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Abstract—This review explores the recent progress in crop
yield prediction using deep learning and remote sensing. This
highlights the effectiveness of CNNs and LSTMs in analyzing spa-
tiotemporal crop growth patterns. This study examines various
approaches, including hybrid models and attention mechanisms,
and notes their improved accuracy and interpretability. The
key challenges include data quality, model generalizability, and
interpretability. This study emphasizes the potential of these tech-
niques for addressing food security and sustainable agriculture.
Future research directions include multisource data integration,
transfer learning, and development of explainable AI models for
agriculture.

Index Terms—Crop yield prediction, deep learning, CNN,
LSTM, Remote sensing, hybrid models, attention mechanisms,
data quality, model interpretability, Generalizability, Food secu-
rity, sustainable agriculture, transfer learning, Explainable Al.

I. INTRODUCTION

Accurately estimating crop yield is essential for maintaining
global food security. Agricultural management and economic
planning. As the global population continues to grow and
climate patterns become increasingly unpredictable, accurate
yield forecasting is essential for various stakeholders in the
agricultural sector. This importance is underscored by the
United Nations’ Sustainable Development Goal 2, which aims
to eliminate hunger, secure food availability, and foster sus-
tainable farming methods by 2030.

The evolution of crop yield and prediction methods has been
impressive, shifting from conventional statistical models to
sophisticated machine learning and deep learning approaches.
This progression has been driven by the need for more accurate
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and timely predictions in the face of complex environmental
issues, such as climate change, soil erosion, and water short-
ages. The crucial importance of satellite remote sensing data
in modern agricultural monitoring cannot be overstated as it
has revolutionized crop health assessments by providing large-
scale temporal data on key indicators.

This study explored crop yield prediction using satellite
imagery and machine learning. It analyzes vegetation in-
dices, land surface temperature, and soil moisture data from
satellites such as MODIS, Sentinel, and Landsat. Advanced
algorithms, such as Random Forests, XGBoost, CNNs, and
LSTMs, process these data. Recent trends have shown a shift
towards hybrid frameworks that combine remote sensing with
environmental and biophysical parameters. These challenges
include data quality, model interpretability, and preprocessing
issues. This study synthesizes findings from 15 studies across
various crops and regions. A new deep learning framework
using CNNs and LSTMs was proposed to address the current
limitations and enhance prediction accuracy and applicabil-
ity. This approach aims to improve crop yield forecasting
and contributes to improved agricultural management and
food security strategies. This study highlights the potential
of integrating diverse data sources and advanced machining
techniques to obtain more accurate and reliable crop yield
predictions.

II. BACKGROUND WORK AND PRELIMINARIES
A. Crop Yield Prediction

Crop yield prediction estimates expected production for a
given area and time, which is crucial for agricultural decisions,
resource management, and policy. Traditional methods that use



surveys and models lack spatiotemporal detail. Advanced Al
techniques, particularly machine learning and deep learning
combined with remote sensing, offer improved accuracy and
adaptability by capturing the complex relationships between
biophysical, environmental, and climatic variables.
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Fig. 1. Data-driven crop yield prediction workflow

B. Satellite Remote Sensing

Remote sensing gathers Earth surface data via satellites
or aerial sensors, without direct contact. In agriculture, it
enables the continuous monitoring of crop health, land use,
and phenological changes across scales. Modern satellites
provide multispectral, hyperspectral, and synthetic aperture
radar (SAR) data to assess the vegetation conditions.

Key satellite platforms commonly used in crop yield modeling
include the following.

o The Moderate Resolution Imaging Spectroradiometer
(MODIS): Provides a high temporal resolution with in-
tervals from one day to eight days with moderate spatial
resolution (250-1000 m).

o Sentinel-2: Sentinel-2 offers 10-20 m resolution and
frequent revisits for vegetation monitoring.

o Landsat: Historical 30-meter data for long-term trend
analysis.

C. Vegetation Indices

Vegetation indices are mathematical combinations of spec-
tral reflectance values that are used to assess plant health
and density. They serve as critical features in yield prediction
models.

