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Abstract: Missing values pose a challenge in predictive analysis specially in big data because most
models depend on complete datasets to estimate functional relationships between variables. Generative
Adversarial Imputation Networks are among the most reliable methods to impute missing values
with plausible numbers from the dataset. This research introduces Enhanced Generative Adversarial
Networks (EGAIN), which address the GAIN convergence issue, introduce new functionality to the
GAIN process, and significantly improve its performance.
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1. Introduction

Missing values are a common issue in predictive analysis, as most models require complete data to
estimate functional relationships among existing variables. There are two main approaches to address
missing values in datasets: (1) case deletion, where an entire row of data is removed if it contains
at least one missing value, and (2) missing value imputation, where plausible values are estimated
and filled in for the missing data. Each method has its drawbacks. Case deletion can significantly
reduce the number of samples for predictive analysis, particularly in datasets with a high proportion
of missing values, thereby reducing the power of estimations. On the other hand, imputing missing
values allows partial information from rows with missing values to be used but may lead to biased
results if improper imputations are applied.

Moreover, there are three types of missing values: Missing Completely At Random (MCAR),
Missing At Random (MAR), and Missing Not At Random (MNAR) [1]. In MCAR, data is missing
purely by chance, e.g., when a survey response is lost because the respondent did not see the question.
In this scenario, the missingness is not related to any observed or unobserved data. MAR occurs when
the missingness is related to some observed data but not the missing values themselves, e.g., older
participants are more likely to skip an income question. In this case, the missing data can be accounted
for by other known variables, such as age. MNAR arises when the reason for missingness depends
on the unobserved missing data itself, e.g., people with high incomes may choose to hide their salary,
resulting in missing income information.

There are many imputation methods that reliably handle different types of missing data. Among
them is Multiple Imputation by Chained Equations (MICE), which predicts missing values using
an iterative process and regression of observed variables on the missing ones [2]. While MICE is
well-suited for datasets with mixed numerical and categorical variables and preserves relationships
between variables, its iterative process is time-consuming. Moreover, it may fail to properly impute
missing values when non-linear relationships exist between variables [3]. MissForest is another
common missing value imputation technique that uses random forests to predict and fill in missing
values [4]. This method is effective for handling complex datasets with both numerical and categorical
variables and captures non-linear relationships between variables. However, MissForest is highly
time-consuming, especially for large datasets. Its performance drops significantly when a large portion
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of the data is missing and may introduce bias in datasets with extreme values or skewed distributions
[5].

Generative Adversarial Imputation Networks (GAIN) is a deep learning-based approach for
missing value imputation that models the distribution of observed data to impute missing values
[6]. GAIN handles both numerical and categorical variables and performs well even when the data
distribution is imbalanced or skewed [7]. However, it is sensitive to hyperparameter selection, and
suffers from encoding issues and reduced accuracy for multi-class variables. For a comprehensive
review of models for handling missing data, see [8].

Several researchers have provided performance comparisons between MICE, MissForest, and
GAIN on benchmark datasets [7,9,10]. The results indicate that the performance of these models
depends heavily on factors such as the type (numerical/categorical) and number of variables, variable
skewness, number of cases, the percentage and type of missing values. GAIN has demonstrated
superior performance over MICE and MissForest in many areas, including speed and handling high
missing rates.

Several variations of GAIN have been proposed since its introduction in 2018. Among them
are: LEM-D2GAIN, which integrates a latent factor model (LEM) for coherent training and reduced
reconstruction error, along with a dual-discriminator (D2) to capture multi-modal data distribution [11];
GAGIN, which integrates global and local imputation networks with an imputation guider model to
address local homogeneity and improve prediction performance [12]; ClueGAIN, which incorporates
transfer learning to improve imputation accuracy in datasets with high missing rates [13]; ccGAIN,
which enhances imputation accuracy by conditioning imputation on observed and annotated values in
clinical data with high missing rates [14]; LWGAIN, which integrates the Wasserstein distance in the
loss function and incorporates labeled inputs into the generator, improving imputation performance
on the Kansas logging dataset and enabling effective lithology identification [15].

