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Abstract: This paper explores the role of open-source large language models in IoT cybersecurity world. The
threats of malicious activity on the Internet and the loss of private information are very real and lead to serious
consequences. The purpose of this paper is to investigate how open source-large language models can help to
defend against the growing threat of cyber-crimes. We conducted our experiments in two directions. The first
one is a security assistant that helps with cybersecurity best practices advices. The second one is a how large
language model can simulate a vulnerable IoT system. For both types of experiments, the interactive mode of
operation of the language model is used. In the context of the cybersecurity research, a major advantage of the
locally installed open-sourced large language models is that they do not share sensitive data with a remote
system in a cloud. The paper concludes by discussing the potential impact of open-source large language
models on cybersecurity research and recommends future research directions.
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1. Introduction

In this paper, we are exploring the role of open-sourced generative large language models in IoT
cybersecurity research. The threats of malicious activity on the Internet and the loss of private
information are very real and lead to serious consequences. The purpose of this paper is to investigate
how open-source large language models can help defending against the growing threat of cyber-
crimes. Cybersecurity research involves techniques for protection from attacks of information
systems, including computer systems, networks, critical infrastructures, programs, “Internet of
Things” (IoT) devices, and so on, as this is done by detecting, responding, and preventing cyber-
incidents. One of the often used methods for analysis of the attack vectors involves setting up
honeypots. Creating a new one or choosing the right honeypot and setting it to work as expected is a
hard and time-consuming task [1]. For this reason, with the development of the new generative
models, cybersecurity researchers are looking for a way to implement them into their defense toolkit
[2-4]. These developments rely on large language models accessed by OpenAl's ChatGPT, Google's
Bard and others generative chatbots because they provide free API access. However, the most
popular and large language models like Meta Llama 2 [5], OpenAl GPT (Generative Pretrained
Transformer) [6], Google PaLM (Pathways Language Model) [7] or LaMDA (Language Model for
Dialogue Applications), etc. have restrictions for acceptable use. On the other hand, an openly
licensed reproduction of Meta's original LLaM A2 model, called OpenLLaMA was introduced in 2023.
It uses the same architecture and is a replacement for the original LLaMA paper [8]. They provide
PyTorch weights of pre-trained models trained them on the RedPajama dataset. This is a
reproduction of the LLaMA training dataset containing over 1 trillion tokens and is a mixture of seven
data slices. The slices are “CommonCrawl: Five dumps of CommonCrawl, processed using the
CCNet pipeline, and filtered via several quality filters including a linear classifier that selects for
Wikipedia-like pages; C4 [Colossal Clean Crawled Corpus]: Standard C4 dataset; GitHub: GitHub
data, filtered by licenses and quality; arXiv: Scientific articles removing boilerplate; Books: A corpus
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of open books, deduplicated by content similarity; Wikipedia: A subset of Wikipedia pages, removing
boilerplate; StackExchange: A subset of popular websites under StackExchange, removing
boilerplate” [9]. They follow “the exactly same preprocessing steps and training hyperparameters as
the original LLaMA paper, including model architecture, context length, training steps, learning rate
schedule, and optimizer” [10]. This gives us confidence that the open-source large language models
can be used on par with the popular ones provided by the big companies in the industry.

This paper is organized as follows. Section 2 reviews related work in the field of generative Al
used for cybersecurity tasks. Section 3 describes the techniques and the model setup. Section 4
presents the conducted experiments and their results. In Section 5 conclusions and discussions are
stated.

2. Related Work

Before the large language models became popular, other more established, machine learning
methods have been used in cybersecurity research. For predicting vulnerability exploitation Fang, et
al. in [12] developed an algorithm based on ensemble machine learning algorithms. Zhou, et al. in
[13] used graph neural networks on the program semantics for vulnerability identification. Li, et al.
in [14] and O. de Vel, et al. in [11] rely on deep learning for detecting software vulnerabilities.

