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Overview

This document provides exemplary step-by-step commands for ONT long-read sequencing analysis in plants, in-
cluding basecalling, genome assembly, gene annotation, and final data submission. This hands-on protocol covers
the entire process, from raw data acquisition to final genome assembly, making it accessible even to beginners.
Brief explanations accompany each step to ensure that readers cannot only follow the protocol but also understand
the methodology and can adapt it to their own research.

Before introducing the bioinformatics protocol (Steps 1–12), we first describe some basic Unix behavior and soft-
ware installation requirements (Chapters I and II).

I. General Conventions

Before starting, please note the following basic conventions:

• All commands are intended to be run on a Unix-based/-like system via a command line interface (CLI).
• Commands are generally written on a single line; however, for readability, longer commands may be split

across multiple lines using a backslash \ at the end of each line. When entered into the CLI,these commands
will execute as a single line.

• # denotes a non-executable comment.
• Example file paths are written as /path/to , which should be replaced with the full path to your specific file

or directory.
• Commands may include output redirection, e.g., >> /path/to/logfile.log 2>&1 at the end to redirect both

standard output (stdout) and standard error (stderr) to a log file, or 2>/path/to.err.txt to redirect only
stderr to a specified file. Some programs, such as Dorado or samtools, output results to stdout, so it is
necessary to redirect these outputs to a file. Using > will overwrite the file, while >> appends to it.

• The symbol & at the end of the command runs it in the background. Alternatively, you may use a terminal
multiplexer like tmux (https://github.com/tmux/tmux/wiki), which may be more convenient for managing
long-running processes.

• If two commands are separated by:
– | : stdout of the first command will be used as an input for the second command (if the second com-

mand supports it)
– && : second command is only executed after the first command finishes without errors
– ; : second command is executed after the first command finishes, with or without errors

Links to official documentation are provided for every tool, as they often include many more features and options
that cannot be covered in this document. While the examples provided here are based on our experiences, we
strongly recommend consulting the official documentation and built-in help to explore options best suited for your
specific project.

Helpful options to access tool documentation include:

man TOOL # Opens the manual page, if available
TOOL -h # Prints a short help message
TOOL --help # Prints a more extensive help message
cd TOOL && nano README.md # Many tools provide a README file in the installation directory
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It is advisable to install and use the latest stable version of each tool to ensure optimal performance and compati-
bility.

II. Recommended Installation of Tools:

There are several common ways to install bioinformatics tools:

• Package Manager: Tools can be installed via system package managers like apt (Debian/Ubuntu), though
these versions may be outdated.

• Precompiled binaries: Download pre-built binaries from official websites or GitHub repositories.
• Python environments: Use conda to create isolated environments with specific versions of tools and their

dependencies.
• Docker containers: Containers typically include all necessary dependencies and are highly reproducible, but

they tend to consume more disk space.

The preferred installation method depends on tool availability and user preference. The following sections provide
basic usage instructions for each method.

Installation with apt

On Debian/Ubuntu systems, apt can be used to install some bioinformatics tools. Basic usage includes:

sudo apt update # Update package lists
sudo apt upgrade # Upgrade installed packages
sudo apt search samtools # Search for available packages
sudo apt install samtools seqkit # Install one or more tools

Depending on your system configuration, you may need superuser rights (using sudo).

Manual Installation

If no package or conda environment is available, you can manually install a tool. Usually, tool developers provide
clear installation instructions, typically involving downloading a binary release and extracting it:

Using pre-compiled Binaries:

tar -xvzf tool.tar.xz
cd tool/

If binaries are not working or the latest development version is needed, you can compile from source:

git clone https://github.com/author/tool.git
cd tool/
make # Follow instructions in the README or INSTALL.md

Usually, the full path to the executable binary is required to run the tool. To make the tool accessible in your shell
environment, you need to add it to your PATH variable. For the current bash session:

export PATH="/path/to/tool:$PATH"

To make this change permanent across all bash sessions, add the line to your shell startup script (e.g., ~/.bashrc ).
To do this, you can use a text editor like nano :

nano ~/.bashrc
# Add the following line at the end of the file
export PATH="/path/to/tool:$PATH"
# Save and exit, then reload
source ~/.bashrc
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Python environments

As many bioinformatic tools can be installed via conda, we use this to package manager to demonstrate virtualenv.
Environments which can exist along and which can have different version of the same package. Some tools are
dependent on other packages (dependency) while another tool might be dependent on the same package, but with
another, putatively conflicting, version. The virtual environments can handle these differences. Additionally, you
do not need to export the path variable to run a command installed via conda in a venv. Conda installation guide:
https://docs.conda.io/projects/conda/en/stable/user-guide/install/linux.html

Common commands, listing existent environments, creating and entering environments, installation and updating:

conda env list # List existing environments
conda create -n YOUR_ENV_NAME # Create a new environment
conda activate YOUR_ENV_NAME # Activate the environment
conda deactivate # Deactivate the current environment
conda install TOOL # Install a tool in the active environment
conda update -n YOUR_ENV_NAME TOOL # Update a specific tool
conda update -n YOUR_ENV_NAME --all # Update all tools in the environment
conda update -n base conda # Update conda itself

Docker containers

Official Docker [1] installation guide: https://docs.docker.com/engine/install/

Docker can run tools in isolated containers. An example BUSCO command:

sudo docker run --rm \
-v /path/to:/path/to \
ezlabgva/busco:v6.0.0_cv1 \
busco --plot /path/to/busco_runs

In this example

• -v /path/to:/path/to mounts your local directory inside the container, making files accessible.
• ezlabgva/busco:v6.0.0_cv1 specifies the Docker image and version.
• Everything after the image name ( busco --plot ... ) works similarly to a local installation.

Most software projects provide ready-to-use Docker images. Using Docker can simplify installation but requires
more disk space.

Use Cases

This workflow can be used in two main scenarios:

Sequencing and assembling a new genome: In this case, follow Steps 1–12, starting from raw read acquisition
(wet lab steps). Please note that Steps 1–4, which include the laboratory protocols for DNA extraction, library
preparation, and sequencing, are already covered in detail in the main manuscript. Hence, this manual includes
only brief notes for these steps.

Practicing or working with public data: If you only want to try the bioinformatic workflow using public ONT reads
(i.e., no own sequencing), begin with Step 0 (Data Download). If using raw POD5 signal data, proceed to Step 5 for
basecalling. If using already basecalled FASTQ files, you can skip directly to Step 6 (Read correction).

Step 0: Downloading Read Data

Public ONT datasets can be used to practice the protocol. In this example, we use Victoria cruziana read data [2],
which is publicly available on NCBI’s Sequence Read Archive (SRA) [3] and the European Nucleotide Archive (ENA)
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[4].

0.1 Downloading Raw, Un-basecalled Data

Raw ONT data in POD5 format contains the raw electrical signal from the sequencer. This is the starting point for
basecalling, but such data is not always easy to find, as it’s not indexed or displayed as clearly as FASTQ files. There-
fore, authors should take care to point to the possibility of available raw data in their data availability statements.
One possibility is the upload of the data as a compressed archive (.tar.gz,) to ENA which can then be accessed via
ENA’s ftp interface, documented here: https://ena-docs.readthedocs.io/en/latest/retrieval/file-download.html

ENA hosts such files in this FTP structure: ftp://ftp.sra.ebi.ac.uk/vol1/run/

To view or browse these folders in a web browser: https://ftp.sra.ebi.ac.uk/vol1/run/

Example, for read ID ERR14671536 , files can be accessed through the ftp interface through a subfolder containing
the first few letters of the ID: ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR146/ERR14671536/

Once you identify the .tar.gz archive, copy the path and download and unpack it using:

wget https://ftp.sra.ebi.ac.uk/vol1/run/ERR146/ERR14671536/R252_487107af.tar.gz
tar -xvzf R252_487107af.tar.gz

The tar -xvzf command unpacks the archive. you will get a folder structured like this:

R252_487107af/
|-- fastq/
| `-- R252_487107af.fastq.gz # Basecalled data, if already included
`-- pod5/

|-- FBA42430_skip_487107af_556d06fa_0.pod5
|-- FBA42430_skip_487107af_556d06fa_1.pod5
`-- ...

