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Abstract: In this paper, we extend the concept of b-metric spaces to the vectorial case, where the
distance is vector-valued, and the constant in the triangle inequality axiom is replaced by a matrix.
For such spaces, we establish results analogous to those in the b-metric setting: fixed-point theorems,
stability results, and a variant of Ekeland’s variational principle. As a consequence, we also derive a
variant of Caristi’s fixed-point theorem.
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1. Introduction
The concept of a b-metric space arises as a natural generalization of a metric space, where the

triangle inequality axiom is relaxed by introducing a constant b ≥ 1 on its right-hand side. Early ideas
in this direction can be traced back to the notion of "quasimetric" spaces, as discussed in [1]. However,
the formal definition and terminology of b-metric spaces are widely attributed to Bakhtin [3] and
Czerwik [4]. Notably, one of the earliest works to introduce a mapping satisfying the properties of a
b-metric dates back to 1970 in [5], where such a mapping was referred to as a "distance". A concept
related to that of a b-metric is the notion of a quasi-norm, which can be traced back to Hyers [6] and
Bourgin [7], who originally used the term "quasi-norm." For a survey on b-metric spaces we send the
reader to [8,9].

Various results from the classical theory of metric spaces have been extended to b-metric spaces,
including fixed-point theorems (see, e.g., [10–15]), estimations (see, e.g.,[16,17]), stability results (see,
e.g, [18,19]), and variational principles (see, e.g., [20,21]). In [22], the metric was allowed to take vector
values, and results analogous to those for b-metric spaces were established, with matrices converging
to zero replacing the contraction constants, but not the constant b from the triangle inequality axiom.

In this paper, we introduce the concept of a vector B-metric space, where the scalar constant b
in the triangle inequality is replaced by a matrix B. This generalization introduces new challenges in
establishing results analogous to those for classical b-metric spaces. To the best of our knowledge, this
concept, along with the corresponding results presented here, is novel. Notably, some of the results
appear to be new even in the scalar particular case where the matrix B is reduced to a constant.

Throughout this paper, we consider Rn-valued vector metrics (n ≥ 1) on a set X, i.e., mappings
d : X × X → Rn

+. In the scalar case (n = 1), we use the special notation ρ to denote a standard metric
or a b-metric.

The classical definition of a b-metric reads as follows:

Definition 1. Let X be a set and let b ≥ 1 be a given real number. A mapping ρ : X × X → R+ is said to be
a b-metric if for all x, y, z ∈ X the following conditions are satisfied: ρ(x, y) ≥ 0, ρ(x, y) = 0 if and only if
x = y, ρ(x, y) = ρ(y, x) and ρ(x, z) ≤ b(ρ(x, y) + ρ(y, z)). The pair (X, ρ) is called a b-metric space.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 February 2025 doi:10.20944/preprints202502.0815.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202502.0815.v1
http://creativecommons.org/licenses/by/4.0/


2 of 18

In case the mapping ρ is allowed to be vector-valued and one replaces the constant b by a matrix
B, we obtain our definition of a vector B-metric space.

Definition 2. Let X be a set, n ≥ 1 and let B ∈ Mn×n(R) be an arbitrary matrix. A mapping d =

(d1, d2, . . . , dn) : X × X → Rn
+ is called a vector B-metric if for all u, v, w ∈ X, one has

(positivity): d(u, v) ≥ 0 and d(u, v) = 0 if and only if u = v;
(symmetry): d(u, v) = d(v, u);
(triangle inequality): d(u, w) ≤ B(d(u, v) + d(v, w)).

The pair (X, d) is called a vector B-metric space.

2. Preliminaries
In this paper, the vectors in Rn are looked as column matrices and ordering between them and,

more generally, between matrices of the same size is understood by components. Likewise, the
convergence of a sequence of vectors or matrices is understood componentwise.

The spaces of square matrices of size n with real number entries and nonnegative entries are
denoted by Mn×n(R) and Mn×n(R+), respectively. An element of Mn×n(R+) is refereed as a positive
matrix, while a matrix M ∈ Mn×n(R) is called inverse-positive if it is invertible and its inverse M−1 is
positive.

A positive matrix M is said to be convergent to zero if its power Mk tends to the zero matrix 0n as
k → ∞.

One has the following characterizations of matrices which are convergent to zero (see, e.g., [23,24]).

Proposition 1. Let M ∈ Mn×n(R+) and let I be the identity matrix of size n. The following statements are
equivalent:

(a) M is convergent to zero.

(b) The spectral radius r(M) of matrix M is less than 1, i.e., r(M) < 1.

(c) I − M is invertible and (I − M)−1 = I + M + M2 + ....

(d) I − M is inverse-positive.

The following proposition collects the various properties equivalent to the notion of an inverse-
positive matrix (see, e.g., [24,25]).

Proposition 2. Let M ∈ Mn×n(R). The following statements are equivalent:

(a) M is inverse-positive.

(b) M is monotone, i.e., Mx ≥ 0 (x ∈ Rn) implies x ≥ 0.

(c) There exists a positive matrix M and a real number s > r
(

M
)

such that the following representation
holds: M = sI − M.

Clearly, if M is inverse-positive, from the representation M = sI − M, we immediately see that all
its entries except those from the diagonal are ≤ 0; also the matrix 1

s M is convergent to zero. If a matrix
M is both positive and inverse-positive, using the representation M = sI − M we deduce that M must
be a diagonal matrix with strictly positive diagonal entries.

