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Abstract: Per‐ and polyfluoroalkyl substances (PFAS) are arguably the most common water 
contaminants in the world today. While several research experiments have been done to understand 
and remove PFAS from the environment, there is still a lot of unknown. Little has been known about 
the use of Machine learning (ML) to understand PFAS. This work hence reviews some leading ML 
approaches and applications in PFAS studies in the distribution, transport, removal, and occurrence 
predictions of PFAS. Several evaluation matrices were examined and used to perform this function. 
There are still a lot of areas whereby ML can be used to improve our PFAS knowledge base, some 
of these were briefly stated in this review. 
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1. Introduction 

Because of their ubiquity in the global environment, persistence, and toxicity, PFAS are a family 
of water‐soluble anthropogenic pollutants of growing worldwide concern with at least one 
perfluoroalkyl moiety (CnF2n+1–) (Adu et al., 2023; George and Dixit, 2021). Since the mid‐twentieth 
century, PFAS have been widely utilized in a variety of goods, including textile coatings, surfactants, 
insecticides, food contact materials, and fire‐fighting foams (George and Dixit, 2021; Wang et al., 
2021). PFAS, in contrast to other common environmental toxins, has high‐energy C‐F bonds that have 
stable physicochemical features (such as low surface tension) and are difficult to hydrolyze, 
photolyze, and biodegrade (Cao et al., 2023). 

Because of the widespread use and disposal of PFASs, as well as the bio‐accumulative, persistent, 
mobile, and poisonous properties of many members of this family of compounds, contamination 
from PFASs is a pressing environmental hazard (Charbonnet et al., 2021). Continuous PFAS emission 
causes amounts in the environment to accumulate, increasing the likelihood of detrimental impacts 
(Sosnowska et al., 2023). PFAS may harm thyroid function, sex hormone levels (e.g., low testosterone), 
high estradiol levels, pregnancy‐induced hypertension, and birth weight concerns (Ordonez et al., 
2022). 

ML has been utilized in the water distribution and quality areas in a variety of methods for 
improvement, pattern discovery, demand forecast, and leak detection (Ayati et al., 2022; García et al., 
2023; Panigrahi et al., 2023; Xu et al., 2022; Almousa et al., 2023). Large volumes of data from databases 
such as the United States Geologic Survey (USGS) and National Water Information System (NWIS); 
experimental data, and other reputable sources have been analyzed for this purpose (Hu et al., 2022). 
Jiang et al., (2021) used an artificial neural network (ANN) to predict the performance of different 
metal oxide photocatalysts on a wide range of water contaminants. Banerjee et al., (2022) used Linear 
Regression (LR), Support Vector Machine (SVM), Decision trees regression, and Lasso regression 
models to predict water contamination based on the coordinates of the area. Ragi et al., (2019) used 
the Levenberg‐Marquardt algorithm, a mix of gradient descent and Gauss‐Newton algorithm to 
predict water quality parameters using data from the Pollution Control board. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2024                   doi:10.20944/preprints202403.0627.v3

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202403.0627.v3
http://creativecommons.org/licenses/by/4.0/


doi:10.20944/preprints202403.0627.v2 
 

Several attempts have been made to model PFAS transport in water. Zeng et al., (2021) used the 
one‐dimensional (1D) Richards equation to investigate the primary factors that control the long‐term 
retention of PFAS in the vadose zone. Brusseau et al., (2021) used both a one‐dimensional model that 
considers transient, variably saturated flow and advective and dispersive transport; and non‐linear 
rate‐limited solid‐phase sorption, and non‐linear rate‐limited air‐water interfacial adsorption to 
investigate the influence of surfactant‐induced flow on PFAS transport. (Guo et al., 2022) developed 
a simplified model to quantify PFAS leaching in the vadose zone and mass discharge to groundwater. 
The influence of the hydrophilic head group and other molecular components on PFAS interfacial 
partitioning was predicted by Le et al., (2021). 

A critical review on the modeling of PFAS in the soil‐water environment was published by Sima, 
et al, (2021). While this was a very detailed and substantial amount of work, some important areas of 
modeling were not covered. For example, the application of machine learning to understand PFAS 
distribution in both surface water and groundwater was not covered. Also, the focus of the review is 
the use of mathematical models to understand PFAS. Our review was motivated by the need to 
provide a complete overview of the use of machine learning to better understand PFAS, both from a 
source and methodological standpoint. This section also contains overview figures and tables for all 
data sources, which readers can use to rapidly analyze the field. 

This review includes over 100 recent studies on a wide range of machine learning applications 
for understanding PFAS in water. To find relevant contributions, Google Scholar searched for works 
containing the terms (ʺPFASʺ ʺWaterʺ and ʺMachine learningʺ). Figure 2 is a chart that shows the 
sources of journals used in this review. Elsevier and Environmental Science and Technology journals 
are the most common journals that have published articles on PFAS studies using machine learning. 
There is an article from Springer and two pre‐prints are also found to contain useful information on 
this subject. We reviewed the references in all of the publications we chose and spoke with experts in 
the field of data science and environmental contaminants. 

 
Figure 2. Analysis of Journals used in this review. 

Overview of Machine Learning Models 

The purpose of this section is to provide a formal introduction and definition of the machine 
learning ideas, methodologies, and architectures that we discovered in the studies on Poly‐ and 
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Perfluoroalkyl compounds in water that we reviewed for this work. Figure 3 below shows the 
machine learning process flowchart. This was designed to let users know which algorithm to use for 
PFAS studies. 

 
Figure 3. Machine learning processes flowchart (adopted from sqlservercentral.com). 