Despite the many variations built on GAIN, its application still relies on the outdated
TensorFlow 1.x Application Programming Interface (API) and several nonstandard user-defined
functions for scaling, sampling, and network initiation. Moreover, its deep networks that are con-
sidered the center of the process are simple deep neural networks, unable to discover the spatial
relationships in the input data. Crucially, GAIN implementation is very sensitive to the choice of
hyperparameters and often exhibits convergence issues, especially when missing data is limited to a
small number of variables, a characteristic prevalent in most real-life datasets. Indeed, Sun et al. (2023)
highlight the lack of standardized software for the GAIN method.

We introduce Enhanced Generative Adversarial Networks (EGAIN), which address the GAIN
convergence issue, introduce new functionality to the GAIN process, and significantly improve its
performance. The enhancements are discussed in detail in the following section. The EGAIN codes,
along with instructions on how to use them and sample runs, will be provided as a Python 3.x
package on https://github.com.

2. Materials and Methods

The Generative Adversarial Imputation Network (GAIN) introduced by Yoon et al. (2018) formu-
lates imputation of missing values as a learning problem, leveraging a generator (G) and discriminator
(D) in a competitive setting inspired by Generative Adversarial Networks (GANSs). The core idea of
GAIN is to generate plausible imputations for missing values using a generator, denoted as

X=G(X,M,2), (1)

where X is the data array whose missing values are replaced with zero, M is the binary mask array
whose values are 1 for observed data, and 0 for missing, and Z is random noise applied only to
missing value arrays. Once the generator imputes the missing values, the discriminator (D) attempts to
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distinguish real values from imputed ones by outputting a probability array that indicates the chance

of each component being real, using:
D(X, H), )

where X is the output of the generator, and H is the hint array that provides partial information about
which values are missing. The generator and discriminator networks are trained over a large number of
iterations, while improving their performance by reducing competing loss functions. The discriminator
is trained to maximize classification (real/imputed) accuracy by minimizing the following binary cross
entropy loss function:

Lp = —Eg y y[Mlog D(X, H) + (1 — M)log(1 — D(X, H))]. 3)

The generator is trained to minimize the discriminator’s ability to differentiate real values from
imputed ones, with the following loss function:

Lc=—Exy[(1—M)logD(X, H)]. (4)

This loss function is only applied to imputed missing (m; = 0) and penalizes G if D performs well by
correctly outputting low chances. To encourage the generator to produce realistic values that deceive
the discriminator, a reconstruction loss is added to the generator:

Lo Y m;(x; — £;)%,  if x; is continuous, 5)
M= Y m;(x;log(%;)), if x; is binary.
This loss function is only applied to observed values (m; = 1). Therefore, the total generator loss

becomes:
L = Lo +aly, 6)

where « is a hyperparameter that controls the contribution of the reconstruction loss to the overall
objective. The competition between the generator and the discriminator drives the generator to
produce high-quality imputations that are indistinguishable from real data. It is important to note that
only the continuous reconstruction loss has been used in the GAIN implementation and its successors.

The following are a series of enhancements that has been applied to the GAIN implementation,
driving the EGAIN with improved performance:

¢  GAIN algorithm has been implemented using tf . compat . v1, which is part of the TensorFlow 1.x
API that is intended to aid migration from TF1 to TF2 [16]. EGAIN, on the other hand, is im-
plemented in TensorFlow 2, benefiting from improved performance optimizations, reduced
boilerplate code, enhanced function tracing, and increased readability, debuggability, and main-
tainability.

¢  GAIN algorithm utilizes a deep neural network for both the generator and the discriminator, each
composed of two dense layers. The data with missing values and its corresponding mask array
are concatenated side by side (by columns) before being fed into the networks. EGAIN, on the
other hand, employs a deep convolutional neural network for the generator and the discriminator,
consisting of one convolutional layer followed by a max-pooling layer, along with two dense
layers. In this approach, the data with missing values and its mask array are stacked on top of
each other, similar to a sandwich, before being fed into the network. This structure enables the
network to capture spatial associations in the input more effectively.