+ Normalized Difference Vegetation Index (NDVI):
(NIR — RED)
(NIR+ RED)

Indicates vegetation greenness and biomass.

NDVI =

Fig. 2. Satellite Image vs. NDVI Map Highlighting Crop Health Variability

o Enhanced Vegetation Index (EVI):

(NIR - RED)
(NIR+6-RED—-7.5-BLUE+1)
This reduces atmospheric influence and improves the

sensitivity of dense vegetation.
o Normalized Difference Water Index (NDWI):

PNIR — PSWIR
PNIR + PSWIR
This reflects plant water content and stress.

EVI=25-

NDWI =

D. Machine Learning and Deep Learning in Agriculture

Machine learning models in agriculture automatically iden-
tify patterns in data for tasks, such as crop classification, yield
prediction, and disease detection. Popular algorithms include
the following.

« Random Forest (RF):A technique combining multiple
decision trees to enhance the prediction accuracy and
mitigate overfitting. It can effectively manage nonlinear
relationships and high-dimensional data.

o XGBoost: An optimized gradient boosting algorithm,
XGBoost excels in speed, accuracy, and handling of struc-
tured tabular data. This effectively manages the complex
feature interactions.

Deep learning, a branch of machine learning, utilizes multi-
layered artificial neural networks to represent intricate data
abstractions. In the field of agriculture, it is particularly
effective for analyzing images and time series data.

o Convolutional Neural Networks (CNNs): Convolutional
neural networks are highly effective for analyzing spatial
data, such as satellite images, to identify features such
as the health of plants, the structure of canopies, and the
boundaries of crops.

o Long Short-Term Memory (LSTM) Networks: LSTM
networks, a variant of RNN, are highly effective at cap-
turing long-term dependencies in sequential data, making
them particularly suitable for modeling temporal varia-
tions in crop growth stages over an agricultural season.



E. Multisource Data Fusion

Crop yield prediction integrates satellite imagery, spectral
data, vegetation indices, weather information, soil characteris-
tics, and historical data. This multisource data fusion enhances
model accuracy and generalizability. Vegetation indices and
machine-learning techniques have revolutionized yield fore-
casting, enabling more precise and timely predictions. These
advanced models provide valuable insight into agricultural
planning and food security.

III. LITERATURE SURVEY

Jeong et al.[l1] reported that deep learning and remote
sensing integration have revolutionized forecasting and that
rice production is vital for maintaining global food security.
Deep neural networks (DNNs), such as the FNN, LSTM,
GRU, and BLSTM, have shown superiority over traditional
crop models. LSTM models capture time-series dependencies,
improving yield and agronomic indicator predictions. Machine
learning and DNNs combined with remote sensing data enable
timely and reliable predictions of climate variability and
support strategic agricultural decisions. However, despite
their high accuracies, these models are challenging. Limited
interpretability is a concern because of the complex nature
of DNNs. The performance may decrease when trained on
small or non-diverse datasets, thereby emphasizing the need
for comprehensive training data. Future research should focus
on enhancing model interpretability in order to build trust
and facilitate wider adoption. Expanding applicability to
diverse geographic regions and rice varieties would increase
global relevance. Exploring advanced architectures such
as transformers may unlock new possibilities for precision
agriculture and sustainability. As this field evolves, the
integration of deep learning and remote sensing has become
increasingly crucial for safeguarding food security and
enhancing agricultural methods.

Tripathi et al. [2] explained the importance of accurate
crop yield estimation for global food security, highlighting
the integration of soil health parameters into yield-prediction
models that incorporate cutting-edge remote sensing and
machine learning methods. They employed Sentinel-1 SAR
and Sentinel-2 optical sensors to assess soil characteristics
and used a deep learning multilayer perceptron (DLMLP)
model to predict crop yields. A case study in Punjab, India
demonstrated the model’s superior performance in wheat
yield estimation compared to traditional methods.

In [3], Khaki et al. introduced a hybrid model combining
CNN and RNN to predict corn and soybean yields in the
U.S.. Corn Belt. This model surpassed traditional approaches,
achieving RMSEs of 9% for corn and 8% for soybean yield.
It effectively captured spatial and temporal dependencies
in weather and soil data, with solar radiation, temperature,
and precipitation identified as the key factors. Although
promising, challenges remain in weather predictions and
model interpretability.