Machine Learning Algorithms 

Supervised learning is a machine learning method distinguished by the use of labeled datasets. 
These datasets are intended to train or ʺsuperviseʺ algorithms to accurately classify data or forecast 
outcomes using labeled inputs and outputs. They are divided further into classification and 
regression. An algorithm is used in classification problems to assign test data to specific categories 
accurately. Classification methods include linear classifiers, support vector machines, decision trees, 
and random forests. Regression employs an algorithm to determine the relationship between 
dependent and independent variables. Regression models are useful for predicting numerical values 
from various data sources. Linear regression, logistic regression, and polynomial regression are some 
popular regression algorithms. 𝐷 = {(𝑋1, 𝑦1), . . . .  ,(𝑋n, 𝑦n)}  ⊆ 𝑅d  ×  ∁ (1) 

Where n is the size of the dataset, Rd is the d‐dimensional feature space, Xi is the feature vector 
of the ith example, yi is the label or output of the ith example, and ∁ is the space of all possible labels. 
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i=1 

Unsupervised learning analyzes and clusters unlabeled data sets using machine learning 
methods. These algorithms find hidden patterns in data without the need for human interaction. They 
are mostly used for clustering, association, and dimensionality reduction. Unlabeled data is clustered 
based on similarities and differences. For example, K‐means clustering algorithms divide related data 
points into groups, where the K value defines the size and granularity of the grouping. Association 
employs several rules to discover links between variables in a given dataset. When the number of 
features in a given dataset is too large, dimensionality reduction is utilized. It decreases the quantity 
of data inputs to a tolerable number while maintaining data integrity. This approach is frequently 
utilized in the data pre‐processing step. 

Linear Regression (LR) 

Linear regression is a type of supervised machine learning algorithm that computes the linear 
relationship between a dependent variable and one or more independent features and it is typically 
leveraged to make predictions about future outcomes. Consider a dataset of real‐values vectors: 𝑋 = {𝑥1 , 𝑥 ̄ 2 , . . . . .  𝑥̄n} where x ϵ Rm 

Each input vector is associated with a real value yi: 𝑌 = {𝑦1, 𝑦 2 , . . . . . . ,  𝑦n} where yn ϵ R 
A linear regression model assumes that it’s possible to approximate the output values through 

a regression process based on the rule: 𝑦    = ∝0+ ∑m ∝i 𝑥i where A = {∝0, ∝ 1 , . . . . .  ., ∝m} (2) 
 
Naïve Bayes 

The Bayes Theoremʹs premise of class conditional independence is used in the Naive Bayes 
classification technique. This means that the existence of one feature has no effect on the presence of 
another in the probability of a particular event, and each predictor has the same effect on that 
outcome. Multinomial Nave Bayes, Bernoulli Nave Bayes, and Gaussian Nave Bayes are the three 
types of Nave Bayes classifiers. This method is most commonly employed in text classification, spam 
detection, and recommendation systems. 𝑃(𝑐|𝑥) =  𝑃(𝑥|𝑐)𝑃(𝑐) 𝑃(𝑥) (3) 

Where 𝑃(𝑥|𝑐) is the probability of likelihood of an event happening, 𝑃(𝑐|𝑥) is the posterior 
probability, 𝑃(𝑐) is the class prior probability, 𝑃(𝑥) is the predictor prior probability. 

Logistic Regression (LogReg) 

This is a supervised machine learning algorithm used for binary classification problems. It is 
used when the dependent variable is binary. It is used to explain the relationship between one 
dependent binary variable and one or more independent variables. Logistic regression uses a logistic 
function to model a binary output variable. 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1 1 + 𝑒–x (4) 
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𝐵 
rf 

 
K‐Nearest Neighbor (KNN) 

The KNN algorithm, commonly known as the KNN classification algorithm, is a non‐parametric 
algorithm that classifies data points based on their closeness and association to other accessible data. 
This technique believes that data points with similar characteristics can be found nearby. As a result, 
it attempts to determine the distance between data points, typically using Euclidean distance, and 
then assigns a category based on the most frequently occurring category or average. 

Given a dataset containing labeled training measurements (x,y), we want to find a function h:X 
→ Y that can positively predict the identical output y in the presence of an unknown observation x.  

The input x is assigned the class with the largest probability. 𝑃(𝑦 = 𝑗|𝑋 = 𝑥)  =  1 Σ 𝐼(𝑦(i) =  𝑗) (5) 𝑘 i∈Æ  
Support Vector Machine (SVM) 

This is an example of supervised learning that is used for both data classification and regression. 
It is often used for classification problems, producing a hyperplane with the greatest distance 
between two classes of data points. This hyperplane is known as the decision boundary, and it 
separates the data point classes (for example, oranges vs. apples) on either side of the plane. Consider 
the function of a line 𝑦 = 𝑎𝑥 + 𝑏. We rename x with x1 and y with x2 𝑎𝑥1 — 𝑥2 + 𝑏 = 0 . If we define 𝑥 = (𝑥1, 𝑥2) and 𝑤 = (𝑎, —1), we get: 𝑤. 𝑥 + 𝑏 = 0 

This equation is derived from two‐dimensional vectors. But in fact, it also works for any number 
of dimensions. This is the equation of the hyperplane. 

