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Abstract: The efficient recognition and classification of personal protective equipment are essential for ensuring 

the safety of personnel in complex industrial settings. Using the existing methods, manually performing macro-

level classification and identification of personnel in intricate spheres is tedious, time-consuming, and 

inefficient. The availability of several artificial intelligence models in recent times presents a new paradigm 

shift in object classification and tracking in complex settings. In this study, several compact and efficient deep 

learning model architectures are explored, and a new efficient model is constructed by fusing the learning 

capabilities of the individual, efficient models for better object feature learning and optimal inferencing. The 

new model construct follows the contributory learning theory whereby each fussed model brings its learned 

features, which are then combined to obtain a more accurate and rapid model using normalized quantization-

aware learning. During the investigation, a separable convolutional driven model was constructed as a base 

model, and then the various efficient architectures combined for the rapid identification and classification of 

the various hardhat classes used in complex industrial settings. A remarkable rapid classification and accuracy 

were recorded with the new resultant model. 

Keywords: deep learning ensemble; rapid object classification; onsite personnel identification; 

normalized quantization-aware learning; complex industrial scene 

 

1. Introduction 

The concept of contributory learning, otherwise generally referred to as ensemble learning, 

merges different pieces of model architectures (see Figure 1) to build a unified model that offers 

superior learning features and generalization for enhanced object classification performance. Deep 

artificial learning models that possess diverse processing architecture provide a more outstanding 

performance against conventional or shallow object classification models. By extension, the unified 

contributory learning models blend the advantages of the artificial deep learning models to derive a 

final model with an improved generalization performance. 

The object classification task deals with new observation categorization relying on a hypothesis 

derived or learned from a collection of training data. The mapping of the features of input data to 

their corresponding or fitting labels represents the hypothesis that the core objective is to relatively 

approximate the actual undetermined function as closely as possible to minimize generalization 

errors [1]. Despite the efforts of the single architectures to reduce the generalization errors, it is 

challenging to attain a satisfactory performance, especially with inadequate, unbalanced, noisy, and 

high-dimensional complex data [2]. This is orchestrated by the single models' difficulty in capturing 

the multiple features embedded in the input data and their corresponding structures. It, therefore, 

becomes imperative to construct a rapid, efficient model that can learn the various characteristics of 

complex data efficiently. 
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Figure 1. A cross-section of a unified model framework. 

In the unified learning concept, a collection of features that passes through diverse 

transformations is initially extracted and learned. Then, multiple learning models or algorithms are 

deployed to generate weak predictive results based on the learned features before the fusion of the 

individually learned features by an intermediate mechanism to produce a superior discriminative or 

classification framework. A conventional unified learning model consists of two phases: (1) the initial 

classification result production step with various weak classifies and (2) the fusion of the multiple 

results to form a reliable model to produce an outcome with an appropriate mechanism. There are 

several extensively deployed ensemble classification schemes in task classifications, such as random 

forest [3], AdaBoost [4], gradient boosting [5], random subspace [6], etc. Through a training dataset 

random sampling, the Bagging approach creates sample subsets, which are used to train basic models 

for inferencing [7]. 

In random subspace utility, a set of feature subspaces are constructed by performing features 

random sampling and training basic classifiers in their subspace domains to produce multiple results 

and then unified into a single final result [6]. In Gradient Boosting, data are randomly sampled to 

create a sum of the last residuals by integrating tiny models that forcefully make predictions near the 

actual value [8]. The ensemble stacking approach is vital in constructing unified, efficient learning 

models. This method combines the outputs of different base models using an effective selection 

mechanism to yield a superior classification or predictive model.  

The stacking approach deploys a meta-learning concept in task processing to fuse or integrate 

base models' outputs [1]. A model blending concept is birthed when a linear model constitutes the 

last decision-making portion of the stacking model. In the stacking process or stacked regression, the 

dataset is divided randomly into 𝐷 equal parts. Given a 𝐷௧௛ – fold cross-validation of the dataset, a 

set is reserved for the proposed model test while the remaining are used for the model training. The 

predictions of the various base learning models are obtained using the train test pair subsets of the 

dataset, which then serve as the meta-data deployed to construct a meta-model. 