[4]The study “AGNN-RNN Approach for Harnessing
Geospatial and Temporal Information” introduces a GNN-
RNN model for crop yield prediction, combining geographical
and temporal data. Tested on a large US dataset (1981-2019),
it outperformed existing methods. This method employs graph
neural networks to capture spatial connections and recurrent
neural networks to analyze temporal patterns, thereby offering
a new direction for agricultural forecasting by leveraging
complex environmental data.

Fernandez-Beltran et al. [5] developed a 3D CNN model
utilizing Sentinel-2 imagery and weather/soil data for
large-scale yield estimations. Subsequent research explored
various deep learning approaches, including the BBI
model combining BPNN and IndRNN, CNN-based disease
detection, and comparisons of DNN training algorithms.
This research presented a method for predicting rice crop
yields automatically, utilizing SCA-WRELM, integrating data
normalization, WRELM-based prediction, and SCA-based
hyperparameter tuning. These evolving approaches aim to
capture complex relationships between factors influencing
crop productivity, leveraging diverse data sources and
advanced algorithms to enhance rice yield predictions and
promote sustainable agricultural practices.

Elavarasan and Vincent [6] concentrated on predicting crop
yields through the application of deep reinforcement learning
to promote sustainable agriculture.They proposed a Deep
Recurrent Q-Network (DRQN) model that combines the RNN
architecture with Q-learning to process environmental, soil,
water, and crop parameters sequentially. The model achieved
93.7% accuracy for paddy crop yield prediction in southern
India, outperforming other machine learning algorithms. While
promising, challenges remain in handling long time-series
data and uncertainty quantification. Future research could
explore LSTM-based DRL models, probabilistic modeling,
and additional parameters for robust yield forecasting.

Cunha and Silva’s [7] deep-learning model predicts yields for
five major Brazilian crops using remote sensing and weather
data without relying on NDVI or crop masks. The model
incorporates geographic coordinates, weather forecasts, soil
properties, crop-specific calendars, Growing Degree Days,
and a noise layer for weather uncertainties. This approach
offers an accurate solution using more accessible data sources,
addressing the challenges in obtaining and processing remote
sensing data for large areas. Other studies have explored
different methods, including the WOFOST model for winter
wheat in Ukraine, combining satellite and climate data for
Australian wheat, and transfer learning with MODIS imagery
for soybean yield in Argentina and Brazil.

[8] The research work titled “Estimating Soybean Yields
Using Causal Inference and Deep Learning Approaches With
Satellite Remote Sensing Data” proposes a novel SCM-GAT



model that integrates structural causal models with graph
attention networks for predicting county-level soybean yields
in major U.S. states. By incorporating causal inference
and remote sensing data, including MODIS vegetation
indices and meteorological variables, the model improves
interpretability and robustness, particularly under extreme
weather conditions. Dividing the soybean growth cycle into six
phases, the study demonstrates that SCM-GAT outperforms
traditional and deep learning models, emphasizing the value
of causal reasoning and temporal dynamics in yield prediction.

Kalmani et al. [9] created a hybrid model that integrated
a 1D CNN, LSTM, and attention mechanisms to forecast
wheat and rice yields in India. The model, enhanced with
multihead attention and multiplication skip connections,
outperformed the traditional methods, with an RMSE of
0.017, MAE of 0.09, and R? of 0.967. Using soil, climate,
and historical weather data, the model achieved an accuracy
of 98%. Despite limitations due to the small dataset size, the
study highlights the potential for accurate yield predictions
in the context of climate change and resource management,
suggesting future research with larger datasets and ensemble
methods.”

Kuriakose and Singh [10] developed a model using
LSTM to predict crop yields in India, aiding farmers in
choosing appropriate crops by considering factors such as
soil, climate, and rainfall. Elavarasan and Vincent applied
deep reinforcement learning, achieving 93.7% accuracy.
Cunha et al. developed a scalable RNN-based system for
pre-season yield forecasting using soil and weather data. Ji et
al. showed that an ANN outperformed linear regression for
rice yield prediction in mountainous China. Hochreiter and
Schmidhuber introduced LSTM to improve the long-term data
retention. The combined LSTM-RNN approach integrates
climate and soil analyses for accurate yield forecasting and
crop selection.

