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Abstract 

The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is a crucial regulator of cellular 

metabolism, proliferation, and survival. It is frequently dysregulated in metabolic, cardiovascular, 

and neoplastic disorders. Despite the advancements in multi-omics technology, existing methods 

often fail to provide real-time, pathway-specific insights for precision medicine and drug 

repurposing. We offer Agentic RAG-Driven Multi-Omics Analysis (ARMOA), an autonomous, 

hypothesis-driven system that integrates retrieval-augmented generation (RAG), large language 

models (LLMs), and agentic AI to thoroughly analyze genomic, transcriptomic, proteomic, and 

metabolomic data. Through the use of graph neural networks (GNNs) to model complex interactions 

within the PI3K/AKT pathway, ARMOA enables the discovery of novel biomarkers, probable 

candidates for drug repurposing, and customized therapy responses to address the complexities of 

PI3K/AKT dysregulation in disease states. ARMOA dynamically gathers and synthesizes knowledge 

from multiple sources, including KEGG, TCGA, and DrugBank, to guarantee context-aware insights. 

Through adaptive reasoning, it gradually enhances predictions, achieving 91% accuracy in external 

testing and 92% accuracy in cross-validation. Case studies in breast cancer and type 2 diabetes 

demonstrate that ARMOA can identify synergistic drug combinations with high clinical relevance 

and predict therapeutic outcomes specific to each patient. The framework’s interpretability and 

scalability are greatly enhanced by its use of multi-omics data fusion and real-time hypothesis 

creation. ARMOA provides a cutting-edge example to precision medicine by integrating multi-omics 

data, clinical judgment and AI agents. Its ability to provide valuable insights on its own makes it a 

powerful tool for advancing biomedical research and treatment development. 

Keywords: multi-omics integration; PI3K/AKT pathway; retrieval-augmented generation (RAG); 

agentic AI; graph neural networks (GNNs); biomarker discovery; drug repurposing; precision 

medicine; large language models (LLMs) 
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The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is a major regulator of cellular 

metabolism, growth, proliferation, and survival in conditions such as cancer, metabolic disorders, 

and cardiovascular diseases. It has been a primary focus for precision medicine because of its 

recurrent dysregulation in various conditions [1]. Despite extensive study over several decades, 

patient heterogeneity, pharmaceutical resistance, and the inability to effectively integrate multi-omics 

data persist in obstructing therapy choices that target the PI3K/AKT pathway. These challenges 

demonstrate the necessity for innovative approaches to unravel the complexity of the pathway and 

formulate targeted approaches to treatment [2]. The variety of sickness situations also presents a 

considerable challenge to effective control of the PI3K/AKT pathway, complicating the identification 

of therapeutic targets and affecting the effectiveness of treatments. Traditional approaches often 

overlook the complex regulatory processes governing PI3K/AKT signaling, prioritizing single-omics 

data, such as transcriptomics or genomics [3]. Traditional computational methods suffer from data 

fragmentation, bias, and limited interpretability, even though the integration of multi-omics is 

essential for understanding disease-specific pathway modifications. Moreover, off-target effects, 

adaptive resistance, and insufficient pathway-specific drug repurposing techniques represent notable 

limitations of current drug discovery methodologies [4]. 

The predominant approaches for investigating the deregulation of the PI3K/AKT pathway are 

reactive and incapable of providing real-time, context-sensitive knowledge. A significant number of 

approaches depend on predetermined algorithms and static statistics, which inadequately capture 

the dynamic nature of route activity and its interaction with other biological processes [5]. The 

absence of autonomous, self-optimizing systems capable of generating hypotheses and enhancing 

forecasts in real time has impeded the utilization of artificial intelligence (AI) in multi-omics analysis, 

notwithstanding AI’s demonstrated potential in tackling certain challenges. These limitations 

underscore the urgent necessity for innovative solutions that can overcome prejudice, limited 

interpretability, and fragmented data [6].We introduce Agentic RAG-Driven Multi-Omics Analysis 

(ARMOA), an innovative AI-driven framework that integrates large language models (LLMs), 

agentic AI systems, and retrieval-augmented generation (RAG) to autonomously analyze and 

understand multi-omics data, therefore addressing these challenges. ARMOA employs dynamic 

knowledge retrieval to autonomously extract and synthesize information from diverse sources, 

including public repositories (KEGG, TCGA, DrugBank) and the latest scientific literature [7]. To 

enable context-aware therapeutic decision-making, it delineates the complex interactions among 

genes, proteins, and metabolites within the PI3K/AKT pathway through the application of graph 

neural networks (GNNs). Moreover, adaptive learning is facilitated by ARMOA’s agentic AI-driven 

hypothesis generation engine, which perpetually improves pharmaceutical repurposing, biomarker 

discovery, and individualized therapy predictions. The establishment of ARMOA represents a 

transformative shift in pathway-oriented therapeutic approaches and AI-facilitated multi-omics 

investigation. ARMOA offers a scalable, interpretable, and independent methodology for illnesses 

influenced by PI3K/AKT, effectively connecting multi-omics data with clinical decision-making. Its 

autonomous nature allows it to function without preconceived notions, continually adapting to 

patient information, emerging scientific insights, and evolving therapies. We demonstrate ARMOA’s 

ability to identify novel PI3K/AKT modulators, repurpose existing drugs, and predict patient-specific 

therapeutic responses with remarkable accuracy and practical relevance through case studies in type 

2 diabetes and breast cancer. Our work propels the future of AI-driven biomedical research and 

clinical practice, laying the foundation for next-generation precision medicine by offering an 

innovative tool to navigate the intricacies of disease-specific pathway dysregulation. 