A mapping N : X → X defined on a vector B-metric space (X, d) is said to be a Perov contraction
mapping if there exists a matrix A convergent to zero such that

d(N(x), N(y)) ≤ Ad(x, y) (1)

for all x, y ∈ X.
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The next proposition is about the relationship between vector B-metrics and both vector and
scalar b-metrics.

Proposition 3. (10) Any vector-valued b-metric d can be identified with a vector Bb-metric, where Bb is the
diagonal matrix whose diagonal entries are all equal to b.

(20) If d is a vector B-metric with an inverse-positive matrix B, then d is also a vector B-metric with
respect to the diagonal matrix B that preserves the diagonal of B, as well as a vector-valued b̃-metric with
b̃ = max{bii : 1 ≤ i ≤ n}. Here B =

(
bij
)

1≤i,j≤n.

(30) If d is a vector B-metric with a positive matrix B, then to each norm in Rn one can associate a scalar
b-metric, for example:

ρ1(x, y) :=
n

∑
i=1

di(x, y), is a b1-metric, b1 :=
n

∑
i=1

max
1≤j≤n

bij,

ρ∞(x, y) := max
1≤i≤n

di(x, y), is a b∞-metric, b∞ := max
1≤i≤n

n

∑
j=1

bij,

ρ2(x, y) :=

(
n

∑
i=1

di(x, y)2

) 1
2

, is a b2-metric, b2 :=

(
n

∑
i,j=1

b2
ij

) 1
2

.

Thus, to any vector B-metric, one can associate different (scalar) b-metrics, depending on the
chosen metric on Rn. However, as shown in [23], working in a vector setting with matrices instead of
numbers is more accurate especially when a connection with other matrices is necessary. It will also be
the case of this work where some conditions or conclusions will connect the matrix B with the matrix
A involved in (1).

If Y is a nonempty subset of a vector B-metric space (X, d), we define the diameter of the set Y by

diamd(Y) := sup{ρ1(x, y) : x, y ∈ Y} = sup

{
n

∑
i=1

di(x, y) : x, y ∈ Y

}
.

From this definition, it follows immediately that if diamd(Y) = a, then d(x, y) ≤ ae for all
x, y ∈ Y, where e = (1, 1, . . . , 1) ∈ Rn. Conversely, if d(x, y) ≤ ae for all x, y ∈ Y, then diamd(Y) ≤ na.

Although a b-metric does not generate a topology (see, e.g., [26]), several topological properties can
still be defined in terms of sequences (e.g., closed sets, continuous operators, or lower semicontinuous
functionals).

We conclude this section by two examples of vector B-metrics.

Example 1. Let d : R2 ×R2 → R2
+ be given by

d(x, y) =

(
|x1 − y1|2 + |x2 − y2|

|x2 − y2|,

)
,

for x = (x1, x2), y = (y1, y2) ∈ R2. Then,
(
R2, d

)
is a vector B-metric space, where

B =

(
2 −1
0 1

)
.

Here, the matrix B is inverse-positive, but not positive.

Example 2. We present an example of a vector-valued mapping d which is a vector B-metric with respect to a
positive matrix, but for which no inverse-positive matrix exists such that d remains a vector B-metric. Let

S = {(t, t) : t ∈ R} ⊂ R2,
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and let d : R2 ×R2 → R2
+ be given by

d(x, y) =


(0, 0) if x = y,(
|x − y|2, |x − y|

)
if x, y ∈ S,(

|x − y|, |x − y|2
)

otherwise,

where |z| = |(z1, z2)| = |z1|+ |z2| is a norm on R2. Note that d is a vector B0-metric, where

B0 =

(
2 2
1 1

)
.

Let us show that B0 is the smallest matrix for which the triangle inequality holds for d. To this aim, let
B = (bij)1≤i,j≤n be any matrix for which the triangle inequality is satisfied. Then, for x, y ∈ S and z /∈ S, we
have (

|x − y|2
|x − y|

)
≤
(

b11(|x − z|+ |z − y|) + b12
(
|x − z|2 + |z − y|2

)
b21(|x − z|+ |z − y|) + b22

(
|x − z|2 + |z − y|2

)). (2)

Let t, α ∈ R \ {0}, and set x = (t, t) ∈ S, y = (0, 0) ∈ S and z = (α, 0) /∈ S. The first inequality in (2)
yields,

4t2 ≤ b11(|t − α|+ |t|+ |α|) + b12

(
(|t − α|+ |t|)2 + α2

)
.

Clearly, taking α = t and the limit as t → ∞, this inequality holds only if b12 ≥ 2. Similarly, from the
second inequality, we obtain

2|t| ≤ b21(|t − α|+ |t|+ |α|) + b22

(
(|t − α|+ |t|)2 + α2

)
.

Setting α = t
2 , we find that

2|t| ≤ 2b21|t|+ 5b22
t2

2
, or equivalently, 5b22

t2

2
+ 2|t|(b21 − 1) ≥ 0.

Clearly, this inequality required for all t implies b21 ≥ 1. To determine the values of b11 and b22, we apply
the triangle inequality with x, y, z ∈ S (x ̸= y ̸= z ̸= x), which gives(

|x − y|2
|x − y|

)
≤
(

b11
(
|x − z|2 + |z − y|2

)
+ b12(|x − z|+ |z − y|)

b21
(
|x − z|2 + |z − y|2

)
+ b22(|x − z|+ |z − y|)

)
.

Similar arguments as above imply that b11 ≥ 2 and b22 ≥ 1. Thus, B ≥ B0 as claimed.

3. Fixed Point Theorems in Vector b-Metric Spaces
In this section we establish some fixed point results in vector B-metric spaces, analogous to the

well-known classical results.

