
Article Not peer-reviewed version

Application of Open- source Large

Language Model (LLM) for Simulation of

a Vulnerable IoT System and

Cybersecurity Best Practices

Assistance

Veneta Yosifova *

Posted Date: 17 May 2024

doi: 10.20944/preprints202405.1169.v1

Keywords: cybersecurity; open-source; large language models; IoT

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2949540

Article

Application of Open-Source Large Language Model

(LLM) for Simulation of a Vulnerable IoT System and

Cybersecurity Best Practices Assistance

Veneta Yosifova

Faculty of Computer Systems and Technologies, Technical University of Sofia 1756 Sofia, Bulgaria;

venetay@tu-sofia.bg

Abstract: This paper explores the role of open-source large language models in IoT cybersecurity world. The

threats of malicious activity on the Internet and the loss of private information are very real and lead to serious

consequences. The purpose of this paper is to investigate how open source-large language models can help to

defend against the growing threat of cyber-crimes. We conducted our experiments in two directions. The first

one is a security assistant that helps with cybersecurity best practices advices. The second one is a how large

language model can simulate a vulnerable IoT system. For both types of experiments, the interactive mode of

operation of the language model is used. In the context of the cybersecurity research, a major advantage of the

locally installed open-sourced large language models is that they do not share sensitive data with a remote

system in a cloud. The paper concludes by discussing the potential impact of open-source large language

models on cybersecurity research and recommends future research directions.

Keywords: cybersecurity; artificial intelligence; open-source; large language models

1. Introduction

In this paper, we are exploring the role of open-sourced generative large language models in IoT

cybersecurity research. The threats of malicious activity on the Internet and the loss of private

information are very real and lead to serious consequences. The purpose of this paper is to investigate

how open-source large language models can help defending against the growing threat of cyber-

crimes. Cybersecurity research involves techniques for protection from attacks of information

systems, including computer systems, networks, critical infrastructures, programs, “Internet of

Things” (IoT) devices, and so on, as this is done by detecting, responding, and preventing cyber-

incidents. One of the often used methods for analysis of the attack vectors involves setting up

honeypots. Creating a new one or choosing the right honeypot and setting it to work as expected is a

hard and time-consuming task [1]. For this reason, with the development of the new generative

models, cybersecurity researchers are looking for a way to implement them into their defense toolkit

[2–4]. These developments rely on large language models accessed by OpenAI's ChatGPT, Google's

Bard and others generative chatbots because they provide free API access. However, the most

popular and large language models like Meta Llama 2 [5], OpenAI GPT (Generative Pretrained

Transformer) [6], Google PaLM (Pathways Language Model) [7] or LaMDA (Language Model for

Dialogue Applications), etc. have restrictions for acceptable use. On the other hand, an openly

licensed reproduction of Meta's original LLaMA2 model, called OpenLLaMA was introduced in 2023.

It uses the same architecture and is a replacement for the original LLaMA paper [8]. They provide

PyTorch weights of pre-trained models trained them on the RedPajama dataset. This is a

reproduction of the LLaMA training dataset containing over 1 trillion tokens and is a mixture of seven

data slices. The slices are “CommonCrawl: Five dumps of CommonCrawl, processed using the

CCNet pipeline, and filtered via several quality filters including a linear classifier that selects for

Wikipedia-like pages; C4 [Colossal Clean Crawled Corpus]: Standard C4 dataset; GitHub: GitHub

data, filtered by licenses and quality; arXiv: Scientific articles removing boilerplate; Books: A corpus

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202405.1169.v1
http://creativecommons.org/licenses/by/4.0/

 2

of open books, deduplicated by content similarity; Wikipedia: A subset of Wikipedia pages, removing

boilerplate; StackExchange: A subset of popular websites under StackExchange, removing

boilerplate” [9]. They follow “the exactly same preprocessing steps and training hyperparameters as

the original LLaMA paper, including model architecture, context length, training steps, learning rate

schedule, and optimizer” [10]. This gives us confidence that the open-source large language models

can be used on par with the popular ones provided by the big companies in the industry.