The fastq/ folder contains basecalled data while the pod5/ folder contains raw signal data that can be used for
basecalling.

0.2 Downloading Basecalled Reads with Prefetch and Fasterq-dump

It is also possible to directly download the basecalled reads in fastq format using SRA-Toolkit [5].

SRA-Toolkit Wiki: https://github.com/ncbi/sra-tools/wiki

The recommended tools to download the data are prefetch and fasterq-dump from the SRA Toolkit.

• prefetch downloads data in compressed .sra format.
• fasterq-dump converts .sra files to standard FASTQ format.

First, use prefetch to download the .sra files. You can specify one or multiple SRA run IDs (e.g., all IDs from
BioProject PRJEB63973). Common options include:

• -p to show progress,
• --max-size to set the maximum size for downloads,
• --output-directory to define where downloaded files are stored.

prefetch -p \
--max-size 250g \
--output-directory /path/to/raw_reads/prefetch \
ERR13955440 ERR13955441 ERR13955442 [...]

Next, extract FASTQ files from the downloaded .sra files using fasterq-dump.

• e specifies the number of parallel threads (adjust based on your available CPU cores),
• --outdir specifies where to write the FASTQ files.
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fasterq-dump -e 30 /path/to/raw_reads/prefetch/*/*.sra --outdir /path/to/raw_reads

Step 1: Preparations for a Plant Genomics Project

Before beginning a sequencing project, it is important to confirm that genome assemblies or raw sequencing reads
are not already available for the species of interest. If new sequencing is required, one of the first steps is to
estimate the genome size to plan data requirements accordingly.

The Plant DNA C-values (https://cvalues.science.kew.org/) [6] database can be consulted to obtain the 1C
value, which represents the amount of DNA in a haploid genome. For example, the 1C value for Victoria cruziana
is reported to be 4.10 picograms (pg). Since 1 pg = 978 megabase pairs (Mbp), this translates to an estimated
genome size of: 4.10 pg × 978 Mbp/pg = 4.009 Gbp.

To achieve a 30× sequencing coverage, the minimum amount of raw data required would be: 4.009 Gbp × 30 =
~120.27 Gbp.

However, since part of the data is typically lost during read correction and genome assembly, it is recommended
to aim for higher coverage, ideally above 30×.

Refer to Step 1 in the main manuscript for more details about the project planning and preparation considerations.

Step 2: DNA Extraction

The success of long-read sequencing is strongly dependent on the extraction of high-quality, high-molecular-weight
(HMW) DNA. DNA integrity and purity directly affect read length and sequencing yield.

Refer to Step 2 in the main manuscript for practical guidance on DNA extraction methods suitable for ONT sequenc-
ing, including strategies to minimize shearing and contamination.

Step 3: Library Preparation

Library preparation should follow the manufacturer’s instructions, as protocols may vary depending on the type of
flow cell (e.g., R9.4.1, R10.4.1), the chemistry kit, or whether native or cDNA protocols are used.

Refer to ONT’s updated documentation for the latest protocols and best practices for preparing sequencing li-
braries.

Step 4: Pore-C

If the goal is to obtain a chromosome-scale genome assembly, long-range information is necessary. In such cases,
chromatin conformation capture techniques like Pore-C can be used to scaffold contigs into chromosome-level
assemblies by providing information about physical proximity of genomic regions in 3D space.

Refer to Step 4 in the main manuscript for more background.

Step 5: Basecalling

Dorado [7] documentation: https://github.com/nanoporetech/dorado

Basecalling refers to converting raw signal data from ONT sequencers into nucleotide sequences. We use Oxford
Nanopore’s Dorado, which provides GPU-accelerated basecalling with options for detecting modified bases.

Before basecalling, download the appropriate model for your sequencing chemistry using dorado download .
You can list available models and options with dorado basecaller --help . In this example, we use the
dna_r10.4.1_e8.2_400bps_sup@v5.0.0 model, which includes modified base detection for 5-methylcytosine
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(5mCG) and 5-hydroxymethylcytosine (5hmCG). The basecalling input is the folder containing your raw .pod5
files, and the output is a BAM file. Logs are redirected to an error log file.

dorado basecaller \
dna_r10.4.1_e8.2_400bps_sup@v5.0.0 \
/path/to/R252_487107af/pod5/ \
--modified-bases 5mCG_5hmCG \
> /path/to/Victoria_cruziana_run01.mod.bam \
2> /path/to/YourArchiveForBasecalling.dorado.mod.err.txt &

To convert the resulting BAM file into a FASTQ file (commonly used for downstream analyses), use samtools fastq
[8].

samtools fastq -T "*" \
/path/to/Victoria_cruziana_run01.mod.bam\
> /path/to/Victoria_cruziana_run01.mod.fastq

• T “*” ensures all auxiliary tags in the BAM file are handled properly.

It is advisable to compress FASTQ files to save disk space. gzip compression is widely accepted by downstream
bioinformatics tools.

gzip /path/to/Victoria_cruziana_run01.mod.fastq

You can obtain basic quality statistics, including the read N50, using tools like seqkit [9] (https://bioinf.shenwei.m
e/seqkit/) or a Python script ( FASTQ_stats3.py ; https://github.com/bpucker/PlantGenomicsGuide/blob/main/
FASTQ_stats3.py)

seqkit stats -N 50 /path/to/Victoria_cruziana_run01.mod.fastq.gz

python3 /path/to/FASTQ_stats3.py \
--in /path/to/Victoria_cruziana_run01.mod.fastq.gz

Step 6: Raw Read Correction with HERRO

HERRO [10] repository: https://github.com/lbcb-sci/herro

Raw long reads from ONT sequencing often include some errors. Correction improves accuracy before assembly.
HERRO is integrated into Dorado and applies a two-step correction:

• Step 1 (CPU intensive) computes overlaps between reads,
• Step 2 (GPU intensive) corrects reads based on these overlaps.

While both steps can be conducted in one command, they can also be run separately to be able to utilize different
hardware options to accelerate the running time of the tool due to proper hardware. If you have multiple runs for
the same sample (e.g., multiple flowcells), you should merge them into a single file before correction. The merged
file can remain compressed.

cat\
/path/to/Victoria_cruziana_run01.mod.fastq.gz \
/path/to/Victoria_cruziana_run02.mod.fastq.gz \
/path/to/Victoria_cruziana_run03.mod.fastq.gz \
> /path/to/Victoria_cruziana.fastq.gz &

The first step calculates overlaps between reads and outputs a .paf file (specified with --to-paf ) describing
the overlaps. The output, by default, is in stdout and needs to be redirected into a file (using > ). Use --threads
to optimize performance based on CPU availability. Errors and logs are saved in *.doc.txt.
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/path/to/dorado correct \
/path/to/Victoria_cruziana.fastq.gz \
--to-paf --threads 10 \
> /path/to/Victoria_cruziana.overlaps.paf \
2> /path/to/Victoria_cruziana.overlaps.doc.txt &

For the second step (GPU intensive), only uncompressed input FASTQ files are supported. To uncompress them
simply use -gunzip /path/to/Victoria_cruziana.fastq.gz . Add -k if you want to keep the original com-
pressed file. Then, run Dorado with HERRO correction. --form-paf specifies the overlap file, and corrected reads
are output in FASTA format.

