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Abstract

The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is a crucial regulator of cellular
metabolism, proliferation, and survival. It is frequently dysregulated in metabolic, cardiovascular,
and neoplastic disorders. Despite the advancements in multi-omics technology, existing methods
often fail to provide real-time, pathway-specific insights for precision medicine and drug
repurposing. We offer Agentic RAG-Driven Multi-Omics Analysis (ARMOA), an autonomous,
hypothesis-driven system that integrates retrieval-augmented generation (RAG), large language
models (LLMs), and agentic Al to thoroughly analyze genomic, transcriptomic, proteomic, and
metabolomic data. Through the use of graph neural networks (GNNs) to model complex interactions
within the PI3BK/AKT pathway, ARMOA enables the discovery of novel biomarkers, probable
candidates for drug repurposing, and customized therapy responses to address the complexities of
PI3K/AKT dysregulation in disease states. ARMOA dynamically gathers and synthesizes knowledge
from multiple sources, including KEGG, TCGA, and DrugBank, to guarantee context-aware insights.
Through adaptive reasoning, it gradually enhances predictions, achieving 91% accuracy in external
testing and 92% accuracy in cross-validation. Case studies in breast cancer and type 2 diabetes
demonstrate that ARMOA can identify synergistic drug combinations with high clinical relevance
and predict therapeutic outcomes specific to each patient. The framework’s interpretability and
scalability are greatly enhanced by its use of multi-omics data fusion and real-time hypothesis
creation. ARMOA provides a cutting-edge example to precision medicine by integrating multi-omics
data, clinical judgment and Al agents. Its ability to provide valuable insights on its own makes it a
powerful tool for advancing biomedical research and treatment development.

Keywords: multi-omics integration; PI3K/AKT pathway; retrieval-augmented generation (RAG);
agentic Al; graph neural networks (GNNSs); biomarker discovery; drug repurposing; precision
medicine; large language models (LLMs)

1. Introduction
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The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is a major regulator of cellular
metabolism, growth, proliferation, and survival in conditions such as cancer, metabolic disorders,
and cardiovascular diseases. It has been a primary focus for precision medicine because of its
recurrent dysregulation in various conditions [1]. Despite extensive study over several decades,
patient heterogeneity, pharmaceutical resistance, and the inability to effectively integrate multi-omics
data persist in obstructing therapy choices that target the PI3K/AKT pathway. These challenges
demonstrate the necessity for innovative approaches to unravel the complexity of the pathway and
formulate targeted approaches to treatment [2]. The variety of sickness situations also presents a
considerable challenge to effective control of the PI3K/AKT pathway, complicating the identification
of therapeutic targets and affecting the effectiveness of treatments. Traditional approaches often
overlook the complex regulatory processes governing PI3K/AKT signaling, prioritizing single-omics
data, such as transcriptomics or genomics [3]. Traditional computational methods suffer from data
fragmentation, bias, and limited interpretability, even though the integration of multi-omics is
essential for understanding disease-specific pathway modifications. Moreover, off-target effects,
adaptive resistance, and insufficient pathway-specific drug repurposing techniques represent notable
limitations of current drug discovery methodologies [4].

The predominant approaches for investigating the deregulation of the PI3K/AKT pathway are
reactive and incapable of providing real-time, context-sensitive knowledge. A significant number of
approaches depend on predetermined algorithms and static statistics, which inadequately capture
the dynamic nature of route activity and its interaction with other biological processes [5]. The
absence of autonomous, self-optimizing systems capable of generating hypotheses and enhancing
forecasts in real time has impeded the utilization of artificial intelligence (AI) in multi-omics analysis,
notwithstanding Al’s demonstrated potential in tackling certain challenges. These limitations
underscore the urgent necessity for innovative solutions that can overcome prejudice, limited
interpretability, and fragmented data [6].We introduce Agentic RAG-Driven Multi-Omics Analysis
(ARMOA), an innovative Al-driven framework that integrates large language models (LLMs),
agentic Al systems, and retrieval-augmented generation (RAG) to autonomously analyze and
understand multi-omics data, therefore addressing these challenges. ARMOA employs dynamic
knowledge retrieval to autonomously extract and synthesize information from diverse sources,
including public repositories (KEGG, TCGA, DrugBank) and the latest scientific literature [7]. To
enable context-aware therapeutic decision-making, it delineates the complex interactions among
genes, proteins, and metabolites within the PI3K/AKT pathway through the application of graph
neural networks (GNNSs). Moreover, adaptive learning is facilitated by ARMOA'’s agentic Al-driven
hypothesis generation engine, which perpetually improves pharmaceutical repurposing, biomarker
discovery, and individualized therapy predictions. The establishment of ARMOA represents a
transformative shift in pathway-oriented therapeutic approaches and Al-facilitated multi-omics
investigation. ARMOA offers a scalable, interpretable, and independent methodology for illnesses
influenced by PI3K/AKT, effectively connecting multi-omics data with clinical decision-making. Its
autonomous nature allows it to function without preconceived notions, continually adapting to
patient information, emerging scientific insights, and evolving therapies. We demonstrate ARMOA's
ability to identify novel PI3K/AKT modulators, repurpose existing drugs, and predict patient-specific
therapeutic responses with remarkable accuracy and practical relevance through case studies in type
2 diabetes and breast cancer. Our work propels the future of Al-driven biomedical research and
clinical practice, laying the foundation for next-generation precision medicine by offering an
innovative tool to navigate the intricacies of disease-specific pathway dysregulation.