These shallow algorithms lack robustness for learning fine-grained similar features and thus 

significantly impact the performance of the trained model. This investigation introduces a 

quantization-aware meta-learning feature-based deep learning architecture fusing method. This 

method learns the object features and is lightweight and rapid in processing new objects due to 

quantization. 
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2. Materials and Methods 

In recent years, pieces of literature on deep-learning architectural ensembles have emerged from 

which our model design concept is derived. Koitka and Friedrich [9] introduced an ensembled 

network based on the optimized deep convolutional artificial network for image classifications in 

their work. They adopted several convolutional neural network architectures similar to our proposed 

model. During the training process, pre-trained models were fine-tuned and partitioned into two 

different optimal steps by initially training the logit layers for adaptation to random initialization for 

the free flow of information and domain dataset. Then, the entire layers are trained by deploying a 

polynomial decay optimizer.  

Also, a neural ensemble-based detection of patterns was proposed to inspect specimens using a 

two-level deep model architecture ensemble [9]. The first-level ensemble was used to verify a normal 

cell with a superior confidence score and two expected outputs from each network. The second-level 

ensemble handled defect cells emanating from the first level ensembled network. Then, the 

individual network predictions were fused using the full voting ensemble technique [10]. A weighted 

convolutional neural network ensemble method [11] was proposed to efficiently unify convolutional 

operation probabilities' outcomes.  In their work, Nguyen and Pernkopf [12] introduced a CNN-

based ensemble technique in conjunction with the nearest neighbor filter to classify acoustic scenes. 

In the work, they adopted several CNN model architectures for performing single-input and multi-

input channel learning and three base models for the ensemble network construct.  

In another related investigation, Fawaz, et al. [13] ensembled 60 deep-learning models to perform 

time series classification tasks. Furthermore, joint training for neural network ensembles that use a 

single loss function to train multiple deep learning architectures with multiple branches was 

investigated [14]. The study introduced a collection of novel loss functions that generalized several 

different previous techniques, and their theoretical and empirical characteristics were thoroughly 

examined for joint training tasks. The presented method in this work adheres to the aforementioned 

principles and practices with an improved network fusing layer. 

Contributions: 

Our research paper makes several significant contributions to the field of safety object 

classification and deep learning: 

1. Unified Architecture: We introduce a unified deep learning architecture that is specifically 

designed for safety object classification, offering a comprehensive solution to the challenges 

associated with real-time safety systems. 

2. Normalized Quantization-Aware Learning: We propose and validate the effectiveness of 

Normalized Quantization-Aware Learning, a novel approach that combines quantization and 

normalization techniques to improve both the speed and accuracy of safety object classification. 

3. Experimental Evaluation: We provide a comprehensive evaluation of our architecture through 

extensive experiments, showcasing its superior performance in terms of accuracy, speed, and 

memory efficiency when compared to existing methods. 

4. Real-world Applicability: We emphasize the practicality of our approach by demonstrating its 

effectiveness in real-world scenarios, thereby highlighting its potential for integration into safety-

critical applications. 

3. Theoretical Background 

The proposed model comprises a combination of four efficient, lightweight deep learning model 

architectures, with each model contributing to the unified single model learning process. The 

benchmark model for which the test result is used as a yardstick to measure the performance of the 

proposed model is constructed with separable convolutional neural network layers. The separable 
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convolutional neural network [15] consists of layers split into sub-processes or multiple convolutions 

to generate the same output during the convolution process. The depth-wise convolution deploys a 

single convolutional filter for an individual input channel while creating a linear combination of the 

resultant of the depth-wise convolution process using the pointwise convolution mechanism.  

On the other hand, the spatially separable convolutions decompose convolution operations into 

two individual processes. In a typical convolution operation [16,17], if a 3 x 3 kernel filter is employed, 

a sample image can be convolved directly with the kernel. However, in spatially separable 

convolution, a 3 x 1 kernel is first used to convolve over the given image sample before a 1 x 3 kernel, 

which is more parameter efficient compared to the conventional convolution layers because of 

minimal matrix computations. The diagram in Figure 2 shows the benchmark custom model built 

with the SeparableConv2D layers during the study. 

 

Figure 2. The architectural flow of the benchmark custom model with SeparableConv2D layers. 

The proposed architecture's first base model (BM1) is derived from the Inception-V3 

architecture. The Inception-V3 [18] is a CNN architecture that is among the Inception model group 

of networks that enhances the object classification tasks through the incorporation of several 

techniques such as convolution factorization, regularization, label smoothing, parallelized 

computations, dimension reduction, and as well as integration of an auxiliary classifier for object 

label information propagation down the bottom of the network.  
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Figure 3. The proposed unified deep-learning architecture. 

The second base model (BM2) is derived from the Xception deep learning architecture [15], 

inspired by the Inception deep CNN modules. The Xception module convolution layers were 

swapped with depth-wise separable convolutions, which yields slightly superior performance than 

the Inception V3 on large, benchmarked image classification datasets.  