This paper is organized as follows. Section 2 reviews related work in the field of generative AI

used for cybersecurity tasks. Section 3 describes the techniques and the model setup. Section 4

presents the conducted experiments and their results. In Section 5 conclusions and discussions are

stated.

2. Related Work

Before the large language models became popular, other more established, machine learning

methods have been used in cybersecurity research. For predicting vulnerability exploitation Fang, et

al. in [12] developed an algorithm based on ensemble machine learning algorithms. Zhou, et al. in

[13] used graph neural networks on the program semantics for vulnerability identification. Li, et al.

in [14] and O. de Vel, et al. in [11] rely on deep learning for detecting software vulnerabilities.

Large language models use a deep learning neural network as variation of the traditional

language models. After Google's Vaswani et. al. [16] developed and open-sourced the idea of

Transformers, it marked the rise of large language models. This is true especially for the most

recognizable one of all them, the GPT series, which is the basis of OpenAI’s ChatGPT, presented in

2022. This also leads to the idea of applying them as cybersecurity instruments. In [15], Happe et al.

present a scenario where the language model interacts with a virtual machine using automatically

generated commands and tries to compromise it. Sladić, et al. in [3] and Ragsdale, et al. in [4] use

GPT for creating low-risk honeypots. In order for their code to work, it requires valid access to

OpenAI’s API for GPT-3.5-turbo-16k. Their idea is based on the McKee, et al. ChatGPT honeypot [2].

Other use-cases of ChatGPT are code generation as in Murr, et al. [18] and the “application in

detecting malicious web content, particularly phishing sites” [17]. For comparison Koide, et al. use

performance metrics such as precision, recall, accuracy and f-measure. The difference between the

different versions is also evident in their research. The capability of “non-phishing site classification

– [False Positives] (FP) and [True Negatives] (TN) was comparable between GPT-3.5 and GPT-4,

resulting in similar precision values. However, GPT-4 outperforms GPT-3.5 by approximately 5.8%”

[17]. Authors as Gupta, et al. examine “defense techniques and uses of GenAI tools to improve

security measures, including cyber-defense automation, reporting, threat intelligence, secure code

generation and detection, attack identification, developing ethical guidelines, incident response

plans, and malware detection” [19]. Despite the importance of these studies, none of them relies on

locally installed open-sourced large language models. The authors' choice was to use remote API

access provided by the cloud LLMs. In contrast, this paper presents the role of a locally running open-

source large language models for simulating vulnerable IoT system and cybersecurity improving.

3. Models and Used Techniques

For local use of large language models, tools such as llama.cpp [20] are essential. This instrument

optimizes the size and allows the models to be run on the user’s hardware without needing cloud

systems. The hardware resources of the machine on which the experiments were conducted are

AMD® Ryzen 7 CPU 4.4GHz with 8 cores and 16 threads, 32GiB RAM, and 1TB disk capacity.

The llama.cpp is a tool whose “main goal is to run the LLaMA model using 4-bit integer

quantization” [20,21] as 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization are supported.

Supported platforms are Mac OS, Linux, Windows and it can run on Docker. llama.cpp has base

interface and interactive mode for more chatGPT-like experience. Despite that the hardware

parameters allow experimentation with even larger language models, the open-license reproduction

of Meta AI's LLaMA large language models with 13 billion parameters comparable to GPT-3 [10] was

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

https://doi.org/10.20944/preprints202405.1169.v1

 3

used in our experiments. Figure 1 shows the original and the quantized size, as well as the required

memory and disk space.

Figure 1. Memory/Disk Requirements [20].

The chosen language model is OpenLLaMA with 13B parameters trained on 1T tokens. The total

memory usage is approximately 8 GB instead the original 24 GB as seen in Figure 2. This load allows

the language model to run smoothly without experiencing lag or system overload.

Figure 2. Used System Resources.