The hypothesis function is then defined as ℎ(𝑥i) +1 𝑖𝑓 𝑤. 𝑥 + 𝑏 ≥ 0 = {—1 𝑖𝑓 𝑤. 𝑥 + 𝑏 < 0 (6) 
Decision Trees (DT) and Random Forest (RF) 

A decision tree is an efficient approach for describing how to traverse a dataset while also 
establishing a tree‐like path to the predicted outcomes. A root node, which is the most essential 
dividing property, can establish the structure of a decision tree. Internal nodes are attribute testing. 
For example, if an internal node has a control statement (PFAS level 25ppt), then the data points 
satisfying this condition are on one side and the remainder on the other. The leaf nodes indicate the 
datasetʹs accessible classes. 

Random Forest is used for both classification and regression. The term ʺforestʺ refers to a group 
of uncorrelated decision trees that are subsequently combined to reduce variance and produce more 
accurate data predictions. For a random tree forest Tb, 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛: 𝑓^ 𝐵 ( ) 1   

B 𝑇 (𝑥) (7) 𝑟𝑓 𝑥 = Σ b b=1 Classification: Let Ĉb(x) be the class prediction of the bth random — forest tree. Then ĈĈ B (x) = majority vote  {Ĉ (x)} B 1 b
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Graph Convolutional Networks (GCN) 

This model learns a function of features on a graph G=(V, E) with xi as input for every node I; summarized 
in a N×D feature matrix X(N: number of nodes, D: number of input features) and a representative description 
of the graph structure A and produces a node‐level output Z( an N×F feature matrix, where F is the number of 
output features per node). Every neural network layer can then be written as a non‐linear function 𝐻(l+1) = 𝑓(𝐻(l), 𝐴) (8) 

With H(0)=X and H(L)=Z and L being the number of layers. 

Gradient Boosting (GB) 

Gradient Boosting is a powerful boosting approach that combines numerous weak learners into strong 
learners by using gradient descent to train each new model to minimize the loss function of the preceding 
model, such as mean squared error or cross‐entropy. In each iteration, the approach computes the gradient of 
the loss function concerning the predictions of the current ensemble and then trains a new weak model to 
minimize this gradient. The new modelʹs predictions are then added to the ensemble, and the procedure is 
repeated until a stopping threshold is fulfilled. 

Nonnegative Matrix Factorization + k‐Means Clustering (NMFk) 

NMFk is a revolutionary unsupervised machine learning methodology for automatically identifying the 
optimal number of features (signals/signatures) in data. It is an estimate. It calculates the number of features k 
using k‐means clustering and regularization constraints. 

Clustering 

Clustering is a data mining technique that organizes unlabeled data based on similarities or differences. 
Clustering techniques are used to sort raw, unclassified data objects into groups represented by structures or 
patterns in the data. Categories of clustering algorithms are as follows: Exclusive, Overlapping, Hierarchical, 
and Probabilistic clustering. 

Exclusive clustering is a type of grouping in which a data point can only reside in one cluster. K‐means 
clustering is a common example of an exclusive clustering approach in which data points are assigned to one 
of the K groups depending on their distance from the centroid of each group. The data points closest to a specific 
centroid will be grouped. A higher K value indicates smaller groupings with more granularity, whereas a 
lower K value indicates bigger groupings with less granularity. 

Overlapping clusters are distinct from exclusive clustering in that they allow data points to belong to 
many clusters with different degrees of membership. An example is ʺsoftʺ or fuzzy k‐means clustering. 

Hierarchical clustering, also known as hierarchical cluster analysis (HCA), is an unsupervised clustering 
algorithm in which data points are initially isolated as separate groupings and then merged iteratively based on 
similarity until one cluster is achieved (agglomerative), or a single data cluster is divided based on data point 
differences (divisive). 

A probabilistic model is an unsupervised strategy that aids in the resolution of density estimation or 
ʺsoftʺ clustering problems. Data points are clustered in probabilistic clustering based on their likelihood of 
belonging to a specific distribution. One of the most often used probabilistic clustering algorithms is the 
Gaussian Mixture Model (GMM). 

Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a dimensionality reduction algorithm that uses feature extraction 
to eliminate redundancies and compress datasets. A linear transformation is used in this method to generate 
a new data representation, generating a set of ʺprincipal components.ʺ The first principal component is the 
direction that maximizes the datasetʹs variance. While the second main component finds the most variance in 
the data, it is fully uncorrelated to the first, producing a direction that is perpendicular, or orthogonal, to the 
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first. This process is repeated for each dimension, with the next principal component being the direction 
orthogonal to the prior components with the largest variance. 

Semi‐Supervised Learning 

Semi‐supervised learning provides a comfortable middle ground between supervised and unsupervised 
learning. It employs a smaller labeled data set to aid classification and feature extraction from a larger, 
unlabeled data set during training. Semi‐supervised learning can address the issue of insufficient labeled data 
for a supervised learning algorithm. It also helps if labeling enough data is expensive. 

Neural Networks 

This is also known as artificial neural networks (ANN). They are comprised of node layers, containing 
an input layer, one or more hidden layers, and an output layer. Each node, or artificial neuron, connects to 
another and has an associated weight and threshold. If the output of any individual node is above the specified 
threshold value, that node is activated, sending data to the next layer of the network. Otherwise, no data is 
passed along to the next layer of the network. Neural networks rely on training data to learn and improve 
their accuracy over time. It is the foundation on which deep learning is built. 

Deep Neural Networks (DNN) 

It is identical to stacked neural networks, which are networks made up of several layers, usually two or 
more, with input, output, and at least one hidden layer in between. A DNN is made up of layers with 
mathematical relationships, such as nodes and edges. Backpropagation is used during data training to update 
these associations. The revised relationships are then employed as equations to predict the output variables 
depending on the input variables after training. 
 

Figure 4. The proportion of (a) machine learning algorithms used and (b) their application areas in PFAS‐related 
research. 