Furthermore, the third base model (BM3) is made of the DenseNet121 CNN model that uses 

dense connections between CNN layers via dense blocks in which all layers in the network are 

directly linked. In the network, the preservation of the working principle of the feed-forward layers 

is achieved by fusing each layer in the network with extra inputs from prior layers, which then 

transfer their feature maps to all successive layers. Finally, the fourth base model (BM4) is derived 

from the MobileNet CNN architecture [19], which also uses depth-wise separable convolutions to 

construct lightweight artificial deep networks.  

Stacking is an ensemble strategy consisting of a two-layer structure for combining the outputs 

of multiple base architectures through the meta-model learning concept to identify an optimal 

classification or regression model [20]. The feature learning capabilities of different CNN models can 

be integrated to form an optimal model for a superior classification model without necessarily 

increasing the depth of the new networks. This strategy can correct errors emanating from the base 

models to enhance the performance of the ensembled model by maximizing the learning capabilities 

of the different contributing models.  

In this work, we fuse the features from these efficient architectures using a normalized low-bit 

precision quantization-aware learning paradigm to arrive at a more efficient and rapid model for the 

object classification task. The low-bit precision quantization-aware learning reduces the 

computational and memory requirements of the introduced network by representing the model 

weight and activations using a lower number of bits. It also helped mitigate the performance 

degradation due to the quantization process when mapping continuous values to a finite set of 

discrete values. The quantization process is represented as: 

Q(x) = ⌊(x/Δ) ⋅ Δ⌉ 
Where: 

Q(x) is the quantized value of x, and Δ is the size of the quantization step, determined by the number 

of bits used for the quantization process. The quantized weight error is computed using: 

E = w - q(w) 

Where: 
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E represents the quantization error; w is the model's original floating-point weight, and q(w) is the 

quantized weight. The quantized activation error is represented by:  

E = a - q(a) 

Where: 

E is the quantization error, a is the original floating-point activation, and q(a); the quantized 

activation. 

4. Materials and Methods 

The experimental procedure and the proposed model evaluation matrices are presented in this 

section. The experiment was conducted on a high-end GeForce RTX TITAN Xp GPU computer with 

12 GB graphic capability, cuDNN, and CUDA Toolkits. The model was built on the TensorFlow open-

source deep learning framework and Python programming language. The hardhat dataset used for 

the experiment was curated using camera sensors in different positional angles, and others were 

scrapped from the web with 1705 samples of eight different classes. The dataset was split into training 

and test sets with 1225 and 480 samples, respectively. The training set was further divided to obtain 

the validation set with an 80% and 20% sample split strategy.  

According to the global hardhats color coding system, white identifies the managing team, 

engineers, supervisors, and forepersons in the construction and industrial settings. This class was 

labeled as 4 and denoted with "Mg" during the experiments. Furthermore, the blue hardhat color 

coding identified the electricians and high machine operators and was designated with ET&O and 

labeled class 0; the pink hardhat color identified the female workers and was represented with "FF" 

and labeled as class 1 during the experiment. The red color coding recognized the firefighters and 

was defined with "FW" and labeled with class 2. The yellow color coding recognized the laborer and 

heavy-duty machine operators and was denoted with "LH&C" and classed as 3. In continuation, the 

safety officers were identified with the green color code, marked with "SO, " and classed with the 

number 5. Also, the site visitors were coded with grey, denoted as "SV, " and classed with the number 

7. Finally, the brown hardhat color coding identified the welders and high-heat equipment operators 

and was represented with "W&HHO" with the number 7 class.  

The hardhats were macro-grouped into eight classes. Due to the high volume of data required 

for training and testing the reliable deep learning model, data augmentation was used to artificially 

increase the dataset volume and boost the classification accuracy of the proposed model. The dataset 

was rescaled to 1./255, 40° rotation range, width shift range of 0.2, height shift range of 0.2, shear 

range of 0.2, zoom range of 0.2, and horizontally flipped.  In the proposed model-building process, 

a custom benchmark model was first built and trained using five SeparableConv2D layers, as shown 

in Figure 2. The results of the custom model were used to measure the hardhat classification 

capabilities of the main proposed architecture. Then, the BM1, BM2, BM3, and BM4 were trained 

separately and then linearly combined using normalized low-bit precision quantization-aware 

learning. Each selected architecture and the final proposed model were trained using a learning rate 

scheduler of 1e-3 * 0.9 and compiled using a categorical cross-entropy as a loss function with an Adam 

optimizer, all trained with 100 epochs. As illustrated in Figure 3, a quantized layer was used to 

perform the final classification task using a softmax function after the unifying mechanism. 