3.1. Perov Type Fixed Point Theorem

Our first result is a version of Perov’s fixed point theorem (see, [27,28]) for such spaces.

Theorem 1. Let (X, d) be a complete vector B-metric space, where B is either a positive or an inverse-positive
matrix, and let N : X → X be an operator. Assume that there exists a convergent to zero matrix A ∈
Mn×n(R+) such that

d(N(x), N(y)) ≤ Ad(x, y), for all x, y ∈ X, (3)

i.e., N is a Perov contraction mapping. Then, N has a unique fixed point.
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Proof. Let x0 ∈ X, and recursively define

xk = N(xk−1), for k ≥ 1.

Since the matrix A is convergent to zero, for each α > 0, there exists k0 = k0(α) such that

Ak0 ≤ Λ,

where Λ is the square matrix of size n whose entries are all equal to α. Let k, p ≥ 0 and k0 be such that
Ak0 ≤ Λ, for some α > 0 to be specified later.

Case (a): B is inverse-positive. The triangle inequality yields

B−2d(xk, xp) ≤ B−1d(xk, xk+k0) + B−1d(xp, xk+k0)

≤ B−1 Akd(x0, xk0) + d(xp, xp+k0) + d(xp+k0 , xk+k0)

≤ B−1 Akd(x0, xk0) + Apd(x0, xk0) + Ak0 d(xk, xp)

≤ B−1 Akd(x0, xk0) + Apd(x0, xk0) + Λd(xk, xp),

which gives
(B−2 − Λ)d(xk, xp) ≤ B−1 Akd(x0, xk0) + Apd(x0, xk0). (4)

Given that the right-hand side of (4) is a vector that converges to zero as k, p → ∞, our goal is
to show that a linear combination of the components of the vector d(xk, xp) is bounded above by the
corresponding components of the right-hand side of (4). To this aim, we make the following notations

B−2 = (γij)1≤i,j≤n,

B−1 Akd(x0, xk0) + Apd(x0, xk0) = φk,p = (φi
k,p)1≤i≤n.

Hence
n

∑
i=1

φi
k,p → 0 as k, p → ∞. (5)

Under these notations, relation (4) gives

n

∑
j=1

(γij − α)dj
(
xk, xp

)
≤ φi

k,p , i = 1, 2, . . . , n. (6)

Summing in (6) over all i ∈ {1, 2, . . . , n}, we obtain

n

∑
i,j=1

(γij − α)dj(xk, xp) ≤
n

∑
i=1

φi
k,p. (7)

Since B−2 is invertible and positive, the sum of its elements in each column must be positive, i.e.,

n

∑
i=1

γij > 0, j = 1, 2, . . . , n.

If we denote

γ = min

{
n

∑
i=1

γij : j = 1, 2, . . . , n

}
,
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relation (7) implies that

n

∑
i=1

φi
k,p ≥

n

∑
i,j=1

γijdj(xk, xp)− nα
n

∑
j=1

dj(xk, xp)

=
n

∑
j=1

(
n

∑
i=1

γij

)
dj(xk, xp)− nα

n

∑
j=1

dj(xk, xp)

≥ (γ − nα)
n

∑
j=1

dj(xk, xp).

Choosing α < γ/n, one has

n

∑
j=1

dj(xk, xp) ≤
1

γ − nα

n

∑
i=1

φi
k,p. (8)

In (8), we observe that the factor 1
γ−nα depends only on n and B, whence (5) yields

n

∑
j=1

dj(xk, xp) → 0 as k, p → ∞,

so the sequence (xk) is Cauchy.
Case (b): B is positive. One has

d(xk, xp) ≤ Bd(xk, xk+k0) + Bd(xp, xk+k0)

≤ BAkd(x0, xk0) + B2d(xp, xp+k0) + B2d(xp+k0 , xk+k0)

≤ BAkd(x0, xk0) + B2 Apd(x0, xk0) + B2 Ak0 d(xk, xp)

≤ BAkd(x0, xk0) + B2 Apd(x0, xk0) + B2Λd(xk, xp),

which gives
(I − B2Λ)d(xk, xp) ≤ BAkd(x0, xk0) + B2 Apd(x0, xk0). (9)

Note that since Λk = (nα)k−1Λ, if α is chosen to be smaller than one divided by the greatest
element of B2 multiplied with n, the matrix B2Λ is convergent to zero. Consequently, I − B2Λ is
invertible and

(
I − B2Λ

)−1 ∈ Mn×n(R+). Hence, (9) is equivalent to

d(xk, xp) ≤
(

I − B2Λ
)−1(

BAkd(x0, xk0) + B2 Apd(x0, xk0)
)

. (10)

As the right-hand side of (10) converges to zero when k, p → ∞, we conclude that (xk) is Cauchy.
Therefore, in both cases, the sequence (xk) is Cauchy and since X is complete, it has a limit x∗,

that is, d(xk, x∗) → 0 as k → ∞. Then, from

d(N(xk), N(x∗)) ≤ Ad(xk, x∗),

it follows that N(xk) → N(x∗) as k → ∞, while from xk+1 = N(xk), passing to the limit, one obtains
x∗ = N(x∗). Hence N has a fixed point. To prove uniqueness, suppose that there exists another fixed
point x∗∗. Then, from

d(x∗, x∗∗) = d(N(x∗), N(x∗∗)) ≤ Ad(x∗, x∗∗),

recursively, we obtain that
d(x∗, x∗∗) ≤ Akd(x∗, x∗∗),

for all k ≥ 1. Since Ak → 0n as k → ∞, we deduce that d(x∗, x∗∗) = 0, i.e., x∗∗ = x∗.
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If we are not interested in the uniqueness of the fixed point for N, the condition (3) can be relaxed
and replaced by a weaker assumption on the graph of N.