Large language models use a deep learning neural network as variation of the traditional
language models. After Google's Vaswani et. al. [16] developed and open-sourced the idea of
Transformers, it marked the rise of large language models. This is true especially for the most
recognizable one of all them, the GPT series, which is the basis of OpenAl’'s ChatGPT, presented in
2022. This also leads to the idea of applying them as cybersecurity instruments. In [15], Happe et al.
present a scenario where the language model interacts with a virtual machine using automatically
generated commands and tries to compromise it. Sladi¢, et al. in [3] and Ragsdale, et al. in [4] use
GPT for creating low-risk honeypots. In order for their code to work, it requires valid access to
OpenAl’s API for GPT-3.5-turbo-16k. Their idea is based on the McKee, et al. ChatGPT honeypot [2].

Other use-cases of ChatGPT are code generation as in Murr, et al. [18] and the “application in
detecting malicious web content, particularly phishing sites” [17]. For comparison Koide, et al. use
performance metrics such as precision, recall, accuracy and f-measure. The difference between the
different versions is also evident in their research. The capability of “non-phishing site classification
— [False Positives] (FP) and [True Negatives] (TN) was comparable between GPT-3.5 and GPT-4,
resulting in similar precision values. However, GPT-4 outperforms GPT-3.5 by approximately 5.8%"
[17]. Authors as Gupta, et al. examine “defense techniques and uses of GenAl tools to improve
security measures, including cyber-defense automation, reporting, threat intelligence, secure code
generation and detection, attack identification, developing ethical guidelines, incident response
plans, and malware detection” [19]. Despite the importance of these studies, none of them relies on
locally installed open-sourced large language models. The authors' choice was to use remote API
access provided by the cloud LLMs. In contrast, this paper presents the role of a locally running open-
source large language models for simulating vulnerable IoT system and cybersecurity improving.

3. Models and Used Techniques

For local use of large language models, tools such as llama.cpp [20] are essential. This instrument
optimizes the size and allows the models to be run on the user’s hardware without needing cloud
systems. The hardware resources of the machine on which the experiments were conducted are
AMD® Ryzen 7 CPU 4.4GHz with 8 cores and 16 threads, 32GiB RAM, and 1TB disk capacity.

The llama.cpp is a tool whose “main goal is to run the LLaMA model using 4-bit integer
quantization” [20,21] as 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization are supported.
Supported platforms are Mac OS, Linux, Windows and it can run on Docker. llama.cpp has base
interface and interactive mode for more chatGPT-like experience. Despite that the hardware
parameters allow experimentation with even larger language models, the open-license reproduction
of Meta AI's LLaMA large language models with 13 billion parameters comparable to GPT-3 [10] was


https://doi.org/10.20944/preprints202405.1169.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 d0i:10.20944/preprints202405.1169.v1

used in our experiments. Figure 1 shows the original and the quantized size, as well as the required
memory and disk space.

Model Original size  Quantized size (4-bit)

7B 13 GB 3.9GB
13B 24 GB 7.8 GB
30B 60 GB 19.5 GB
65B 120 GB 38.5GB

Figure 1. Memory/Disk Requirements [20].

The chosen language model is OpenLLaMA with 13B parameters trained on 1T tokens. The total
memory usage is approximately 8 GB instead the original 24 GB as seen in Figure 2. This load allows
the language model to run smoothly without experiencing lag or system overload.

1 min 50secs 40secs 30secs 20secs 10secs

I cru 8,9% CPU2 100,0% []cru3z 16,2% []crus  87,0%
CPUS  51,0% CPU6  52,0% CPU7  90,2% CPUS  12,0%
CPU9  100,0% CPU10 100,0% CPU11 43,6% CPU12 63,7%

[ JcPu1z  9,0% [ cPu14 100,0% W cruis 843% CPU16 19,8%

~ Memory and Swap
100%
80 %
60 %
40%
20%
T T 0%
1 min 50secs 40secs 30secs 20secs 10secs
a Memory 3 Swap
8,5 GB (25,3%) of 33,5 GB =
Cache 25.4 GB 70,5 MB (3,4%) of 2,0 GB

Figure 2. Used System Resources.