Machine Learning Uses in PFAS 
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Data Source 

The various works being considered for this review have several sources of data. It is essential to have 
access to data from reliable sources before engaging in ML. The origin of the data, as well as the integrity of 
the data, are factors that determine the acceptability of ML‐related experiments. It is important to clean data 
for consistency and appropriate decisions have to be made on the necessary cleaning tools to employ. 

Several data sources have been identified in this review. They include the Groundwater Ambient 
Monitoring Assessment Program (GAMA) database. The GAMA database is California’s comprehensive 
groundwater quality monitoring program created by the state Water Resources Control Board in 2000. George 
and Dixit, (2021) used GAMA data to perform a predictive model on prioritizing groundwater testing for all 
wells in California. Dong et al., (2023) used 12 groundwater data to predict 35 target PFAS in California. 

The Organization for Economic Co‐operation and Development (OECD) database is another source of 
data that has been used by researchers to better understand PFAS. Cheng, W., (2021) used OECD data to 
develop In‐Silico tools to predict PFAS substances in biological systems. Su et al., (2023) performed PFAS 
screening by clustering and classification using OECD data. Kwon et al., (2023) predicted bioactivities of 
PFAS. Other data sources include the United states environmental protection agency’s water quality portal 
(USEPA) (Azhagiya Singam et al., 2020; DeLuca et al., 2023; Dong et al., 2023), PubChem Bioassay Database 
(Kwon et al., 2023), Pennsylvania Water quality network (Breitmeyer et al., 2023), from previously published 
studies on PFAS (Karbassiyazdi et al., 2022; Kibbey et al., 2020; Patel et al., 2022), lake and river data (Antell 
et al., 2023; Stults et al., 2023), Minnesota department of health (MDH) Government agency data (Breitmeyer 
et al., 2023; Fernandez et al., 2023; Li and Gibson, 2023) and experimental data (Cao et al., 2022; Sörengård et al., 
2022; Wang et al., 2022). Some authors combined several public data for their machine learning predictions. 
Dong et al., (2023, p. 35) used data from several public data (GAMA, USEPA, Environmental Working Group 
(EWG), National Co‐operative Soil Survey (NCSS), National Oceanic and Atmospheric Administration 
(NOAA), Sustainable Groundwater Management Act (SGMA) and National Aeronautics and Space 
Administration (NASA)). Feinstein et al., (2021) combined data from USEPA, NIH, and National Toxicology 
program datasets. 

Table 1. Data sources of works of literature used in this review. 
 

Data Source Type of water  Location References 

GAMA 
 

Environment working 

Groundwater  California (Dong et al., 2023; 

George and Dixit, 2021) 

(Dong et al., 2023) 

group 

National Cooperative 

Soil Survey (NCSS) 

National Oceanic and 

Atmospheric 

Administration 

National Aeronautics 

and Space 

Administration 

(NASA) 

OECD 

 
 
 
 
 
 
 
 
 
 
 
 

All 

  
 
 
 
 
 
 
 
 
 
 
 

Paris 

 
(Dong et al., 2023) 

(Dong et al., 2023) 

 
(Dong et al., 2023) 

 
 
 
 

(Kwon et al., 2023; Su et 
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USEPA 

   
United States 

al., 2023) 

(Azhagiya Singam et al., 

2020; DeLuca et al., 

2023; Dong et al., 2023) 

PubChem Bioassay All 
  

(Cheng and Ng, 2019; 

Kwon et al., 2023) 

Government agencies Surface water 
 

Pennsylvania (Breitmeyer et al., 2023) 

  

Drinking 

Groundwater 

Drinking water 

 

water, 
 

Michigan 
 

China 

 

(Fernandez et al., 2023) 
 

(Yuan et al., 2023) 
 Groundwater  Minnesota (Li and Gibson, 2023) 
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9 
 

Lake and River data Lake and River Columbia River 

Basin 

(DeLuca et al., 2023) 

Norway (Stults et al., 2023) 

 
Experimental data Wastewater treatment 

plant 

China and Africa (Jiang et al., 2023) 
 

(Cao et al., 2022; 

Sörengård et al., 2022; 

Wang et al., 2022) 

Aquifer Eastern United states (McMahon et al., 2022) 
 

Groundwater Jiangxi, China (Wang et al., 2022) 

Private wells New Hampshire (Hu et al., 2021) 

Marine Hong kong (Liu et al., 2023) 

 
Surface water Chaobai river (Hu et al., 2023) 

Aqueous film‐forming 

foam impacted 

groundwater, 

Leachate, WWTP 

Pulp and paper 

power generation 

industries, United 

States 

(Joseph et al., 2023) 

Drinking water, 

Uppsala groundwater 

aquifer 

Sweden (Sörengård et al., 2022) 

Plot Digitizer Contaminated water (Hosseinzadeh et al., 

2022) 

 
Web of Knowledge (Han et al., 2023) 

Data from around the 

world 

Previously published 

data 

(Kibbey et al., 2021a, 

2021b, 2020) 

(Patel et al., 2022) 

(Karbassiyazdi et al., 

2022; Kibbey et al., 

2020; Patel et al., 2022) 

(Cao et al., 2022) 
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Implementation Details of the Methods 

Data splitting is done in three main ways: training, validation, and test sets. The choice of which sets to 
use depends on the model, the size of the data, and in some cases, the choice of the user. This concept shuffles 
the dataset and then splits it. While the model is learned on the training set, validation, and test sets determine 
the performance of the model. The scikit‐learn package from Python programming was widely used by 
various literatures considered in this review. The train‐ test split ratio is the percentage of the data that would 
be used to train the model to that which would be used to test it. Split such as 80:20 was used by several authors 
(Azhagiya Singam et al., 2020; Dong et al., 2023; Hosseinzadeh et al., 2022; McMahon et al., 2022). Hu et al., 
(2021) divided the domestic well PFAS data in the ratio 80:20; this is consistent with the ratio adopted by 
DeLuca et al., (2023) who used a 100‐iteration Monte Carlo holdout scheme to split PFAS data from Columbia 
River Basin fish tissue. Other split ratios used by authors include 70:30 (Cheng and Ng, 2019) and 75:25 
(Fernandez et al., 2023). 

