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Abstract: Per- and polyfluoroalkyl substances (PFAS) are arguably the most common water
contaminants in the world today. While several research experiments have been done to understand
and remove PFAS from the environment, there is still a lot of unknown. Little has been known about
the use of Machine learning (ML) to understand PFAS. This work hence reviews some leading ML
approaches and applications in PFAS studies in the distribution, transport, removal, and occurrence
predictions of PFAS. Several evaluation matrices were examined and used to perform this function.
There are still a lot of areas whereby ML can be used to improve our PFAS knowledge base, some
of these were briefly stated in this review.

Keywords: PFAS; machine learning; ground water; environment; sustainability

1. Introduction

Because of their ubiquity in the global environment, persistence, and toxicity, PFAS are a family
of water-soluble anthropogenic pollutants of growing worldwide concern with at least one
perfluoroalkyl moiety (CnF2n+1-) (Adu et al., 2023; George and Dixit, 2021). Since the mid-twentieth
century, PFAS have been widely utilized in a variety of goods, including textile coatings, surfactants,
insecticides, food contact materials, and fire-fighting foams (George and Dixit, 2021; Wang et al,,
2021). PFAS, in contrast to other common environmental toxins, has high-energy C-F bonds that have
stable physicochemical features (such as low surface tension) and are difficult to hydrolyze,
photolyze, and biodegrade (Cao et al., 2023).

Because of the widespread use and disposal of PEASs, as well as the bio-accumulative, persistent,
mobile, and poisonous properties of many members of this family of compounds, contamination
from PFASs is a pressing environmental hazard (Charbonnet et al., 2021). Continuous PFAS emission
causes amounts in the environment to accumulate, increasing the likelihood of detrimental impacts
(Sosnowska et al., 2023). PFAS may harm thyroid function, sex hormone levels (e.g., low testosterone),
high estradiol levels, pregnancy-induced hypertension, and birth weight concerns (Ordonez et al.,
2022).

ML has been utilized in the water distribution and quality areas in a variety of methods for
improvement, pattern discovery, demand forecast, and leak detection (Ayati et al., 2022; Garcia et al.,
2023; Panigrahi et al., 2023; Xu et al., 2022; Almousa et al., 2023). Large volumes of data from databases
such as the United States Geologic Survey (USGS) and National Water Information System (NWIS);
experimental data, and other reputable sources have been analyzed for this purpose (Hu et al., 2022).
Jiang et al., (2021) used an artificial neural network (ANN) to predict the performance of different
metal oxide photocatalysts on a wide range of water contaminants. Banerjee et al., (2022) used Linear
Regression (LR), Support Vector Machine (SVM), Decision trees regression, and Lasso regression
models to predict water contamination based on the coordinates of the area. Ragi et al., (2019) used
the Levenberg-Marquardt algorithm, a mix of gradient descent and Gauss-Newton algorithm to
predict water quality parameters using data from the Pollution Control board.
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Several attempts have been made to model PFAS transport in water. Zeng et al., (2021) used the
one-dimensional (1D) Richards equation to investigate the primary factors that control the long-term
retention of PFAS in the vadose zone. Brusseau et al., (2021) used both a one-dimensional model that
considers transient, variably saturated flow and advective and dispersive transport; and non-linear
rate-limited solid-phase sorption, and non-linear rate-limited air-water interfacial adsorption to
investigate the influence of surfactant-induced flow on PFAS transport. (Guo et al., 2022) developed
a simplified model to quantify PFAS leaching in the vadose zone and mass discharge to groundwater.
The influence of the hydrophilic head group and other molecular components on PFAS interfacial
partitioning was predicted by Le et al., (2021).

A critical review on the modeling of PFAS in the soil-water environment was published by Sima,
et al, (2021). While this was a very detailed and substantial amount of work, some important areas of
modeling were not covered. For example, the application of machine learning to understand PFAS
distribution in both surface water and groundwater was not covered. Also, the focus of the review is
the use of mathematical models to understand PFAS. Our review was motivated by the need to
provide a complete overview of the use of machine learning to better understand PFAS, both from a
source and methodological standpoint. This section also contains overview figures and tables for all
data sources, which readers can use to rapidly analyze the field.

This review includes over 100 recent studies on a wide range of machine learning applications
for understanding PFAS in water. To find relevant contributions, Google Scholar searched for works
containing the terms ("PFAS" "Water" and "Machine learning"). Figure 2 is a chart that shows the
sources of journals used in this review. Elsevier and Environmental Science and Technology journals
are the most common journals that have published articles on PFAS studies using machine learning.
There is an article from Springer and two pre-prints are also found to contain useful information on
this subject. We reviewed the references in all of the publications we chose and spoke with experts in
the field of data science and environmental contaminants.
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Figure 2. Analysis of Journals used in this review.