When the quantized model with 13 billion parameters is loaded and started, the load on the

processor is equable across the CPU cores and threads as seen in Figure 2. As shown in Figure 3

“OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority

of tasks, and outperforms them in some tasks” [10].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

https://doi.org/10.20944/preprints202405.1169.v1

 4

Figure 3. Comparing OpenLLaMA 13B with LLaMA and GPT [10]

Our experiments explore the potential of using the knowledge of the open-sourced large

language models for assisting the detection of vulnerabilities in IoT systems and the collection of

information about the actions of the attacker. The two directions in which the experiments were

carried out will be described in the next section. The first one is a security assistant and the second

one is a large language model simulation of a vulnerable IoT system. For both types of experiments,

the interactive mode of operation of the language model is used.

There are three features, which were taken into account during the experiments with the large

language model. The first one is related to the so-called "prompt engineering" in order to make the

language model enter the relevant role. The second one is adding enough context when

communicating with the model. The third one is the level of creativity. Large language models use

probabilities to determine the probability when generating each token (word) in a given context.

These models are trained on vast amounts of textual data, patterns and structures that help them

predict the most likely tokens that follow a given input. The models assign probabilities to all possible

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

https://doi.org/10.20944/preprints202405.1169.v1

 5

tokens based on their understanding of the entire context. It then selects the next token of the output

based on these probabilities. The so-called “temperature” parameter controls how focused and

deterministic is the model. Higher temperature means that less likely tokens can be selected. The

usual value is 0.8. The parameter “top-p” is for sampling the range of tokens based on their

cumulative probability. The default value is 0.9. A higher value means that the model is selecting

more tokens based on their cumulative probability. During the experiments were tried different

parameter values and input data.

4. Experiments and Results

After conducting numerous experiments, the parameters with which the model was run in order

to produce the most realistic results are as follows:

- OpenLLaMA 13B parameters, 4-bit integer quantized model in .GGUF (GPT-Generated

Unified Format) format for storing models introduced by Georgi Gerganov [20]. As the previous

version of the format (GGML - GPT-Generated Model Language) these models could be run on users’

CPUs;

- The number of tokens to predict is set to 256;

- The temperature parameter is the default one;

- The top-p sampling parameter is set to 0.8;

- The repeat penalty parameter for penalize repeat sequence of tokens is 1.0;

- All other parameters are left to their defaults.

The working system is isolated and there is no connection to Internet so all answers are

generated locally by the language model. The interaction starts with the following description: “User

interacts with an assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails

to answer the User's requests immediately and with precision”.

4.1. Cybersecurity Assistance

First, we do not initially tell Bob to change its personality. We just ask guiding questions as it is

in peer programming role, helping with best practices expertise in creating secure code or guidance

in finding vulnerabilities. The idea is to give a list of security guidelines and explanations in order to

improve programming code quality.

We start with more general questions and move on to more detailed ones.

As shown in Figure 4 our first question is “what are the most common problems when writing

code?” in order to apply the technique Chain-of-Thought Prompting [22]. It can be seen that the

described problems are not specifically related to secure code programming, but to general

programming problems.

Figure 4. Generative LLM output of more general question.

The next questions are increasingly more specific, as shown in Figure 5a. In the question and

answering process, Bob suggests a function name on its own and attempts to mark the actions of the

function itself.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

https://doi.org/10.20944/preprints202405.1169.v1

 6

(a) (b)

Figure 5. (a). Generative LLM output of the clarifying questions; (b) OWASP Secure Coding Practice

Guide [23].

On the clarifying question about problems when writing secure programming code, the answer

overlaps largely with the guidelines of OWASP secure coding practice guide, as can be seen in Figure

5b.

At the same time, large language models are susceptible to hallucinations. This means that it is

possible to offer in some cases instructions that do not exist or programs to be downloaded from non-

existent internet connections, program code that does not work or is a mixture of different program

languages. Often the answer seems perfectly legitimate. As seen in Figure 6, if we ask the model about

top 10 most used attack vectors for Windows 10 OS, the model returns a list of sites that have a good

reputation for reporting cybersecurity news.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

https://doi.org/10.20944/preprints202405.1169.v1

 7

Figure 6. Generative LLM output with hallucinations.