2. Related Works

Using multi-omics data integration, machine learning-based predictive models, and
conventional bioinformatics methods, the PI3K/AKT pathway has been extensively investigated in
disease scenarios. However, problems including data fragmentation, restricted interpretability in
precision medicine applications, and a lack of real-time adaptation are common with current
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approaches. By summarizing previous research in the fields of medicine repurposing, multi-omics
integration, and Al-driven pathway analysis, this section draws attention to the flaws that ARMOA
seeks to overcome.

There are extensive studies for the PI3K/AKT signaling system. New research reveals that the
RNA-targeting mechanism Cas13d can significantly alter biological pathways in ways that go beyond
its original function. A recent study [8] found that Cas13d increases cell proliferation in HelLa cells
by upregulating the PI3K/AKT pathway through PFKFB4 overexpression. The study investigated the
effects of Cas13d using transcriptome and proteome profiling and discovered 94 upregulated and
847 downregulated genes along with 185 upregulated and 231 downregulated proteins. Enrichment
analysis further connected the PI3K/AKT pathway, underscoring the need for complex frameworks
that can dynamically predict and minimize off-target repercussions in gene-editing applications.

Multi-omics approaches are now necessary to understand complex biological systems, yet
combining several data types remains challenging. Directional Pathway Modeling (DPM), a data
fusion technique designed to integrate multi-omics information by considering the directionality and
relevance of genes, transcripts, and proteins [9]. By enabling researchers to define expected
interactions between datasets based on biological correlations or experimental design, DPM delivers
a more biologically meaningful integration than other methods. DPM rewards genes and pathways
that exhibit consistent changes across many omics layers and penalizes those with inconsistent
directionality in order to increase the accuracy of pathway enrichment analysis. The work
demonstrated the effectiveness of this methodology by analyzing IDH-mutant gliomas and
integrating transcriptomic, proteomic, and DNA methylation data to characterize gene and pathway
regulation. Using DPM on ovarian cancer datasets, researchers also discovered potential biomarkers
with trustworthy prediction signals in both transcript and protein expression levels. As a generic and
adaptable framework, DPM provides a powerful tool for gene prioritizing and route analysis in
multi-omics research. Because of its ability to capture directed linkages, it is particularly relevant for
creating Al-driven retrieval-augmented models, such as the ones proposed in this study, to enhance
real-time gene-pathway discovery and analysis.

The PIBK/AKT pathway, which is critical to cancer metabolism, plays a major role in supporting
the Warburg effect, a feature of cancer characterized by enhanced glycolytic metabolism. When this
system is dysregulated, colorectal cancer (CRC) develops tumors and undergoes metabolic
reprogramming [10]. The effects of thymoquinone, a bioactive component from Nigella sativa, on
CRC metabolism and tumorigenicity were investigated. The study demonstrated that thymoquinone
slows glycolytic metabolism via regulating the PI3K/AKT axis and targeting Hexokinase 2 (HK2), a
rate-limiting glycolytic enzyme. Overexpression of HK2 was shown to preserve tumorigenicity, but
its pharmacologic or genetic inhibition reduced tumor formation and glycolytic activity. These
findings show that thymoquinone has promise as an antimetabolite drug for CRC, offering a fresh
approach to addressing metabolic reprogramming in cancer. However, the study’s limitations
include its reliance on in vitro models and the need for further confirmation across a range of cancer
types and preclinical animal models. Additionally, the precise effects of thymoquinone on the
PIBK/AKT pathway remain unclear, underscoring the need for complex frameworks to integrate
multi-omics data and elucidate effects unique to a particular pathway.

Drug repurposing is the act of discovering novel therapeutic applications for previously
approved pharmaceuticals is one potential strategy for treating cancer. Because of their advantages
such as cost-effectiveness, established safety profiles, and faster development times—repurposed
drugs are attractive for treating drug resistance and toxicity in cancer treatment. Repurposed drugs
can target cancer markers and the tumor microenvironment, offering new strategies to prevent tumor
growth and spread, per a recent analysis [11]. The study also examines how drug delivery and
therapeutic efficacy might be enhanced by combining nanotechnology with drug repurposing. For
example, in clinical trials, nanomedicines like nab-paclitaxel and liposomal doxorubicin have shown
promise in treating conditions including pancreatic and breast cancer. However, there are still
problems, like the limited capacity to apply preclinical findings in clinical settings and the lack of
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clarity regarding the long-term toxicity of nanocarriers. Additionally, clinical validation is still
ongoing even though combination treatments that combine repurposed pharmaceuticals with
traditional anticancer agents show potential for synergy. These limitations show how complex
frameworks are needed to integrate multi-omics data for precision targeting and optimize drug
repurposing strategies.

In breast cancer, the PI3K/AKT/mTOR pathway regulates tumor development, survival, and
resistance to treatment, making it an essential target for therapy [12]. Genetic changes including
PTEN deletion and PIK3CA mutations result in system dysregulation and a worse prognosis.
Although PI3K, AKT, and mTOR-targeting therapies have showed promise, medication resistance
and off-target consequences frequently restrict their effectiveness. Research is being carried out on
combination therapy and next-generation inhibitors to address these issues; biomarker-guided
personalized treatment is becoming a more important tactic to enhance results. Inmunotherapy in
conjunction with PI3K/AKT/mTOR inhibitors may also boost anti-tumor immune responses and
reverse the tumor microenvironment’s immunosuppressive effects. Some limitations were brought
to light by the investigation, such as the requirement for more thorough knowledge of resistance
mechanisms and improved predictive biomarkers. These limitations show that in order to predict
patient-specific reactions and improve treatment options, sophisticated frameworks that can combine
multi-omics data are required.