Overview of Machine Learning Models

The purpose of this section is to provide a formal introduction and definition of the machine
learning ideas, methodologies, and architectures that we discovered in the studies on Poly- and
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Perfluoroalkyl compounds in water that we reviewed for this work. Figure 3 below shows the
machine learning process flowchart. This was designed to let users know which algorithm to use for

PFAS studies.
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Figure 3. Machine learning processes flowchart (adopted from sqlservercentral.com).

Machine Learning Algorithms

Supervised learning is a machine learning method distinguished by the use of labeled datasets.
These datasets are intended to train or "supervise" algorithms to accurately classify data or forecast
outcomes using labeled inputs and outputs. They are divided further into classification and
regression. An algorithm is used in classification problems to assign test data to specific categories
accurately. Classification methods include linear classifiers, support vector machines, decision trees,
and random forests. Regression employs an algorithm to determine the relationship between
dependent and independent variables. Regression models are useful for predicting numerical values
from various data sources. Linear regression, logistic regression, and polynomial regression are some
popular regression algorithms.

D={(X1,y1),....,(Xn,yn)} C Rd x C (1)
Where n is the size of the dataset, R4 is the d-dimensional feature space, Xi is the feature vector

of the ith example, yiis the label or output of the ith example, and C is the space of all possible labels.
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Unsupervised learning analyzes and clusters unlabeled data sets using machine learning
methods. These algorithms find hidden patterns in data without the need for human interaction. They
are mostly used for clustering, association, and dimensionality reduction. Unlabeled data is clustered
based on similarities and differences. For example, K-means clustering algorithms divide related data
points into groups, where the K value defines the size and granularity of the grouping. Association
employs several rules to discover links between variables in a given dataset. When the number of
features in a given dataset is too large, dimensionality reduction is utilized. It decreases the quantity
of data inputs to a tolerable number while maintaining data integrity. This approach is frequently
utilized in the data pre-processing step.

Linear Regression (LR)

Linear regression is a type of supervised machine learning algorithm that computes the linear
relationship between a dependent variable and one or more independent features and it is typically
leveraged to make predictions about future outcomes. Consider a dataset of real-values vectors:

X ={x1,x2,..... Xn} where x € Rm

Each input vector is associated with a real value yi
Y={y,yz2,.... , yn} where yn € R
A linear regression model assumes that it’s possible to approximate the output values through
a regression process based on the rule:

P =0+ )M, Xixi where A = {Xo,X1,......, Xm} (2)

Naive Bayes

The Bayes Theorem's premise of class conditional independence is used in the Naive Bayes
classification technique. This means that the existence of one feature has no effect on the presence of
another in the probability of a particular event, and each predictor has the same effect on that
outcome. Multinomial Nave Bayes, Bernoulli Nave Bayes, and Gaussian Nave Bayes are the three
types of Nave Bayes classifiers. This method is most commonly employed in text classification, spam
detection, and recommendation systems.

P(x|c)P(c)

P(c|x) = P

(3)

Where P(x|c) is the probability of likelihood of an event happening, P(c|x) is the posterior
probability, P(c) is the class prior probability, P(x) is the predictor prior probability.

Logistic Regression (LogReg)

This is a supervised machine learning algorithm used for binary classification problems. It is
used when the dependent variable is binary. It is used to explain the relationship between one
dependent binary variable and one or more independent variables. Logistic regression uses a logistic
function to model a binary output variable.

1
Logistic function = (4)
1+ eX
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K-Nearest Neighbor (KNN)

The KNN algorithm, commonly known as the KNN classification algorithm, is a non-parametric
algorithm that classifies data points based on their closeness and association to other accessible data.
This technique believes that data points with similar characteristics can be found nearby. As a result,
it attempts to determine the distance between data points, typically using Euclidean distance, and
then assigns a category based on the most frequently occurring category or average.

Given a dataset containing labeled training measurements (x,y), we want to find a function h:X
— Y that can positively predict the identical output y in the presence of an unknown observation x.

The input x is assigned the class with the largest probability.