/path/to/dorado correct /path/to/Victoria_cruziana.fastq \
--from-paf /path/to/Victoria_cruziana.overlaps.paf \
> /path/to/Victoria_cruziana.corrected_reads.fasta \
2> /path/to/Victoria_cruziana.corrected_reads.errors.txt &

Step 7: Genome Sequence Assembly

7.1 Shasta

Official Shasta [11] documentation: https://paoloshasta.github.io/shasta/

Shasta is a fast and efficient assembler for ONT long reads. It uses advanced algorithms to assemble genomes
quickly while requiring comparatively modest computational resources. Depending on the type of flow cell used
(e.g., R9.4.1, R10.4.1) and whether the reads have undergone prior correction, different pre-configured settings
(configuration files) should be used to optimize performance. Key parameters are --input specifying the input
reads (in FASTA or FASTQ format), --config for suitable configuration file, --assemblyDirectory defines the
output folder where the assembly results will be written, and --threads sets the number of CPU threads to use.
The .conf files can be downloaded from here: https://github.com/paoloshasta/shasta/tree/main/conf

/path/to/binary/shasta-Linux-0.14.0 \
--threads 10 \
--input /path/to/Victoria_cruziana.corrected_reads.fasta \
--config /path/to/Nanopore-r10.4.1_e8.2-400bps_sup-Herro-Jan2025.conf \
--assemblyDirectory /path/to/shasta/Vcruz_01

It is recommended to add optional arguments --memoryBacking 2M and --memoryMode filesystem to enable
Shasta to back memory allocations with 2 MB huge pages and use the filesystem for temporary storage. This
can speed up performance and reduce disk I/O, but may require root or superuser permissions depending on your
system setup.

7.2 NextDenovo

Official NextDenovo [12] documentation: https://nextdenovo.readthedocs.io/en/latest/

NextDenovo is a long-read assembler suitable for large genomes. It performs both read correction and assembly.
NextDenovo requires a configuration file that specifies runtime parameters, making it easy to reproduce results or
adjust settings for different datasets.

To run NextDenovo, you simply provide the configuration file:

/path/to/binary/nextDenovo /path/to/nextdenovo/Vcruz_01.cfg

The config file can be copied from the documentation. Key parameters in the config file include:

• input_fofn : a file listing the paths to input read file
• input_type : raw for uncorrected read or corrected for pre-corrected reads
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• read_type : specifies the sequencing technology (ONT, PacBio CLR, or PacBio HiFi)
• genome_size : estimated genome size, which guides the assembly process, it is advised to adjust parame-

ters regarding computation resources ( -t and -p options).
• parallel_jobs : controls how many parallel processes NextDenovo will run
• workdir ; directory where intermediate files and the final assembly is stored

Example configuration for Victoria Cruziana

[General]
job_type = local
job_prefix = nextDenovo
task = all # "assemble" can be used if read correction was already performed
rewrite = yes
deltmp = yes
parallel_jobs = 6
input_type = raw # alternatively "corrected"
read_type = ont # clr, ont, hifi
input_fofn = /path/to/input.fofn # the .fofn is a file containing the input read file paths
workdir = /path/to/nextdenovo/Vcruz_01 # output directory

[correct_option]
read_cutoff = 1k
genome_size = 4g # estimated genome size
sort_options = -m 20g -t 15
minimap2_options_raw = -t 8
pa_correction = 3
correction_options = -p 15

[assemble_option]
minimap2_options_cns = -t 4
nextgraph_options = -a 1

Example .fofn file listing input FASTQ files:

/path/to/Victoria_cruziana.run1.fastq
/path/to/Victoria_cruziana.run2.fastq
/path/to/Victoria_cruziana.run3.fastq

7.3 Verkko

Official Verkko [13] documentation: https://github.com/marbl/verkko

Verkko is a versatile assembler that combines multiple data types, including HERRO-corrected ONT reads or PacBio
HiFi reads via --hifi , ultra-long ONT reads via --nano , and Pore-C data via --porec .

A minimal Verkko run includes -d to set the output directory, --hifi to specify HERRO corrected ONT reads
(or PacBio HiFi reads), and optional --nano or --porec for ultra-long ONT (Dorado basecalled reads) or Pore-C
reads, respectively. If --porec is given, the correct telomere motif should be specified with --telomere-motif .
Nowak et al. (2025, https://doi.org/10.1101/2024.06.15.599162) reported that Pore-C scaffolding produced better
results when conducted with alternative tools like CPhasing. Additionally, --local-memory and --local-cpus to
specify the upper limit of memory in GB (default 64) and the number of CPUs (standard all), respectively, can be
specified.

verkko --par-run 20 128 48 -d /path/to/verkko/Vcruz_01 --local-memory 128 --local-cpus 10 \
--hifi /path/to/Victoria_cruziana.corrected_reads.fasta

The --par-run option allows you to modify CPU, memory (GB), and runtime (hours) limits for specific pipeline
stages. For example, --par-run 20 128 48 allocates 27 CPUs, 464 GB RAM, and 48 hours for one of the internal
pipeline steps. This is especially helpful if you encounter bottlenecks in particular stages of the assembly.
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For more fine-grained control, consult the full list of Verkko parameters with verkko --help .

7.4 Hifiasm

Official Hifiasm [14] documentation: https://github.com/chhylp123/hifiasm

Hifiasm is a modern, ultra-fast assembler primarily designed for PacBio HiFi and ONT R10 reads. For ONT reads,
it is essential to use the --ont option. Hifiasm only accepts reads in FASTQ format. Key paramenters are -t for
defining the number of CPU threads to use, --ont to specify ONT reads, and -o to specify the output file prefix.

hifiasm -t 64 --ont -o ONT.asm /path/to/Victoria_cruziana.corrected_reads.fastq.gz

Hifiasm automatically outputs primary and alternative assemblies as GFA files, which can be converted to FASTA
using tools such as awk or gfatools . For gfatools , only the .gfa file is required:

gfatools gfa2fa /path/to/ONT.asm*.gfa > /path/to/Victoria_cruziana.genome.fa

Step 8: Assembly Evaluation

After running multiple assemblers, it is essential to evaluate their performance and select the most accurate contig-
level assembly for downstream scaffolding. The final assembly should be comprehensively assessed to ensure
completeness, accuracy, and overall quality.

8.1 Basic Assembly Statistics

To calculate basic statistics of the assembly such as N50, total length, number of contigs, GC content, the
lightweight Python script contig_stats.py (https://github.com/bpucker/PlantGenomicsGuide/blob/main/contig
_stats3.py) can be used. It can optionally filter out short contigs using --min_contig_len which specifies the
minimum length (in basepairs) of a contig in the output FASTA.

python3 contig_stats3.py \
--input /path/to/Victoria_cruziana.genome.fa \
--min_contig_len 10000 \
--out /path/to/output_directory/

8.2 BUSCO (Benchmarking Universal Single-Copy Orthologs)

Documentation: https://busco.ezlab.org/busco_userguide.html

BUSCO evaluates genome completeness by identifying near-universal single-copy orthologs from curated datasets
(OrthoDB) [15]. The first step is to select appropriate lineage dataset. To list available dayasets:

busco --list-datasets

The output will list current datasets which can be automatically downloaded by BUSCO. BUSCO authors suggests
to use the most specific datastet to get highest-resolution analysis. For example, the full lineage of Victoria
cruziana is ( cellular organisms/Eukaryota/Viridiplantae/Streptophyta/Streptophytina/
Embryophyta/Tracheophyta/Euphyllophyta/Spermatophyta/Magnoliopsida/
Nymphaeales/Nymphaeaceae/Victoria ). Based on currently available OrthoDB v12 [16] datasets, eukaryota_odb12 ,
viridiplantae_odb12 , and embryophyta_odb12 datasets can be used. Thus, embryophyta_odb12 is the cur-

rent best-fitting dataset for V. cruziana.

- archaea_odb12 [195]
- euryarchaeota_odb12 [282]

- methanomicrobia_odb12 [589]
- methanosarcinaceae_odb12 [971]
- methanosarcina_odb12 [1620]
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...
- viridiplantae_odb12 [822]

- embryophyta_odb12 [2026]
- eudicotyledons_odb12 [2805]

- brassicales_odb12 [4311]

...

For the actual BUSCO run, the lineage dataset can be specified with the -l or --lineage_dataset option.
--mode is mandatory and can be genome , proteins or transcriptome in the case of a genome sequence

FASTA, polypeptide sequences FASTA, or CDS FASTA, respectively. -i is input FASTA file and recommended, but
not mandatory, is the specification of an output folder and an output folder name. We recommend the output
folder to be the same per project or machine running BUSCO, with only the output folder name being changed
per run. Thus, all run-specific output folders are collected in a single BUSCO output folder (The given examples
are using specific run IDs). To speed up the run, more resources (number of CPUs) can be specified with --cpu
(default 1 ).

