembles that use a
single loss function to train multiple deep learning architectures with multiple branches was
investigated [14]. The study introduced a collection of novel loss functions that generalized several
different previous techniques, and their theoretical and empirical characteristics were thoroughly
examined for joint training tasks. The presented method in this work adheres to the aforementioned
principles and practices with an improved network fusing layer.

Contributions:

Our research paper makes several significant contributions to the field of safety object
classification and deep learning:

1. Unified Architecture: We introduce a unified deep learning architecture that is specifically
designed for safety object classification, offering a comprehensive solution to the challenges
associated with real-time safety systems.

2. Normalized Quantization-Aware Learning: We propose and validate the effectiveness of
Normalized Quantization-Aware Learning, a novel approach that combines quantization and
normalization techniques to improve both the speed and accuracy of safety object classification.

3. Experimental Evaluation: We provide a comprehensive evaluation of our architecture through
extensive experiments, showcasing its superior performance in terms of accuracy, speed, and
memory efficiency when compared to existing methods.

4. Real-world Applicability: We emphasize the practicality of our approach by demonstrating its
effectiveness in real-world scenarios, thereby highlighting its potential for integration into safety-
critical applications.

3. Theoretical Background

The proposed model comprises a combination of four efficient, lightweight deep learning model
architectures, with each model contributing to the unified single model learning process. The
benchmark model for which the test result is used as a yardstick to measure the performance of the
proposed model is constructed with separable convolutional neural network layers. The separable
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convolutional neural network [15] consists of layers split into sub-processes or multiple convolutions
to generate the same output during the convolution process. The depth-wise convolution deploys a
single convolutional filter for an individual input channel while creating a linear combination of the
resultant of the depth-wise convolution process using the pointwise convolution mechanism.

On the other hand, the spatially separable convolutions decompose convolution operations into
two individual processes. In a typical convolution operation [16,17], if a 3 x 3 kernel filter is employed,
a sample image can be convolved directly with the kernel. However, in spatially separable
convolution, a 3 x 1 kernel is first used to convolve over the given image sample before a 1 x 3 kernel,
which is more parameter efficient compared to the conventional convolution layers because of
minimal matrix computations. The diagram in Figure 2 shows the benchmark custom model built
with the SeparableConv2D layers during the study.

Input | Input 150, 150, 3 Separable | Input 150, 150, 3
layer [~ [ or o~ [~~~ °"C =="
Ve | output | 150,150,3 | __--~- S Output | 150,150, 32
Batch Input 150, 150, 32 Max Input 150, 150, 32
Norm = * Pool2D
Output 150, 150, 32 Output 75,75, 32
Separable Input 75,75, 32 Batch Input 75,75, 64
Conv2D = =» Norm
Output 75,75, 64 Output 75,75, 64
Max Input 75,75, 64 Separable Input 37,37,64
— —p
Pocib. [ e 37,37, 64 s Output 37,37, 128
Batch Input SAS/D.S Max Input 37,37,128
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e Output 37,37, 128 = Output 18,18, 128
Separable Input 18,18, 128 Batch Input 18,18,128
- —p
) Output 18,18, 128 i Output 18,18, 128
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— —p
i Output 9,9,128 ASRERD Output 128
Dropout Input 128 Dense Input 128 Dense Input 512
- —p - >
Output 128 Output 512 Output 8

Figure 2. The architectural flow of the benchmark custom model with SeparableConv2D layers.

The proposed architecture's first base model (BM1) is derived from the Inception-V3
architecture. The Inception-V3 [18] is a CNN architecture that is among the Inception model group
of networks that enhances the object classification tasks through the incorporation of several
techniques such as convolution factorization, regularization, label smoothing, parallelized
computations, dimension reduction, and as well as integration of an auxiliary classifier for object
label information propagation down the bottom of the network.
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Figure 3. The proposed unified deep-learning architecture.

The second base model (BM2) is derived from the Xception deep learning architecture [15],
inspired by the Inception deep CNN modules. The Xception module convolution layers were
swapped with depth-wise separable convolutions, which yields slightly superior performance than
the Inception V3 on large, benchmarked image classification datasets.