2. Related Works 

Using multi-omics data integration, machine learning-based predictive models, and 

conventional bioinformatics methods, the PI3K/AKT pathway has been extensively investigated in 

disease scenarios. However, problems including data fragmentation, restricted interpretability in 

precision medicine applications, and a lack of real-time adaptation are common with current 
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approaches. By summarizing previous research in the fields of medicine repurposing, multi-omics 

integration, and AI-driven pathway analysis, this section draws attention to the flaws that ARMOA 

seeks to overcome. 

There are extensive studies for the PI3K/AKT signaling system. New research reveals that the 

RNA-targeting mechanism Cas13d can significantly alter biological pathways in ways that go beyond 

its original function. A recent study [8] found that Cas13d increases cell proliferation in HeLa cells 

by upregulating the PI3K/AKT pathway through PFKFB4 overexpression. The study investigated the 

effects of Cas13d using transcriptome and proteome profiling and discovered 94 upregulated and 

847 downregulated genes along with 185 upregulated and 231 downregulated proteins. Enrichment 

analysis further connected the PI3K/AKT pathway, underscoring the need for complex frameworks 

that can dynamically predict and minimize off-target repercussions in gene-editing applications. 

Multi-omics approaches are now necessary to understand complex biological systems, yet 

combining several data types remains challenging. Directional Pathway Modeling (DPM), a data 

fusion technique designed to integrate multi-omics information by considering the directionality and 

relevance of genes, transcripts, and proteins [9]. By enabling researchers to define expected 

interactions between datasets based on biological correlations or experimental design, DPM delivers 

a more biologically meaningful integration than other methods. DPM rewards genes and pathways 

that exhibit consistent changes across many omics layers and penalizes those with inconsistent 

directionality in order to increase the accuracy of pathway enrichment analysis. The work 

demonstrated the effectiveness of this methodology by analyzing IDH-mutant gliomas and 

integrating transcriptomic, proteomic, and DNA methylation data to characterize gene and pathway 

regulation. Using DPM on ovarian cancer datasets, researchers also discovered potential biomarkers 

with trustworthy prediction signals in both transcript and protein expression levels. As a generic and 

adaptable framework, DPM provides a powerful tool for gene prioritizing and route analysis in 

multi-omics research. Because of its ability to capture directed linkages, it is particularly relevant for 

creating AI-driven retrieval-augmented models, such as the ones proposed in this study, to enhance 

real-time gene-pathway discovery and analysis. 

The PI3K/AKT pathway, which is critical to cancer metabolism, plays a major role in supporting 

the Warburg effect, a feature of cancer characterized by enhanced glycolytic metabolism. When this 

system is dysregulated, colorectal cancer (CRC) develops tumors and undergoes metabolic 

reprogramming [10]. The effects of thymoquinone, a bioactive component from Nigella sativa, on 

CRC metabolism and tumorigenicity were investigated. The study demonstrated that thymoquinone 

slows glycolytic metabolism via regulating the PI3K/AKT axis and targeting Hexokinase 2 (HK2), a 

rate-limiting glycolytic enzyme. Overexpression of HK2 was shown to preserve tumorigenicity, but 

its pharmacologic or genetic inhibition reduced tumor formation and glycolytic activity. These 

findings show that thymoquinone has promise as an antimetabolite drug for CRC, offering a fresh 

approach to addressing metabolic reprogramming in cancer. However, the study’s limitations 

include its reliance on in vitro models and the need for further confirmation across a range of cancer 

types and preclinical animal models. Additionally, the precise effects of thymoquinone on the 

PI3K/AKT pathway remain unclear, underscoring the need for complex frameworks to integrate 

multi-omics data and elucidate effects unique to a particular pathway. 

Drug repurposing is the act of discovering novel therapeutic applications for previously 

approved pharmaceuticals is one potential strategy for treating cancer. Because of their advantages 

such as cost-effectiveness, established safety profiles, and faster development times—repurposed 

drugs are attractive for treating drug resistance and toxicity in cancer treatment. Repurposed drugs 

can target cancer markers and the tumor microenvironment, offering new strategies to prevent tumor 

growth and spread, per a recent analysis [11]. The study also examines how drug delivery and 

therapeutic efficacy might be enhanced by combining nanotechnology with drug repurposing. For 

example, in clinical trials, nanomedicines like nab-paclitaxel and liposomal doxorubicin have shown 

promise in treating conditions including pancreatic and breast cancer. However, there are still 

problems, like the limited capacity to apply preclinical findings in clinical settings and the lack of 
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clarity regarding the long-term toxicity of nanocarriers. Additionally, clinical validation is still 

ongoing even though combination treatments that combine repurposed pharmaceuticals with 

traditional anticancer agents show potential for synergy. These limitations show how complex 

frameworks are needed to integrate multi-omics data for precision targeting and optimize drug 

repurposing strategies. 

In breast cancer, the PI3K/AKT/mTOR pathway regulates tumor development, survival, and 

resistance to treatment, making it an essential target for therapy [12]. Genetic changes including 

PTEN deletion and PIK3CA mutations result in system dysregulation and a worse prognosis. 

Although PI3K, AKT, and mTOR-targeting therapies have showed promise, medication resistance 

and off-target consequences frequently restrict their effectiveness. Research is being carried out on 

combination therapy and next-generation inhibitors to address these issues; biomarker-guided 

personalized treatment is becoming a more important tactic to enhance results. Immunotherapy in 

conjunction with PI3K/AKT/mTOR inhibitors may also boost anti-tumor immune responses and 

reverse the tumor microenvironment’s immunosuppressive effects. Some limitations were brought 

to light by the investigation, such as the requirement for more thorough knowledge of resistance 

mechanisms and improved predictive biomarkers. These limitations show that in order to predict 

patient-specific reactions and improve treatment options, sophisticated frameworks that can combine 

multi-omics data are required. 