Precision medicine and Al offer highly personalized approaches to diagnosis, prognosis, and
therapy that have the potential to revolutionize healthcare [13]. Al provides physicians with
augmented intelligence to aid in decision-making by employing sophisticated processing and
inference to yield insights. In order to handle the intricate problems in precision medicine, recent
studies have shown how AI may combine genetic and nongenomic data, including patient
symptoms, clinical history, and lifestyle factors. For illnesses like cancer, where patient variability
and treatment resistance call for specialized therapeutic methods, this synergy is especially pertinent.
The ultimate objective of lowering the burden of disease and healthcare expenses worldwide can be
achieved by using Al-driven models to assess multi-omics data, forecast treatment results, and find
biomarkers for early disease identification. Still, issues remain, such as the requirement for reliable
datasets, interpretable Al models, and clinical validation of insights generated by Al These
drawbacks highlight how crucial it is to create flexible frameworks that can dynamically incorporate
real-time data and produce insightful findings for precision medicine.

Al is transforming precision medicine by enabling the integration and analysis of genetic,
immunological, and medical record data to offer patients personalized insights. A recent analysis
highlights Al’s revolutionary potential in identifying high-risk individuals, predicting disease
activity, and improving treatment strategies [14]. Machine learning (ML) techniques excel at
evaluating complex datasets like immunological responses and genetic variants, whereas deep
learning approaches enhance pathogenicity prediction and MHC-peptide binding investigations.
These characteristics are particularly helpful in autoimmune rheumatic diseases, where Al-powered
solutions provide physicians with a thorough understanding of their patients’ risks and well-being.
Real-world examples demonstrate how Al may improve diagnosis and treatment outcomes in clinical
settings. However, concerns about privacy, data integrity, and the need for physician trust are
barriers to widespread implementation. Furthermore, robust validation and interpretability are
required for the integration of Al into healthcare processes in order to ensure reliability. These
limitations underscore the need for advanced frameworks capable of efficiently integrating multi-
omics data and generating valuable insights for precision medicine.

Al is transforming drug research and development by boosting efficiency, accuracy, and cost-
effectiveness through the combination of data, processing power, and complex algorithms [15]. When
applying deep learning (DL), Al has demonstrated significant advancements in drug
characterization, target discovery, small molecule design, and clinical trial optimization. Al-driven
models can assist in medication repositioning and clinical trial success prediction, and techniques
such as molecular generation and virtual screening can be used to develop and optimize novel drug
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candidates. Wider adoption is, however, hampered by concerns with data bias, model
interpretability, and ethics. For instance, biased training datasets may produce inaccurate
predictions, and deep learning models” “black-box” nature limits their transparency and reliability.
Furthermore, there are privacy and ethical issues when managing sensitive patient data, particularly
when it comes to clinical trial stratification. Despite these limitations, the combination of Al and
human experience holds a lot of potential for speeding up pharmaceutical discovery.

Retrieval-Augmented Generation (RAG) is a new approach to overcome the limitations of Large
Language Models (LLMs), such as hallucinations, outdated knowledge, and opaque reasoning
processes [16]. By integrating external knowledge resources, RAG enhances the accuracy, validity,
and relevance of LLM results, particularly for information-intensive occupations. RAG’s synergy
with other repositories allows for domain-specific customization and continuous knowledge
updates, making it a powerful tool for applications such as precision medicine and multi-omics
analysis. The performance and interpretability of Al systems have significantly improved with the
inclusion of sophisticated retrieval, generation, and augmentation techniques brought about by the
development of RAG paradigms—Naive RAG, Advanced RAG, and Modular RAG. However, there
are still problems, like the need for scalable augmentation methods, efficient retrieval strategies, and
trustworthy assessment frameworks. These limitations highlight the importance of developing
adaptable, context-aware RAG systems that can efficiently integrate several data sources and
generate valuable insights.

LLMs such as GPT-4 have transformed natural language processing, but their inexperience and
high fine-tuning costs limit their application in gene-related applications [17]. These challenges are
addressed by RAG, which enhances the accuracy and usefulness of LLM results by dynamically
integrating external input. To improve the gene analysis performance of LLMs, a recent study
introduced GeneRAG, a framework that combines RAG and the Maximal Marginal Relevance
(MMR) method. Experiments conducted on National Center for Biotechnology Information (NCBI)
datasets demonstrated that GeneRAG outperforms GPT-3.5 and GPT-4, boosting gene-related
question answering by 39%, increasing the accuracy of cell type annotation by 43%, and lowering
error rates for gene interaction prediction by 0.25. These results illustrate the potential of GeneRAG
to bridge significant gaps in LLM capabilities for genomic applications. The need for dependable
evaluation frameworks, scalable domain-specific data integration, and efficient retrieval mechanisms
are still problems, nevertheless. For precision medicine, these limitations underscore the importance
of developing context-aware, adaptive RAG systems.

Although RAG can incorporate outside knowledge to improve LLMs, most methods typically
retrieve information at the sentence or paragraph level, introducing noise and lowering generation
quality [18]. The development of BiomedRAG, a revolutionary framework designed for the LLM that
fetches chunk-based documents, addressed this issue and improved biomedical applications’
accuracy and versatility. BlomedRAG outperformed state-of-the-art baselines by 4.97% and obtained
an average performance improvement of 9.95% on four biomedical natural language processing
(NLP) tasks and eight datasets. The potential for improving LLMs in the biological domain is
significant, as this paradigm allows for more accurate and contextually aware information retrieval.
The requirement for reliable frameworks for evaluations, scalable domain-specific data integration,
and effective retrieval systems are still issues, nevertheless. The significance of creating flexible,
context-aware RAG systems for precision medicine is underscored by these constraints.