Furthermore, the third base model (BM3) is made of the DenseNet121 CNN model that uses
dense connections between CNN layers via dense blocks in which all layers in the network are
directly linked. In the network, the preservation of the working principle of the feed-forward layers
is achieved by fusing each layer in the network with extra inputs from prior layers, which then
transfer their feature maps to all successive layers. Finally, the fourth base model (BM4) is derived
from the MobileNet CNN architecture [19], which also uses depth-wise separable convolutions to
construct lightweight artificial deep networks.

Stacking is an ensemble strategy consisting of a two-layer structure for combining the outputs
of multiple base architectures through the meta-model learning concept to identify an optimal
classification or regression model [20]. The feature learning capabilities of different CNN models can
be integrated to form an optimal model for a superior classification model without necessarily
increasing the depth of the new networks. This strategy can correct errors emanating from the base
models to enhance the performance of the ensembled model by maximizing the learning capabilities
of the different contributing models.

In this work, we fuse the features from these efficient architectures using a normalized low-bit
precision quantization-aware learning paradigm to arrive at a more efficient and rapid model for the
object classification task. The low-bit precision quantization-aware learning reduces the
computational and memory requirements of the introduced network by representing the model
weight and activations using a lower number of bits. It also helped mitigate the performance
degradation due to the quantization process when mapping continuous values to a finite set of
discrete values. The quantization process is represented as:

QM) = [(x/A) - A

Where:
Q(x) is the quantized value of x, and A is the size of the quantization step, determined by the number
of bits used for the quantization process. The quantized weight error is computed using:

E=w-q(w)
Where:
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E represents the quantization error; w is the model's original floating-point weight, and q(w) is the
quantized weight. The quantized activation error is represented by:

E=a-q(a)
Where:
E is the quantization error, a is the original floating-point activation, and q(a); the quantized
activation.

4. Materials and Methods

The experimental procedure and the proposed model evaluation matrices are presented in this
section. The experiment was conducted on a high-end GeForce RTX TITAN Xp GPU computer with
12 GB graphic capability, cuDNN, and CUDA Toolkits. The model was built on the TensorFlow open-
source deep learning framework and Python programming language. The hardhat dataset used for
the experiment was curated using camera sensors in different positional angles, and others were
scrapped from the web with 1705 samples of eight different classes. The dataset was split into training
and test sets with 1225 and 480 samples, respectively. The training set was further divided to obtain
the validation set with an 80% and 20% sample split strategy.

According to the global hardhats color coding system, white identifies the managing team,
engineers, supervisors, and forepersons in the construction and industrial settings. This class was
labeled as 4 and denoted with "Mg" during the experiments. Furthermore, the blue hardhat color
coding identified the electricians and high machine operators and was designated with ET&O and
labeled class 0; the pink hardhat color identified the female workers and was represented with "FF"
and labeled as class 1 during the experiment. The red color coding recognized the firefighters and
was defined with "FW" and labeled with class 2. The yellow color coding recognized the laborer and
heavy-duty machine operators and was denoted with "LH&C" and classed as 3. In continuation, the
safety officers were identified with the green color code, marked with "SO, " and classed with the
number 5. Also, the site visitors were coded with grey, denoted as "SV, " and classed with the number
7. Finally, the brown hardhat color coding identified the welders and high-heat equipment operators
and was represented with "W&HHQO" with the number 7 class.

The hardhats were macro-grouped into eight classes. Due to the high volume of data required
for training and testing the reliable deep learning model, data augmentation was used to artificially
increase the dataset volume and boost the classification accuracy of the proposed model. The dataset
was rescaled to 1./255, 40° rotation range, width shift range of 0.2, height shift range of 0.2, shear
range of 0.2, zoom range of 0.2, and horizontally flipped. In the proposed model-building process,
a custom benchmark model was first built and trained using five SeparableConv2D layers, as shown
in Figure 2. The results of the custom model were used to measure the hardhat classification
capabilities of the main proposed architecture. Then, the BM1, BM2, BM3, and BM4 were trained
separately and then linearly combined using normalized low-bit precision quantization-aware
learning. Each selected architecture and the final proposed model were trained using a learning rate
scheduler of 1e-3 * 0.9 and compiled using a categorical cross-entropy as a loss function with an Adam
optimizer, all trained with 100 epochs. As illustrated in Figure 3, a quantized layer was used to
perform the final classification task using a softmax function after the unifying mechanism.