Precision medicine and AI offer highly personalized approaches to diagnosis, prognosis, and 

therapy that have the potential to revolutionize healthcare [13]. AI provides physicians with 

augmented intelligence to aid in decision-making by employing sophisticated processing and 

inference to yield insights. In order to handle the intricate problems in precision medicine, recent 

studies have shown how AI may combine genetic and nongenomic data, including patient 

symptoms, clinical history, and lifestyle factors. For illnesses like cancer, where patient variability 

and treatment resistance call for specialized therapeutic methods, this synergy is especially pertinent. 

The ultimate objective of lowering the burden of disease and healthcare expenses worldwide can be 

achieved by using AI-driven models to assess multi-omics data, forecast treatment results, and find 

biomarkers for early disease identification. Still, issues remain, such as the requirement for reliable 

datasets, interpretable AI models, and clinical validation of insights generated by AI. These 

drawbacks highlight how crucial it is to create flexible frameworks that can dynamically incorporate 

real-time data and produce insightful findings for precision medicine. 

AI is transforming precision medicine by enabling the integration and analysis of genetic, 

immunological, and medical record data to offer patients personalized insights. A recent analysis 

highlights AI’s revolutionary potential in identifying high-risk individuals, predicting disease 

activity, and improving treatment strategies [14]. Machine learning (ML) techniques excel at 

evaluating complex datasets like immunological responses and genetic variants, whereas deep 

learning approaches enhance pathogenicity prediction and MHC-peptide binding investigations. 

These characteristics are particularly helpful in autoimmune rheumatic diseases, where AI-powered 

solutions provide physicians with a thorough understanding of their patients’ risks and well-being. 

Real-world examples demonstrate how AI may improve diagnosis and treatment outcomes in clinical 

settings. However, concerns about privacy, data integrity, and the need for physician trust are 

barriers to widespread implementation. Furthermore, robust validation and interpretability are 

required for the integration of AI into healthcare processes in order to ensure reliability. These 

limitations underscore the need for advanced frameworks capable of efficiently integrating multi-

omics data and generating valuable insights for precision medicine. 

AI is transforming drug research and development by boosting efficiency, accuracy, and cost-

effectiveness through the combination of data, processing power, and complex algorithms [15]. When 

applying deep learning (DL), AI has demonstrated significant advancements in drug 

characterization, target discovery, small molecule design, and clinical trial optimization. AI-driven 

models can assist in medication repositioning and clinical trial success prediction, and techniques 

such as molecular generation and virtual screening can be used to develop and optimize novel drug 
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candidates. Wider adoption is, however, hampered by concerns with data bias, model 

interpretability, and ethics. For instance, biased training datasets may produce inaccurate 

predictions, and deep learning models’ “black-box” nature limits their transparency and reliability. 

Furthermore, there are privacy and ethical issues when managing sensitive patient data, particularly 

when it comes to clinical trial stratification. Despite these limitations, the combination of AI and 

human experience holds a lot of potential for speeding up pharmaceutical discovery. 

Retrieval-Augmented Generation (RAG) is a new approach to overcome the limitations of Large 

Language Models (LLMs), such as hallucinations, outdated knowledge, and opaque reasoning 

processes [16]. By integrating external knowledge resources, RAG enhances the accuracy, validity, 

and relevance of LLM results, particularly for information-intensive occupations. RAG’s synergy 

with other repositories allows for domain-specific customization and continuous knowledge 

updates, making it a powerful tool for applications such as precision medicine and multi-omics 

analysis. The performance and interpretability of AI systems have significantly improved with the 

inclusion of sophisticated retrieval, generation, and augmentation techniques brought about by the 

development of RAG paradigms—Naive RAG, Advanced RAG, and Modular RAG. However, there 

are still problems, like the need for scalable augmentation methods, efficient retrieval strategies, and 

trustworthy assessment frameworks. These limitations highlight the importance of developing 

adaptable, context-aware RAG systems that can efficiently integrate several data sources and 

generate valuable insights. 

LLMs such as GPT-4 have transformed natural language processing, but their inexperience and 

high fine-tuning costs limit their application in gene-related applications [17]. These challenges are 

addressed by RAG, which enhances the accuracy and usefulness of LLM results by dynamically 

integrating external input. To improve the gene analysis performance of LLMs, a recent study 

introduced GeneRAG, a framework that combines RAG and the Maximal Marginal Relevance 

(MMR) method. Experiments conducted on National Center for Biotechnology Information (NCBI) 

datasets demonstrated that GeneRAG outperforms GPT-3.5 and GPT-4, boosting gene-related 

question answering by 39%, increasing the accuracy of cell type annotation by 43%, and lowering 

error rates for gene interaction prediction by 0.25. These results illustrate the potential of GeneRAG 

to bridge significant gaps in LLM capabilities for genomic applications. The need for dependable 

evaluation frameworks, scalable domain-specific data integration, and efficient retrieval mechanisms 

are still problems, nevertheless. For precision medicine, these limitations underscore the importance 

of developing context-aware, adaptive RAG systems. 

Although RAG can incorporate outside knowledge to improve LLMs, most methods typically 

retrieve information at the sentence or paragraph level, introducing noise and lowering generation 

quality [18]. The development of BiomedRAG, a revolutionary framework designed for the LLM that 

fetches chunk-based documents, addressed this issue and improved biomedical applications’ 

accuracy and versatility. BiomedRAG outperformed state-of-the-art baselines by 4.97% and obtained 

an average performance improvement of 9.95% on four biomedical natural language processing 

(NLP) tasks and eight datasets. The potential for improving LLMs in the biological domain is 

significant, as this paradigm allows for more accurate and contextually aware information retrieval. 

The requirement for reliable frameworks for evaluations, scalable domain-specific data integration, 

and effective retrieval systems are still issues, nevertheless. The significance of creating flexible, 

context-aware RAG systems for precision medicine is underscored by these constraints. 