Despite great advancements in our knowledge of the PI3K/AKT pathway and the development
of Al-powered methods for multi-omics integration, there are still many fundamental gaps. There is
not enough of self-optimizing, autonomous systems that can include multi-omics data and produce
real-time insights for pathway modulation. Current methods frequently ignore the dynamic
character of disease progression and the interconnection of molecular networks. Explainable AI (XAI)
frameworks are required to deliver interpretable forecasts and enhance clinical decision-making. Our
new Al-based method, ARMOA, addresses existing gaps by combining RAG, LLMs, and agentic Al
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systems to autonomously analyze and understand multi-omics data related to PI3K/AKT pathway
regulation.

3. Materials and Methods
3.1. The ARMOA Framework

ARMOA is a novel framework designed to integrate and analyze multi-omics data to study the
PI3K/AKT signaling pathway. ARMOA leverages agentic Al systems, RAG, and LLMs to facilitate
real-time, context-aware analysis and facilitate the identification of potential drug candidates and
biomarkers. The framework’s key components include data collection and preprocessing, agentic
RAG system creation, multi-omics data fusion, and predictive modeling. Each component is covered
in detail below, with a focus on the state-of-the-art methods and resources that enable ARMOA to
manage the complexities of PI3K/AKT pathway modulation in precision medicine.

3.2. Data Collection and Preprocessing

In this study, multi-omics data was collected from various public repositories with an emphasis
on CRC and the PIBK/AKT pathway in cancer. The data sources include TCGA and ENCODE
genomic data, which document somatic mutations, copy number variations, and gene expression
patterns, with a focus on genes like MTOR, AKT1, PTEN, and PIK3CA for example. For proteins like
TP53, mTOR, and AKT in particular, the proteomic data, which concentrated on protein interactions
and quantification, was obtained from the PRIDE database. GEO supplied transcriptome
information, namely RNA-seq datasets for variations in gene expression linked to PI3K/AKT
pathway activation or inhibition. Compounds linked to PI3K/AKT-regulated processes like glucose
metabolism and lipid synthesis were among the metabolomic data extracted from HMDB. We also
retrieved medication data from DrugBank and PubChem, concentrating on FDA-approved and
experimental drugs that target PI3K/AKT.

By combining route data from the KEGG, Reactome, and STRING databases, an interaction
matrix for PI3K/AKT signaling was produced. KEGG’s pathway data served as the foundation,
demonstrating the interactions between the genes and proteins in the pathway. The KEGG pathway
for PI3K/AKT was obtained at https://www.genome.jp/pathway/hsa04151. The Reactome data on the
PIBK/AKT signaling pathway was from https://reactome.org/content/detail/R-HSA-198203.
Information about the STRING PI3K/AKT Interaction was taken from https://string-
db.org/network/9606.ENSP00000451828.

The preparation pipeline ensured interoperability across various data formats. Proteomic data
was processed for label-free quantification using MaxQuant, metabolomic data was standardized
using Pareto scaling, and RNA-seq data was normalized using DESeq2. To ensure consistency across
datasets, the ComBat approach was used to correct for batch effects. Differential expression analysis
was performed using limma for RNA-seq and LIMMA-VOOM for proteomics to find genes and
proteins with significant expression changes for further investigation [19-23].

The PI3K/AKT pathway is thoroughly annotated by various databases, which makes it easier to
forecast medication repurposing and do pathway enrichment analysis. The data includes somatic
mutations, copy number variations, differential gene expression, metabolite concentrations, gene
expression levels, protein quantification, post-translational modifications, and therapeutic targets, to
name a few features. These traits help us better understand the PI3K/AKT pathway in colorectal
cancer and facilitate the identification of potential therapeutic targets for medication repurposing.
This study uses multi-omics approaches in conjunction with route data to uncover new information
about the molecular pathways underlying colorectal cancer and potential therapeutic strategies.
Multi-omics pathway links provided by the KEGG, Reactome, and STRING databases allow for
further exploration of gene and protein interaction. To understand the broader network of signaling
events that govern cellular processes in cancer, this may be crucial.
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The ARMOA model combines pathway data from sources such as KEGG, Reactome, and
STRING with multi-omics (genomic, proteomic, transcriptomic, and metabolomic) information. To
guarantee data quality, it starts with preprocessing procedures such feature selection, harmonization,
and normalization. Real-time hypothesis creation is made possible by an agentic RAG system that
dynamically retrieves and synthesizes knowledge. By mimicking intricate relationships within the
PI3K/AKT pathway, GNNs enable multi-omics fusion and predictive modeling for drug repurposing
and biomarker development. Clinical relevance is ensured by validating predictions using in vitro,
in vivo, and clinical data. The PI3K/AKT signaling pathway is depicted in Figure 1, highlighting both
its function in controlling cellular functions and its dysregulation in conditions like cancer and
metabolic illnesses. The complex interactions between genes, metabolites, and proteins are shown in
Figure 2, Molecular Structure of the PI3K/AKT Signalling Pathway Components. This image
illustrates the three-dimensional configuration of crucial proteins involved in the PI3K/AKT
signalling system, an important regulator of cellular growth, survival, and metabolism. The structure
highlights the domains of PI3K (phosphoinositide 3-kinase) and AKT (protein kinase B), with
designated parts depicted in purple (alpha helices), white (beta sheets), and grey (loop areas). The
ribbon model emphasises the spatial arrangement and interactions of these structural components,
clarifying their roles in signal transduction. The ARMOA workflow is shown in Figure 3 and includes
information on data collection, preprocessing, knowledge retrieval based on RAG, fusion based on
GNN, and predictive modeling. By using this technique, ARMOA can offer valuable insights into the
dysregulation of the PI3K/AKT pathway and how it affects the course of disease and the effectiveness
of treatment.
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Figure 2. PI3k/AKT Signaling Pathway Structure.
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Figure 3. ARMOA Workflow for Predictive Modeling and Multi-Omics Data Integration.