*  GAIN implementation is highly sensitive to hyperparameter selection and may fail to converge
or produce results if the number of iterations is not appropriate. This issue is particularly evident
when missing values exist in only a few columns, as seen in MAR and MNAR scenarios. In
contrast, EGAIN consistently provides reliable imputations in every run. This is accomplished
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through the use of checkpoints, where the network weights are stored and recalled when perfor-
mance issues arise.

e  GAIN implementation includes several nonstandard user-defined functions for scaling, sampling,
and network initialization, whereas EGAIN utilizes standard built-in functions. For example,
Xavier initialization isimplemented as a user-defined function in GAIN for network weight
initialization, while EGAIN leverages the built-in Xavier initialization for layer kernels.

e  EGAIN provides charts displaying the loss function over iterations, aiding in hyperparameter
selection and offering a visual indication of network performance. In contrast, GAIN lacks such
a chart and since it is highly sensitive to hyperparameters, the network often fails to converge
when poor hyperparameter choices are made.

Table 1 summarizes the benchmark UCI datasets [17] that are used to assess the performance
of the EGAIN model compared to the GAIN [6]. For each dataset, different missingness settings are
considered with a range of missing value rates. MCAR missing values are generated using standard
functions based on Rubin (1976). After introducing missing values into complete datasets, GAIN and
EGAIN were used for imputation, and their performance was evaluated using Root Mean Squared
Error (RMSE):

RMSE = \/ % Yo (xi—%)2, 7)

where 7 is the number of missing values, x; is real value from completed data, and %; is the imputed
missing value. Min/Max scaling is applied prior to calculation of performance metrics so that all
variables have the same range of values. Experiments were conducted 25 times independently. A hint
rate of 90% was used for all imputations. A batch size of 64 was employed for small and medium
datasets, while 256 was used for large datasets. The hyperparameter & was selected by observing the
generator and discriminator loss functions to ensure they began at approximately the same value (see
Figure 2). Line charts display the average and standard deviation of performance metrics across 25
runs. Details of these runs and their hyperparameters are provided in the supplementary materials.

Table 1. Benchmark datasets (small, medium, large).

Dataset Cases Features Description

breast 569 31 30 numerical, 1 binary categorical
spam 4,601 58 57 numerical, 1 binary categorical
credit 30,000 24 14 numerical, 10 categorical

3. Results

Figure 1 shows a performance comparison of GAIN and EGAIN on the breast cancer dataset for
(a) missing values selected completely at random from the 30 numerical predictors at various rates.
The results indicate a significant (p < 0.001) RMSE reduction of 5.37% to 18.74% for EGAIN compared
to GAIN. More importantly, the convergence of the GAIN implementation was highly dependent on
the number of iterations, often failing to generate results when the number of iterations exceeded an
optimal threshold. As a result, different numbers of iterations were used for different missing rates
(see supplementary run data). In contrast, the EGAIN implementation produced results regardless of
the number of iterations, with performance improving as the number of iterations increased.

The issue with the GAIN implementation becomes more evident when missing values are present
in only a few columns, which is common in real-world datasets. In Figure 1(b), missing values at
various rates were selected completely at random from a subset of randomly chosen columns among
the 30 numerical predictors. EGAIN demonstrates significant (p < 0.001) performance improvements
ranging from 5.25% (16 random columns with 75% total missing) to 46.22% (2 random columns with
50% total missing). Notably, the GAIN implementation failed to produce results more frequently
as the number of iterations increased. Consequently, different numbers of iterations were used for
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Figure 1. Performance comparison of GAIN vs EGAIN for breast cancer dataset: (a) MCAR from the 30 columns.
(b) MCAR from randomly selected columns among 30 numerical features.

Figure 2, generated using EGAIN, illustrates the discriminator and generator loss functions
throughout the training iterations. It is evident that both the discriminator and generator improve
their performance over iterations, as indicated by the decreasing loss values. The L loss begins to
increase slightly shortly after iteration 10 as the discriminator improves its performance, which in
turn penalizes the generator, forcing it to produce more realistic imputations. This chart can be used
to select the value of a such that the initial loss values of the discriminator and generator are nearly
equal. In this example, « = 80 was chosen. Although the number of iterations was set to 1000, the
minimum generator loss was observed around iteration 520. EGAIN effectively stores the network
weights at this iteration using checkpoints and utilizes them to generate the final imputation. This
functionality is absent in GAIN, making it susceptible to overtraining, which ultimately leads to failure
in imputing missing values. The discriminator loss is multiplied by 10 in the EGAIN implementation
to penalize the discriminator more severely and to produce more consistent plots. EGAIN can also
resume training from its stored checkpoint weights, improving upon the results of the previous runs.