Theorem 2. Let (X, d) be a complete vector B-metric space, where B is either positive or inverse-positive, and
let N : X → X be an operator. Assume there exists a convergent to zero matrix A ∈ Mn×n(R+) such that

d
(

N(x), N2(x)
)
≤ Ad(x, N(x)), for all x ∈ X. (11)

Then, N has at least one fixed point.

Proof. Following the proof of Theorem 1, from any initial point x0, the sequence xk = Nk(x0) is
convergent to a fixed point x∗ of N, which clearly depends on the starting point x0, but condition (11)
is insufficient to guarantee the uniqueness.

The next result is a version for vector B-metric spaces of Maia’s fixed point theorem. The
contraction condition on the operator is considered with respect to a vector B1-metric d1, not necessarily
complete, while the convergence of the sequence of successive approximations is guaranteed in a
complete vector B2-metric d2 in a subordinate relationship to d1.

Theorem 3. Let X be a set equipped with two Rn-vector metrics, a B1-metric d1 and a B2-metric d2, where B2

is either positive or inverse-positive, and let N : X → X be an operator. Assume that the following conditions
hold:

(i) (X, d1) is a complete vector B1-metric space;
(ii) d1(x, y) ≤ Cd2(x, y) for all x, y ∈ X and some matrix C ∈ Mn×n(R);
(iii) There exists a matrix A convergent to zero such that

d2(N(x), N(y)) ≤ Ad2(x, y), for all x, y ∈ X; (12)

(iv) The operator N is continuous in (X, d1).

Then, the operator N has a unique fixed point.

Proof. Let x0 ∈ X be fixed, and consider the iterative sequence xk+1 = N(xk) for k ≥ 0. For any
k, k0, p ≥ 0, applying the triangle inequality twice and using condition (iii), we derive either

(B−2
2 − Ak0)d2(xk, xp) ≤ B−1

2 Akd2(x0, xk0) + Apd2(x0, xk0),

in case that B2 is inverse-positive, or

(I − B2
2 Ak0)d2(xk, xp) ≤ B2 Akd2(x0, xk0) + B2

2 Apd2(x0, xk0),

if B2 is positive. Arguing similarly to the proof of Theorem 1, we deduce that (xk) is a Cauchy sequence
in (X, d2). From (ii), it follows immediately that (xk) is also a Cauchy sequence in (X, d1), hence (xk)

is convergent with respect the metric d1 to some x∗, that is,

d1(N(xk), x∗) = d1(xk+1, x∗) → 0, as k → ∞,

while the continuity of N yields d1(N(x∗), x∗) = 0, i.e., N(x∗) = x∗. To establish uniqueness, suppose
that x∗∗ is another fixed point of N, i.e., N(x∗∗) = x∗∗. Then, by (12), one has

(I − A)d2(x∗, x∗∗) ≤ 0.

Since A is convergent to zero, we necessarily have d2(x∗, x∗∗) = 0, i.e., x∗ = x∗∗.
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3.2. Error Estimates

The classical Banach and Perov fixed point theorems are accompanied by some error estimates in
terms of the contraction constant and matrix, respectively. These estimates allow us to obtain stopping
criteria for the iterative approximation process. It is the aim of this subsection to obtain such stopping
criteria when working in vector B-metric spaces.

Theorem 4. Assume that all the conditions of Theorem 1 hold and let (xk) be a sequence of successive
approximations of the fixed point x∗.

(10) If B is inverse-positive, then (
B−1 − A

)
d(xk, x∗) ≤ Akd(x0, x1) (k ≥ 0). (13)

If in addition the matrix B−1 − A is inverse-positive, then

d(xk, x∗) ≤
(

B−1 − A
)−1

Akd(x0, x1) (k ≥ 0). (14)

(20) If B is positive, then
(I − BA)d(xk, x∗) ≤ BAkd(x0, x1) (k ≥ 0). (15)

If in addition I − BA is inverse-positive, then

d(xk, x∗) ≤ (I − BA)−1BAkd(x0, x1) (k ≥ 0). (16)

Proof. (10): We have

B−1d(xk, x∗) ≤ d(xk, xk+1) + d(xk+1, x∗)

≤ Akd(x0, x1) + Ad(xk, x∗),

whence we deduce (13). The second part is obvious.
(20): We have

d(xk, x∗) ≤ Bd(xk, xk+1) + Bd(xk+1, x∗)

≤ BAkd(x0, x1) + BAd(xk, x∗),

that is (15). The additional conclusion is obvious.

Remark 1. Clearly, since Ak tends to the zero matrix as k → ∞, formulas (14) and (16) provide stopping
criteria for the iterative fixed point approximation algorithm starting from x0, when an admissible error is given.
It should be emphasized that these estimates are in terms of matrices A and B. In contrast, if we make the
transition to (scalar) b-metric spaces, as discussed in Section 2, the resulting estimates will depend on the chosen
norm in Rn and may vary across different norms. So, from this point of view, the vector approach not only
unifies the results that can be obtained with the scalar method, but also provides the best estimates.

3.3. Stability Results

We now present two stability properties of the Perov contraction mappings in vector B-metric
spaces.

The first property is in the sense of Reich and Zaslavski and generalizes the one obtained in [19]
for b-metric spaces.