When the quantized model with 13 billion parameters is loaded and started, the load on the
processor is equable across the CPU cores and threads as seen in Figure 2. As shown in Figure 3
“OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-]J across a majority
of tasks, and outperforms them in some tasks” [10].
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4
Task/Metric GPT-J 6B LLaMA 13B OpenLLaMA 13B
anli_r1/acc 0.32 0.35 0.33
anli_r2/acc 0.34 0.36 0.33
anli_r3/acc 0.35 0.39 0.40
arc_challengefacc 0.34 0.44 0.41
arc_challenge/acc_norm 0.37 0.44 0.44
arc_easy/acc 0.67 0.75 0.75
arc_easy/acc_norm 0.62 0.59 0.70
boolg/acc 0.66 0.71 0.75
hellaswag/acc 0.50 0.59 0.56
hellaswag/acc_norm 0.66 0.76 0.76
openbookqga/acc 0.29 0.31 0.31
openbookqga/acc_norm 0.38 0.42 0.43
piqa/acc 0.75 0.79 0.77
piqa/acc_norm 0.76 0.79 0.79
record/em 0.88 0.92 0.91
record/fF1 0.89 0.92 0.91
rte/acc 0.54 0.69 0.64
truthfulga_mc/mc1 0.20 0.25 0.25
truthfulga_mec/mc2 0.36 0.40 0.38
wic/acc 0.50 0.50 0.47
winogrande/acc 0.64 0.70 0.70
Average 0.52 0.57 0.57

Figure 3. Comparing OpenLLaMA 13B with LLaMA and GPT [10]

Our experiments explore the potential of using the knowledge of the open-sourced large
language models for assisting the detection of vulnerabilities in IoT systems and the collection of
information about the actions of the attacker. The two directions in which the experiments were
carried out will be described in the next section. The first one is a security assistant and the second
one is a large language model simulation of a vulnerable IoT system. For both types of experiments,
the interactive mode of operation of the language model is used.

There are three features, which were taken into account during the experiments with the large
language model. The first one is related to the so-called "prompt engineering" in order to make the
language model enter the relevant role. The second one is adding enough context when
communicating with the model. The third one is the level of creativity. Large language models use
probabilities to determine the probability when generating each token (word) in a given context.
These models are trained on vast amounts of textual data, patterns and structures that help them
predict the most likely tokens that follow a given input. The models assign probabilities to all possible


https://doi.org/10.20944/preprints202405.1169.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 d0i:10.20944/preprints202405.1169.v1

tokens based on their understanding of the entire context. It then selects the next token of the output
based on these probabilities. The so-called “temperature” parameter controls how focused and
deterministic is the model. Higher temperature means that less likely tokens can be selected. The
usual value is 0.8. The parameter “top-p” is for sampling the range of tokens based on their
cumulative probability. The default value is 0.9. A higher value means that the model is selecting
more tokens based on their cumulative probability. During the experiments were tried different
parameter values and input data.

4. Experiments and Results

After conducting numerous experiments, the parameters with which the model was run in order
to produce the most realistic results are as follows:

- OpenLLaMA 13B parameters, 4-bit integer quantized model in .GGUF (GPT-Generated
Unified Format) format for storing models introduced by Georgi Gerganov [20]. As the previous
version of the format (GGML - GPT-Generated Model Language) these models could be run on users’
CPUs;

- The number of tokens to predict is set to 256;

- The temperature parameter is the default one;

- The top-p sampling parameter is set to 0.8;

- The repeat penalty parameter for penalize repeat sequence of tokens is 1.0;

- All other parameters are left to their defaults.

The working system is isolated and there is no connection to Internet so all answers are
generated locally by the language model. The interaction starts with the following description: “User
interacts with an assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails
to answer the User's requests immediately and with precision”.

4.1. Cybersecurity Assistance

First, we do not initially tell Bob to change its personality. We just ask guiding questions as it is
in peer programming role, helping with best practices expertise in creating secure code or guidance
in finding vulnerabilities. The idea is to give a list of security guidelines and explanations in order to
improve programming code quality.