1
Ply=jlX=x) = kZ_I(y(i) =7 (5)

€L

Support Vector Machine (SVM)

This is an example of supervised learning that is used for both data classification and regression.
It is often used for classification problems, producing a hyperplane with the greatest distance
between two classes of data points. This hyperplane is known as the decision boundary, and it
separates the data point classes (for example, oranges vs. apples) on either side of the plane. Consider
the function of a line y = ax + b. We rename x with X1 and y with x2
ax1 — x2 + b= 0.1If we define x = (x1,x2) and w = (a,—1), we get:
w.x+b=0
This equation is derived from two-dimensional vectors. But in fact, it also works for any number
of dimensions. This is the equation of the hyperplane.
The hypothesis function is then defined as
+1if wx+bz20
h(xi) = {—1 if w.x+b<0 (6)

Decision Trees (DT) and Random Forest (RF)

A decision tree is an efficient approach for describing how to traverse a dataset while also
establishing a tree-like path to the predicted outcomes. A root node, which is the most essential
dividing property, can establish the structure of a decision tree. Internal nodes are attribute testing.
For example, if an internal node has a control statement (PFAS level 25ppt), then the data points
satisfying this condition are on one side and the remainder on the other. The leaf nodes indicate the
dataset's accessible classes.

Random Forest is used for both classification and regression. The term "forest" refers to a group
of uncorrelated decision trees that are subsequently combined to reduce variance and produce more
accurate data predictions. For a randor;‘\l Bee forest| Th,

Regression: f~ () B T (x)
- s (7)
x g b=l b

r
Classification: Let €, (x) be the class prediction of the bth random

B
— forest tree. Then CCE(x) = majority vote {Cb(X)} "
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Graph Convolutional Networks (GCN)

This model learns a function of features on a graph G=(V, E) with xi as input for every node I; summarized
in a NxD feature matrix X(N: number of nodes, D: number of input features) and a representative description
of the graph structure A and produces a node-level outputZ( an NxF feature matrix, where F is the number of
output features per node). Every neural networklayer can then be written as a non-linear function

H®+D = f(HO, A) (8)

With HO=X and H®=Z and L being the number of layers.

Gradient Boosting (GB)

Gradient Boosting is a powerful boosting approach that combines numerous weak learners intostrong
learners by using gradient descent to train each new model to minimize the loss function of the preceding
model, such as mean squared error or cross-entropy. In each iteration, the approach computes the gradient of
the loss function concerning the predictions of the current ensemble and then trains a new weak model to
minimize this gradient. The new model's predictions are then added to the ensemble, and the procedure is
repeated until a stopping threshold is fulfilled.

Nonnegative Matrix Factorization + k-Means Clustering (NMFk)

NMFk is a revolutionary unsupervised machine learning methodology for automatically identifying the
optimal number of features (signals/signatures) in data. It is an estimate. It calculates the number of features k
using k-means clusteringand regularization constraints.

Clustering

Clustering is a data mining technique that organizes unlabeled data based on similarities or differences.
Clustering techniques are used to sort raw, unclassified data objects into groups represented by structures or
patterns in the data. Categories of clustering algorithms are as follows: Exclusive, Overlapping, Hierarchical,
and Probabilistic clustering.

Exclusive clustering is a type of grouping in which a data point can only reside in one cluster. K-means
clustering is a common example of an exclusive clustering approach in which data points are assigned to one
of the K groups depending on their distance from the centroid of each group. Thedata points closest to a specific
centroid will be grouped. A higher K value indicates smaller groupings with more granularity, whereas a
lower K value indicates bigger groupings with less granularity.

Overlapping clusters are distinct from exclusive clustering in that they allow data points to belong to
many clusters with different degrees of membership. An example is "soft" or fuzzy k-means clustering.

Hierarchical clustering, also known as hierarchical cluster analysis (HCA), is an unsupervised clustering
algorithm in which data points are initially isolated as separate groupings and then merged iteratively based on
similarity until one cluster is achieved (agglomerative), or a single data cluster isdivided based on data point
differences (divisive).

A probabilistic model is an unsupervised strategy that aids in the resolution of density estimation or
"soft" clustering problems. Data points are clustered in probabilistic clustering based on their likelihood of
belonging to a specific distribution. One of the most often used probabilistic clustering algorithms is the
Gaussian Mixture Model (GMM).

Principal Component Analysis (PCA)

Principal component analysis (PCA) is a dimensionality reduction algorithm that uses feature extraction
to eliminate redundancies and compress datasets. A linear transformation is used in this method to generate
a new data representation, generating a set of "principal components.” The first principal component is the
direction that maximizes the dataset's variance. While the second main component finds the most variance in
the data, it is fully uncorrelated to the first, producing a direction that is perpendicular, or orthogonal, to the
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first. This process is repeated for each dimension, with the next principal component being the direction
orthogonal to the prior components with the largest variance.