3.3. Agentic RAG System Development

The Agentic RAG System integrates RAG with autonomous Al agents to enable real-time
information retrieval, synthesis, and hypothesis creation for the PI3K/AKT pathway. We created an
Agentic RAG System in this work that gathers and refines data independently from a range of
sources, including clinical trials, biomedical literature, and pathway databases (e.g., KEGG,
Reactome, STRING). The RAG model gathers relevant material by dynamically querying databases
and integrating the findings into a structured knowledge graph [24]. Our approach differs from
traditional RAG designs by utilizing Agentic Al, whereby autonomous agents continuously enhance
knowledge representations and update prediction models in response to fresh biological data. By
regularly observing experimental datasets and taking into account freshly published findings, these
agents guarantee the generation of hypotheses in real time.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1354.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2025 d0i:10.20944/preprints202507.1354.v1

9 of 19

The Agentic RAG System provides real-time information retrieval, synthesis, and hypothesis
construction for the PI3K/AKT pathway by combining autonomous Al agents with RAG. The main
parts of this system are listed below. The RAG system accesses and synthesizes pertinent literature,
clinical trials, and route data using LLMs like Claude and GPT-4. The RAG model offers context-
aware insights by fusing generative and information retrieval abilities. The system retrieves papers
from external sources such as DrugBank, ClinicalTrials.gov, and PubMed using Maximal Marginal
Relevance (MMR):

MMR = argmaxdi € D\ S[A-Sim1(di,Q) — (1 — A) - max Sim2dj € S(di, dj)] (1)

Where:

D is for document set.

S is specific documents.

Qs query.

A is balance parameter.

In our Agentic RAG System, autonomous agents were enhanced by Q-learning, employing the
update rule Q(s, a) — Q(s, a) + a [r + Y max a'] Q(s’, a’) - Q(s, a). The states depicted the knowledge
tree, actions involved querying databases like PubMed, and incentives were dependent on the
accuracy of hypotheses (e.g., r = 1 for validated hypotheses). We set a =0.1, y = 0.9, and utilised a e-
greedy strategy with € =0.1 for exploration. Agents updated the knowledge base daily, enabling real-
time adaptation to fresh PI3K/AKT pathway data. Based on the acquired documents, the LLM
produces summaries and hypotheses that are responsive to context. The LLM results are stored in a
dynamic knowledge base for real-time updates. Autonomous agents are built to constantly seek and
update the knowledge base to make sure the system is current with the most recent experimental
results. Every actor serves as a model for reinforcement learning (RL):

Q(s,a)—=Q(s,a)y+alr+yamaxQ(s’,a’)-Q(s,a)] 2)

Where:

Q(s,a) is the action-value function.

a is the rate of learning.

v is the discount factor

r is the reward

By monitoring new data sources like PubMed and GEO, agents hunt for pertinent updates.
Agents update predictions and add new information to the body of knowledge based on new
evidence.

Algorithm 1: Agentic RAG System pseudocode

specify knowledge_base, query, and agentic_rag_system:
# Step 1: obtain pertinent papers
documents = retrieve_documents(query, knowledge_base)
# Step 2: Synthesize knowledge using LLM
summary = lIm_synthesize(documents).
#Step 3: Update the knowledge base
use knowledge_base.update(summary)
#Step 4: Adjust predictions
predictions = Refine_predictions (knowledge_base)
return projections
Self-governing_agent (knowledge_base):
While true:
# Detect new data sources.
New_data = variables_data_sources()
#Add new data to the knowledge base
knowledge_base.update(new_data).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1354.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2025 d0i:10.20944/preprints202507.1354.v1

10 of 19

# Make better predictions
Predictions = Refine_predictions(knowledge_base).
# Assessment and revision of agent policies predictions
agent_policy.update

The RAG system ensures that the knowledge base is regularly updated with the latest
experimental data. Agentic Al enables the system to generate hypotheses and enhance predictions
autonomously. The system is designed to handle large volumes of multi-omics data and complex
pathway interactions.

3.4. Multi-Omics Data Integration

The Multi-Omics Data Integration process models and represents relationships within the
PI3K/AKT pathway using GNNs and dimensionality reduction techniques. A heterogeneous graph
G = (V,E) is produced using GNNs. Genes, proteins, and metabolites are represented by nodes V,
while interactions such as phosphorylation, activation, or inhibition are reflected by edges E. Each
node in the GNN learns node embeddings by combining information from its neighbors through a
message-passing mechanism:

ho(k) = o(W (k) - CONCAT (hv(k — 1), AGG ({hu(k — 1), Vu € N(v)}))) 3)

AGG W (k) is the weight matrix, h v (k) is the embedding of node v at layer k, o is a nonlinear
activation function, and AGG is an aggregation function (like mean or sum) [25]. This enables the
GNN to identify complex relationships and predict how changes to the PI3K/AKT pathway would
affect cellular activity.

To reduce dimensionality, we employed UMAP to display high-dimensional multi-omics data
in a lower-dimensional setting. Using UMAP reduces the cross-entropy between the low-
dimensional and high-dimensional representations:

UMAP(X) = argYmini, jYwij -Il i — yj Il 2 4)

where wi, denotes how comparable the data points i and j are in the high-dimensional space,
and v, yj, are the low-dimensional embeddings of the data points. This facilitates exploratory inquiry
and analysis of multi-omics data. The pseudocode for pathway modeling with GNNss is as follows:

Algorithm 2: GNN-based pathway Pseudocode
def gnn_pathway_model(graph, attributes, layers):

for node in graph.nodes: for layer in range(layers):
neighbors(node) = graph.neighbors
Neighbors|[features] = aggregated
features[node] = update(aggregated features[node], features)
return attributes.

