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Abstract: This paper explores the role of open-source large language models in IoT cybersecurity world. The 

threats of malicious activity on the Internet and the loss of private information are very real and lead to serious 

consequences. The purpose of this paper is to investigate how open source-large language models can help to 

defend against the growing threat of cyber-crimes. We conducted our experiments in two directions. The first 

one is a security assistant that helps with cybersecurity best practices advices. The second one is a how large 

language model can simulate a vulnerable IoT system. For both types of experiments, the interactive mode of 

operation of the language model is used. In the context of the cybersecurity research, a major advantage of the 

locally installed open-sourced large language models is that they do not share sensitive data with a remote 

system in a cloud. The paper concludes by discussing the potential impact of open-source large language 

models on cybersecurity research and recommends future research directions.  
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1. Introduction 

In this paper, we are exploring the role of open-sourced generative large language models in IoT 

cybersecurity research. The threats of malicious activity on the Internet and the loss of private 

information are very real and lead to serious consequences. The purpose of this paper is to investigate 

how open-source large language models can help defending against the growing threat of cyber-

crimes. Cybersecurity research involves techniques for protection from attacks of information 

systems, including computer systems, networks, critical infrastructures, programs, “Internet of 

Things” (IoT) devices, and so on, as this is done by detecting, responding, and preventing cyber-

incidents. One of the often used methods for analysis of the attack vectors involves setting up 

honeypots. Creating a new one or choosing the right honeypot and setting it to work as expected is a 

hard and time-consuming task [1]. For this reason, with the development of the new generative 

models, cybersecurity researchers are looking for a way to implement them into their defense toolkit 

[2–4]. These developments rely on large language models accessed by OpenAI's ChatGPT, Google's 

Bard and others generative chatbots because they provide free API access. However, the most 

popular and large language models like Meta Llama 2 [5], OpenAI GPT (Generative Pretrained 

Transformer) [6], Google PaLM (Pathways Language Model) [7] or LaMDA (Language Model for 

Dialogue Applications), etc. have restrictions for acceptable use. On the other hand, an openly 

licensed reproduction of Meta's original LLaMA2 model, called OpenLLaMA was introduced in 2023. 

It uses the same architecture and is a replacement for the original LLaMA paper [8]. They provide 

PyTorch weights of pre-trained models trained them on the RedPajama dataset. This is a 

reproduction of the LLaMA training dataset containing over 1 trillion tokens and is a mixture of seven 

data slices. The slices are “CommonCrawl: Five dumps of CommonCrawl, processed using the 

CCNet pipeline, and filtered via several quality filters including a linear classifier that selects for 

Wikipedia-like pages; C4 [Colossal Clean Crawled Corpus]: Standard C4 dataset; GitHub: GitHub 

data, filtered by licenses and quality; arXiv: Scientific articles removing boilerplate; Books: A corpus 
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of open books, deduplicated by content similarity; Wikipedia: A subset of Wikipedia pages, removing 

boilerplate; StackExchange: A subset of popular websites under StackExchange, removing 

boilerplate” [9]. They follow “the exactly same preprocessing steps and training hyperparameters as 

the original LLaMA paper, including model architecture, context length, training steps, learning rate 

schedule, and optimizer” [10]. This gives us confidence that the open-source large language models 

can be used on par with the popular ones provided by the big companies in the industry. 

This paper is organized as follows. Section 2 reviews related work in the field of generative AI 

used for cybersecurity tasks. Section 3 describes the techniques and the model setup. Section 4 

presents the conducted experiments and their results. In Section 5 conclusions and discussions are 

stated. 

2. Related Work  

Before the large language models became popular, other more established, machine learning 

methods have been used in cybersecurity research. For predicting vulnerability exploitation Fang, et 

al. in [12] developed an algorithm based on ensemble machine learning algorithms. Zhou, et al. in 

[13] used graph neural networks on the program semantics for vulnerability identification. Li, et al. 

in [14] and O. de Vel, et al. in [11] rely on deep learning for detecting software vulnerabilities.  

Large language models use a deep learning neural network as variation of the traditional 

language models. After Google's Vaswani et. al. [16] developed and open-sourced the idea of 

Transformers, it marked the rise of large language models. This is true especially for the most 

recognizable one of all them, the GPT series, which is the basis of OpenAI’s ChatGPT, presented in 

2022. This also leads to the idea of applying them as cybersecurity instruments. In [15], Happe et al. 

present a scenario where the language model interacts with a virtual machine using automatically 

generated commands and tries to compromise it. Sladić, et al. in [3] and Ragsdale, et al. in [4] use 

GPT for creating low-risk honeypots. In order for their code to work, it requires valid access to 

OpenAI’s API for GPT-3.5-turbo-16k. Their idea is based on the McKee, et al. ChatGPT honeypot [2]. 