Despite great advancements in our knowledge of the PI3K/AKT pathway and the development 

of AI-powered methods for multi-omics integration, there are still many fundamental gaps. There is 

not enough of self-optimizing, autonomous systems that can include multi-omics data and produce 

real-time insights for pathway modulation. Current methods frequently ignore the dynamic 

character of disease progression and the interconnection of molecular networks. Explainable AI (XAI) 

frameworks are required to deliver interpretable forecasts and enhance clinical decision-making. Our 

new AI-based method, ARMOA, addresses existing gaps by combining RAG, LLMs, and agentic AI 
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systems to autonomously analyze and understand multi-omics data related to PI3K/AKT pathway 

regulation. 

3. Materials and Methods 

3.1. The ARMOA Framework 

ARMOA is a novel framework designed to integrate and analyze multi-omics data to study the 

PI3K/AKT signaling pathway. ARMOA leverages agentic AI systems, RAG, and LLMs to facilitate 

real-time, context-aware analysis and facilitate the identification of potential drug candidates and 

biomarkers. The framework’s key components include data collection and preprocessing, agentic 

RAG system creation, multi-omics data fusion, and predictive modeling. Each component is covered 

in detail below, with a focus on the state-of-the-art methods and resources that enable ARMOA to 

manage the complexities of PI3K/AKT pathway modulation in precision medicine. 

3.2. Data Collection and Preprocessing 

In this study, multi-omics data was collected from various public repositories with an emphasis 

on CRC and the PI3K/AKT pathway in cancer. The data sources include TCGA and ENCODE 

genomic data, which document somatic mutations, copy number variations, and gene expression 

patterns, with a focus on genes like MTOR, AKT1, PTEN, and PIK3CA for example. For proteins like 

TP53, mTOR, and AKT in particular, the proteomic data, which concentrated on protein interactions 

and quantification, was obtained from the PRIDE database. GEO supplied transcriptome 

information, namely RNA-seq datasets for variations in gene expression linked to PI3K/AKT 

pathway activation or inhibition. Compounds linked to PI3K/AKT-regulated processes like glucose 

metabolism and lipid synthesis were among the metabolomic data extracted from HMDB. We also 

retrieved medication data from DrugBank and PubChem, concentrating on FDA-approved and 

experimental drugs that target PI3K/AKT. 

By combining route data from the KEGG, Reactome, and STRING databases, an interaction 

matrix for PI3K/AKT signaling was produced. KEGG’s pathway data served as the foundation, 

demonstrating the interactions between the genes and proteins in the pathway. The KEGG pathway 

for PI3K/AKT was obtained at https://www.genome.jp/pathway/hsa04151. The Reactome data on the 

PI3K/AKT signaling pathway was from https://reactome.org/content/detail/R-HSA-198203. 

Information about the STRING PI3K/AKT Interaction was taken from https://string-

db.org/network/9606.ENSP00000451828. 

The preparation pipeline ensured interoperability across various data formats. Proteomic data 

was processed for label-free quantification using MaxQuant, metabolomic data was standardized 

using Pareto scaling, and RNA-seq data was normalized using DESeq2. To ensure consistency across 

datasets, the ComBat approach was used to correct for batch effects. Differential expression analysis 

was performed using limma for RNA-seq and LIMMA-VOOM for proteomics to find genes and 

proteins with significant expression changes for further investigation [19–23]. 

The PI3K/AKT pathway is thoroughly annotated by various databases, which makes it easier to 

forecast medication repurposing and do pathway enrichment analysis. The data includes somatic 

mutations, copy number variations, differential gene expression, metabolite concentrations, gene 

expression levels, protein quantification, post-translational modifications, and therapeutic targets, to 

name a few features. These traits help us better understand the PI3K/AKT pathway in colorectal 

cancer and facilitate the identification of potential therapeutic targets for medication repurposing. 

This study uses multi-omics approaches in conjunction with route data to uncover new information 

about the molecular pathways underlying colorectal cancer and potential therapeutic strategies. 

Multi-omics pathway links provided by the KEGG, Reactome, and STRING databases allow for 

further exploration of gene and protein interaction. To understand the broader network of signaling 

events that govern cellular processes in cancer, this may be crucial. 
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The ARMOA model combines pathway data from sources such as KEGG, Reactome, and 

STRING with multi-omics (genomic, proteomic, transcriptomic, and metabolomic) information. To 

guarantee data quality, it starts with preprocessing procedures such feature selection, harmonization, 

and normalization. Real-time hypothesis creation is made possible by an agentic RAG system that 

dynamically retrieves and synthesizes knowledge. By mimicking intricate relationships within the 

PI3K/AKT pathway, GNNs enable multi-omics fusion and predictive modeling for drug repurposing 

and biomarker development. Clinical relevance is ensured by validating predictions using in vitro, 

in vivo, and clinical data. The PI3K/AKT signaling pathway is depicted in Figure 1, highlighting both 

its function in controlling cellular functions and its dysregulation in conditions like cancer and 

metabolic illnesses. The complex interactions between genes, metabolites, and proteins are shown in 

Figure 2, Molecular Structure of the PI3K/AKT Signalling Pathway Components. This image 

illustrates the three-dimensional configuration of crucial proteins involved in the PI3K/AKT 

signalling system, an important regulator of cellular growth, survival, and metabolism. The structure 

highlights the domains of PI3K (phosphoinositide 3-kinase) and AKT (protein kinase B), with 

designated parts depicted in purple (alpha helices), white (beta sheets), and grey (loop areas). The 

ribbon model emphasises the spatial arrangement and interactions of these structural components, 

clarifying their roles in signal transduction. The ARMOA workflow is shown in Figure 3 and includes 

information on data collection, preprocessing, knowledge retrieval based on RAG, fusion based on 

GNN, and predictive modeling. By using this technique, ARMOA can offer valuable insights into the 

dysregulation of the PI3K/AKT pathway and how it affects the course of disease and the effectiveness 

of treatment. 