Sharma et al.[11] conducted a comprehensive study on
predicting agricultural yields in India using machine-learning
and deep-learning techniques. They analyzed data from ten
major crops from 1997 to 2020 using various algorithms.
Random Forest outperformed other machine learning methods
with 98.96% accuracy, whereas CNN showed superior
performance among deep learning models. This research
underscores the promise of these methods for forecasting
agricultural production, and suggests the incorporation of
remote sensing data to further enhance accuracy.

Muruganantham et al.[12] analyzed crop yield forecasts using
deep learning and remote sensing technologies for the period
2012-2022. LSTM and CNN were identified as the primary
deep learning methods, with MODIS satellite data being the
most commonly used. Vegetation indices are most commonly
used. Deep learning surpasses traditional machine learning
in terms of feature extraction and nonlinear relationship

modeling. CNN excelled in identifying yield-influencing
features, whereas LSTM better recognized data variation
patterns and time-series connections. Feature selection varied
according to the crop type and factor correlation. Challenges
include improving the model accuracy, providing stakeholder
information, and addressing the black-box nature of deep
learning. The review emphasized the need for larger datasets,
advanced tools, and the incorporation of additional factors for
more robust prediction models.

Sah et al.[13] investigated rice yield prediction using machine
learning models that integrated biophysical parameters with
SAR and optical remote sensing data from Uttarakhand, India.
In this study, Sentinel-1 SAR data, Sentinel-2 optical data,
and ground-based crop biophysical parameters were used to
predict the rice yield at different growth stages. Nine machine
learning models were employed, with XGB performing
best for summer rice and varying models for Kharif rice,
highlighting the effectiveness of combining remote sensing
data with on-the-ground parameters to accurately predict
yields and provide important insights for planning food
security and resource management.

Thakkar and Vanzara [14] developed the “Quartile Clean
Image” preprocessing approach to enhance the accuracy of
crop yield predictions derived from remote sensing data by
correcting outliers using quartile-based pixel analysis. Applied
to 20,946 MODIS images, it improved PSNR to 40.91 dB
and reduced RMSE by up to 21.85% for corn and 11.52% for
soybean when used with CNN and LSTM models. The Vision
Transformer (ViT) model, without explicit preprocessing,
achieved high R? scores (0.9540-0.9888), demonstrating
robustness. Although VIiT performs well, Quartile Clean
preprocessing with CNN/LSTM often yields a lower RMSE,
thereby emphasizing the value of effective preprocessing.
Future work will include scaling the method across regions
and crops and integrating it with advanced models such as ViT.

Pham et al.[15] devised a framework to boost the accuracy
of crop yield forecasts by applying machine learning to
vegetation health indices obtained from satellite data. This
approach addresses the challenges of one-fits-all models and
redundant data by employing spatial independent component
analysis (sICA) for regional division and combining principal
component analysis (PCA) with machine learning. When
applied to predict rice yields in Vietnam, the framework
showed enhanced accuracy, with subregional models
outperforming universal approaches by as much as 60%, and
PCA-ML combinations exceeding ML-only methods by up
to 45%. This framework provides predictions to 1-2 months
before harvest with an average error of 5%, presenting a
strong solution for improving crop yield forecasts at the
subregional level.
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IV. PROPOSED SYSTEM

The proposed crop-yield prediction framework integrates
deep learning with multisource data fusion, combining satellite
imagery, environmental variables, and historical yield data.
A hybrid CNN-LSTM model captured spatial and temporal
patterns, whereas multitask learning predicted yield and agro-
nomic indicators. Transfer learning ensures adaptability across
crops and regions and causal inference enhances the under-
standing of feature relationships. The model was validated by
using diverse datasets for robust and sustainable agricultural
planning.