Other use-cases of ChatGPT are code generation as in Murr, et al. [18] and the “application in 

detecting malicious web content, particularly phishing sites” [17]. For comparison Koide, et al. use 

performance metrics such as precision, recall, accuracy and f-measure. The difference between the 

different versions is also evident in their research. The capability of “non-phishing site classification 

– [False Positives] (FP) and [True Negatives] (TN) was comparable between GPT-3.5 and GPT-4, 

resulting in similar precision values. However, GPT-4 outperforms GPT-3.5 by approximately 5.8%” 

[17]. Authors as Gupta, et al. examine “defense techniques and uses of GenAI tools to improve 

security measures, including cyber-defense automation, reporting, threat intelligence, secure code 

generation and detection, attack identification, developing ethical guidelines, incident response 

plans, and malware detection” [19]. Despite the importance of these studies, none of them relies on 

locally installed open-sourced large language models. The authors' choice was to use remote API 

access provided by the cloud LLMs. In contrast, this paper presents the role of a locally running open-

source large language models for simulating vulnerable IoT system and cybersecurity improving. 

3. Models and Used Techniques 

For local use of large language models, tools such as llama.cpp [20] are essential. This instrument 

optimizes the size and allows the models to be run on the user’s hardware without needing cloud 

systems. The hardware resources of the machine on which the experiments were conducted are 

AMD® Ryzen 7 CPU 4.4GHz with 8 cores and 16 threads, 32GiB RAM, and 1TB disk capacity. 

The llama.cpp is a tool whose “main goal is to run the LLaMA model using 4-bit integer 

quantization” [20,21] as 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization are supported. 

Supported platforms are Mac OS, Linux, Windows and it can run on Docker. llama.cpp has base 

interface and interactive mode for more chatGPT-like experience. Despite that the hardware 

parameters allow experimentation with even larger language models, the open-license reproduction 

of Meta AI's LLaMA large language models with 13 billion parameters comparable to GPT-3 [10] was 
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used in our experiments. Figure 1 shows the original and the quantized size, as well as the required 

memory and disk space. 

 

Figure 1. Memory/Disk Requirements [20]. 

The chosen language model is OpenLLaMA with 13B parameters trained on 1T tokens. The total 

memory usage is approximately 8 GB instead the original 24 GB as seen in Figure 2. This load allows 

the language model to run smoothly without experiencing lag or system overload. 

 

Figure 2. Used System Resources. 

When the quantized model with 13 billion parameters is loaded and started, the load on the 

processor is equable across the CPU cores and threads as seen in Figure 2. As shown in Figure 3 

“OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority 

of tasks, and outperforms them in some tasks” [10]. 
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Figure 3. Comparing OpenLLaMA 13B with LLaMA and GPT [10] 

Our experiments explore the potential of using the knowledge of the open-sourced large 

language models for assisting the detection of vulnerabilities in IoT systems and the collection of 

information about the actions of the attacker. The two directions in which the experiments were 

carried out will be described in the next section. The first one is a security assistant and the second 

one is a large language model simulation of a vulnerable IoT system. For both types of experiments, 

the interactive mode of operation of the language model is used. 

There are three features, which were taken into account during the experiments with the large 

language model. The first one is related to the so-called "prompt engineering" in order to make the 

language model enter the relevant role. The second one is adding enough context when 

communicating with the model. The third one is the level of creativity. Large language models use 

probabilities to determine the probability when generating each token (word) in a given context. 

These models are trained on vast amounts of textual data, patterns and structures that help them 

predict the most likely tokens that follow a given input. The models assign probabilities to all possible 
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tokens based on their understanding of the entire context. It then selects the next token of the output 

based on these probabilities. The so-called “temperature” parameter controls how focused and 

deterministic is the model. Higher temperature means that less likely tokens can be selected. The 

usual value is 0.8. The parameter “top-p” is for sampling the range of tokens based on their 

cumulative probability. The default value is 0.9. A higher value means that the model is selecting 

more tokens based on their cumulative probability. During the experiments were tried different 

parameter values and input data. 

4. Experiments and Results 

After conducting numerous experiments, the parameters with which the model was run in order 

to produce the most realistic results are as follows: 

- OpenLLaMA 13B parameters, 4-bit integer quantized model in .GGUF (GPT-Generated 

Unified Format) format for storing models introduced by Georgi Gerganov [20]. As the previous 

version of the format (GGML - GPT-Generated Model Language) these models could be run on users’ 

CPUs; 

- The number of tokens to predict is set to 256; 

- The temperature parameter is the default one; 

- The top-p sampling parameter is set to 0.8; 

- The repeat penalty parameter for penalize repeat sequence of tokens is 1.0; 

- All other parameters are left to their defaults. 