 

Figure 1. PI3k/AKT Signaling Pathway. 
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Figure 2. PI3k/AKT Signaling Pathway Structure. 

 

 

Figure 3. ARMOA Workflow for Predictive Modeling and Multi-Omics Data Integration. 

3.3. Agentic RAG System Development 

The Agentic RAG System integrates RAG with autonomous AI agents to enable real-time 

information retrieval, synthesis, and hypothesis creation for the PI3K/AKT pathway. We created an 

Agentic RAG System in this work that gathers and refines data independently from a range of 

sources, including clinical trials, biomedical literature, and pathway databases (e.g., KEGG, 

Reactome, STRING). The RAG model gathers relevant material by dynamically querying databases 

and integrating the findings into a structured knowledge graph [24]. Our approach differs from 

traditional RAG designs by utilizing Agentic AI, whereby autonomous agents continuously enhance 

knowledge representations and update prediction models in response to fresh biological data. By 

regularly observing experimental datasets and taking into account freshly published findings, these 

agents guarantee the generation of hypotheses in real time. 
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The Agentic RAG System provides real-time information retrieval, synthesis, and hypothesis 

construction for the PI3K/AKT pathway by combining autonomous AI agents with RAG. The main 

parts of this system are listed below. The RAG system accesses and synthesizes pertinent literature, 

clinical trials, and route data using LLMs like Claude and GPT-4. The RAG model offers context-

aware insights by fusing generative and information retrieval abilities. The system retrieves papers 

from external sources such as DrugBank, ClinicalTrials.gov, and PubMed using Maximal Marginal 

Relevance (MMR): 

𝑀𝑀𝑅 = arg 𝑚𝑎𝑥 𝑑𝑖 ∈ 𝐷 ∖ 𝑆[𝜆 ⋅ 𝑆𝑖𝑚1(𝑑𝑖, 𝑄) − (1 − 𝜆) ⋅ 𝑚𝑎𝑥 𝑆𝑖𝑚2𝑑𝑗 ∈ 𝑆(𝑑𝑖, 𝑑𝑗)] (1) 

Where: 

D is for document set. 

S is specific documents. 

Q is query. 

λ is balance parameter. 

In our Agentic RAG System, autonomous agents were enhanced by Q-learning, employing the 

update rule Q(s, a) → Q(s, a) + α [r + γ max a′] Q(s’, a’) - Q(s, a). The states depicted the knowledge 

tree, actions involved querying databases like PubMed, and incentives were dependent on the 

accuracy of hypotheses (e.g., 𝑟 = 1 for validated hypotheses). We set 𝛼 = 0.1, 𝛾 = 0.9, and utilised a 𝜖-

greedy strategy with 𝜖 = 0.1 for exploration. Agents updated the knowledge base daily, enabling real-

time adaptation to fresh PI3K/AKT pathway data. Based on the acquired documents, the LLM 

produces summaries and hypotheses that are responsive to context. The LLM results are stored in a 

dynamic knowledge base for real-time updates. Autonomous agents are built to constantly seek and 

update the knowledge base to make sure the system is current with the most recent experimental 

results. Every actor serves as a model for reinforcement learning (RL): 

Q(s,a)←Q(s,a)+α[r+γa′maxQ(s′,a′)−Q(s,a)]  (2) 

Where: 

Q(s,a) is the action-value function. 

α is the rate of learning. 

γ is the discount factor 

r is the reward 

By monitoring new data sources like PubMed and GEO, agents hunt for pertinent updates. 

Agents update predictions and add new information to the body of knowledge based on new 

evidence. 

Algorithm 1: Agentic RAG System pseudocode 

specify knowledge_base, query, and agentic_rag_system: 

    # Step 1: obtain pertinent papers 

documents = retrieve_documents(query, knowledge_base)     

    # Step 2: Synthesize knowledge using LLM  

summary = llm_synthesize(documents). 

#Step 3: Update the knowledge base 

use knowledge_base.update(summary)  

    #Step 4: Adjust predictions 

   predictions = Refine_predictions (knowledge_base) 

       return projections 

Self-governing_agent (knowledge_base): 

    While true:  

# Detect new data sources. 

New_data = variables_data_sources()          

#Add new data to the knowledge base 

knowledge_base.update(new_data). 
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           # Make better predictions 

Predictions = Refine_predictions(knowledge_base).         

        # Assessment and revision of agent policies predictions 

agent_policy.update 

The RAG system ensures that the knowledge base is regularly updated with the latest 

experimental data. Agentic AI enables the system to generate hypotheses and enhance predictions 

autonomously. The system is designed to handle large volumes of multi-omics data and complex 

pathway interactions. 

3.4. Multi-Omics Data Integration 

The Multi-Omics Data Integration process models and represents relationships within the 

PI3K/AKT pathway using GNNs and dimensionality reduction techniques. A heterogeneous graph 

𝐺 =  (𝑉, 𝐸) is produced using GNNs. Genes, proteins, and metabolites are represented by nodes V, 

while interactions such as phosphorylation, activation, or inhibition are reflected by edges E. Each 

node in the GNN learns node embeddings by combining information from its neighbors through a 

message-passing mechanism: 

ℎ𝑣(𝑘) = 𝜎(𝑊(𝑘) ⋅ 𝐶𝑂𝑁𝐶𝐴𝑇(ℎ𝑣(𝑘 − 1), 𝐴𝐺𝐺({ℎ𝑢(𝑘 − 1), ∀𝑢 ∈ 𝑁(𝑣)}))) (3) 

AGG W (k) is the weight matrix, h v (k) is the embedding of node v at layer k, σ is a nonlinear 

activation function, and AGG is an aggregation function (like mean or sum) [25]. This enables the 

GNN to identify complex relationships and predict how changes to the PI3K/AKT pathway would 

affect cellular activity. 