Theorem 5. Let (X, d) be a complete vector B-metric space, and let N : X → X be an operator such that (3)
holds with a matrix A convergent to zero. In addition assume that either
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(a) B and B−1 − A are inverse-positive;

or

(b) B is positive and I − BA is inverse-positive.

Then, N is stable in the sense of Reich and Zaslavski, i.e., N has a unique fixed point x∗, and for every
sequence (xk) ⊂ X satisfying

d(xk, N(xk)) → 0 as k → ∞, (17)

one has
xk → x∗ as k → ∞.

Proof. According to Theorem 1 the operator N has a unique fixed point x∗. In addition, for any
sequence (xk) satisfying (17), in case (a), we have

B−1d(xk, x∗) ≤ d(xk, N(xk)) + d(N(xk), x∗)

= d(xk, N(xk)) + d(N(xk), N(x∗))

≤ d(xk, N(xk)) + Ad(xk, x∗),

that is,
d(xk, x∗) ≤ (B−1 − A)−1d(xk, N(xk)),

while in case (b),
d(xk, x∗) ≤ (I − BA)−1Bd(xk, N(xk)).

These estimates immediately yield the conclusion.

The second stability result is in the sense of Ostrowski and extends to vector B-metric spaces a
similar property established in [19] for b-metric spaces.

Theorem 6. Let (X, d) be a complete vector B-metric space, and let N : X → X be an operator. Assume N
satisfies (3) with a matrix A convergent to zero. In addition, assume that either

(a) B and I − b̃A are inverse-positive, where b̃ = max{bii : i = 1, 2, . . . , n};

or

(b) B is positive and I − BA is inverse-positive.

Then, N has the Ostrowski property, i.e., N has a unique fixed point x∗, and for every sequence (xk) ⊂ X
satisfying

d(xk+1, N(xk)) → 0 as k → ∞,

one has
xk → x∗ as k → ∞.

Proof. As previously established, the operator N has a unique fixed point x∗. In case (a), we have

d(xk+1, x∗) ≤ b̃ d(xk+1, N(xk)) + b̃ d(N(xk), N(x∗))

≤ b̃ d(xk+1, N(xk)) + b̃A d(xk, x∗)

≤ . . .

≤ b̃
k

∑
p=0

(b̃A)pd(xk+1−p, N(xk−p)) + (b̃A)k+1d(x0, x∗),
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while in case (b), similar estimation gives

d(xk+1, x∗) ≤
k

∑
p=0

(BA)pBd(xk+1−p, N(xk−p)) + (BA)kBd(x0, x∗).

Since I − b̃A is inverse-positive and b̃A is positive in the first case, and I − BA is inverse-positive
and BA is positive in the second case, the series ∑k

p=0(b̃A)p and ∑k
p=0(BA)p are convergent. Moreover,

(b̃A)k and (BA)k converge to the zero matrix as k → ∞. Therefore, using the Cauchy-Toeplitz lemma
(see [29]), it follows that d(xk+1, x∗) → 0 as k → ∞.

3.4. Avramescu Type Fixed Point Theorem

Our next result is a variant of Avramescu’s fixed point theorem (see [30]) in vector B-metric
spaces.

Theorem 7 (Avramescu theorem in vector B-metric spaces). Let (X, d) be a complete vector B-metric space,
D a nonempty closed convex subset of a normed space Y, N1 : X × D → X and N2 : X × D → D be two
mappings. Assume that the following conditions are satisfied:

(i) N1(x, .) is continuous for every x ∈ X and there is a matrix A convergent to zero such that

d(N1(x, y), N1(x, y)) ≤ A d(x, x),

for all x, x ∈ X and y ∈ D;
(ii) Either

(a) B and B−1 − A is inverse-positive;

or

(b) B is positive and I − BA is inverse-positive.

(iii) N2 is continuous and N2(X × D) is a relatively compact subset of Y .

Then, there exists (x∗, y∗) ∈ X × D such that

N1(x∗, y∗) = x∗, N2(x∗, y∗) = y∗.

Proof. For each y ∈ D, Theorem 1 applies to the operator N1(., y) and gives a unique S(y) ∈ X such
that

N1(S(y), y) = S(y). (18)

We claim that the mapping S : D → X is continuous. To prove this, let y, y ∈ D. In case (a), we
have

B−1d(S(y), S(y)) = B−1d(N1(S(y), y), N1(S(y), y))

≤ d(N1(S(y), y), N1(S(y), y)) + d(N1(S(y), y), N1(S(y), y))

≤ Ad(S(y), S(y)) + d(N1(S(y), y), N1(S(y), y)),

which implies (
B−1 − A

)
d(S(y), S(y)) ≤ d(N1(S(y), y), N1(S(y), y)),

while in case (b), one has

(I − BA)d(S(y), S(y)) ≤ Bd(N1(S(y), y), N1(S(y), y)).
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Since B−1 − A and I − BA are inverse-positive, respectively, in case (a), we deduce that

d(S(y), S(y)) ≤
(

B−1 − A
)−1

d(N1(S(y), y), N1(S(y), y)), (19)

and in case (b),
d(S(y), S(y)) ≤ (I − BA)−1Bd(N1(S(y), y), N1(S(y), y)). (20)

Then, for any convergent sequence (yk) ⊂ D, yk → y∗ as k → ∞, the continuity of N1(S(y∗), .)
together with relations (19) and (20) implies that d(S(yk), S(y∗)) → 0 as k → ∞. Thus, S is continuous,
and since N2 is continuous, the composed mapping

N2(S(.), .) : D → D

is continuous too. Since its range is relatively compact by condition (iii), Schauder’s fixed point
theorem applies and guarantees the existence of a point y∗ ∈ D such that

N2(S(y∗), y∗) = y∗. (21)

Finally, denoting x∗ := S(y∗), from (18) and (21) we have the conclusion.