—— Discriminator Loss — Lg Loss
—— Generator Loss —— a-Lmloss

o 100 200 300 400 500 0 100 200 300 400 500
fterations Iterations

Figure 2. Progress of the loss functions throughout training in breast cancer data.

Figure 3 shows a performance comparison of GAIN and EGAIN on the spam dataset for (a)
missing values selected completely at random from the 57 numerical predictors at various rates.
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EGAIN illustrates improved performance compared to GAIN in all missing rates. A two factor
ANOVA reveals a significant difference (p < 0.001) in perfromance between GAIN and EGAIN. The
diference in performance was more evident when (b) missing values were selected from a subset of
randomly chosen columns among the 57 features at various rates. Once again, GAIN often failed to
generate results when the number of iterations exceeded an optimal selected threshold.
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Figure 3. Performance comparison of GAIN vs EGAIN for spam dataset: (a) MCAR from the 57 columns. (b)
MCAR from randomly selected columns.

Performance comparisons between GAIN and EGAIN in credit dataset are shown in Figure 4.
EGAIN illustrates significant performance improvement (p < 0.001) compared to GAIN across
different missing value rates. Note that GAIN was very sensitive to the choice of training iterations
and failed to provide imputations passed the selected iterations in the study; see supplementary data.
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Figure 4. Performance comparison of GAIN vs EGAIN for credit dataset: (a) MCAR from the 14 numerical
columns. (b) MCAR from randomly selected columns among 14 numerical features.

Table 2 summarizes the overall imputation performance across the discussed experiments. EGAIN
has demonstrated a significant performance improvement compared to GAIN across small, medium,
and large datasets, reducing the RMSE by 3.21%, 24.77%, and 19.73% in the breast cancer, spam, and
credit datasets, respectively. Notably, the most significant achievement of EGAIN is its ability to
resolve GAIN'’s convergence issue; see the supplementary data for details.
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Table 2. Overall imputation performance across experiments in terms of RMSE (Average =+ Std).

Method GAIN EGAIN
breast cancer 0.0385 4 0.0331 0.0373 £+ 0.0314
spam 0.0200 £ 0.0157 0.0161 £ 0.0152
credit 0.0413 4 0.0284 0.0345 =4 0.0263

4. Discussion

MICE, MissForest, and GAIN are among the most common methods for imputing missing
values in a dataet. GAIN outperforms MICE and MissForest by capturing complex data distributions,
handling high missing rates, and learning implicit patterns without assuming specific distributions. It
scales better to large datasets, provides more consistent imputations through adversarial training, and
adapts well to different data types. Despite the many variations built on GAIN, its implementation
still relies on the outdated TensorFlow 1.x API, uses several nonstandard user-defined functions, and
requires careful hyperparameter tuning. EGAIN, introduced in this paper, is built on the TensorFlow 2
AP]J, resolves the convergence issues of GAIN using checkpoint saving, and provides visualizations of
loss functions to aid in hyperparameter selection. Results show that EGAIN outperforms GAIN in
terms of RMSE across several benchmark datasets.

Regarding computational time, EGAIN exhibits a runtime approximately three to four times
longer than GAIN. Specifically, imputing 20% missing values in a credit dataset containing 30,000 cases
requires an average of 20 seconds for EGAIN, utilizing 1000 iterations and a batch size of 256. This is
primarily due to the use of a convolutional layer in both the generator and discriminator. Although
this runtime is manageable for individual imputations, it accumulates substantially during simulations
involving hundreds of independent runs. Conversely, GAIN’s average runtime is 5.5 seconds; however,
with 1000 iterations, it failed to generate successful imputations, as this exceeds its recommended
iteration limit of 500.

This study focused solely on missing value imputation in MCAR scenarios. A follow-up study is
required to compare the performance of EGAIN and its alternatives in MAR and MNAR scenarios.
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GAIN Generative Adversarial Imputation Network
EGAIN Enhanced Generative Adversarial Imputation Network
MAR Missing At Random

MCAR Missing Completely At Random

MNAR Missing Not At Random

MICE Multiple Imputation by Chained Equations
LEM-D2GAIN Latent Factor Model with Dual Discriminator GAIN
GAGIN Generative Adversarial Guider Imputation Network
ccGAIN Conditional Clinical GAIN

LWGAIN Loss Wasserstein GAIN

TensorFlow TF

API Application Programming Interface

RMSE Root Mean Squared Error
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