# BUSCO run for an assembly:
busco -i /path/to/Victoria_cruziana.genome.fa -m genome \
--cpu 10 -l embryophyta_odb12 --out_path /vol/data/sam/BUSCO_runs/ -o SNM_BIR_0079

# BUSCO run for proteins derived from a structural annotation:
busco -i /path/to/Victoria_cruziana.pep.fa -m proteins --cpu 10 \
-l embryophyta_odb12 --out_path /vol/data/sam/BUSCO_runs/ -o SNM_BIR_0134

BUSCO reports “Complete”, “Fragmented”, and “Missing” BUSCOs to assess assembly quality.

8.3 LTR Assembly Index (LAI)

Documentation: https://github.com/oushujun/LTR_retriever LAI [17],[18] measures genome assembly continuity
based on intact Long Terminal Repeat Retrotransposons (LTR-RTs). This involves the following steps:

Step 1: Index the genome using GenomeTools (gt)

/path/to/gt suffixerator \
-db /path/to/Victoria_cruziana.genome.fa \
-indexname Victoria_cruziana.genome.fa \
-tis -suf -lcp -des -ssp -sds -dna

Step 2: Identify candidate LTR elements using similarity searches

/path/to/gt ltrharvest \
-index Victoria_cruziana.genome.fa \
-minlenltr 100 -maxlenltr 7000 \
-mintsd 4 -maxtsd 6 \
-motif TGCA -motifmis 1 \
-similar 85 -vic 10 -seed 20 \
-seqids yes > Victoria_cruziana.genome.fa.harvest.scn

Step 3: Detects additional LTR candidates using structural features

/path/to/LTR_FINDER_parallel \
-seq Victoria_cruziana.genome.fa \
-threads 10 -harvest_out -size 1000000 -time 300

Step 4: Combine Results

cat Victoria_cruziana.genome.fa.harvest.scn Victoria_cruziana.genome.fa.finder.combine.scn \
> Victoria_cruziana.genome.fa.rawLTR.scn
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Step 5: LTR_retriver calculates LAI and filters high confidence LTR-RTs.

/path/to/LTR_retriever -genome Victoria_cruziana.genome.fa \
-inharvest Victoria_cruziana.genome.fa.rawLTR.scn -threads 10

The final LAI score is reported in the .out.LAI file. LAI scores between 0 to 10 indicate ‘draft quality’, between
10-20 ‘reference quality’ and more than 20 indicates ‘gold quality’.

8.4 Mapping-based Genome Size Estimation (MGSE)

Documentation: https://github.com/bpucker/MGSE

MGSE [19] estimates genome size based on k-mer coverage of reference gene sets (e.g., BUSCO genes). MGSE
requires the assembly FASTA file and the reads file, or the directory containing multiple files, in FASTQ format. The
reference genes can be provided as GFF3 file. MGSE authors state that the BUSCO genes appears to be the best
choice for reference genes. For this the full_table.tsv is used which can found in the BUSCO output directory.

python3 MGSE3.py --fasta /path/to/Victoria_cruziana.genome.fa \
--fastq /path/to/Victoria_cruziana.fastq.gz \
--out /path/to/MGSE_output/ \
--ref /path/to/BUSCO_genome/run_embryophyta_odb12/full_table.tsv \
--threads 10

Alternatively, if you have a BAM file with the reads mapped to the assembly, that can be provided instead of both
assembly and reads file. This BAM file can be generated using minimap2 and can be provided with the --bam
argument.

python3 MGSE3.py --bam /path/to/Victoria_cruziana.assembly_reads.bam \
--out /path/to/MGSE_output/ \
--ref /path/to/BUSCO_genome/run_embryophyta_odb12/full_table.tsv \
--threads 10

8.5 Merqury

Documentation: https://github.com/marbl/merqury

Merqury [20] performs a reference-free quality assessment using k-mer-based approaches to calculate consensus
accuracy (QV score) and completeness. It is important to select the right k-mer size for assessing the quality.
If unsure about the right k size, run best_k.sh script provided with MERQURY installation. It just requires the
genome_size in bases (e.g., 3500000000 for Victoria_cruziana). Next, Build k-mer database with meryl followed

by running Merqury.

# Calculate the right k size
sh /path/to/MERQURY/best_k.sh 3500000000

# Count k-mers from raw reads using meryl
meryl k=21 count /path/to/Victoria_cruziana_corrected_reads.fastq \
output_Victoria_cruziana.meryl >> /path/to/meryl.log 2>&1 &

# Run Merqury to assess assembly quality
merqury.sh output_Victoria_cruziana.meryl \
/path/to/Victoria_cruziana.genome.fasta >> /path/to/merqury.log 2>&1 &

Higher QV (Phred quality score) indicates fewer errors [21]. See table below for interpreting QVs:
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Phred Quality Score Probability of incorrect base call Base call accuracy

10 1 in 10 90%
20 1 in 100 99%
30 1 in 1000 99.9%
40 1 in 10,000 99.99%
50 1 in 100,000 99.999%
60 1 in 1,000,000 99.9999%

8.6 QUAST

Documentation: https://quast.sourceforge.net/docs/manual.html#sec2

QUAST [22] provides a comprehensive summary of assembly quality, reporting metrics like N50, number of contigs,
GC content, and misassemblies (if a reference genome sequence is provided). For plants, --eukaryote should
be specified (default is prokaryotes). --large should be specified when the genome is larger than 100 Mbp and
--circos switches on the circos plotting.

/path/to/QUAST/quast.py -o /path/to/quast_results/ \
--eukaryote \
--large \
--circos \
--threads 10 \
--labels "Victoria cruziana" #Assembly name to be used in reports. Quotes should be used if
#label name include spaces.

If a reference genome sequence is available, it can be added with --reference to detect misassemblies.

Step 9: CPhasing (Scaffolding with Pore-C Data)

Official CPhasing documentation: https://wangyibin.github.io/CPhasing/latest/

CPhasing is a tool for chromosome-scale scaffolding of genome assemblies using Pore-C data. It enhances con-
tiguity by leveraging long-range contact information. Key parameters include -f for draft assembly file (FASTA),
-pcd for Pore-C reads which can be gzipped, -t for number of cores, -p for restriction enzyme site used in

Pore-C library preparation, and -n for chromosome count as haploid_number:ploidy (e.g., 12:1 for 12 chro-
mosomes, haploid). -hcr is an optional argument that specifies that only high confidence regions should be
retained for scaffolding.

cphasing pipeline -f /path/to/Victoria_cruziana.genome.fa \
-pcd /path/to/Victoria_cruziana.porec.fastq.gz -t 24 -n 12:1 -hcr -p CATG

The output will be written to a new directory created in the current working folder. This directory contains both the
improved assembly and diagnostic reports on scaffolding quality.

Step 10. Structural Annotation

10.1 Protein-coding Genes

10.1.1 RNA-seq Read Mapping with HISAT2

Documentation: https://daehwankimlab.github.io/hisat2/

For gene prediction pipelines like GeMoMa or BRAKER3, mapping RNA-seq data provides essential “hints” about
gene structures, such as exon-intron boundaries. HISAT2 [23] is a splice-aware aligner that efficiently maps RNA-
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seq reads to a genome assembly. An alternative of HISAT2 is STAR [24] (https://github.com/alexdobin/STAR) and
can be used instead, if preferred.

Before mapping, HISAT2 requires creating an index from the genome assembly FASTA file. Input genome assembly
in FASTA format and output prefix (VC for Victoria_cruziana) for the generated index files are required.

hisat2-build -p 10 \ # -p specifies the number of cores
/path/to/Victoria_cruziana.genome.fa VC

Indexing creates several auxiliary files ( .ht2 files) that are required for mapping.