Quantitative Structure‐Activity Relationship (QSAR) models were developed by Yuan et al., (2023) to 
correlate chemical molecules of the air‐water interface of PFAS using 12 constitutional descriptors and 11 
quantum chemical descriptors. The model was developed by correlation analysis‐ linear correlations between 
the water‐air interface energy values and every descriptor (n=23) were investigated by correlation analysis, 
genetic function approximation (GFA), multiple linear regression (MLR), neural network (NN), and model 
validation. Cao et al., (2022) used the training set to develop QSAR models, while the test set was used to 
evaluate the generalization prediction ability of the model. The application domain of the best ML model was 
evaluated using the Williams plot and Euclidean distance. 

Cross‐validation (CV) is an ML evaluating technique that trains several models on the subset or multiple 
folds of the data and evaluates the performance of the remaining data. This process is repeated several times 
(iteration number), changing the subset each time. Yuan et al., (2023) used a 5‐fold CV, and George and Dixit, 
(2021) used 10 subsets (10‐fold CV) to group groundwater wells to prioritize PFAS testing; the same number 
was used by Dong et al., (2023) for total PFAS prediction. In addition to this, Cao et al., (2023) performed 500 
iterations on the training set for hyperparameter tuning. Hyperparameter tuning is the process of determining 
values to adjust models for optimal results (Mu et al., 2024). Processes include Grid search (Dong et al., 2023; 
Hosseinzadeh et al., 2022; Joseph et al., 2023), a subset of the training set (Kibbey et al., 2021b, 2020) and 
bayesian optimization (Karbassiyazdi et al., 2022). 

Model Evaluation Metrics 

Evaluation metrics assess the effectiveness and performance of a model. This is an important feedback 
mechanism for an algorithm or in comparing different models. It is essential to evaluate a modelʹs predictive 
power, adaptability, and overall quality. Evaluation metrics provide objective standards for assessing these 
qualities. The evaluation metrics used depend on the problem domain, data type, and desired outcome. The 
following evaluation metrics are used in this review: 

Area under the receiver operating characteristics curve (AUC‐ROC). This is an aggregate measure of 
performance across all classification criteria. This could be interpreted as the likelihood that the model will 
evaluate a random positive case higher than its random negative. The Receiver Operating Characteristic 
(ROC) curve is obtained by plotting the true positive rate (sensitivity) against the false‐positive rate. George 
and Dixit, (2021) used AUROC to evaluate Linear regression and Random forest models for PFAS 
groundwater testing. Other models that have been evaluated using AUC include the Weave model, Graph 
convolutional model, Pyramidal multitask network, 1‐ hidden layer multitask (Cheng and Ng, 2019), logistic 
regression (Hu et al., 2023), Spatial regression and Boosted regression tree (Fernandez et al., 2023). 

The F1 score is the harmonic mean of precision and recall, with 1 being the best value and 0 being the 
worst. It is determined by dividing the total number of values by the sum of their reciprocals. It increases 
the effect of the lesser number on the entire calculation, resulting in a balanced measurement. The F1 score 
considers both precision‐recall while avoiding the overestimation that the arithmetic mean may generate. 
Dong et al., (2023) used the F1 score to evaluate the performance of several classification and regression models 
for target PFAS prediction in California groundwater. 
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The Root mean square error (RMSE) is a popular evaluation metric for regression events. It is the square 
root of the average squared distance (the difference between actual and predicted values). It assumes that errors 
are impartial and follow a normal distribution. It is utilized when there is a risk of big errors. This metric was 
applied to the RF model which was used to predict PFAS contamination in fish tissue (DeLuca et al., 2023). 
Several authors used this metric for the performance evaluation of several models (Cao et al., 2022; Feinstein 
et al., 2021; Hu et al., 2023). 

MAE measures the average errors in a set of predictions, regardless of their direction. The MAE score is 
calculated by taking the average of the absolute error numbers, hence it is always positive. Hosseinzadeh et 
al., (2022) used MAE to evaluate the performances of several ML models to model and analyze PFOS removal 
from contaminated water by nanofiltration. Mu et al., (2024) screened PFAS data using several ML techniques. 

R‐squared is a statistical measure that indicates how much of a dependent variableʹs variation is explained 
by an independent variable or variables in a regression model. The R2 value determines how accurate our 
model is in terms of distance or residuals. Cao et al., (2023) investigated the binding fraction of PFAS in human 
plasma using several ML models; these were evaluated by the R2. 

Several other evaluation metrics have been used by authors to better understand the performances of ML 
algorithms in PFAS studies. Some of these include precision, recall, accuracy, mean, sensitivity, and 
specificity. 

Table 2. Implementation details and performances of ML models used in this literature. 
 