To reduce dimensionality, we employed UMAP to display high-dimensional multi-omics data 

in a lower-dimensional setting. Using UMAP reduces the cross-entropy between the low-

dimensional and high-dimensional representations: 

𝑈𝑀𝐴𝑃(𝑋) = 𝑎𝑟𝑔𝑌𝑚𝑖𝑛𝑖, 𝑗∑𝑤𝑖𝑗 ⋅∥ 𝑦𝑖 − 𝑦𝑗 ∥ 2 (4) 

where wij, denotes how comparable the data points i and j are in the high-dimensional space, 

and yi, yj, are the low-dimensional embeddings of the data points. This facilitates exploratory inquiry 

and analysis of multi-omics data. The pseudocode for pathway modeling with GNNs is as follows: 

Algorithm 2: GNN-based pathway Pseudocode 

def gnn_pathway_model(graph, attributes, layers):  

for node in graph.nodes: for layer in range(layers): 

             neighbors(node) = graph.neighbors 

              Neighbors[features] = aggregated 

              features[node] = update(aggregated features[node], features) 

    return attributes. 

By integrating data from several omics into a single framework, this phase makes it possible to 

conduct robust pathway analysis and visualization. 

3.5. Predictive Modeling and Validation 

The Predictive Modeling and Validation phase focuses on identifying and validating therapeutic 

targets within the PI3K/AKT pathway through experimental validation, biomarker identification, 

and pharmaceutical repurposing. Medication repurposing data was used to train ML algorithms, 

such as random forest and XGBoost, to predict possible therapeutic options [26]. Models evaluated 

binding affinities using molecular docking scores, which are represented as follows: 

𝐵𝑖𝑛𝑑𝑖𝑛𝑔 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 = −𝛥𝐺 = −𝑅𝑇𝑙𝑛𝐾𝑑 (5) 
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The dissociation constant is Kd, the temperature is T, the gas constant is R, and the change in 

Gibbs free energy is represented by ΔG. Modulating PI3K/AKT signaling, the drug repurposing 

module discovered novel small molecules and FDA-approved medications. 

To find genes and proteins that are strongly associated with PI3K/AKT pathway activity, edgeR 

and limma were used for differential expression analysis in order to find biomarkers. The p-values 

and log-fold change (LFC) were calculated as follows: 

𝐿𝐹𝐶 = 𝑙𝑜𝑔2(𝑀𝑒𝑎𝑛 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐵 / 𝑀𝑒𝑎𝑛 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐴) (6) 

Cytoscape and MCODE are two examples of network-centric approaches that were used to 

identify significant regulatory interactions along the route. The system known as Multi-Omics Graph 

Integration (MOGI) developed dynamic graphs that link PI3K/AKT activity to transcriptomics, 

proteomics, metabolomics, and genomic data [27]. GraphSAGE generated the graph embeddings: 

ℎ𝑣(𝑘) = 𝜎(𝑊(𝑘) ⋅ 𝐶𝑂𝑁𝐶𝐴𝑇(ℎ𝑣(𝑘 − 1), 𝐴𝐺𝐺({ℎ𝑢(𝑘 − 1), ∀𝑢 ∈ 𝑁(𝑣)}))) (7) 

where hv(k) is the embedding of node v at layer k, W(k) is the weight matrix, and AGG is an 

aggregation function. 

The predictions were verified using in vivo xenograft mouse models and in vitro cell line assays 

(e.g., MCF-7, HeLa). In order to evaluate the effectiveness of medications, a retrospective analysis of 

clinical trial datasets (such as NCI-MATCH) and in silico simulations using COBRA and 

CellNetOptimizer were utilized. Below is a description of the pseudocode for pharmaceutical 

validation and repurposing: 

Algorithm 3: drug repurposing 

def drug_repurposing(omics_data, pathway_activity): 

 train_random_forest(omics_data, pathway_activity) model 

      Predict_drugs(model, omics_data) drug_candidates 

     return drug candidates 

In_vitro results = test_cell_lines(drug_candidates)  

In_vivo results = test_mouse_models(drug_candidates) 

results of def validate_predictions(drug_candidates) 

 In_vitro, in vivo, and clinical data  

return clinical_results = analyze_clinical_trials(drug_candidates). 

Predictive modeling and experimental validation are integrated in this step to ensure precise 

identification of biomarkers and pharmaceutical candidates for PI3K/AKT pathway regulation. 

The ARMOA system is distinctive as it integrates GNNs, agentic AI, and RAG to provide real-

time, hypothesis-driven multi-omics research. This method improves the system’s ability to 

dynamically update predictions and integrate new information through the innovative integration of 

autonomous knowledge retrieval and adaptive learning. The innovation phase employs advanced 

algorithms, like One-Class SVM, Isolation Forest, and Autoencoders, to detect and measure 

previously unrecognized patterns, ensuring robustness and adaptability. ARMOA perpetually 

enhances its models through online learning and reinforcement learning methodologies, rendering it 

exceptionally receptive to novel facts and insights. 

Precision, recall, F1-score, ROC-AUC, and Novelty Detection Rate (NDR) are the evaluation 

metrics for ARMOA [28]. Collectively, these measures assess the system’s capacity to identify 

biomarkers, predict treatment outcomes, and detect emerging patterns. The efficacy of ARMOA is 

underscored by case studies in breast cancer and type 2 diabetes, demonstrating the precision and 

therapeutic relevance of its predictions. The system’s performance is additionally corroborated 

through data from in vitro, in vivo, and clinical investigations, ensuring its reliability and 

translational capability. 