The working system is isolated and there is no connection to Internet so all answers are 

generated locally by the language model. The interaction starts with the following description: “User 

interacts with an assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails 

to answer the User's requests immediately and with precision”. 

4.1. Cybersecurity Assistance  

First, we do not initially tell Bob to change its personality. We just ask guiding questions as it is 

in peer programming role, helping with best practices expertise in creating secure code or guidance 

in finding vulnerabilities. The idea is to give a list of security guidelines and explanations in order to 

improve programming code quality. 

We start with more general questions and move on to more detailed ones. 

As shown in Figure 4 our first question is “what are the most common problems when writing 

code?” in order to apply the technique Chain-of-Thought Prompting [22]. It can be seen that the 

described problems are not specifically related to secure code programming, but to general 

programming problems. 

 

Figure 4. Generative LLM output of more general question. 

The next questions are increasingly more specific, as shown in Figure 5a. In the question and 

answering process, Bob suggests a function name on its own and attempts to mark the actions of the 

function itself. 
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(a) (b) 

Figure 5. (a). Generative LLM output of the clarifying questions; (b) OWASP Secure Coding Practice 

Guide [23]. 

On the clarifying question about problems when writing secure programming code, the answer 

overlaps largely with the guidelines of OWASP secure coding practice guide, as can be seen in Figure 

5b. 

At the same time, large language models are susceptible to hallucinations. This means that it is 

possible to offer in some cases instructions that do not exist or programs to be downloaded from non-

existent internet connections, program code that does not work or is a mixture of different program 

languages. Often the answer seems perfectly legitimate. As seen in Figure 6, if we ask the model about 

top 10 most used attack vectors for Windows 10 OS, the model returns a list of sites that have a good 

reputation for reporting cybersecurity news. 
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Figure 6. Generative LLM output with hallucinations. 

The problem is that none of these articles exists and the links to them do not work. They are 

simply generated by the language model so that they appear authentic. This illustrates one of the 

main problems of generative artificial intelligence with large language models. For this reason, facts 

should always be checked, as well as one should be looking for ways to improve the returned result, 

including with external knowledge [24]. 

2.2. Large Language Model Simulation of a Vulnerable System 

Despite the hallucinations mentioned, the models can be used to mislead an attacker. In this 

case, the role of the large language model is to simulate a vulnerable IoT system, mimicking console 

access and the behavior of a real Linux terminal. This experiment attempts to simulate realistic 

responses. For this purpose, the role of the chatbot is changed by telling it to enter into another one. 

The experiments follow the same instructions as in [2] but not on OpenAI’s chatGPT. Instead, our 

goal is locally running LLM to stop answers everyday questions in human way, and start answering 

only as a Linux console. This behavior is shown in Figure 7. 

Depending on the parameters with which the model is started and the randomness of the 

sequence selection, it may be more difficult for the language model to enter a Linux role. On Figure 

7 is shown how the model prints the working directory, creates files, and then reads them.  
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Figure 7. Output of the generative LLM as IoT Linux console honeypot 

As can be seen on Figure 8 it manages to mimic the “cat” command with the previously created 

file and print its contents. It also mimics the action of the “ping” command and the installing a new 

program. In addition, the installed Nmap ("Network Mapper"), a tool for network discovery and 

security auditing, manages to produce output. The model manages to respond and simulate Linux 

IoT honeypot shell behavior.  

 

Figure 8. Output of the Generative LLM as IoT Linux console honeypot 
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5. Discussion and Conclusions  

Although the experiments were not conducted on the largest available open access large 

language models, the results are very promising. As a limitation, we can point out that the output of 

the model is sometimes inconsistent and an experienced hacker may notice inconsistencies and 

problems. Despite that the presented approach is especially useful for cybersecurity experts who 

would prefer to take advantage of the capabilities of large language models without uploading 

personal or sensitive content to remote cloud systems. The open source large language models give 

more freedom for experimentation. However, the lack of moderation or censorship should be 

considered if public access is given because it removes all server-side ethical checks as well. This is 

also related to the ethical issue of including toxic content in the learning process as well as copyright 

infringement and low quality information. Copyright infringement is the subject of numerous 

lawsuits nowadays. In the current experiments, we used pre-trained large language models that can 

be run without any cloud/API costs. A major advantage of the local open source large language 

models is that they do not share sensitive data with the cloud. This also allows for additional training 

and fine-tuning of a specific model. This way also allows the creation of a more personalized AI 

model without the need for increasingly large model parameter sizes. Analyzing which model is 

good enough is done in order to reduce the need for ever-increasing large language models resources. 

A further development of the current experiments would be the integration of the open source model 

and its results into tools that allow a more user-friendly experience. 
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