After indexing, RNA-seq reads (paired-end or single-end) are aligned to the genome sequence. The input reads can
be a comma separated list of file paths and may be gzip compressed. For paired end reads, the arguments -1 and
-2 are used and for single-end reads -U is used. The output can be piped ( | ) to samtools [8] to immediately

sort the resulting mapping by genomic coordinates and save it in indexed BAM format for downstream usage. The
output BAM file will be used as RNA-seq hints.

hisat2 -p 10 \
-x /path/to/Victoria_cruziana.genome.fa.index \
-1 /path/to/RNA-seq_reads_001_1.fq.gz,/path/to/RNA-seq_reads_002_1.fq.gz \
-2 /path/to/RNA-seq_reads_001_2.fq.gz,/path/to/RNA-seq_reads_002_2.fq.gz \
| samtools sort -@ 10 \
-o /path/to/Victoria_cruziana.genome_RNA-seq_mapping.bam \
&& samtools index /path/to/Victoria_cruziana.genome_RNA-seq_mapping.bam

10.1.2 BRAKER3

Documentation: https://github.com/Gaius-Augustus/BRAKER

BRAKER3 [25] is a fully automated pipeline for annotating protein-coding genes using RNA-seq data and/or protein
sequences as hints. It combines multiple gene prediction tools like GeneMark [26] and AUGUSTUS [27]

10.1.2.1 Obtaining Protein Hints Protein hints guide BRAKER3 to make more accurate predictions. The source
for these protein hints can be the precompiled protein hints from OrthoDB 12 [16] (https://bioinf.uni- greifs
wald.de/bioinf/partitioned_odb12/ ; Viridiplantae ). Additional peptide sequences from UniProt database
[28] can be included. Using advanced UniProt search, a broader taxon can be given via the ‘Taxonomy’ search
field. Example, in the case of Victoria cruziana, its order Nymphaeales [261007] (which translates to the search key
“(taxonomy_id:261007)”). Multiple FASTA files as a comma-separated list for the --prot_seq parameter can be
given.

10.1.2.2 BRAKER3 Command Input arguments are --genome for genome assembly in FASTA format,
--threads to define number of CPU threads to use, --workingdir to define the output directory, --gff3

output annotations in GFF3 format, --bam defines path to RNA-seq BAM alignment file, --prot_seq protein
sequences for hints, and --busco_lineage defines the BUSCO lineage dataset for training AUGUSTUS.

/path/to/braker.pl --genome=/path/to/Victoria_cruziana.genome.fa --threads=10 \
--workingdir=/path/to/braker3/Vcruz_annotation01/ --gff3 \
--bam=/path/to/Victoria_cruziana.genome_RNA-seq_mapping.bam \
--prot_seq=/path/to/Viridiplantae.fa,/path/to/Uniprot_hints.fasta \
--busco_lineage=embryophyta_odb12

10.1.3 GeMoMa

Documentation: https://www.jstacs.de/index.php/GeMoMa and https://www.jstacs.de/index.php/GeMoMa-
Docs

GeMoMa [29] uses homology-based gene prediction by aligning transcript sequences from closely related refer-
ence species and optionally includes RNA-seq evidence. The first step is to obtain reference genome sequences
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and their structural annotation in GFF/GFF3 file format from closely-related species. For our example Victoria
cruziana, closely related species, Nymphaea colorata (GenBank ID: GCA_008831285.2) and Nymphaea thermarum
(GenBank ID: GCA_011799765.1) are used.

In the below example run, each reference species is given with 4 parameters. s=own specifies custom reference
species, i= is an optional identifier tag for reference, the genome assembly and GFF3 file are provided with g=
and a= , respectively. t= is used to specify the path of the target genome sequence, outdir= to give the output
directory path, and threads= for specifying the number of threads to use. r=MAPPED and ERE.m= specifies that
the RNA-seq hints are mapped and the path to the mapping file. ERE.m= can be speciefied multiple times. Both
of these arguments can be skipped if RNA-seq data is not available. The default output is GFF file only. pc=true
outputs FASTA coding sequences, p=true output FASTA protein sequences pgr=true specifies that FASTA ge-
nomic regions should be returned, and o=true specifies that the predictions per individual reference should also
be returned. This is important for further filtering steps. Extractor.r specifics that GeMoMa will try to repair
transcript annotations that cannot be parsed . GAF.f specifies a filter string that filters the output. In the below
example, only predictions with proper start (start== M ) and codons (stop== * ) are kept. Additionally, if a prediction
has a certain score to length of amino acid ratio, it will be kept (score/aa>=‘0.75’). AnnotationFinalizer.r=NO
option is skips renaming.

java -jar /path/to/GeMoMa-1.9.jar CLI GeMoMaPipeline \
t=/path/to/Victoria_cruziana.genome.fa \
s=own i=NyCol a=/path/to/ref_species/GCF_008831285.2/genomic.gff \
g=/path/to/ref_species/GCF_008831285.2/GCF_008831285.2_ASM883128v2_genomic.fna \
s=own i=NyTher a=/path/to/ref_species/GCA_011799765.1/genomic.gff \
g=/path/to/ref_species/GCA_011799765.1/GCA_011799765.1_ASM1179976v1_genomic.fna r=MAPPED \
ERE.m=/path/to/Victoria_cruziana.genome_RNA-seq_mapping.bam \
outdir=/path/to/gemoma/Vcruz_annotation02/ \
pc=true pgr=true p=true o=true Extractor.r=true \
GAF.f="start=='M' and stop=='*' and (score/aa>='0.75')" \
AnnotationFinalizer.r=NO threads=10 >> GeMoMa.log 2>&1 \

The resulting output directory will have multiple files. The most important are individual predictions for each refer-
ence as a separate prediction GFF file and combined prediction ,using the filter specified, from all references. In
case you do not want to merge external annotations and GeMoMa annotation is already good enough, then you can
further filter it (if number of genes are too high) and proceed with the finalizing steps described in section 10.1.5

10.1.4 Funannotate

Documentation: https://funannotate.readthedocs.io/en/latest/index.html

The Funannotate pipeline [30] can perform gene prediction, functional annotation, and comparison. Here, we will
only focus on gene prediction. There are multiple steps to generate a Funannotate prediction.

1. First, optional step is to clean your assembly. If you have a haploid assembly, funannotate clean can
remove some repetitive small, low-quality contigs:

funannotate clean -i /path/to/Victoria_genome.fa \
-o /path/to/Victoria_cruziana_cleaned.genome.fa \
-m 500 #min. length of contig to keep, by default 500

1. Second mandatory step is to softmask the repetitive elements in the assembly using tantan

funannotate mask -i /path/to/Victoria_cruziana_cleaned.genome.fa \
-o /path/to/Victoria_cruziana_cleaned_softmasked.genome.fa \
--cpus 10 # No. of cpus to use

1. Now, funannotate train uses RNA-seq data from the target species and generates genome-guided
Trinity assembly followed by PASA assembly. If RNA-seq data is not available, this step does de novo
Augustus training. It produces the input data for funannotate predict, i.e. coord-sorted BAM alignments,

trinity transcripts, and high quality PASA GFF3 annotation. Single-end FASTQ files could also be provided
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with -s argument.

funannotate train -i /path/to/Victoria_cruziana_cleaned_softmasked.genome.fa \
-o /path/to/funannotate_output/ #Output folder \
-l /path/to/RNA-seq_reads_001_1.fq.gz /path/to/RNA-seq_reads_002_1.fq.gz \
-r /path/to/RNA-seq_reads_001_2.fq.gz /path/to/RNA-seq_reads_002_2.fq.gz \
--cpus 10 \
--species "Victoria cruziana"
--max_intronlen 1000000

1. The next step is to use funannotate predict to predict gene models. It automatically uses the results from
the train step and incorporates them into the prediction, given the same output directory as train step.
Additional, protein evidence from closely related species can be used with --protein_evidence argument.

funannotate predict -i /path/to/Victoria_cruziana_cleaned_softmasked.genome.fa \
-o /path/to/funannotate_output/ #Output folder \
-s "Victoria cruziana" --busco_db embryophyta \
--organism other \
--protein_evidence /path/to/ref_species/GCA_008831285.2/peptide.fasta \
/path/to/ref_species/GCA_011799765.1/peptide.fasta \
--cpus 10 \
--max_intronlen 1000000 \

1. Finally, funannotate update command can be used to add UTRs and refine gene models RNA-seq data.

funannotate update -i /path/to/funannotate_predict/ \
--species "Victoria_cruziana" \
-o path/to/funannotate_output/ \
--cpus 10 \