Remark 2. Without the invariance condition N2(X × D) ⊂ D, a similar result holds if D is a closed ball BR

centered at the origin and of radius R in the space (Y, ∥.∥), provided that Schaefer’s fixed point theorem is used
instead of Schauder’s theorem. In this case, in addition to conditions (i) and (ii), we need the Leray-Schauder
condition

y ̸= λN2(x, y),

for all x ∈ X, y ∈ Y with ∥y∥ = R, and λ ∈ (0, 1).

In particular, for scalar b-metric spaces, conditions (a) and (b) from hypothesis (ii) of Theorem 7
are the same and reduce to the unique requirement that the product of b and the Lipschitz constant a
of N is less than one. More exactly, Theorem 7 reads as follows.

Theorem 8 (Avramescu theorem in b-metric spaces). Let (X, ρ) be a complete b-metric space (b ≥ 1), D a
nonempty closed convex subset of a normed space Y, N1 : X × D → X and N2 : X × D → D be two mappings.
Assume that the following conditions are satisfied:

(i) N1(x, .) is continuous for every x ∈ X and there is a constant a ≥ 0 such that

ρ(N1(x, y), N2(x, y)) ≤ aρ(x, x),

for all x, x ∈ X and y ∈ D;
(ii) ab < 1;
(iii) N2 is continuous and N2(X × D) is a relatively compact subset of Y .

Then, there exists (x∗, y∗) ∈ X × D such that N1(x∗, y∗) = x∗ and N2(x∗, y∗) = y∗.

4. Ekeland’s Principle and Caristi’s Fixed Point Theorem in Vector b-Metric Spaces
4.1. Classical Results

We first recall for comparison the classical results in metric spaces (see, [31–34]).

Theorem 9 (Weak Ekeland variational principle). Let (X, ρ) be a complete metric space and let f : X → R
be a lower semicontinuous function bounded from below. Then, for given ε > 0 and x0 ∈ X, there exists a
point x∗ ∈ X such that

f (x∗) ≤ f (x0)− ερ(x∗, x0)
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and
f (x∗) < f (x) + ερ(x∗, x) for all x ∈ X, x ̸= x∗.

Theorem 10 (Strong Ekeland variational principle). Let (X, ρ) be a complete metric space, and let f :
X → R be a lower semicontinuous function that is bounded from below. For given ε > 0, δ > 0, and x0 ∈ X
satisfying

f (x0) ≤ inf
x∈X

f (x) + ε,

there exists a point x∗ ∈ X such that the following hold:

f (x∗) ≤ f (x0),

ρ(x∗, x0) ≤ δ,

f (x∗) < f (x) +
ε

δ
ρ(x∗, x) for all x ∈ X, x ̸= x∗.

Below, we have a version of Ekeland’s variational principle for scalar b-metric spaces (see, [20]).

Theorem 11 ([20]). Let (X, ρ) be a complete b-metric space with b > 1, where the b-metric ρ is continuous. Let
f : X → R be a lower semicontinuous function bounded from below. For a given ε > 0 and x0 ∈ X satisfying

f (x0) ≤ inf
x∈X

f (x) + ε,

there exists a sequence (xk) ⊂ X and a point x∗ ∈ X such that:

xk → x∗ as k → ∞,

ρ(x∗, xk) ≤
ε

2k , k ∈ N,

f (x∗) ≤ f (x0)−
∞

∑
k=0

1
bk ρ(x∗, xk),

f (x∗) +
∞

∑
k=0

1
bk ρ(x∗, xk) < f (x) +

∞

∑
k=0

1
bk ρ(x, xk), for x ̸= x∗.

The proof of Theorem 11 in [20] is based on the version for scalar b-metric spaces of Cantor’s
intersection lemma.

Lemma 1 ([20]). Let (X, ρ) be a complete b-metric space. For every descending sequence (Fk)k≥1 of nonempty

closed subsets of X with diamρ(Fk) → 0 as k → ∞, the intersection
∞⋂

k=1
Fk contains one and only one element.

Let us first note that a version of Cantor’s intersection lemma remains true in complete vector
B-metric spaces.

Lemma 2. Let (X, d) be a complete vector B-metric space, and let (Fk)k≥1 be a descending sequence of nonempty
closed subsets of X. Assume that for every ε > 0, there exists k0 ≥ 1 such that

d(x, y) ≤ εe for all x, y ∈ Fk and k ≥ k0, (22)

where e = (1, 1, . . . , 1). Then, the intersection
∞⋂

k=1
Fk contains exactly one element.

Proof. As stated in the Preliminaries, condition (22) implies that the diameter of Fk with respect to
the scalar b-metric ρ1 tends to zero. Since (X, d) is complete, it follows that (X, ρ1) is also complete.
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From Cantor’s lemma in scalar b-metric spaces (Lemma 1), we conclude that the intersection
∞⋂

k=1
Fk has

exactly one element.

4.2. Ekeland Variational Principle In Vector B-metric Spaces

First we state and prove a version of the weak form of Ekeland’s variational principle in vector
B-metric spaces.

Theorem 12 (Weak Ekeland variational principle in vector B-metric spaces). Let (X, d) be a complete
vector B-metric space such that the B-metric d is continuous, and let f : X → Rn be a lower semicontinuous
function bounded from below. Assume that f satisfies the following condition:

(H) For every nonempty closed subset F ⊂ X and every ε > 0, there exists a point xε,F ∈ F such that

f (xε,F) ≤ f (x) + εe, for all x ∈ F, (23)

where e = (1, 1, . . . , 1) ∈ Rn.