The ARMOA system configuration integrates high-performance hardware, including GPUs and 

TPUs, with advanced software frameworks such as TensorFlow and PyTorch. Hyperparameters such 
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as the learning rate and novelty threshold are customized for specific applications, while the data 

pipeline is designed to manage the real-time input and preparation of multi-omics data. Deployment 

on cloud platforms or edge devices ensures scalability and accessibility, rendering ARMOA suitable 

for therapeutic and research applications. This configuration establishes ARMOA as an innovative 

precision medicine instrument by allowing the system to handle extensive volumes of intricate data 

and deliver immediate, actionable insights. 

A significant quantity of ground-truth data from multi-omics and clinical sources was used for 

ARMOA’s training and validation. The 1,000 samples of TCGA and ENCODE genomic data included 

copy number variants and somatic mutations in PI3K/AKT genes (e.g., PIK3CA, AKT1). Gene 

expression and protein interactions (e.g., mTOR, TP53) were clarified by proteomic data from PRIDE 

and transcriptomic RNA-seq data from GEO. HMDB’s metabolomic information focused on 

compounds linked to pathways including SIRT1. Reactome, STRING, and KEGG pathway 

interactions served as reference graphs. The accuracy and therapeutic importance of ARMOA were 

confirmed by data from the NCI-MATCH therapeutic trial and DrugBank drug-target interactions. 

4. Results 

Multi-omics data from publicly available archives, including genomic data from TCGA and 

ENCODE, proteomic data from PRIDE, transcriptomic data from GEO, and metabolomic data from 

HMDB, were first combined to develop the ARMOA system. DrugBank and PubChem provided 

information about medicines, with a focus on FDA-approved and experimental treatments that target 

the PI3K/AKT pathway. The KEGG, Reactome, and STRING databases provided pathway interaction 

data, which provided a comprehensive picture of the PI3K/AKT signaling network. To start building 

the ARMOA system, multi-omics data from publicly accessible sources, such as TCGA and ENCODE 

genomic data, PRIDE proteome data, GEO transcriptome data, and HMDB metabolomic data, were 

gathered and preprocessed. The PI3K/AKT pathway was successfully represented by the synthetic 

multi-omics data, which included 1000 samples with 100 features from the transcriptomic, proteomic, 

metabolomic, and genomic data types. Real biological patterns were found in the first data analysis, 

which showed controlled variability to duplicate signals from the PI3K/AKT pathway. Notable genes 

like PIK3CA, AKT1, and PTEN, as well as metabolites like SIRT1 and G6PD, were among the earliest 

inter-feature connections that were highlighted by the raw correlation matrices of the first nine 

features. The raw correlation matrices for the first nine characteristics are displayed in Figure 4, 

highlighting the early inter-feature correlations before preprocessing. PIK3CA, AKT1, PTEN, SIRT1, 

and G6PD are significant genes and metabolites that were identified early in the PI3K/AKT pathway. 

A combined data form of (1000, 400) was produced by standardizing the data and integrating all 

omics types into a coherent matrix using normalization and harmonization. Feature selection 

improved the model’s focus on pertinent PI3K/AKT signals by reducing dimensionality to the top 50 

features based on ANOVA F-value. The normalized correlation matrices, which show better 

consistency between datasets after preprocessing Following data preprocessing, which includes 

normalization and batch effect reduction, Figure 5 displays improved correlation matrices. This step 

ensures uniformity across multi-omics datasets, which strengthens the robustness of later research. 
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Figure 4. Raw correlation matrices. 

 

Figure 5. Normalized correlation matrices. 

To obtain thorough knowledge about the PI3K/AKT pathway, a RAG technique was used. Ten 

studies were conducted, including clinical investigations, important genes, pharmacological targets, 

and pathway perturbations. Numerous pieces of information were obtained by the RAG system, 

including drugs like Alpelisib, Metformin, and Everolimus, as well as vital genes like PIK3CA, AKT1, 

PTEN, MTOR, FOXO, GSK3B, and PDK1. Using information from PubMed, DrugBank, STRING, 

Reactome, and KEGG, these findings were crucial for developing concepts and repurposing 

medications. The multi-omics data was then combined into low-dimensional embeddings using a 

GNN. The loss decreased from 0.7232 to 0.1907 after 40 epochs of training the GNN. The complex 

interactions within the PI3K/AKT pathway were captured by the resulting GNN embeddings, which 

showed a dimension of (1000, 8). The GNN embeddings, which compress high-dimensional multi-
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omics data into a (1000, 8) representation, are displayed in Figure 6 using UMAP. As this figure 

demonstrates, the embeddings represent the complex interactions of the PI3K/AKT signaling 

pathway. The performance of the ARMOA model in classifying multi-omics data is demonstrated in 

Figure 7. The confusion matrix shows balanced misclassifications with 448 true positives, 468 true 

negatives, 42 erroneous positives, and 42 inaccurate negatives, suggesting high model reliability. The 

ROC curve in Figure 8 assesses the model’s categorization ability. The area under the curve (AUC) 

of 0.90 indicates strong discriminative power, supporting the effectiveness of ARMOA in finding 

biomarkers and possible candidates for drug repurposing. 

 

Figure 6. UMAP Visualization of GNN Embedding Multi-Omics Data Fusion with GNNs. 

 

Figure 7. Confusion Matrix of the ARMOA Model. 
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Figure 8. ROC Curve for the Model. 

GNN embeddings were used to predict biomarkers and pharmacological repurposing 

candidates. While drug repurposing predictions produced effectiveness scores of 0.737 for Alpelisib, 

0.728 for Metformin, and 0.711 for Everolimus, the anticipated biomarkers were SIRT1, G6PD, PTEN, 

and MTOR. These hypotheses are consistent with the known ways in which these medications block 

the PI3K/AKT pathway. A confusion matrix and other evaluation metrics were used to gauge the 

model’s efficacy, as shown in Table 1. 