5. Results 

This This section presents a detailed analysis of the proposed method to ensure that the results 

obtained are interpreted correctly with their corresponding significant relationships spotted. The 

statistical tests are vital in evaluating the statistical differences in performance of each constructed 

custom model, the adopted and the proposed models. We measured the accuracy, precision, recall, 

and F1 scores of all the models involved in the experiment. Also, empirical processes were performed 

to establish the presence or absence of considerable variations using the performance metrics' mean 

values of the custom, individual contributing, and proposed models. Furthermore, the mean square 
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errors (MSE), means-square-log-errors (MSLE), and the Matthews correlation coefficient (MCC) 

scores were obtained for all the models to reaffirm the proposed model's performance. 

 

Figure 4. Results from the custom. 

 

Figure 5. Results from the FBM models. 

The performance metrics obtained from the custom-built model and BM1 are shown in Figures 

4&5 with respect to the precision, recall, and F1 scores. It was observed that the custom model rightly 

classified all the hardhats from the test data except class 4(Mg), which represents the managers, and 

class 6(SV), which recognizes the site visitors. The difficulty in classifying these two samples of the 

hardhat is due to the close relationship between their color coding, i.e., grey and white. The custom 

model rightly classified 54 samples of the managers' hardhat and misclassified six samples out of the 

60 test samples as site visitors. On the other hand, it appropriately classified 39 samples of the site 

visitor's hardhat test samples and wrongly classified 21 samples as the managers' hardhat (see Table 

1). The BM1 also rightly classified all the test samples except the two highly similar classes. It recorded 

a precision of 87%, recall of 88%, and F1-score of 88% for class 4(Mg) and 88%, 87%, and 87%, 

respectively, for the site visitor class. This implies that BM1 rightly classified 53 samples as managers 

0
0.01
0.02
0.03
0.04
0.05
0.06

BM1

BM1 Model  Precision BM1 Model  Recall BM1 Model  F1-score
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and misclassed seven samples as site visitors while rightfully classifying 52 samples as site visitors 

and wrongly classifying eight samples as managers. 

Table 1. The classification and misclassification between the managers' and site visitors' test 

samples. 

Custom T F 

 

BM1 T F 

Mg 54 6 Mg 53 7 

Sv 39 21 Sv 52 8 

BM2 T F BM3 T F 

Mg 55 5 Mg 55 5 

Sv 54 6 Sv 48 12 

BM4 T F Proposed T F 

Mg 55 5 Mg 57 3 

Sv 55 5 Sv 58 2 

In continuation, all attention and analysis are focused on the two similar samples since all the 

models rightly classified all the other test samples except these two. To have a balanced 

representation of the values extracted from the experiments in charts presented in Figures 6&7 and 

Figure 8&9, the absolute natural logarithm (Ln) of the values where computed and used to plot the 

various charts. For BM2, a 90% precision, 91% recall, and a 91% F1-score for class 4(Mg) were 

obtained, and 92%, 90%, and 91% for the site visitor class (see Figures 6&7). This indicates that BM2 

rightfully classified 55 samples out of the 60 test samples as managers and incorrectly classified five 

samples as site visitors. The model also rightly classified 54 samples of site visitors and misclassified 

six samples as managers (see Table 1). The BM3, on the other hand, yielded a 91% precision, 80% 

recall, and 85% F1 score for class 4(Mg) and 92%, 92%, and 92%, respectively, for the site visitor class. 

This indicates that BM3 classified 55 samples appropriately as managers and misclassified five 

samples as site visitors, while 51 were rightfully classified as site visitors and nine were misclassified 

as managers. 

 

Figure 6. Results from the SBM. 
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Figure 7. Results from the TBM models. 

Figure 8&9 below represents the results of various metrics using the BM4 and the proposed 

model. The BM4 produced a 92% precision, recall, and F1-score for class 4(Mg) and the same scores 

for the site visitor class. This indicates that BM4 rightfully classified 55 samples from managers and 

site visitors and misclassified five samples each from both classes. On the other hand, the proposed 

model produced 97% precision, 95% recall, and a 97% F1-score for class 4(Mg) and 96% precision, 

98% recall, and a 97% F1-score for class 6(SV), indicating a superior performance compared to the 

custom-built model and the individual contributing learning models. The proposed model 

misclassified only three managers' samples and two site visitors' samples (see Figure 9). 

 

Figure 8. Results from the LBM. 
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Figure 9. Results from the proposed models. 