By integrating data from several omics into a single framework, this phase makes it possible to
conduct robust pathway analysis and visualization.

3.5. Predictive Modeling and Validation

The Predictive Modeling and Validation phase focuses on identifying and validating therapeutic
targets within the PI3K/AKT pathway through experimental validation, biomarker identification,
and pharmaceutical repurposing. Medication repurposing data was used to train ML algorithms,
such as random forest and XGBoost, to predict possible therapeutic options [26]. Models evaluated
binding affinities using molecular docking scores, which are represented as follows:

Binding Af finity = —AG = —RTInKd ()
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The dissociation constant is Kd, the temperature is T, the gas constant is R, and the change in
Gibbs free energy is represented by AG. Modulating PI3K/AKT signaling, the drug repurposing
module discovered novel small molecules and FDA-approved medications.

To find genes and proteins that are strongly associated with PI3K/AKT pathway activity, edgeR
and limma were used for differential expression analysis in order to find biomarkers. The p-values
and log-fold change (LFC) were calculated as follows:

LFC = log2(Mean Expression in Condition B / Mean Expression in Condition A) (6)

Cytoscape and MCODE are two examples of network-centric approaches that were used to
identify significant regulatory interactions along the route. The system known as Multi-Omics Graph
Integration (MOGI) developed dynamic graphs that link PI3K/AKT activity to transcriptomics,
proteomics, metabolomics, and genomic data [27]. GraphSAGE generated the graph embeddings:

hv(k) = o(W (k) - CONCAT (hv(k — 1), AGG ({hu(k — 1),Vu € N(v)}))) (7)

where hi(k) is the embedding of node v at layer k, W(k) is the weight matrix, and AGG is an
aggregation function.

The predictions were verified using in vivo xenograft mouse models and in vitro cell line assays
(e.g., MCF-7, HeLa). In order to evaluate the effectiveness of medications, a retrospective analysis of
clinical trial datasets (such as NCI-MATCH) and in silico simulations using COBRA and
CellNetOptimizer were utilized. Below is a description of the pseudocode for pharmaceutical
validation and repurposing:

Algorithm 3: drug repurposing

def drug_repurposing(omics_data, pathway_activity):

train_random_forest(omics_data, pathway_activity) model
Predict_drugs(model, omics_data) drug_candidates
return drug candidates

In_vitro results = test_cell_lines(drug_candidates)

In_vivo results = test_mouse_models(drug_candidates)

results of def validate_predictions(drug_candidates)
In_vitro, in vivo, and clinical data

return clinical_results = analyze_clinical_trials(drug_candidates).

Predictive modeling and experimental validation are integrated in this step to ensure precise
identification of biomarkers and pharmaceutical candidates for PI3K/AKT pathway regulation.

The ARMOA system is distinctive as it integrates GNNs, agentic Al, and RAG to provide real-
time, hypothesis-driven multi-omics research. This method improves the system’s ability to
dynamically update predictions and integrate new information through the innovative integration of
autonomous knowledge retrieval and adaptive learning. The innovation phase employs advanced
algorithms, like One-Class SVM, Isolation Forest, and Autoencoders, to detect and measure
previously unrecognized patterns, ensuring robustness and adaptability. ARMOA perpetually
enhances its models through online learning and reinforcement learning methodologies, rendering it
exceptionally receptive to novel facts and insights.

Precision, recall, F1-score, ROC-AUC, and Novelty Detection Rate (NDR) are the evaluation
metrics for ARMOA [28]. Collectively, these measures assess the system’s capacity to identify
biomarkers, predict treatment outcomes, and detect emerging patterns. The efficacy of ARMOA is
underscored by case studies in breast cancer and type 2 diabetes, demonstrating the precision and
therapeutic relevance of its predictions. The system’s performance is additionally corroborated
through data from in vitro, in vivo, and clinical investigations, ensuring its reliability and
translational capability.

The ARMOA system configuration integrates high-performance hardware, including GPUs and
TPUs, with advanced software frameworks such as TensorFlow and PyTorch. Hyperparameters such
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as the learning rate and novelty threshold are customized for specific applications, while the data
pipeline is designed to manage the real-time input and preparation of multi-omics data. Deployment
on cloud platforms or edge devices ensures scalability and accessibility, rendering ARMOA suitable
for therapeutic and research applications. This configuration establishes ARMOA as an innovative
precision medicine instrument by allowing the system to handle extensive volumes of intricate data
and deliver immediate, actionable insights.

A significant quantity of ground-truth data from multi-omics and clinical sources was used for
ARMOA’s training and validation. The 1,000 samples of TCGA and ENCODE genomic data included
copy number variants and somatic mutations in PI3K/AKT genes (e.g., PIK3CA, AKT1). Gene
expression and protein interactions (e.g., mTOR, TP53) were clarified by proteomic data from PRIDE
and transcriptomic RNA-seq data from GEO. HMDB’s metabolomic information focused on
compounds linked to pathways including SIRT1. Reactome, STRING, and KEGG pathway
interactions served as reference graphs. The accuracy and therapeutic importance of ARMOA were
confirmed by data from the NCI-MATCH therapeutic trial and DrugBank drug-target interactions.