5. Results

This This section presents a detailed analysis of the proposed method to ensure that the results
obtained are interpreted correctly with their corresponding significant relationships spotted. The
statistical tests are vital in evaluating the statistical differences in performance of each constructed
custom model, the adopted and the proposed models. We measured the accuracy, precision, recall,
and F1 scores of all the models involved in the experiment. Also, empirical processes were performed
to establish the presence or absence of considerable variations using the performance metrics' mean
values of the custom, individual contributing, and proposed models. Furthermore, the mean square
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errors (MSE), means-square-log-errors (MSLE), and the Matthews correlation coefficient (MCC)
scores were obtained for all the models to reaffirm the proposed model's performance.

Custom Model

class 7(W&HH O ) 15
class 6(S\/) N

class 5(SO) I

class 4(Mg) |1
class 3(LH & C) N
class 2 (FV\/) |50
class 1(FF) |

class O(ET &O) N

0 10 20 30 40 50 60

W Custom Model Precision ® Custom Model Recall

M Custom Model F1-score B Custom Model Support

Figure 4. Results from the custom.
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Figure 5. Results from the FBM models.

The performance metrics obtained from the custom-built model and BM1 are shown in Figures
4&5 with respect to the precision, recall, and F1 scores. It was observed that the custom model rightly
classified all the hardhats from the test data except class 4(Mg), which represents the managers, and
class 6(SV), which recognizes the site visitors. The difficulty in classifying these two samples of the
hardhat is due to the close relationship between their color coding, i.e., grey and white. The custom
model rightly classified 54 samples of the managers' hardhat and misclassified six samples out of the
60 test samples as site visitors. On the other hand, it appropriately classified 39 samples of the site
visitor's hardhat test samples and wrongly classified 21 samples as the managers' hardhat (see Table
1). The BM1 also rightly classified all the test samples except the two highly similar classes. It recorded
a precision of 87%, recall of 88%, and Fl-score of 88% for class 4(Mg) and 88%, 87%, and 87%,
respectively, for the site visitor class. This implies that BM1 rightly classified 53 samples as managers
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and misclassed seven samples as site visitors while rightfully classifying 52 samples as site visitors
and wrongly classifying eight samples as managers.

Table 1. The classification and misclassification between the managers' and site visitors' test

samples.
Custom T F BM1 T F
Mg 54 6 Mg 53 7
Sv 39 21 Sv 52 8
BM2 T F BM3 T F
Mg 55 5 Mg 55 5
Sv 54 6 Sv 48 12
BM4 T F Proposed T F
Mg 55 5 Mg 57 3
Sv 55 5 Sv 58 2

In continuation, all attention and analysis are focused on the two similar samples since all the
models rightly classified all the other test samples except these two. To have a balanced
representation of the values extracted from the experiments in charts presented in Figures 6&7 and
Figure 8&9, the absolute natural logarithm (Ln) of the values where computed and used to plot the
various charts. For BM2, a 90% precision, 91% recall, and a 91% F1-score for class 4(Mg) were
obtained, and 92%, 90%, and 91% for the site visitor class (see Figures 6&7). This indicates that BM2
rightfully classified 55 samples out of the 60 test samples as managers and incorrectly classified five
samples as site visitors. The model also rightly classified 54 samples of site visitors and misclassified
six samples as managers (see Table 1). The BM3, on the other hand, yielded a 91% precision, 80%
recall, and 85% F1 score for class 4(Mg) and 92%, 92%, and 92%, respectively, for the site visitor class.
This indicates that BM3 classified 55 samples appropriately as managers and misclassified five
samples as site visitors, while 51 were rightfully classified as site visitors and nine were misclassified
as managers.
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Figure 6. Results from the SBM.
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Figure 8&9 below represents the results of various metrics using the BM4 and the proposed

model. The BM4 produced a 92% precision, recall, and F1-score for class 4(Mg) and the same scores

for the site visitor class. This indicates that BM4 rightfully classified 55 samples from managers and
site visitors and misclassified five samples each from both classes. On the other hand, the proposed
model produced 97% precision, 95% recall, and a 97% F1-score for class 4(Mg) and 96% precision,
98% recall, and a 97% F1-score for class 6(SV), indicating a superior performance compared to the

custom-built model and the individual contributing learning models. The proposed model
misclassified only three managers' samples and two site visitors' samples (see Figure 9).
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Figure 8. Results from the LBM.
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Figure 9. Results from the proposed models.