Then, for a given x0 ∈ X, there exists a sequence {xk} ⊂ X and a point x∗ ∈ X such that xk → x∗ as
k → ∞,

f (x∗) ≤ f (x0)− d(x∗, x0), (24)

and
f (x∗) + d(x∗, xk) ≥ f (x) + d(x, xk) for all k ≥ 0 implies x = x∗. (25)

Moreover,

f (x∗) ≥ f (x) + Bd(x∗, x) + (B − I)d(x∗, xk) for all k ≥ 0 implies x = x∗. (26)

Proof. Let us fix a sequence (εk) of positive numbers satisfying εk → 0 as k → ∞. We now proceed to
construct the sequence (xk). Let

F(x0) := {x ∈ X : f (x) + d(x, x0) ≤ f (x0)}.

Clearly, x0 ∈ F(x0) and F(x0) is closed because d is continuous and f is lower semicontinuous.
Then, by assumption (23), there exists a point x1 ∈ F(x0) with

f (x1) ≤ f (x) + ε1e for all x ∈ F(x0).

Define
F(x1) := {x ∈ F(x0) : f (x) + d(x, x1) ≤ f (x1)},

and recursively, having xk ∈ F(xk−1) with

f (xk) ≤ f (x) + εke for all x ∈ F(xk−1),

we define
F(xk) := {x ∈ F(xk−1) : f (x) + d(x, xk) ≤ f (xk)}.

The sets F(xk) are nonempty and closed, and by their definition form a descending sequence. To
apply Cantor’s intersection lemma, we verify that their diameters tend to zero as k → ∞. Indeed, for
any y ∈ F(xk) ⊂ F(xk−1), one has

f (y) + d(y, xk) ≤ f (xk).

Also, from the definition of xk,
f (xk) ≤ f (y) + εke.
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Consequently, using the definition of F(xk), we deduce

d(y, xk) ≤ f (xk)− f (y) ≤ εke,

whence, for every y1, y2 ∈ F(xk), we have

d(y1, y2) ≤ B(d(y1, xk) + d(y2, xk)).

As a result, diamd(F(xk)) → 0 as k → ∞. Thus, by Cantor’s lemma,

∞⋂
k=0

F(xk) = {x∗}.

From x∗ ∈ F(x0), one has (24).
Next, we prove (25). To this end, we show the equivalent statement: if x ̸= x∗, then there exists

k = k(x) ≥ 0 such that
f (x∗) + d(x∗, xk) ⩾̸ f (x) + d(x, xk),

that is
fi(x∗) + di(x∗, xk) < fi(x) + di(x, xk)

for at least one index i ∈ {1, 2, ..., n}.

Let x ∈ X, x ̸= x∗ be arbitrary. Then x /∈
∞⋂

k=0
F(xk). We distinguish two cases:

(a) x /∈ F(x0); (b) x ∈ F(xk−1) and x /∈ F(xk) for some k = k(x) ≥ 1.

In case (a), we have f (x) + d(x, x0) ⩽̸ f (x0). In case (b), we have f (x) + d(x, xk) ⩽̸ f (xk). Thus,
in both cases, there exists k = k(x) ≥ 0 such that f (x) + d(x, xk) ⩽̸ f (xk). This implies that there is
some i ∈ {1, 2, ..., n} with

fi(x) + di(x, xk) > fi(xk).

On the other hand, since x∗ ∈ F(xk), one has f (x∗) + d(x∗, xk) ≤ f (xk). In particular, for the
index i identified above, it holds that

fi(xk) ≥ fi(x∗) + di(x∗, xk).

Then, from these two ineqialities we obtain

fi(x∗) + di(x∗, xk) < fi(x) + di(x, xk), (27)

which equivalently proves (25).
In order to establish (26), we apply the triangle inequality for d on the right hand side of (27),

which gives,

fi(x∗) + di(x∗, xk) < fi(x) + di(x, xk) ≤ fi(x) + (Bd(x∗, xk))i + (Bd(x∗, x))i.

Hence
fi(x∗) + di(x∗, xk) < fi(x) + (Bd(x∗, xk))i + (Bd(x∗, x))i,

that is,
f (x∗) ⩾̸ f (x) + Bd(x∗, x) + (B − I)d(x∗, xk).

Thus, (26) holds.
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A version of the strong form of Ekeland’s variational principle in vector B-metric spaces is the
following one.

Theorem 13 (Strong Ekeland variational principle in vector B-metric spaces). Let (X, d) be a complete
B-metric space such that the B-metric d is continuous, and let f : X → Rn be a lower semicontinuous function
bounded from below and satisfying condition (H). Then, for given ε, δ > 0 and x0 ∈ X with

f (x0) ≤ f (x) + εe for all x ∈ X, (28)

there exists a sequence (xk) ⊂ X and x∗ ∈ X such that xk → x∗ as k → ∞,

f (x∗) ≤ f (x0), (29)

d(x∗, x0) ≤ δe, (30)

f (x∗) +
ε

δ
d(x∗, xk) ≥ f (x) +

ε

δ
d(x, xk) for all k ≥ 0 implies x = x∗.

Moreover,

f (x∗) ≥ f (x) +
ε

δ
Bd(x∗, x) +

ε

δ
(B − I)d(x∗, xk) for all k ≥ 0 implies x = x∗.