Implementation 

details 

Evaluation 

metrics 

Model Performance Reference 

Number of 
estimators=1000, 

The area 
under 

RF outperformed linear models for all of the 
feature subsets but for the number of nearby 

(George 
and Dixit, 

 

10‐fold   CV   with 

500 iterations on 

the training set for 

hyperparameter 

Curve 

(AUC) 

airports 2021) 

Train: Validation = 

70:30, Grid search 

and  Gaussian 

process techniques 

were used for 

hyperparameter 

tuning. Estimator 

number=250 

AUC The weave model, Graph Convolutional model, 

Pyramidal Multitask network, and 1‐hidden 

layer Multitask network outperformed RF for 

both CF and C3F6 datasets 

(Cheng and 

Ng, 2019) 

 
Train:CV = 80:20. 

Iterations=100. 

Number of trees = 

1000 

MAE, 

RMSE, 

ME, AUC, 

Accuracy, 

Sensitivity 

and 

Specificity 

The best‐performing classification model was 

the 5ng/g threshold concentration, while the 

1.5ng/g had the worst performance. 

(DeLuca et 

al., 2023) 
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SMOTE and 

ADASYN were 

used to balance 

data. Train: test 

split=80:20. 

Training set was 

further split into 

model training: 

Accuracy, 

Precision, 

Recall, F‐ 

Score, and 

Area 

Under the 

Receiver 

Operating 

Based on ML model baseline performance or 

total PFAS prediction, RF performed the best. 

RF>XGB>CatBoost>LightGBM>GaussianNB>Lo 

gReg>SVM. 

(Dong et al., 

2023) 
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hyperparameter 

tuning  = 80:20. 

Stratified CV was 

used for total PFAS 

prediction.  Grid 

search 

optimization   was 

used to  tune 

hyperparameters 

Train_test 

split=80:20. 5‐fold 

CV for consistency 

and reduction of 

overfit    bias. 

Hyperparameter 

tuning by Bayesian 

optimization 

Characteri 

stic curve 

(AUROC) 

 
 
 
 
 
 
 

MAE, 

RMSE, R2. 

 
 
 
 
 
 
 
 
 
 

 
DNN performed better than RF in accuracy 

(DNN>GCN>GP>RF) 

 
 
 
 
 
 
 
 
 
 

 
(Feinstein 

et al., 2021) 

 
Removal of highly 

collinear 

predictors before 

fitting. Stratified 

10‐fold   CV 

calculated TP, TN, 

FP, and FN using a 

confusion matrix. 

AUROC      AUROC for RF>LogReg for all PFAS modeled and 

the detection of any of the five PFAS. 

Classification RF performed well in identifying 

locations likely to have detectable PFAS 

concentrations in private wells. 

(Hu et al., 

2023) 

Train_test 

split=4:1. Number 

of trees=500. A 5‐ 

fold CV was 

applied to evaluate 

fitness. MAE was 

used   for 

hyperparameter 

tuning of CV. 

Number   of 

iterations=1500. 

R2, MAE, 

RMSE, 

GBR performed better than RF. The predictive 

results for 25 emerging PFAS revealed that most 

of these compounds, such as PFOS alternatives, 

were recalcitrant to reductive defluorination, 

whereas PFECAs had relatively stronger 

defluorination abilities than PFPiA or diPAP. 

(Cao et al., 

2022) 
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Train: test split = 

80:20. 5‐fold CV 

R2, RMSE, 

and 

Prediction 

error 

The RF model performed well with 2D 

autocorrelation descriptors as the most critical 

features 

(Hu et al., 

2023) 
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Training:Validatio 

n: Test=70:20:10. 

Grid  search  + 

stratified 10‐fold 

CV was used to 

tune 

hyperparameters 

and check for 

fitting. 

Estimators=10,100, 

1000. RFE was 

used to overcome 

the curse of 

dimensionality. 

Balanced 

accuracy 

In Case 1, RF outperformed SVC and LR in 67% 

of the testing set BA, SVC performed best for 

both the training set BA (83%) and validation set 

BA (50%). In cases 2 and 3 model performances 

do not vary much differently. 

(Joseph et 

al., 2023) 

 
Train‐test split = 

75%:25%. The 75% 

training set was 

further split into 

test and tune model 

following a 

stratified 10‐fold 

CV method 

ROC‐AUC RF achieved the highest accuracy for PFHpA 

and PFOS (>98%) and the lowest for total PFAS 

(>0.90%). 

(Fernandez 

et al., 2023) 

 
Train‐test 

split=80:20. A 5‐ 

fold CV was 

applied to prevent 

overfitting and 

data wastage. Grid 

search 

hyperparameter 

was used  for 

tuning. 

Train_test 

split=80:20. 80% of 

the training  set 

was used 

to train 

the model 

and the 

remaining

 20% 

was on 

the test 

set. 

MSE, R2 

and MAE 

GBM model 

performed better 

than AdaBoost and 

RF based on error 

and correlation 

indices. The PFOS 

rejection rates 

predicted by the RF 

model can reliably 

predict the rejection 

rate of PFOS during 

the nanofiltration 

process. 
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(Hosseinza 

deh et al., 

2022) 

 
 
 
 
 
 
 
 
 

(Kibbey et 

al., 2021a, 

2021b; 

McMahon 

et al., 

2022) 
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 4 

Hyperparameters 
   

were selected   by    

initial validation    

using a subset of    

the training data.    

Variants made use    

of 1000 individual    

decision trees.    

 
Train_test 

split=80:20. Grid 

search CV  was 

used    for 

hyperparameter 

tuning with a 10‐ 

fold CV on the 

training set. 

AUC, 

Sensitivity, 

Specificity, 

Accuracy, 

Mathew’s 

correlation 

coefficient 

(MCC) 

SVM performed better than RF, LogReg, KNN, 

and AdaBoost; suggesting that it is a suitable ML 

method for NR binding chemicals. 