10.1.5 Combining and Finalizing Annotations Using GeMoMa

It is important to evaluate the quality of annotations from different sources which can vary in quality and complete-
ness. To evaluate the completeness, BUSCO score using same lineage dataset and in protein mode should be
calculated. The goal is to get the closest BUSCO score to the genome (same or higher). If any annotation recovers
the genome BUSCO, it might be sufficient and do not require merging. However, if that is not the case, evaluating,
filtering, and combining these annotations would be beneficial to create a final high-confidence gene set. Below is
a step-by-step guide to combine annotations from different sources:

Step 1: Prepare RNA-seq evidence with GeMoMa’s ERE

Although all three gene annotation tools described above can incorporate GFF3 from external sources, GeMoMa
has been observed to give the best results. To compare annotations from different sources, they should be com-
pared on the same scale. GeMoMa’s gene models have some attributes that define the quality of the gene models.
To add these attributes to other annotations, we need to extract RNA-seq coverage and intron information from the
RNA-seq alignments. GeMoMa’s ERE module is used for this where m= dspecifies the input RNA-seq alignment
in BAM format sorted by coordinates and outdir= specifies the directory where ERE will store its output.

java -jar /path/to/GeMoMa-1.9.jar CLI ERE \
m=/path/to/Victoria_cruziana.genome_RNA-seq_mapping.bam \
outdir=/path/to/gemoma/Vcruz_RNA_evidence

This command creates coverage.bedgraph (read coverage across the genome) and introns.gff (detected
intron positions). These files are used to add quality attributes to gene models based on expression data.

Step 2: Add attributes to external annotations with AnnotationEvidence

Now, gene annotations (e.g., from BRAKER3 or Funannotate) are enriched with RNA-seq based metrics. In the below
command, a= is the external annotation GFF3 file, g= is the genome assembly FASTA file, c= defines the cover-
age file (BAM format and can be UNSTRANDED , STRANDED , and NO ). In UNSTRANDED , only one .bedgraph file is
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needed, while for STRANDED , two .bedgraph file are required under coverage_forward and coverage_reverse
attribute. i= points to intron evidence, and outdir= specifies the output directory. Example with BRAKER3 out-
put:

java -jar /path/to/GeMoMa-1.9.jar CLI AnnotationEvidence \
a=/path/to/braker3/Vcruz_annotation01/braker.gff3 \
g=/path/to/Victoria_cruziana.genome.fa \
c=UNSTRANDED \
coverage_unstranded=/path/to/gemoma/Vcruz_RNA_evidence/coverage.bedgraph \
i=/path/to/gemoma/Vcruz_RNA_evidence/introns.gff \
outdir=/path/to/gemoma/Vcruz_braker_anno_with_evidence/

This command will produce among other files, the annotation_with_attributes.gff file, with the added at-
tributes. Each gene has useful attributes, such as average RNA-seq coverage per gene ( avgCov ), fraction of tran-
script’s introns supported by RNA-seq ( tie ), amino acid sequence length ( aa ) among multiple others. Note that
score is confidence score for GeMoMa predictions and therefore, external annotations do not have this. These

attributes allows objective filtering in the next step based on biological evidence.

Step 3: Filter and merge annotations using GeMoMa GAF

Gene annotations often include low-confidence or biologically implausible predictions (e.g., unsupported isoforms,
incomplete genes). GeMoMa’s GAF (GeMoMa Annotation Filter) can filter low-quality genes based on RNA-seq
support and other metrics, combine multiple annotations (e.g., GeMoMa + BRAKER3 + Funannotate), and remove
redundancy and select the best gene models. In the GeMoMa Annotation Filter ( GAF ) command. g= specifies
input GFF3 files (can be used multiple times for multiple annotations), f= sets the filtering criteria, for example,
isNaN(score) meaning score is not available, is necessary to include external annotations since they do not have

the score attribute. Multiple filtering criteria can be combined with the logical use of and , or and brackets () .
atf= filters alternative isoforms (optional but recommended). outdir= sets the output directory.

java -jar /path/to/GeMoMa-1.9.jar CLI GAF\
g=/path/to/gemoma/Vcruz_braker_anno_with_evidence/filtered_predictions.gff\
g=/path/to/gemoma/Vcruz_annotation02/unfiltered_predictions_from_species_0.gff\
g=/path/to/gemoma/Vcruz_annotation02/unfiltered_predictions_from_species_1.gff\
f="start=='M' and stop=='*' and aa>=15 and avgCov>0 and (isNaN(score) or score/aa>='3.25')"\
atf="tie==1 or sumWeight>1" outdir=/path/to/gemoma/Vcruz_filter_01

In the above command, start=='M' and stop=='*' only keeps genes with proper start and stop codons, aa>=15
removes predictions encoding very short peptides (likely spurious), avgCov>0 keeps only genes with any RNA-
seq support, is(NaN(score) or score/aa>='3.25') keeps genes with good normalized scores for GeMoMa
genes; for external tools (which don’t have a GeMoMa score), the filter allows inclusion by skipping score check.
atf="tie=1 or sumWeight>6" filters alternate transcripts to retain those with complete intron support ( tie==1 )

or strong overall support ( sumWeight>1 ). These filters can (and should) be customized based on particular project.
Always check BUSCO scores (protein mode) after filtering steps to validate completeness and investigate annota-
tion statistics (total number of genes and transcripts). It is recommended to iteratively test stricter or more relaxed
filter criteria for optimal balance between gene count and completeness.

Step 4: Rename genes using AnnotationFinalizer

Once an annotation is merged and sufficiently filtered (reasonable number of genes and high BUSCO score), it
will have inconsistent gene IDs (from different tools and species references). To have standardized gene IDs,
GeMoMa’s AnnotationFinalizer is used. g= is genome FASTA, a= is filtered annotation GFF3 file, p= sets
the prefix for all gene IDs, n=false disables adding gene IDs as extra name attributes, and outdir= defines the
output directory.

java -jar /path/to/GeMoMa-1.9.jar CLI AnnotationFinalizer \
g=/path/to/Victoria_cruziana.genome.fa \
a=/path/to/gemoma/Vcruz_filter_01/filtered_predictions.gff \
tf=true rename=SIMPLE p=Vcruz_ \
outdir=/path/to/gemoma/Vcruz_final_01/ n=false
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After this step, all genes will be named uniformly, e.g., Vcruz_00001, Vcruz_00002, etc.

Step 5: Extract CDS and protein sequences using Extractor

Final annotations are in GFF3 format, to generate protein-coding sequences and peptide FASTA sequences,
GeMoMa’s Extractor can be used. g= specifies the genome FASTA file, a= specifies the finalized gff3 file,
p=true and c=true outputs protein FASTA and CDS FASTA files, respectively. Output will be written to outdir= .

java -jar /path/to/GeMoMa-1.9.jar CLI Extractor \
g=/path/to/Victoria_cruziana.genome.fa a=/path/to/gemoma/Vcruz_final_01/final_annotation.gff \
p=true c=true

10.2 Non-coding Genes

10.2.1 Identification of TE’s with EDTA

Documentation:https://github.com/oushujun/EDTA

EDTA (Extensive de-novo TE Annotator) [31] is a pipeline designed to comprehensively annotate transposable ele-
ments (TEs) in a genome. --genome defines the path to the genome assembly in FASTA format, --cds (optional)
path to coding sequence FASTA file, this helps EDTA to make gene regions to reduce false-positive TE annota-
tions. --overwrite 1 allows EDTA to overwrite existing files in the directory (use with caution), --anno 1 runs
the complete annotation workflow after TE library construction, --sensitive 1 activates sensitive mode for bet-
ter detection of complex or nested TEs (slower), --evaluates 1 performs an evaluation of annotation quality,
--threads allocated CPU threads for parallel processing.