We start with more general questions and move on to more detailed ones.

As shown in Figure 4 our first question is “what are the most common problems when writing
code?” in order to apply the technique Chain-of-Thought Prompting [22]. It can be seen that the
described problems are not specifically related to secure code programming, but to general
programming problems.

User:
Bob: The most common problems when writing code are

. Incorrect use of variables
. Incorrect use of operators

. Incorrect use of functions
. Incorrect use of data structures

. Incorrect use of algorithms

. Incorrect use of protocols

. Incorrect use of cryptography

. Incorrect use of logging

. Incorrect use of networks

0. Incorrect use of storage devices

Figure 4. Generative LLM output of more general question.

The next questions are increasingly more specific, as shown in Figure 5a. In the question and
answering process, Bob suggests a function name on its own and attempts to mark the actions of the
function itself.
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User:

Bob: The most common problems when writing secure programm
ing code are
1. Using untrusted input
. Using user-supplied input
3. Using unsecure data structures
. Using insecure algorithms
5. Using insecure protocols
. Using insecure cryptography
. Using insecure logging
. Using insecure networks
insecure storage devices

Bob: Unsecure data structures are data structures that are
vulnerable to data corruption.

User:

Bob: User-supplied input is data that is provided by the u
ser and is not checked for validity.

User:

Bob: To check for validity of the user input

, you can use the "is_valid_input()" function.

User:

Bob: The is_valid_input() function checks the validity of
the input. It returns a boolean value indicating whether t
he input is valid or not.

User:

Bob: The is_valid_input() function in Python would look 11
ke this:
def is_valid_input():
return False
User:

Bob: The is_valid_input() function in Python would look 11
ke this:
def is_valid_input():

if the_user_1input is not in the_list:

return False

return True

(a)

d0i:10.20944/preprints202405.1169.v1

The OWASP® Foundation works to improve
the security of software through its community-
led open source software projects, hundreds of
chapters worldwide, tens of thousands of
members, and by hosting local and global
conferences.

Secure Coding Practice
Quick-reference Guide

1. Introduction

2. ChecKlist

2.1 Input validation

2.2 Output encoding

2.3 Authentication and password management
2.4 Session management

2.5 Access control

2.6 Cryptographic practices
2.7 Error handling and logging
2.8 Data protection

2.9 Communication security
2.10 System configuration
2.11 Database security

2.12 File management

2.13 Memory management
2.14 General coding practices

(b)

Figure 5. (a). Generative LLM output of the clarifying questions; (b) OWASP Secure Coding Practice

Guide [23].

On the clarifying question about problems when writing secure programming code, the answer
overlaps largely with the guidelines of OWASP secure coding practice guide, as can be seen in Figure

5b.

At the same time, large language models are susceptible to hallucinations. This means that it is

possible to offer in some cases instructions that do not exist or programs to be downloaded from non-
existent internet connections, program code that does not work or is a mixture of different program
languages. Often the answer seems perfectly legitimate. As seen in Figure 6, if we ask the model about
top 10 most used attack vectors for Windows 10 OS, the model returns a list of sites that have a good

reputation for reporting cybersecurity news.
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Try this:
https://www.microsoft.com/security/pc-security/advisories/
advisory-1644.aspx

Try this:
https://www.techopedia.com/definition/476/windows-10-explo
it

Try this:
https://www.techrepublic.com/article/hackers-disclose-expl
olts-for-12-flaws-in-windows-10/

Try this:
https://www.wired.com/2016/10/hackers-discover-12-critical
-flaws-windows-10/

Try this:
https://www.bleepingcomputer.com/news/microsoft/12-flaws-p
atched-by-microsoft-today-include-one-critical-in-windows-

https://www.nbcnews.com/tech/security/hackers-disclose-
12-flaws-windows-10-n703606

Try this:
https://www.wired.com/story/microsoft-patches-12-critical-
flaws-windows/

Try this:
https://www.zdnet.com/article/microsoft-patches-12-critica
1-flaws-in-windows-10-and-other-products/

Try this:
https://www.techrepublic.com/article/microsoft-patches-12-
critical-flaws-in-windows-10-and-other-products/

Try this:
https://www.bleepingcomputer.com/news/microsoft/microsoft-
patches-12-flaws-in-windows-10-other-products/

Figure 6. Generative LLM output with hallucinations.