Semi-Supervised Learning

Semi-supervised learning provides a comfortable middle ground between supervised and unsupervised
learning. It employs a smaller labeled data set to aid classification and feature extraction from a larger,
unlabeled data set during training. Semi-supervised learning can address the issue of insufficient labeled data
for a supervised learning algorithm. It also helps if labeling enough data is expensive.

Neural Networks

This is also known as artificial neural networks (ANN). They are comprised of node layers, containing
an input layer, one or more hidden layers, and an output layer. Each node, or artificial neuron, connects to
another and has an associated weight and threshold. If the output of any individual node is above the specified
threshold value, that node is activated, sending data to the next layer of the network. Otherwise, no data is
passed along to the next layer of the network. Neural networks rely on training data to learn and improve
their accuracy over time. It is the foundation onwhich deep learning is built.

Deep Neural Networks (DNN)

It is identical to stacked neural networks, which are networks made up of several layers, usuallytwo or
more, with input, output, and at least one hidden layer in between. A DNN is made up of layers with
mathematical relationships, such as nodes and edges. Backpropagation is used during data training to update
these associations. The revised relationships are then employed as equationsto predict the output variables
depending on the input variables after training.

Application proportion of
ML in PFAS

Common ML algorithm
used in this review

3%

Graph convolution
Neural Network
Bayesian Network
K- Nearest Neighbor

Deep Neural Network

LogReg
Decision Tree

Gradient Boost
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m Classification Removal
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Figure 4. The proportion of (a) machine learning algorithms used and (b) their application areas in PFAS-related
research.

Machine Learning Uses in PFAS
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Data Source

The various works being considered for this review have several sources of data. It is essential to have
access to data from reliable sources before engaging in ML. The origin of the data, as well asthe integrity of
the data, are factors that determine the acceptability of ML-related experiments. It is important to clean data
for consistency and appropriate decisions have to be made on the necessary cleaning tools to employ.

Several data sources have been identified in this review. They include the Groundwater Ambient
Monitoring Assessment Program (GAMA) database. The GAMA database is California’s comprehensive
groundwater quality monitoring program created by the state Water Resources Control Board in 2000. George
and Dixit, (2021) used GAMA data to perform a predictive model on prioritizing groundwater testing for all
wells in California. Dong et al., (2023) used 12 groundwater data to predict 35 target PFAS in California.

The Organization for Economic Co-operation and Development (OECD) database is another source of
data that has been used by researchers to better understand PFAS. Cheng, W., (2021) used OECD data to
develop In-Silico tools to predict PFAS substances in biological systems. Su et al., (2023) performed PFAS
screening by clustering and classification using OECD data. Kwon et al., (2023) predicted bioactivities of
PFAS. Other data sources include the United states environmental protection agency’s water quality portal
(USEPA) (Azhagiya Singam et al., 2020; DeLuca et al., 2023;Dong et al., 2023), PubChem Bioassay Database
(Kwon et al., 2023), Pennsylvania Water quality network (Breitmeyer et al., 2023), from previously published
studies on PFAS (Karbassiyazdi et al., 2022; Kibbey et al., 2020; Patel et al., 2022), lake and river data (Antell
et al.,, 2023; Stults et al., 2023), Minnesota department of health (MDH) Government agency data (Breitmeyer
etal., 2023; Fernandezet al., 2023; Li and Gibson, 2023) and experimental data (Cao et al., 2022; Sérengard et al.,
2022; Wanget al., 2022). Some authors combined several public data for their machine learning predictions.
Dong et al., (2023, p. 35) used data from several public data (GAMA, USEPA, Environmental Working Group
(EWG), National Co-operative Soil Survey (NCSS), National Oceanic and Atmospheric Administration
(NOAA), Sustainable Groundwater Management Act (SGMA) and National Aeronautics and Space
Administration (NASA)). Feinstein et al., (2021) combined data from USEPA,NIH, and National Toxicology
program datasets.

Table 1. Data sources of works of literature used in this review.