(Azhagiya 

Singam et 

al., 2020) 

 
Train_test 

split=80:20. 

Optimization of 

hyperparameters 

was by Grid search 

and 5‐fold CV for 

resampling. 

MRE, 

MAE, 

RMSE, R2 

RF models performed best among 15 

combinations 

(Mu et al., 

2024) 
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Use Cases of ML In PFAS 

Source and Occurrence 

Machine learning has been used to predict PFAS source in different media. Enabling the 
algorithm to understand the given data would enable prediction to a high degree, the source of PFAS. 
PCA identified the fire training site as the primary contamination source of PFAS in some wells 
(Sörengård et al., 2022). Source apportionment of PFAS in groundwater was performed by Antell et 
al., (2023) using ML by considering the geochemical signatures in the observations; thereby 
identifying the source of contamination. Kibbey et al., (2020) used data from sampling reports, journal 
publications, organizational datasets, and well data to train a ML model to predict PFAS source. 
Several authors (Breitmeyer et al., 2023; Hu et al., 2023; Stults et al., 2023) trained data from a source 
to predict the PFAS occurrence in a similar media. Han et al., (2023) and Mu et al., (2024) used ML 
algorithms to improve targeted and non‐targeted screening of PFAS. 

Behavior and Pattern 

It has been proven that ML algorithms can be used to predict behavior and identify distinct 
patterns of individual PFAS types. Biologically active PFAS have been found to correlate positively 
with chain length; this has added to the knowledge base for predicting PFAS behavior. Human 
plasma PFAS behavior was investigated by observing the behavior of PFAS in blood protein (Cao et 
al., 2023). Predicting bioactivities in PFAS was done using semi‐supervised learning by identifying 
patterns and clusters thereby predicting the functional group that is crucial to bioactivity (Kwon et 
al., 2023). 

Classification and Grouping 

Cheng and Ng, (2019) classified bioactivity of PFAS using several ML algorithms. It was reported 
that a lot of biologically active PFAS have chain lengths shorter than 12 carbon atoms. Body length 
and species of marine mammals were found to be the most important features in determining the 
coexistence mechanisms of trace elements and PFAS (Liu et al., 2023). 

Removal Efficiency 

ML algorithms have been found to also play important roles in removing of PFAS from the 
environment. Jiang et al., (2023) observed that molecular weight is the most important feature for the 
removal of PFAS. This is agreeable as there is a tendency of partition for relatively heavy molecules 
than their lighter counterparts. PFOS removal by nanofiltration was modeled using ML parameters. 
It was determined that pH, valent cations, amongst others, are important features for a successful 
nanofiltration procedure (Hosseinzadeh et al., 2022). 

Contamination 

Contamination levels and risk assessments of PFAS in various organisms and media have been 
modeled using ML. DeLuca et al., (2023) used geographical data to forecast the contamination level 
of fish tissue. It was reported that nearness to industries, land development, and distance from fire 
training facility were some of the important features to determine the contamination level in the 
media. Models were able to distinguish groundwater wells based on their level of exposure to PFOA 
(Li and Gibson, 2023). 

Model Performance 

RF outperformed other models when employed independently, and can distinguish wells with 
concerningly high quantities of PFAS (AUC of 0.90). The combined model performed better than 
individual feature subsets (George and Dixit, 2021). 
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LGB exhibited the highest performance on the test data with 89.45%. LGB+MLP achieved the 
highest accuracy when blended together. When LGB, XGB, CB, MLP, and SVM were stacked , there 
was a high accuracy (Cao et al., 2023). 

Mean values of the ROC‐AUC show that the 1‐hidden layer multitask network performed best 
with the validation set of the CF dataset, while the Pyramidal multitask network performed best with 
the validation data of the C3F6 dataset. AUC scores for training sets on all models showed larger 
scores, meaning there is an overfitting problem (Cheng and Ng, 2019). 

NNA outperformed other models; GFA performed worst but MLR did not fit in with the criteria 
(Yuan et al., 2023). 

The best‐performing classification model was the 5 ng/g and 1.5ng/g threshold PFAS 
concentration had the best and worst performance based on their mean AUC, accuracy, sensitivity, 
and specificity over 100 Monte Carlo iterations (DeLuca et al., 2023). 

Tuning hyperparameters increased accuracy and AUROC for all models with RF model accuracy 
increasing by 4.58%. RF performed best in Class 3 (>100 observations) and XGboost is the overall best 
model for the classifier chain(Dong et al., 2023, p. 35). 

Feinstein et al., (2021) showed that the deep ensemble had a better accuracy of 0.68, while RF 
regression performed worst with 0.574. There is a 1 in 6 overconfident level when model is validated 
on data from point estimates of PFAS‐like compounds 

All BN models had accuracy >97% when trained with the full datasets. The order of accuracy is 
as follows: PFHxA>PFBA>PFBS>PFHxS. High accuracies were maintained in multiple iterations of 
CV when model accuracy was tested. All 95% CI had narrow validation, meaning that trained BNs 
could provide a good prediction performance with low variation (Li and MacDonald Gibson, 2022). 
The AUROC for RF was higher than the LogReg for all modeled PFAS and their individual detection. 
This ranged from 0.74 for PFOS to 0.86 for PFHpA. AUROC for LogReg ranged from 0.1 

for PFOS to 0.15 for PFOA. Hyperparameter tuning had less impact on the models (Hu et 
al., 2021). 