The problem is that none of these articles exists and the links to them do not work. They are

simply generated by the language model so that they appear authentic. This illustrates one of the

main problems of generative artificial intelligence with large language models. For this reason, facts

should always be checked, as well as one should be looking for ways to improve the returned result,

including with external knowledge [24].

2.2. Large Language Model Simulation of a Vulnerable System

Despite the hallucinations mentioned, the models can be used to mislead an attacker. In this

case, the role of the large language model is to simulate a vulnerable IoT system, mimicking console

access and the behavior of a real Linux terminal. This experiment attempts to simulate realistic

responses. For this purpose, the role of the chatbot is changed by telling it to enter into another one.

The experiments follow the same instructions as in [2] but not on OpenAI’s chatGPT. Instead, our

goal is locally running LLM to stop answers everyday questions in human way, and start answering

only as a Linux console. This behavior is shown in Figure 7.

Depending on the parameters with which the model is started and the randomness of the

sequence selection, it may be more difficult for the language model to enter a Linux role. On Figure

7 is shown how the model prints the working directory, creates files, and then reads them.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

https://doi.org/10.20944/preprints202405.1169.v1

 8

Figure 7. Output of the generative LLM as IoT Linux console honeypot

As can be seen on Figure 8 it manages to mimic the “cat” command with the previously created

file and print its contents. It also mimics the action of the “ping” command and the installing a new

program. In addition, the installed Nmap ("Network Mapper"), a tool for network discovery and

security auditing, manages to produce output. The model manages to respond and simulate Linux

IoT honeypot shell behavior.

Figure 8. Output of the Generative LLM as IoT Linux console honeypot

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

https://doi.org/10.20944/preprints202405.1169.v1

 9

5. Discussion and Conclusions

Although the experiments were not conducted on the largest available open access large

language models, the results are very promising. As a limitation, we can point out that the output of

the model is sometimes inconsistent and an experienced hacker may notice inconsistencies and

problems. Despite that the presented approach is especially useful for cybersecurity experts who

would prefer to take advantage of the capabilities of large language models without uploading

personal or sensitive content to remote cloud systems. The open source large language models give

more freedom for experimentation. However, the lack of moderation or censorship should be

considered if public access is given because it removes all server-side ethical checks as well. This is

also related to the ethical issue of including toxic content in the learning process as well as copyright

infringement and low quality information. Copyright infringement is the subject of numerous

lawsuits nowadays. In the current experiments, we used pre-trained large language models that can

be run without any cloud/API costs. A major advantage of the local open source large language

models is that they do not share sensitive data with the cloud. This also allows for additional training

and fine-tuning of a specific model. This way also allows the creation of a more personalized AI

model without the need for increasingly large model parameter sizes. Analyzing which model is

good enough is done in order to reduce the need for ever-increasing large language models resources.

A further development of the current experiments would be the integration of the open source model

and its results into tools that allow a more user-friendly experience.

Author Contributions: Conceptualization, V.Y.; methodology, V.Y.; software, V.Y.; validation, V.Y.;

investigation, V.Y.; writing—original draft preparation, V.Y.; visualization, V.Y.

Funding: This research was funded by the European Union-NextGenerationEU via the National Recovery and

Resilience Plan of the Republic of Bulgaria, project No. BG-RRP-2.004-0005.

Data Availability Statement: The data supporting reported results can be found on this link

https://huggingface.co/openlm-research/open_llama_13b/tree/main

Acknowledgments: The author acknowledged support from the European Union-NextGenerationEU via the

National Recovery and Resilience Plan of the Republic of Bulgaria, project No. BG-RRP-2.004-0005.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vesselin Bontchev, Veneta Yosifova "Analysis of the Global Attack Landscape Using Data from a Telnet

Honeypot" Information & Security: An International Journal, 43 no.2 (2019):264-282.

https://doi.org/10.11610/isij.4320

2. McKee, Forrest, and David Noever. "Chatbots in a honeypot world." arXiv preprint arXiv:2301.03771 (2023).

3. Sladić, Muris, et al. "LLM in the shell: Generative honeypots." arXiv preprint arXiv:2309.00155 (2023).

4. Ragsdale, Jarrod, and Rajendra V. Boppana. "On Designing Low-Risk Honeypots Using Generative Pre-

Trained Transformer Models With Curated Inputs." IEEE Access 11 (2023): 117528-117545.