/path/to/EDTA/EDTA.pl --genome /path/to/Victoria_cruziana.genome.fa \
--cds /path/to/Victoria_cruziana.cds.fa \
--overwrite 1 \
--anno 1 \
--sensitive 1 \
--evaluate 1 \
--threads 10

10.2.2 Identification of ncRNAs with Infernal

Documentation: http://eddylab.org/infernal

Infernal (INFERence of RNA ALignment) [32] identifies non-coding RNAs using covariance models (CMs), which
are statistical models representing RNA secondary structures. Rfam database [33] has pre-available calibrated
covariance models required by Infernal’s cmscan which can be downloaded from ftp://ftp.ebi.ac.uk/pub/databa
ses/Rfam/CURRENT/Rfam.cm.gz and an additional Claninfo file https://ftp.ebi.ac.uk/pub/databases/Rfam/CUR
RENT/Rfam.clanin.

#Install latest covariance models
wget ftp://ftp.ebi.ac.uk/pub/databases/Rfam/CURRENT/Rfam.cm.gz

#Uncompress Rfam Covariance models
gunzip Rfm.cm.gz

#Index (compress) the Rfam.cm file for faster searching
/path/to/infernal/src/cmpress /path/to/Rfam.cm.gz

#Run cmscan to search the genome for ncRNA matches
/path/to/infernal/src/cmscan --nohmmonly \
--rfam --cut_ga --fmt 2 --oclan --oskip \
--clanin Rfam.clanin -o /path/to/my_cmscan_out \
--tblout /path/to/my_cmscan_tblout \
/path/to/Rfam.cm /path/to/Victoria_cruziana.genome.fa
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--nohmmonly uses covariance models instead of faster but less accurate HMM-only searches, --rfam tailors
search to Rfam-specific cinventions, automatically applying recommended cutoffs, --cut_ga filters hits based
on gathering thresholds (GA) from Rfam to reduce false positives, --fmt 2 specifies human-readable format,
--oclan outputs RNA family clan information, --oskip sking saving the full alignment for faster execution,
--clanin supplies clan information file, -o is the output file for full cmscan report, --tblout provides tabu-

lar summary output file, /path/to/Rfam.cm defines input covariance models, and /path/to/genome.fa defines
input genome to search for ncRNAs

Rfam database is a comprehensive database including sequence datasets of most non-coding RNA families.
Hence, different types of ncRNAs can be identified with Infernal search using Rfam covariance model. However, it
is also possible to use specialized tools for particular ncRNA’s. Few of them are:

• tRNAs:

(a) tRNAscan-SE [34] : https://github.com/UCSC-LoweLab/tRNAscan-SE

• rRNAs:

(a) RNAmmer [35] : https://services.healthtech.dtu.dk/services/RNAmmer-1.2/
(b) SSU-ALIGN [36] : http://eddylab.org/software/ssu-align/

Step 11: Functional Annotation

Functional annotation involves predicting the biological role of each protein-coding gene. This includes assigning
functional terms (GO, KEGG), identifying homologs, and classifying proteins into families or pathways.

11.1 Orthlogy-based Annotation via Reciprocal Best Hits (RBH)

Reciprocal Best Hit (RBH) searches provide a reliable method to predict orthologous relationships by identifying
gene pairs that are each other’s best match. To perform RBH search and transfer functional annotation, it is nec-
essary to have a well-annotated reference. For this, for e.g., Arabidopsis thaliana can be used. The Python script
match_proteins.py at https://github.com/bpucker/PlantGenomicsGuide/blob/main/match_proteins.py can be

used where --prefix defines the output directory where results will be saved, --input1 is the peptide file from
target species, --input2 is the peptide file from reference species, and --cpu defines the number of cores for
parallel BLAST search (default:8). The match_proteins.py script supplements RBHs with best match if no strict
RBHs are found.

python3 match_proteins.py \
--prefix /path/to/output_directory/ \
--input1 /path/to/Victoria_cruziana.pep.fasta \
--input2 /path/to/Arabidopsis_thaliana.pep.fasta \
--cpus 10

An alternative to the above script is the construct_anno.py (https://github.com/bpucker/PlantGenomicsGuide/
blob/main/construct_anno.py). It provides a more comprehensive one-step workflow that combines the function
of above script (sequence similarity search) and annotation transfer.

python3 construct_anno.py \
--in /path/to/Victoria_cruziana_pep.fasta \
--out path/to/output_directory \
--ref /path/to/Arabidopsis_thaliana_araport11.pep.fasta \
--anno /path/to/Arabidopsis_thaliana_araport11.anno.txt

In the above example command, --in specifies the peptide file of target species, --out specifies the direc-
tory where functional annotation results will be stored, --ref specifies the peptide file of reference species, and
--anno specifies the tab-separated annotation file matching --ref file. In the given example Arabidopsis thaliana

is used [37], but can by replaced by any other species, given the protein file and the corresponding annotation file
exists.
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11.2 InterProScan

Documentation: https://interproscan-docs.readthedocs.io/en/latest/

InterProScan [38] integrates multiple protein signature databases (Pfam, PRINTS, PROSITE, SMART, etc.) to classify
proteins, predict domains, and important sites. To run InterProScan, first obtain a copy of the tool, unpack it, setup
and then finally run InterProScan.

mkdir interproscan #at your desired location
cd interproscan
wget https://ftp.ebi.ac.uk/pub/software/unix/iprscan/5/5.75-106.0/\
interproscan-5.75-106.0-64-bit.tar.gz
wget https://ftp.ebi.ac.uk/pub/software/unix/iprscan/5/5.75-106.0/\
interproscan-5.75-106.0-64-bit.tar.gz.md5

# Recommended checksum to confirm the download was successful:
md5sum -c interproscan-5.75-106.0-64-bit.tar.gz.md5
# Must return *interproscan-5.75-106.0-64-bit.tar.gz: OK*
# If not - try downloading the file again as it may be a corrupted copy.

tar -pxvzf interproscan-5.75-106.0-*-bit.tar.gz
cd interproscan-5.75*

#to prepare hmm models into a format used by hmmscan
python3 setup.py -f interproscan.properties

#Run InterProScan
./interproscan.sh -i /path/to/Victoria_cruziana.pep.fasta \
-f xml -cpu 10 \
-o /path/to/iprscan_results.xml

-i defines input protein FASTA file, -o defines the output file, -cpu allocates CPUs, and -f defines the output
format and can be xml , tsv , gff3 , and json . If the results are needed for funannotate annotate command,
xml format is necessary.

11.3 Specialized Functional Annotation Tools

There are some functional annotation tools for specific pathway or enzyme-family gene annotation such as:

• KIPEs3 [39] (Flavonoid/Carotenoid biosynthesis): https://github.com/bpucker/KIPEs
• MYB annotator [40] (MYB transcription factors): https://github.com/bpucker/MYB_annotator
• bHLH annotator [41] (bHLH transcription factors): https://github.com/bpucker/bHLH_annotator

11.4 Funannotate Annotate

Documentation: https://funannotate.readthedocs.io/en/latest/index.html

Funannotate [30] integrates multiple annotation sources, formats output for NCBI submission, and assigns func-
tional terms. --gff3 specifies final structural annotation (gff3 format), --fasta specifies genome assembly in
FASTA format, -s specifies species name, -o for output directory, and --sbt is optional and used to define
the path to the NCBI submission template. This is necessary if NCBI submission is desired, the file can be down-
loaded from NCBI website after filling basic details about the genome sequencing project (https://submit.ncbi.nl
m.nih.gov/genbank/template/submission/). -a is an optional custom annotation TSV (gene ID, product name),
--iprscan is the InterProScan XML file for protein domain annotation, and --rename is the LOCUS_TAG that can

be specified when starting a WGS submission or is assigned automatically later.

funannotate annotate \
--gff /path/to/Victoria_cruziana.gff3 \
--fasta /path/to/Victoria_cruziana.genome.fasta \
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-s "Victoria cruziana" \
-o /path/to/funannotate_annotate_output/ \
--sbt /path/to/NCBI_template/ \
-a /path/to/custom_annotations \
--iprscan /path/to/iprscan_results.xml
--rename LOCUS_TAG \
--busco_db embryophyta --cpus 10

Step 12: Data Submission

After generating genome assemblies and annotations, it’s crucial to share your data through public repositories
(e.g., NCBI, ENA, DDBJ) to promote reproducibility and open science. These databases are interconnected through
the INSDC and hence, submission to any of the three makes it accessible on all three INSDC repositories, i.e. the
NCBI, EMBL, and DDBJ.