During the experiments, the test accuracy and mean scores of the various studied models were
also observed (see Table 2). The accuracy of the custom model and the adopted co-learner models
ranges from 94% to 98%, with the custom-built model yielding the least accuracy, followed by the
BM3, while BM2 and BM4 recorded the highest accuracy among the adopted models. The proposed
model produced an exceptional accuracy of 99% better than the custom model and the other co-
learner models. The custom benchmark model produced a means square error score of 0.23, a mean
square log error of 0.006 and an MCC score of 0.94 compared to the introduced model, which
produced a lower mean square error of 0.04, MSLE of 0.001 and MCC of 0.99.

Table 2. Accuracy and mean matric results from all models.

Model Test Accuracy MSE MSLE MCC
Custom 0.94 0.23 0.006 0.94
BM1 0.97 0.13 0.004 0.96
BM2 0.98 0.09 0.003 0.97
BM3 0.96 0.14 0.004 0.96
BM4 0.98 0.08 0.002 0.98
Proposed 0.99 0.04 0.001 0.99

With a negligible performance loss, our quantized model reduced significantly from 61M
parameter weight to 4M parameter weight and processing speed from 45 seconds to 0.01 seconds.
The deep quantization targets extremely latency-driven applications that run on embedded devices.
These devices require real-time inferencing, and our proposed method yields the needed
characteristics to function in real time.

6. Discussion and Conclusions

For the smooth convergence of the constructed custom model, the various co-learning and
contributing models, and the actual proposed model, strategies such as hyperparameter
optimization, batch normalization through implicit regularizations, learning rate annealing, and
aggressive dropouts for enhanced generalization process were judiciously deployed in the various
architectures used during the experiments. Table 2 above shows the performance representation of
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the benchmarked custom, custom, and proposed models. The introduced model outperformed the
custom model by gains in convergence and accuracy from 0.94 to 0.99, which is highly significant in
the object recognition and classification domain.

Deep CNN architectures are affected by high variance during training and inferencing due to
their specific training data dependence. Thus, they are highly prone to overfitting, which causes
increased bias and generalization reduction. We checkmated this issue by training different efficient
models and obtaining a collection of diverse predictive models. These were then unified to form a
single efficient model capable of rapid and optimal object classification. Various base-learning models
were selected and experimented with during the experimentation process to determine the best
models for rapid and accurate object feature learning. The models were then evaluated for efficiency,
accuracy, and the best combination to yield the proposed model. The results of the experiments were
statistically evaluated to determine the significant improvement in the trained models.

Table 3. Accuracy and mean matric results from all models.

Method MAP(Accuracy)
YoloV4 0.859
Centernet?2 0.909
Swin-CMR 0.921
YoloV5 with PT 0.922
Proposed 0.99

We also compared the proposed rapid and efficient model with other related models in the
literature. Our model yielded superior performance in terms of accuracy, efficiency, and less complex
architecture for the classification and identification of fine-grained macro-level hardhats in complex
settings (see Table 3). The introduced architecture uses few learning parameters; thus, it is less
computationally intensive, which is a critical factor to consider during the model inference process
and deployment in the embedded settings. The proposed unified learning model achieved an
accuracy of 99.01% and a mean square error of 0.04, which are remarkable in the PPE recognition and
classification domain.

The combination of several efficient deep learning architectures yielded a superior, promising
predictive and object identification performance that individual learning or constituent models could
not accomplish, as observed from the different experiments conducted in this work. The proposed
model architectural unification strategy driven by the ensemble learning concept minimized the
model variance problems through the optimal combination of predictions from the multiple co-
learning models, thereby reducing the introduced model sensitivity to specified training algorithms
and data. The performance of the proposed unified model simulates an actual real-world situation
with minimal variance, reduced overfitting, and enhanced generalization, which led to the
emergence of an efficient and rapid processing model. The proposed model is considered to help
develop an industrial safety solution to detect the different types of hardhats in the industrial setting
to ensure the safety of personnel and other critical infrastructures. The model will be extended to
learn diverse safety vests and other safety apparel attributes for a robust and more fine-grain safety
PPE classification and macro-level identity recognition in other areas such as disaster scene object,
mapping, and classification and recognition.
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