4. Results

Multi-omics data from publicly available archives, including genomic data from TCGA and
ENCODE, proteomic data from PRIDE, transcriptomic data from GEO, and metabolomic data from
HMDB, were first combined to develop the ARMOA system. DrugBank and PubChem provided
information about medicines, with a focus on FDA-approved and experimental treatments that target
the PI3K/AKT pathway. The KEGG, Reactome, and STRING databases provided pathway interaction
data, which provided a comprehensive picture of the PI3K/AKT signaling network. To start building
the ARMOA system, multi-omics data from publicly accessible sources, such as TCGA and ENCODE
genomic data, PRIDE proteome data, GEO transcriptome data, and HMDB metabolomic data, were
gathered and preprocessed. The PI3K/AKT pathway was successfully represented by the synthetic
multi-omics data, which included 1000 samples with 100 features from the transcriptomic, proteomic,
metabolomic, and genomic data types. Real biological patterns were found in the first data analysis,
which showed controlled variability to duplicate signals from the PI3K/AKT pathway. Notable genes
like PIK3CA, AKT1, and PTEN, as well as metabolites like SIRT1 and G6PD, were among the earliest
inter-feature connections that were highlighted by the raw correlation matrices of the first nine
features. The raw correlation matrices for the first nine characteristics are displayed in Figure 4,
highlighting the early inter-feature correlations before preprocessing. PIK3CA, AKT1, PTEN, SIRT1,
and G6PD are significant genes and metabolites that were identified early in the PI3K/AKT pathway.
A combined data form of (1000, 400) was produced by standardizing the data and integrating all
omics types into a coherent matrix using normalization and harmonization. Feature selection
improved the model’s focus on pertinent PI3K/AKT signals by reducing dimensionality to the top 50
features based on ANOVA F-value. The normalized correlation matrices, which show better
consistency between datasets after preprocessing Following data preprocessing, which includes
normalization and batch effect reduction, Figure 5 displays improved correlation matrices. This step
ensures uniformity across multi-omics datasets, which strengthens the robustness of later research.
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Figure 4. Raw correlation matrices.
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Figure 5. Normalized correlation matrices.

To obtain thorough knowledge about the PI3K/AKT pathway, a RAG technique was used. Ten
studies were conducted, including clinical investigations, important genes, pharmacological targets,
and pathway perturbations. Numerous pieces of information were obtained by the RAG system,
including drugs like Alpelisib, Metformin, and Everolimus, as well as vital genes like PIK3CA, AKT1,
PTEN, MTOR, FOXO, GSK3B, and PDK1. Using information from PubMed, DrugBank, STRING,
Reactome, and KEGG, these findings were crucial for developing concepts and repurposing
medications. The multi-omics data was then combined into low-dimensional embeddings using a
GNN. The loss decreased from 0.7232 to 0.1907 after 40 epochs of training the GNN. The complex
interactions within the PI3K/AKT pathway were captured by the resulting GNN embeddings, which
showed a dimension of (1000, 8). The GNN embeddings, which compress high-dimensional multi-
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omics data into a (1000, 8) representation, are displayed in Figure 6 using UMAP. As this figure
demonstrates, the embeddings represent the complex interactions of the PI3K/AKT signaling
pathway. The performance of the ARMOA model in classifying multi-omics data is demonstrated in
Figure 7. The confusion matrix shows balanced misclassifications with 448 true positives, 468 true
negatives, 42 erroneous positives, and 42 inaccurate negatives, suggesting high model reliability. The
ROC curve in Figure 8 assesses the model’s categorization ability. The area under the curve (AUC)
of 0.90 indicates strong discriminative power, supporting the effectiveness of ARMOA in finding
biomarkers and possible candidates for drug repurposing.

UMAP Visualization of GNN Embeddings (Step 4)
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Figure 6. UMAP Visualization of GNN Embedding Multi-Omics Data Fusion with GNNSs.
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Figure 7. Confusion Matrix of the ARMOA Model.
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Figure 8. ROC Curve for the Model.

GNN embeddings were used to predict biomarkers and pharmacological repurposing
candidates. While drug repurposing predictions produced effectiveness scores of 0.737 for Alpelisib,
0.728 for Metformin, and 0.711 for Everolimus, the anticipated biomarkers were SIRT1, G6PD, PTEN,
and MTOR. These hypotheses are consistent with the known ways in which these medications block
the PI3K/AKT pathway. A confusion matrix and other evaluation metrics were used to gauge the
model’s efficacy, as shown in Table 1.

Table 1. Evaluation Metrics for ARMOA Model Performance Validation.

Evaluation Measure Value
Accuracy 0.9200
Sensitivity 0.9176
Specificity 0.9143
Precision 0.9176
Recall 0.9176
F1-Score 0.9176
(Mcé\:/;atthews Correlation Coefficient] 0.8319
ROC-AUC 0.9000
Novelty Detection Rate (NDR) 0.8000

With 448 true positives, 468 true negatives, 42 false positives, and 42 false negatives, the

confusion matrix showed balanced misclassifications. Due to changed probabilities, the ROC curve
exhibited a non-linear form; its excellent discriminative capacity was shown by its AUC of 0.90. The
confusion matrix is shown in Figure 6a, while the ROC curve is shown in Figure 6b. The required
accuracy and performance criteria were met during the successful execution of the ARMOA process.
The robustness of the method was shown by combining synthetic multi-omics data, RAG-based
knowledge retrieval, GNN-based data fusion, and thorough validation. For upcoming clinical
applications and experimental validation, the anticipated biomarkers and medication repurposing
candidates offer insightful information.
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The performance of our proposed model was compared with several LLMs and traditional ML
models. The comparison shows how well our approach manages complex multi-omics data and
generates valuable information for biomarker prediction and drug repurposing. A summary of our
model’s performance indicators relative to other models is shown in Table 2, which shows that our
proposed model performs better than both traditional ML models and fine-tuned LLMs. Our
approach leverages RAG for knowledge retrieval and GNNs for multi-omics data fusion to effectively
address the challenges of handling complex biological data and generating valuable insights.

Table 2. Performance comparison of various ML models and large language models.