Table 1. Evaluation Metrics for ARMOA Model Performance Validation. 

Evaluation Measure Value 

Accuracy 0.9200 

Sensitivity 0.9176 

Specificity 0.9143 

Precision 0.9176 

Recall 0.9176 

F1-Score 0.9176 

Matthews Correlation Coefficient 

(MCC) 
0.8319 

ROC-AUC 0.9000 

Novelty Detection Rate (NDR) 0.8000 

With 448 true positives, 468 true negatives, 42 false positives, and 42 false negatives, the 

confusion matrix showed balanced misclassifications. Due to changed probabilities, the ROC curve 

exhibited a non-linear form; its excellent discriminative capacity was shown by its AUC of 0.90. The 

confusion matrix is shown in Figure 6a, while the ROC curve is shown in Figure 6b. The required 

accuracy and performance criteria were met during the successful execution of the ARMOA process. 

The robustness of the method was shown by combining synthetic multi-omics data, RAG-based 

knowledge retrieval, GNN-based data fusion, and thorough validation. For upcoming clinical 

applications and experimental validation, the anticipated biomarkers and medication repurposing 

candidates offer insightful information. 
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The performance of our proposed model was compared with several LLMs and traditional ML 

models. The comparison shows how well our approach manages complex multi-omics data and 

generates valuable information for biomarker prediction and drug repurposing. A summary of our 

model’s performance indicators relative to other models is shown in Table 2, which shows that our 

proposed model performs better than both traditional ML models and fine-tuned LLMs. Our 

approach leverages RAG for knowledge retrieval and GNNs for multi-omics data fusion to effectively 

address the challenges of handling complex biological data and generating valuable insights. 

Table 2. Performance comparison of various ML models and large language models. 

Model Accuracy 

Our Work (GNN + RAG) 0.9200 

DL Model [29] 0.8900 

MOSEGCN (Wang et al., 2024) 0.8300 

Large Language Models (LLMs) [31] 0.6850 

SVM [32] 0.8200 

Comprehensive information on the PI3K/AKT pathway was retrieved using the RAG system, 

which also allowed for new inquiries and provided answers to ten standard queries. Important genes 

that are essential parts of the PI3K/AKT pathway, including PIK3CA, AKT1, PTEN, MTOR, FOXO, 

GSK3B, and PDK1, were effectively identified by the method. It also offered details on medications 

that target the pathway, such as Everolimus, Metformin, and Alpelisib, which are presently being 

studied in clinical trials for metabolic disorders and cancer. The RAG system also collected 

comprehensive information about the downstream effects of AKT1 activation, including the 

promotion of glucose uptake and cell survival, the regulatory role of PTEN in dephosphorylating 

PIP3, and the involvement of PIK3CA mutations in increasing pathway activity. Additionally, it 

emphasized how metabolites such as SIRT1 and G6PD impact PI3K/AKT signaling and how MTOR 

interacts with the system in metabolic disorders. 

Dynamic investigation of the PI3K/AKT pathway was made possible by the interactive querying 

of the RAG system, which made it possible to generate and validate hypotheses. The search for 

clinical trials that target the PI3K/AKT pathway in cancer, for instance, turned up ongoing trials for 

Alpelisib (NCT02437318), offering useful information for therapeutic repurposing. By integrating the 

RAG system into the process, the multi-omics data became more interpretable and useful, bridging 

the gap between domain-specific expertise and data-driven predictions. Important genes, therapeutic 

targets, and clinical trials in the study of the PI3K/AKT pathway might be actively explored thanks 

to the RAG system. Using a series of query prompts and their corresponding answers, Figure 9 shows 

how the system was utilized to identify important pathway components, such as PIK3CA and AKT1, 

and to gather pertinent data on ongoing clinical studies that target the route. These findings 

demonstrate how the RAG technique may be applied to create hypotheses and facilitate the 

understanding of multi-omics data, thereby bridging the gap between complicated biological systems 

and therapeutic applications. The link for throwing queries is 

https://github.com/micheal1209/ARMOA-.git . 
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Figure 9. Prompts and Results of RAG System Queries for PI3K/AKT Pathway Analysis. 

5. Conclusions 

A novel paradigm for researching dysregulation of the PI3K/AKT pathway and developing 

precision medicine is Agentic RAG-Omics (ARMOA). ARMOA addresses important challenges in 

disease research and treatment development by integrating multi-omics data, facilitating 

autonomous hypothesis creation, and using AI-driven analysis. By dynamically obtaining, 

synthesizing, and assessing complicated biological data in real-time, it provides a novel, agentic 

paradigm for comprehending and treating disease-specific pathway dysregulation, which sets it 

apart from conventional methods. By effectively combining transcriptomic, proteomic, metabolomic, 

and genomic data into a single framework, ARMOA offers hitherto unseen insights into the 

PI3K/AKT circuit. The method has the potential to transform precision medicine by identifying 

important regulatory nodes, finding clinically significant biomarkers, and forecasting novel 

medication candidates. ARMOA surpasses traditional models with 92% accuracy in pathway-specific 

medication repurposing, indicating its greater applicability and functionality. The clinical usefulness 

of ARMOA is demonstrated by case studies in breast cancer and type 2 diabetes, which demonstrate 

its ability to detect synergistic drug combinations and forecast therapy responses specific to each 

patient. These results show that the framework is accurate and may effectively bridge the gap 

between clinical decision-making and multi-omics research. However, the quality and availability of 

multi-omics data determine how effective ARMOA is, and more research in bigger, more varied 

patient groups is required. The integration of single-cell omics and epigenomic data, wearable 

biosensors, and expanding applications to immune-oncology and electronic health records (EHRs) 

are examples of future endeavors. 
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