Proof. We apply the weak form of Ekeland’s variational principle, Theorem 12, to the vector B-metric
ε
δ d. From (24), we immediately obtain (29), while from x∗ ∈ F(x0) and (28), we deduce

ε

δ
d(x∗, x0) ≤ f (x0)− f (x∗) ≤ εe,

whence (30). The remaining conclusions follow directly.

A consequence of the weak form of Ekeland’s variational principle is the following version of
Caristi’s fixed point theorem (see [35]) in vector B-metric spaces.

Theorem 14. Let (X, d) be a complete vector B-metric space such that the B-metric d is continuous, and let
f : X → Rn be a lower semicontinuous function bounded from below and satisfying condition (H). Assume that
for an operator N : X → X, the following conditions are satisfied:

d(N(x), y) ≤ d(x, y) + Bd(N(x), x), x, y ∈ X (31)

and
Bd(N(x), x) ≤ f (x)− f (N(x)), x ∈ X. (32)

Then, N has at least one fixed point.

Proof. Assume that N has no fixed points. Then, applying Ekeland’s variational principle to f
(Theorem 12), from (25), one has

f (x∗) + d(x∗, xk) ⩾̸ f (N(x∗)) + d(N(x∗), xk)

for some k. Therefore, there is an index i with

fi(x∗) + di(x∗, xk) < fi(N(x∗)) + di(N(x∗), xk).

Using (32) gives

(Bd(N(x∗), x∗))i ≤ fi(x∗)− fi(N(x∗)) < di(N(x∗), xk)− di(x∗, xk),
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that is
di(x∗, xk) + (Bd(N(x∗), x∗))i < di(N(x∗), xk),

which contradicts (31). Consequently, N has a fixed point.

4.3. New Versions Of The Ekeland Variational Principle In b-Metric Spaces

We emphasize that in the scalar case, that is, when n = 1, B = b ≥ 1 and d = ρ is a b-metric, our
theorems from the previous subsection offer more natural versions in b-metric spaces to the classical
results, as follows.

Theorem 15 (Weak Ekeland variational principle in b-metric spaces). Let (X, ρ) be a complete b-metric
space (b ≥ 1) such that the b-metric ρ is continuous, and let f : X → R be a lower semicontinuous function
bounded from below. Then, for given x0 ∈ X, there exists a sequence (xk) ⊂ X and x∗ ∈ X such that
xk → x∗ as k → ∞,

f (x∗) ≤ f (x0)− ρ(x∗, x0),

and for each x ∈ X, x ̸= x∗, there exists an index k = k(x) with

f (x∗) + ρ(x∗, xk) < f (x) + ρ(x, xk).

Moreover, for each x ∈ X, x ̸= x∗, there exists an index k = k(x) with

f (x∗) < f (x) + bρ(x∗, x) + (b − 1)ρ(x∗, xk). (33)

Theorem 16 (Strong Ekeland variational principle in b-metric spaces). Let (X, ρ) be a complete b-metric
space (b ≥ 1) such that the b-metric ρ is continuous, and let f : X → R be a lower semicontinuous function
bounded from below. Then, for given ε, δ > 0 and x0 ∈ X with

f (x0) ≤ inf
x∈X

f (x) + ε,

there exists a sequence (xk) ⊂ X and x∗ ∈ X such that xk → x∗ as k → ∞,

f (x∗) ≤ f (x0),

ρ(x∗, x0) ≤ δ,

and for each x ∈ X, x ̸= x∗, there exists an index k = k(x) with

f (x∗) +
ε

δ
ρ(x∗, xk) < f (x) +

ε

δ
ρ(x, xk).

Moreover, for each x ∈ X, x ̸= x∗, there exists an index k = k(x) with

f (x∗) < f (x) + b
ε

δ
ρ(x∗, x) + (b − 1)

ε

δ
ρ(x∗, xk). (34)

Theorem 17 (Caristi fixed point theorem in b-metric spaces). Let (X, ρ) be a complete b-metric space
(b ≥ 1) such that the b-metric ρ is continuous, and let f : X → R be a lower semicontinuous function bounded
from below. If for an operator N : X → X, one has

ρ(N(x), y) ≤ ρ(x, y) + bρ(N(x), x), x, y ∈ X (35)

and
bρ(N(x), x) ≤ f (x)− f (N(x)), x ∈ X, (36)

then N has at least one fixed point.
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The last three results reduce to the classical ones in ordinary metric spaces, i.e., if b = 1. Thus, (33)
reduces to

f (x∗) < f (x) + ρ(x∗, x), x ̸= x∗;

(34) reduces to
f (x∗) < f (x) +

ε

δ
ρ(x∗, x), x ̸= x∗;

assumption (35) trivially holds, while (36) becomes the classical Caristi’s inequality

ρ(N(x), x) ≤ f (x)− f (N(x)), x ∈ X.

5. Conclusion and Further Research
In this paper, we introduced the concept of a vector B-metric space. Several fixed-point theorems,

analogous to those in scalar b-metric spaces as well as their classical counterparts, were presented. Ad-
ditionally, we discussed some stability results. Finally, we provided a variant of Ekeland’s variational
principle alongside a version of Caristi’s theorem. It remains an open question whether the assumption
that B−1 − A or I − BA is inverse-positive can be omitted in Theorems 7, 5 and 6. Additionally,
one may explore a variant of Ekeland’s variational principle where Caristi’s theorem holds without
requiring the additional assumption (31). Lastly, it would be interesting to study the case where the
matrix B is neither positive nor inverse-positive; for instance, when it has positive diagonal elements
but contains both positive and negative entries elsewhere.
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