5. “Llama 2 - Meta AI”, MetaAI. https://ai.meta.com/llama/. Accessed 25 Nov. 2023.

6. “Models - OpenAI API” OpenAI, https://platform.openai.com/docs/models. Accessed 25 Nov. 2023.

7. “Bard - Chat Based AI Tool from Google, Powered by PaLM 2.” Google, bard.google.com/. Accessed 25

Nov. 2023.

8. Touvron, Hugo, et al. "Llama: Open and efficient foundation language models." arXiv preprint

arXiv:2302.13971 (2023).

9. “RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training

dataset of over 1.2 trillion tokens” Together AI, https://www.together.xyz/blog/redpajama. Accessed 25

Nov. 2023.

10. Geng, Xinyang and Liu, Hao, OpenLLaMA: An Open Reproduction of LLaMA, 2023,

https://github.com/openlm-research/open_llama

11. O. de Vel, Hubczenko, D., Kim, J., Montague, P., Xiang, Y., Phung, D., & Murray, T. (2019). Deep Learning

for Cyber Vulnerability Discovery: NGTF Project Scoping Study.

12. Fang Y, Liu Y, Huang C, Liu L (2020) FastEmbed: Predicting vulnerability exploitation possibility based on

ensemble machine learning algorithm. PLoSONE 15(2):e0228439.

https://doi.org/10.1371/journal.pone.0228439

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

https://doi.org/10.20944/preprints202405.1169.v1

 10

13. Zhou, Y., Liu, S., Siow, J., Du, X., & Liu, Y. (2019). Devign: Effective vulnerability identification by learning

comprehensive program semantics via graph neural networks. arXiv preprint arXiv:1909.03496.

14. Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., & Chen, Z. (2021). SySeVR: A framework for using deep learning to

detect software vulnerabilities. IEEE Transactions on Dependable and Secure Computing.

15. Happe, Andreas, and Jürgen Cito. "Getting pwn'd by AI: Penetration Testing with Large Language

Models." arXiv preprint arXiv:2308.00121 (2023).

16. Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30

(2017).

17. Koide, Takashi, et al. "Detecting Phishing Sites Using ChatGPT." arXiv preprint arXiv:2306.05816 (2023).

18. Murr, Lincoln, Morgan Grainger, and David Gao. "Testing LLMs on Code Generation with Varying Levels

of Prompt Specificity." arXiv preprint arXiv:2311.07599 (2023).

19. Gupta, Maanak, et al. "From ChatGPT to ThreatGPT: Impact of generative AI in cybersecurity and privacy."

IEEE Access (2023).

20. Georgi Gerganov. llama.cpp: Inference of LLaMA model in pure C/C++. [Online]. Available from:

https://github.com/ggerganov/llama.cpp 2023.06.03

21. Wu, Hao, et al. "Integer quantization for deep learning inference: Principles and empirical evaluation."

arXiv preprint arXiv:2004.09602 (2020).

22. Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and

Denny Zhou. 2023. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.

arXiv:2201.11903 [cs.CL]

23. „OWASP Secure Coding Practices - Quick Reference Guide“ https://owasp.org/www-project-secure-

coding-practices-quick-reference-guide/stable-en/01-introduction/05-introduction. Accessed 25 Nov. 2023.

24. Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden,

Zhou Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check Your Facts and Try Again: Improving Large

Language Models with External Knowledge and Automated Feedback. arXiv:2302.12813 [cs.CL]

25. Chen, Lingjiao, Matei Zaharia, and James Zou. "How is ChatGPT's behavior changing over time?." arXiv

preprint arXiv:2307.09009 (2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2024 doi:10.20944/preprints202405.1169.v1

https://doi.org/10.20944/preprints202405.1169.v1