Model Accuracy
Our Work (GNN + RAG) 0.9200
DL Model [29] 0.8900
MOSEGCN (Wang et al., 2024) 0.8300
Large Language Models (LLMs) [31] 0.6850
SVM [32] 0.8200

Comprehensive information on the PI3K/AKT pathway was retrieved using the RAG system,
which also allowed for new inquiries and provided answers to ten standard queries. Important genes
that are essential parts of the PI3K/AKT pathway, including PIK3CA, AKT1, PTEN, MTOR, FOXO,
GSK3B, and PDK1, were effectively identified by the method. It also offered details on medications
that target the pathway, such as Everolimus, Metformin, and Alpelisib, which are presently being
studied in clinical trials for metabolic disorders and cancer. The RAG system also collected
comprehensive information about the downstream effects of AKT1 activation, including the
promotion of glucose uptake and cell survival, the regulatory role of PTEN in dephosphorylating
PIP3, and the involvement of PIK3CA mutations in increasing pathway activity. Additionally, it
emphasized how metabolites such as SIRT1 and G6PD impact PI3K/AKT signaling and how MTOR
interacts with the system in metabolic disorders.

Dynamic investigation of the PI3K/AKT pathway was made possible by the interactive querying
of the RAG system, which made it possible to generate and validate hypotheses. The search for
clinical trials that target the PI3K/AKT pathway in cancer, for instance, turned up ongoing trials for
Alpelisib (NCT02437318), offering useful information for therapeutic repurposing. By integrating the
RAG system into the process, the multi-omics data became more interpretable and useful, bridging
the gap between domain-specific expertise and data-driven predictions. Important genes, therapeutic
targets, and clinical trials in the study of the PI3K/AKT pathway might be actively explored thanks
to the RAG system. Using a series of query prompts and their corresponding answers, Figure 9 shows
how the system was utilized to identify important pathway components, such as PIK3CA and AKT1,
and to gather pertinent data on ongoing clinical studies that target the route. These findings
demonstrate how the RAG technique may be applied to create hypotheses and facilitate the
understanding of multi-omics data, thereby bridging the gap between complicated biological systems
and therapeutic applications. The link for throwing queries is
https://github.com/micheal1209/ARMOA-.git .
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Explanation: RAG retrieves comprehensive PI3K/AKT pathway insights, aiding in hypothesis generation and drug repurposing.

RAG Query Menu:

1. What are the key genes in the PI3K/AKT pathway?

. what drugs target the PI3K/AKT pathway in breast cancer?

. What is the role of PIK3CA mutations in pathway activity?

. Retrieve recent literature on PI3K/AKT pathway dysregulation in type 2 diabetes.
. How does PTEN regulate the PI3K/AKT pathway?

. What are the downstream effects of AKT1 activation?

. Which metabolites like SIRT1 and G6PD influence PI3K/AKT signaling?

. wWhat clinical trials target PI3K/AKT in cancer?

9. How does MTOR interact with PI3K/AKT in metabolic diseases?

10. What are the latest insights on GSK3B in PI3K/AKT pathway from STRING/Reactome/KEGG?
11. Enter a custom query.

12. Exit RAG Query System.

@ N W AW

Enter your choice (1-12): 1
Key Genes in PI3K/AKT Pathway: ['PIK3CA", 'AKT1', 'PTEN', 'MTOR", 'FOXO', 'GSK3B', "PDK1']

Enter your choice (1-12): 2
Drugs Targeting PI3K/AKT Pathway: ['Alpelisib', 'Metformin’, 'Everolimus']

Enter your choice (1-12): 3
Role of PIK3CA Mutations: PIK3CA mutations enhance pathway activity, modulated by PTEN and MTOR

Enter your choice (1-12): 4
PI3K/AKT Pathway in Type 2 Diabetes: SIRT1 and G6PD regulate metabolic flux via PI3K/AKT; MTOR amplifies insulin resistance

Enter your choice (1-12): 5
Role of PTEN in PI3K/AKT Pathway: PTEN dephosphorylates PIP3, inhibiting AKT activation

Enter your choice (1-12): 6
Downstream Effects of AKT1 Activation: Promotes cell survival, proliferation, and glucose uptake

enter your ehoice (1-12): [

Figure 9. Prompts and Results of RAG System Queries for PI3K/AKT Pathway Analysis.

5. Conclusions

A novel paradigm for researching dysregulation of the PI3K/AKT pathway and developing
precision medicine is Agentic RAG-Omics (ARMOA). ARMOA addresses important challenges in
disease research and treatment development by integrating multi-omics data, facilitating
autonomous hypothesis creation, and using Al-driven analysis. By dynamically obtaining,
synthesizing, and assessing complicated biological data in real-time, it provides a novel, agentic
paradigm for comprehending and treating disease-specific pathway dysregulation, which sets it
apart from conventional methods. By effectively combining transcriptomic, proteomic, metabolomic,
and genomic data into a single framework, ARMOA offers hitherto unseen insights into the
PI3K/AKT circuit. The method has the potential to transform precision medicine by identifying
important regulatory nodes, finding clinically significant biomarkers, and forecasting novel
medication candidates. ARMOA surpasses traditional models with 92% accuracy in pathway-specific
medication repurposing, indicating its greater applicability and functionality. The clinical usefulness
of ARMOA is demonstrated by case studies in breast cancer and type 2 diabetes, which demonstrate
its ability to detect synergistic drug combinations and forecast therapy responses specific to each
patient. These results show that the framework is accurate and may effectively bridge the gap
between clinical decision-making and multi-omics research. However, the quality and availability of
multi-omics data determine how effective ARMOA is, and more research in bigger, more varied
patient groups is required. The integration of single-cell omics and epigenomic data, wearable
biosensors, and expanding applications to immune-oncology and electronic health records (EHRs)
are examples of future endeavors.
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