The problem is that none of these articles exists and the links to them do not work. They are
simply generated by the language model so that they appear authentic. This illustrates one of the
main problems of generative artificial intelligence with large language models. For this reason, facts
should always be checked, as well as one should be looking for ways to improve the returned result,
including with external knowledge [24].

2.2. Large Language Model Simulation of a Vulnerable System

Despite the hallucinations mentioned, the models can be used to mislead an attacker. In this
case, the role of the large language model is to simulate a vulnerable IoT system, mimicking console
access and the behavior of a real Linux terminal. This experiment attempts to simulate realistic
responses. For this purpose, the role of the chatbot is changed by telling it to enter into another one.
The experiments follow the same instructions as in [2] but not on OpenAl’s chatGPT. Instead, our
goal is locally running LLM to stop answers everyday questions in human way, and start answering
only as a Linux console. This behavior is shown in Figure 7.

Depending on the parameters with which the model is started and the randomness of the
sequence selection, it may be more difficult for the language model to enter a Linux role. On Figure
7 is shown how the model prints the working directory, creates files, and then reads them.
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Running in interactive mode. ==

Press Ctrl+C to interject at any time.

Press Return to return control to LLaMa.

To return control without starting a new line, end your input with
If you want to submit another line, end your input with "\'.

: How do you want me to act?

: What is your current working directory?
:./home/user/

: /home/fuser/

: Creating [home/user/test.py

:.Hello World!

: Creating [home/user/test.py

:.Hello World Again!

:./home/user/

-rwxr-xr-x 1 user staff 3011 Sep 4 11:59 test.py

: ping: openai.com: Destination host unreachable.

Figure 7. Output of the generative LLM as IoT Linux console honeypot

As can be seen on Figure 8 it manages to mimic the “cat” command with the previously created
file and print its contents. It also mimics the action of the “ping” command and the installing a new
program. In addition, the installed Nmap ("Network Mapper"), a tool for network discovery and
security auditing, manages to produce output. The model manages to respond and simulate Linux
IoT honeypot shell behavior.

: Hello World!
ping: www.google.com: Destination host unreachable.

Installing nmap (nmap-2.57-1~16.04.1+deb9ul)

: Nmap scan report for localhost (127.0.0.1) port 4096
is up.
Not shown: 996 closed ports
PORT STATE SERVICE VERSION
4096/tcp closed http

Figure 8. Output of the Generative LLM as IoT Linux console honeypot
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5. Discussion and Conclusions

Although the experiments were not conducted on the largest available open access large
language models, the results are very promising. As a limitation, we can point out that the output of
the model is sometimes inconsistent and an experienced hacker may notice inconsistencies and
problems. Despite that the presented approach is especially useful for cybersecurity experts who
would prefer to take advantage of the capabilities of large language models without uploading
personal or sensitive content to remote cloud systems. The open source large language models give
more freedom for experimentation. However, the lack of moderation or censorship should be
considered if public access is given because it removes all server-side ethical checks as well. This is
also related to the ethical issue of including toxic content in the learning process as well as copyright
infringement and low quality information. Copyright infringement is the subject of numerous
lawsuits nowadays. In the current experiments, we used pre-trained large language models that can
be run without any cloud/API costs. A major advantage of the local open source large language
models is that they do not share sensitive data with the cloud. This also allows for additional training
and fine-tuning of a specific model. This way also allows the creation of a more personalized Al
model without the need for increasingly large model parameter sizes. Analyzing which model is
good enough is done in order to reduce the need for ever-increasing large language models resources.
A further development of the current experiments would be the integration of the open source model
and its results into tools that allow a more user-friendly experience.
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