V. METHODOLOGY

We developed a system for comprehensively predicting crop
yields using deep learning and remote sensing methods.
1) Data Collection and Preprocessing
o Gather multisource data, including:
— Satellite imagery (e.g., MODIS, Sentinel, Land-
sat)
— Vegetation indices (NDVI, EVI, NDWI)
— Weather data (temperature, precipitation, wind
speed)
— Soil health parameters
— Historical yield data
o Preprocess and normalize data to handle missing
values and ensure consistency.
2) Deep-learning Architecture
o Implementation of a hybrid CNN-LSTM model:
— CNN component for spatial feature extraction
from satellite imagery.
— LSTM component for modeling temporal crop
growth patterns.

Fig. 3. The architecture of the hybrid CNN-LSTM model

o Incorporate attention mechanisms to improve model
interpretability.
o Utilize transfer learning techniques for better gen-
eralization across regions.
3) Multitask Learning
o Simultaneously predict crop yield and other agro-
nomic indicators.
« Integrate causal inference techniques to understand
relationships between input features.
4) Model Training and Optimization

o Use diverse datasets from multiple geographic re-
gions and crop types.

« Implement techniques like exponential decay learn-
ing rates and skip connections.

« Employ ensemble methods to improve overall pre-
diction accuracy.

5) Validation and Testing

e Perform cross-validation across different regions
and crop seasons.

o Evaluate the effectiveness in comparison with con-
ventional machine learning models such as Random
Forest and SVM.

o Evaluate using metrics such as RMSE, MAE, R?,
and correlation coefficients.

The proposed system aims to provide accurate, scal-
able, and interpretable crop yield predictions to support
decision making in agriculture and contribute to food
security efforts.

VI. RESULTS AND DISCUSSION

This survey analyzed state-of-the-art crop-yield predic-
tion systems by leveraging deep learning and remote
sensing. Among these, hybrid CNN-LSTM models have
proven to be highly effective in modeling both spatial
and temporal dependencies. Notably, Wang et al. (2024)
reported 74% accuracy (R? = 0.87, RMSE = 0.08),
outperforming standalone CNN and LSTM models.
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Despite these advances, limitations remain, particularly
regarding generalizability, dataset diversity, and inter-
pretability. To address these issues, our proposed system
extends the CNN-LSTM architecture by incorporating
attention mechanisms for feature relevance, causal infer-
ence for relationship analysis, multisource data fusion,
and transfer learning for adaptability across regions and
crops. Although not yet implemented, our framework
is expected to outperform the existing models by en-
hancing accuracy, transparency, and robustness. This
study establishes a foundation for more interpretable and
scalable crop yield prediction systems, with future work
focusing on empirical validation.
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Fig. 5. Accuracy graph of CNN, LSTM, and CNN-LSTM models

VII. FUTURE WORK

Future research on crop yield prediction should focus
on advanced data fusion of satellite, soil, and climate
data, along with improved preprocessing, such as cloud
removal and gap-filling using machine learning. Hybrid
deep learning models such as CNN-LSTM with attention
mechanisms show promise for better spatiotemporal
modeling and interpretability. Transfer learning and do-
main adaptation can help apply models to new regions
with limited data, whereas explainable AI (XAI) can
reveal the key yield drivers.

Efforts should also aim at scalable, multi-crop, and
lightweight models for real-time use in precision agri-
culture.The incorporation of climate change scenarios
and carbon estimations will support sustainable and
intelligent farming across diverse agroecological zones.

VIII. CONCLUSION

This review emphasizes the combination of deep learn-
ing and remote sensing to enhance the precision of crop
yield forecasts. Hybrid models, such as CNN-LSTM
networks, have shown superior performance in captur-
ing spatiotemporal crop-growth dynamics. The proposed
research aims to enhance this approach by incorporating
attention mechanisms and causal inference capabilities,
thereby addressing the limitations of interpretability and
generalizability. The system aims to provide adaptable
predictions across diverse agroecological settings by
fusing multisource data, including satellite imagery and
environmental indicators. This study aims to fill the gaps
in model transparency, the effects of data quality, and
regional adaptability, potentially providing more reliable
tools for sustainable agriculture and global food security.
Future efforts will concentrate on empirical validation,
optimization, and implementation across different crop
types and regions.
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