The RF model performed well with appreciable R2 and RMSE values (Hu et al., 2023). 
Values of R2 show that the best performance was obtained for PFOS since the model captured 

74% of the concentration variance. High accuracy and ROC‐AUC were obtained for PFHpA, PFOS, 
other remaining species and total PFAS values (Fernandez et al., 2023). 

Data preprocessing performed well during model training, with AUC not less than 0.85. All 
models performed well in 5 fold CV and AUC up to 0.89 (Li and Gibson, 2023). 

Low Sorption strength of PFAS, and high hydraulic conductivity explains the postulation that 
PFAS plume migrated over 10km. It was reported that a Fire training site is the most likely PFAS 
contamination source in the aquifer (Sörengård et al., 2022). 

The GBM model demonstrated better performance than both AdaBoost and RF, based on. By 
using error and correlation indexes, GBM outperformed other models. The PFOS rejection rates 
during NF process by RF was close to the actual values, with no overfitting issues. (Hosseinzadeh et 
al., 2022). 

The boosted regression tree had a good performance for the training and holdout data in 
determining the likely PFAS sources. Evaluation matrices such as accuracy, sensitivity, specificity, 
and ROC (McMahon et al., 2022). 

R2 varies between 0.45 and 0.51 for PFAS yield with no development with outlier and PFAS yield 
with development respectively; while their corresponding Normalized RMSE ranges between 0.110 
and 0.104 respectively(Breitmeyer et al., 2023). 

There is an improved performance of the RF model based on accuracy (up to 100% in some 
cases), except for Wolverine soil where the performance was 5.4% due to the non‐detectability of the 
PFAS samples (Kibbey et al., 2021a). 

GPR and fine tree regression models performed better with Carbon and mineral‐based 
adsorbents respectively. Carbon‐based adsorbents had average RMSE, MSE, MAE, and R2 values of 
0.11, 0.015, 0.06, and 0.98 respectively. The average RMSE, MSE, MAE, and R2 for mineral based 
adsorbent using the fine tree model are 0.16, 0.03, 0.12, and 0.94 respectively. When tested with 
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previous studies data, GPR achieved 99% with Carbon‐based adsorbent and the fine tree model 
achieved 94% prediction accuracy (Patel et al., 2022). 

The FNN approach yields the best predictions with an R2 of 0.93 when tested with various 
training/test sets (Raza et al., 2019). 

RF had the best performance with an accuracy of 96.4% while classification by ratio had the least 
performance with 79.6% accuracy. The order of accuracy includes RF>DNN ensemble>KNN>GP 
classifier>Support Vector (RBF)>Classification by ratio (Kibbey et al., 2021b). 

SVM outperformed other models, and is a suitable ML method for binding chemicals due to its 
consistency. AUC, specificity, sensitivity, and accuracy value for this model is not less than 89% 
(Azhagiya Singam et al., 2020). 

Accuracy values for KNN, SVM, and decision tree classifiers were 88.2%, 87.4%, and 91.4%, 
respectively. With only four features, the overall model accuracy was 95%, indicating that the increase 
in accuracy is most likely due to model overfitting (Stults et al., 2023). 

Accuracy and F1 quotients for NN ensemble and ratio classification are 96.3% and 97%; and 
91.7% and 92.9%. For the Portland‐Clarendon subset, ratio classification (38.3% accuracy) did not 
perform well, whereas the neural network ensemble (83.3% accuracy) and Extra Trees (75.0% 
accuracy) had a better performance (Kibbey et al., 2020). 

The range of MRE, MAE, RMSE and R3 for all algorithms ranged from 1.78 to 2.61, 4.48 to 6.34, 
6.56 to 9.38, and 0.92 to 0.96 respectively. The RF algorithm had the best performance in all the models. 
The testing setʹs MRE, MAE, RMSE, and R2 values were 1.75, 4.56, 6.30, and 0.97, respectively, after 
updating the model with the optimal features (Mu et al., 2024). 

Conclusions 

Machine learning and Artificial intelligence have been used to better understand the behavior 
and transportation of water contaminants (Banerjee et al., 2022; Hu et al., 2022; Jiang et al., 2021; Ragi 
et al., 2019). They have been very helpful in assessing water quality based on the predictions and 
performances of the models. This review summarizes the use of machine learning algorithms to 
understand PFAS. Due to the complex nature of PFAS and the difficulty in heterogeneity of their 
structures, it is important to have a proper understanding of the various possibilities that exist in the 
understanding of this concept. Part of the limitations in the proper understanding of PFAS using ML 
is the lack of sufficient data. Data sources that have been used for modeling PFAS with ML range 
from government agencies to a combination of several research data. Supervised, semi‐supervised, 
and unsupervised learning have been employed to model PFAS; while some authors used singular 
algorithms, others have used ensemble models and a combination of ML algorithms to determine the 
model with the best performance. Various metrics have been used to evaluate the performance of the 
ML algorithms. It is observed from this literature that ML can make accurate predictions on the 
occurrence, behavior, partitioning, and removal techniques of PFAS in all types of water. 

It is recommended that the impact of water quality parameters on PFAS should be studied using 
various ML algorithms to give a clearer understanding of the relationship between chemical elements 
in water and PFAS and to have a better understanding of the adsorption potential of the PFAS. More 
databases should be made available to improve the understanding of PFAS using machine learning. 
From Figure (2) above, ML algorithms have not been extensively used for anomaly detection in data. 
Also, there is need to use ML algorithms to understand better the behavior of PFAS in soils, 
sediments, humans, aquatic organisms, terrestrial organisms, plants uptake and even in the 
atmosphere. The major focus has been on water, there is need to consider these medium as well. 
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