During the experiments, the test accuracy and mean scores of the various studied models were 

also observed (see Table 2). The accuracy of the custom model and the adopted co-learner models 

ranges from 94% to 98%, with the custom-built model yielding the least accuracy, followed by the 

BM3, while BM2 and BM4 recorded the highest accuracy among the adopted models. The proposed 

model produced an exceptional accuracy of 99% better than the custom model and the other co-

learner models. The custom benchmark model produced a means square error score of 0.23, a mean 

square log error of 0.006 and an MCC score of 0.94 compared to the introduced model, which 

produced a lower mean square error of 0.04, MSLE of 0.001 and MCC of 0.99. 

Table 2. Accuracy and mean matric results from all models. 

Model Test Accuracy MSE MSLE MCC 

Custom 0.94 0.23 0.006 0.94 

BM1 0.97 0.13 0.004 0.96 

BM2 0.98 0.09 0.003 0.97 

BM3 0.96 0.14 0.004 0.96 

BM4 0.98 0.08 0.002 0.98 

Proposed 0.99 0.04 0.001 0.99 

With a negligible performance loss, our quantized model reduced significantly from 61M 

parameter weight to 4M parameter weight and processing speed from 45 seconds to 0.01 seconds. 

The deep quantization targets extremely latency-driven applications that run on embedded devices. 

These devices require real-time inferencing, and our proposed method yields the needed 

characteristics to function in real time.  

6. Discussion and Conclusions  

For the smooth convergence of the constructed custom model, the various co-learning and 

contributing models, and the actual proposed model, strategies such as hyperparameter 

optimization, batch normalization through implicit regularizations, learning rate annealing, and 

aggressive dropouts for enhanced generalization process were judiciously deployed in the various 

architectures used during the experiments. Table 2 above shows the performance representation of 

0 10 20 30 40 50 60

class 0(ET&O)

class 1(FF)

class 2(FW)

class 3(LH&C)

class 4(Mg)

class 5(SO)

class 6(SV)

class 7(W&HHO)

Proposed Model 

Proposed Model  Precision Proposed Model  Recall

Proposed Model  F1-score Proposed Model  Support
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the benchmarked custom, custom, and proposed models. The introduced model outperformed the 

custom model by gains in convergence and accuracy from 0.94 to 0.99, which is highly significant in 

the object recognition and classification domain. 

Deep CNN architectures are affected by high variance during training and inferencing due to 

their specific training data dependence. Thus, they are highly prone to overfitting, which causes 

increased bias and generalization reduction. We checkmated this issue by training different efficient 

models and obtaining a collection of diverse predictive models. These were then unified to form a 

single efficient model capable of rapid and optimal object classification. Various base-learning models 

were selected and experimented with during the experimentation process to determine the best 

models for rapid and accurate object feature learning. The models were then evaluated for efficiency, 

accuracy, and the best combination to yield the proposed model. The results of the experiments were 

statistically evaluated to determine the significant improvement in the trained models. 

Table 3. Accuracy and mean matric results from all models. 

Method MAP(Accuracy) 

YoloV4 0.859 

Centernet2 0.909 

Swin-CMR 0.921 

YoloV5 with PT 0.922 

Proposed 0.99 

We also compared the proposed rapid and efficient model with other related models in the 

literature. Our model yielded superior performance in terms of accuracy, efficiency, and less complex 

architecture for the classification and identification of fine-grained macro-level hardhats in complex 

settings (see Table 3). The introduced architecture uses few learning parameters; thus, it is less 

computationally intensive, which is a critical factor to consider during the model inference process 

and deployment in the embedded settings. The proposed unified learning model achieved an 

accuracy of 99.01% and a mean square error of 0.04, which are remarkable in the PPE recognition and 

classification domain. 

The combination of several efficient deep learning architectures yielded a superior, promising 

predictive and object identification performance that individual learning or constituent models could 

not accomplish, as observed from the different experiments conducted in this work. The proposed 

model architectural unification strategy driven by the ensemble learning concept minimized the 

model variance problems through the optimal combination of predictions from the multiple co-

learning models, thereby reducing the introduced model sensitivity to specified training algorithms 

and data. The performance of the proposed unified model simulates an actual real-world situation 

with minimal variance, reduced overfitting, and enhanced generalization, which led to the 

emergence of an efficient and rapid processing model. The proposed model is considered to help 

develop an industrial safety solution to detect the different types of hardhats in the industrial setting 

to ensure the safety of personnel and other critical infrastructures. The model will be extended to 

learn diverse safety vests and other safety apparel attributes for a robust and more fine-grain safety 

PPE classification and macro-level identity recognition in other areas such as disaster scene object, 

mapping, and classification and recognition. 
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