Before starting the submission process, it is necessary to register the study (project) and sample. For example,
for ENA, this is possible via ENA Webin portal by selecting “Register Study” button and filling out necessary details.
More detailed information can be found here: https://ena-docs.readthedocs.io/en/latest/submit/study/interacti
ve.html.

Once study registration is complete, a study(project) accession number is assigned.

To register samples, similar to study, this can be done through the Webin portal selecting “Register Samples” but-
ton. Here, you have to define metadata about the sequenced source material using a metadata spreadsheet. The
template of the spreadsheet is available for download in the Webin portal after selecting the most appropriate
checklist group. For more details: https://ena-docs.readthedocs.io/en/latest/submit/samples/interactive.html

Once the samples are validated and if accepted, sample accession numbers are assigned.

12.1 Signal Data (POD5) and Read (FASTQ) Submission

Before submitting the reads to ENA, it is necessary that they follow the ENA guidelines. Post basecalling, the fastq
headers often have long metadata lines, the script clean_fastq_headers.py (https://github.com/bpucker/P
lantGenomicsGuide/blob/main/clean_fastq_headers.py) aids in cleaning the headers to make the files ENA-
submission ready. --in defines the input fastq file (gzip compressed) while the --out defines the output fastq
file:

python3 clean_fastq_headers.py \
--in Victoria_cruziana_run01.mod.fastq.gz \
--out VC_run01_cleaned.fastq

gzip VC_run01_cleaned.fastq

File submission can be done through ENA FTP server which requires that the files are compressed and their MD5
checksum is registered in lower case letters. ONT native data (POD5 files) and basecalled reads (FASTQ files)
should be submitted as a single tar.gz archive. An example directory structure for a run named VC_01 would be:

VC_01/
|-- fastq/
| `-- VC_run01_cleaned.fastq.gz
`-- pod5/

|-- VC_run01_1.pod5
|-- VC_run01_2.pod5
|-- VC_run01_3.pod5
`-- ...

To archive the entire directory, tar command is used, followed by calculating the MD5 value:
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tar -cvzf VC_01.tar.gz /path/to/VC_01/
md5sum VC_01.tar.gz > VC_01.tar.gz.md5

Finally, the file can be submitted via FTP command providing the webin login credentials:

ftp webin.ebi.ac.uk
WEBIN-XXXXX
XXXXXXXXX
mput VC_01.tar.gz
mput VC_01.tar.gz.md5
bye

where ftp establishes a connection to the ENA through the terminal, followed by entering Webin-username and
Password when prompted. mput <filename> uploads the file and bye command exits the ftp client.

12.2 Genome Assembly and Annotation Submission

Depending on whether you have only a genome assembly or also annotation (gene predictions), the submission
formats and requirements vary slightly for ENA and NCBI (INSDC databases).

Before submission, it is crucial to validate and clean the annotation files (typically in GFF3 format), as submission
portals like ENA and NCBI have strict validation criteria. Common issues include duplicated feature locations and
formatting inconsistencies. We recommend using the AGAT toolkit [42] for this purpose:

agat_convert_sp_gxf2gxf.pl \
-g /path/to/Victoria_cruziana.gff3 \
-o /path/to/Victoria_cruziana_standard.gff3

-g defines input GFF3 annotation file and o is the output standardized GFF3 file

Then, fix any duplicated feature locations:

agat_sp_fix_features_locations_duplicated.pl \
-f /path/to/Victoria_cruziana_standard.gff3 \
-o /path/to/Victoria_cruziana_standard_deduplicated.gff3

-f is the input standardized GFF3 file and -o is the output GFF3 file with duplicated feature locations removed.

12.2.1 Submission to EMBL-EBI’s ENA Documentation: https://ena-docs.readthedocs.io/en/latest/submit/ass
embly/genome.html

Step 1: Convert to flat file format

For submitting genome assembly along with annotations to ENA, you must prepare a “flat file” format (*.embl file),
which combines the genome sequence and annotation in a single file. We recommend using the tool EMBLmyGFF3
[43] (https://github.com/NBISweden/EMBLmyGFF3). It takes as positional arguments the gff file and the
FASTA file as well as some metadata and writes the output to a specified file ( -o ).

EMBLmyGFF3 /path/to/Victoria_cruziana_standard.gff3 /path/to/Victoria_cruziana.genome.fa \
--topology linear --molecule_type 'genomic DNA' --transl_table 1 \
--species 'Victoria cruziana' --locus_tag LOCUSTAG \
--project_id PRJXXXXXXX -o /path/to/Vcruz.embl

Step 2: Compress the flat file

ENA requires gzipped flat files for submission. For efficient compression using multiple CPU threads, pigz (https:
//github.com/madler/pigz) tool can be used. The -k option is optional and keeps the original file.

pigz -k /path/to/Vcruz.embl
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Step 3: Prepare the manifest file

The manifest file is a simple text file that describes your submission metadata (assembly name, organism, sample
accession, etc.) and the path to the gzipped flatfile. The ENA documentation provides template examples.

Step 4: Validate submission using Webin-CLI

The webin-CLI tool can be used to validate your files before submission using the following command where
-validate run validation without submission, context genome specifies that this is a genome submission,
-manifest species the path to the manifest file, -outputdir specifies the directory where validation reports

will be saved, and userName and password are the ENA login credentials.

java -jar webin-cli-8.2.0.jar -validate -context genome -manifest /path/to/manifest_01.txt
-outputdir /path/to/webin/01 -userName Webin-0000 -password ena-webin-password

If validation passes without errors, you can remove -validate to proceed with submission. Errors will be detailed in
the .report files in the output directory.

12.2.2 Submission to NCBI Documentation: https://www.ncbi.nlm.nih.gov/genbank/genomesubmit/

For submission to NCBI, two main options are available depending on your dataset.

Option 1: Using Funannotate (Recommended if using functional annotations)

If you have already used Funannotate annotate [30], the command produces submission-ready .tbl and .sqn files
compatible with NCBI requirements (see section 11.4). You can submit these files directly via the NCBI Genome
Submission Portal.

Option 2: Using GAG + table2asn

If you prefer not to use Funannotate or only have structural annotation (GFF3), you can use the GAG toolkit [44] to
generate submission-ready files (https://genomeannotation.github.io/GAG/).

Step 1: Create .TBL file using GAG

Basic command to use GAG, which produces a .tbl file in the output folder. --fasta specifies path to genome
assembly file, --gff specifies path to cleaned annotation file, --out specifies output directory for GAG results.

python3 gag.py --fasta Victoria_cruziana.genome.fasta \
--gff Victoria_cruziana_standard.gff3 \
--out gag_output

Step 2 Convert .TBL to .SQN using table2asn

Table2asn (https://www.ncbi.nlm.nih.gov/genbank/table2asn/) converts the .tbl and genome FASTA into an NCBI
submission-ready .sqn format.

Download table2asn:

# to get a local copy of table2asn
wget https://ftp.ncbi.nlm.nih.gov/asn1-converters/by_program/table2asn/linux64.table2asn.gz
gunzip linux64.table2asn.gz
mv linux64.table2asn table2asn
chmod +x table2asn

table2asn can be run using the following command where -i is the input directory with FASTA and TBL files, -o
is the output directory, -t is the submission template (SBT file from NCBI), -Z generates error reports, and -euk
specifies eukaryotic genome.

./table2asn -i /path/to/gag_output/ \
-o /path/to/table2asn_output/ \
-t SBT_template.txt \
-M n \
-Z -euk
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In the output folder, .stats is the summary statistics file, .val is the detailed file of errors, and .dr is the
discrepancy report which shows critical errors. Based on the errors encountered, GAG includes a number of options
to remove questionable features like removing terminal N’s, fixing start and stop codons, removing short introns
etc. Please refer to the official documentation for the full details. Fix errors by adjusting GFF3/FASTA files, rerun
GAG and table2asn until no major errors remain.

Step 3: Final submission

Once you obtain a valid .sqn file, submission is done through the NCBI Genome Submission Portal using your NCBI
account (https://submit.ncbi.nlm.nih.gov/subs/genome/).
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