Data Source Type of water Location References
GAMA Groundwater California (Dong et al, 2023;
George and Dixit, 2021)
Environment working (Dong et al., 2023)
group
National Cooperative (Dong et al., 2023)
Soil Survey (NCSS)
National Oceanic and (Dong et al., 2023)
Atmospheric
Administration
National Aeronautics (Dong et al., 2023)
and Space
Administration
(NASA)

OECD All Paris (Kwon et al., 2023; Su et
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United States

Pennsylvania

Michigan

China

Minnesota

al., 2023)

(Azhagiya Singam etal.,
2020; DeLuca et al,
2023; Dong et al., 2023)

(Cheng and Ng, 2019;
Kwon et al., 2023)

(Breitmeyer et al., 2023)

(Fernandez et al., 2023)

(Yuan et al., 2023)
(Li and Gibson, 2023)
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Columbia River
Basin

Norway

China and Africa

Eastern United states

Jiangxi, China
New Hampshire
Hong kong

Chaobai river
Pulp and paper
power  generation
industries,  United

States

Sweden

(DeLuca et al., 2023)

(Stults et al., 2023)

(Jiang et al., 2023)

(Cao et 2022;
Sorengard et al., 2022;
Wang et al., 2022)
(McMahon et al., 2022)

al,,

(Wang et al., 2022)
(Hu et al., 2021)
(Liu et al., 2023)

(Hu et al., 2023)
(Joseph et al., 2023)

(Sorengard et al., 2022)

(Hosseinzadeh et al.,
2022)

(Han et al., 2023)
(Kibbey et al., 2021a,
2021b, 2020)

(Patel et al., 2022)
(Karbassiyazdi et al.,
2022; Kibbey et al.,
2020; Patel et al., 2022)
(Cao et al., 2022)
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Implementation Details of the Methods

Data splitting is done in three main ways: training, validation, and test sets. The choice of which sets to
use depends on the model, the size of the data, and in some cases, the choice of the user. Thisconcept shuffles
the dataset and then splits it. While the model is learned on the training set, validation, and test sets determine
the performance of the model. The scikit-learn package from Python programming was widely used by
various literatures considered in this review. The train- test split ratio is the percentage of the data that would
be used to train the model to that which would be used to test it. Split such as 80:20 was used by several authors
(Azhagiya Singam et al., 2020; Donget al., 2023; Hosseinzadeh et al., 2022; McMahon et al., 2022). Hu et al,,
(2021) divided the domestic well PFAS data in the ratio 80:20; this is consistent with the ratio adopted by
DeLuca et al., (2023) whoused a 100-iteration Monte Carlo holdout scheme to split PFAS data from Columbia
River Basin fishtissue. Other split ratios used by authors include 70:30 (Cheng and Ng, 2019) and 75:25
(Fernandez et al., 2023).

Quantitative Structure-Activity Relationship (QSAR) models were developed by Yuan et al., (2023) to
correlate chemical molecules of the air-water interface of PFAS using 12 constitutional descriptors and 11
quantum chemical descriptors. The model was developed by correlation analysis-linear correlations between
the water-air interface energy values and every descriptor (n=23) were investigated by correlation analysis,
genetic function approximation (GFA), multiple linear regression(MLR), neural network (NN), and model
validation. Cao et al., (2022) used the training set to developQSAR models, while the test set was used to
evaluate the generalization prediction ability of the model. The application domain of the best ML model was
evaluated using the Williams plot and Euclidean distance.

Cross-validation (CV) is an ML evaluating technique that trains several models on the subset or multiple
folds of the data and evaluates the performance of the remaining data. This process is repeated several times
(iteration number), changing the subset each time. Yuan et al., (2023) used a 5-fold CV, and George and Dixit,
(2021) used 10 subsets (10-fold CV) to group groundwater wells toprioritize PFAS testing; the same number
was used by Dong et al., (2023) for total PFAS prediction. In addition to this, Cao et al., (2023) performed 500
iterations on the training set for hyperparametertuning. Hyperparameter tuning is the process of determining
values to adjust models for optimal results (Mu et al., 2024). Processes include Grid search (Dong et al., 2023;
Hosseinzadeh et al.,, 2022; Joseph et al., 2023), a subset of the training set (Kibbey et al., 2021b, 2020) and
bayesian optimization(Karbassiyazdi et al., 2022).

Model Evaluation Metrics

Evaluation metrics assess the effectiveness and performance of a model. This is an important feedback
mechanism for an algorithm or in comparing different models. It is essential to evaluate a model's predictive
power, adaptability, and overall quality. Evaluation metrics provide objective standards for assessing these
qualities. The evaluation metrics used depend on the problem domain,data type, and desired outcome. The
following evaluation metrics are used in this review:

Area under the receiver operating characteristics curve (AUC-ROC). This is an aggregatemeasure of
performance across all classification criteria. This could be interpreted as the likelihood that the model will
evaluate a random positive case higher than its random negative. The Receiver Operating Characteristic
(ROC) curve is obtained by plotting the true positive rate (sensitivity) against the false-positive rate. George
and Dixit, (2021) used AUROC to evaluate Linear regression and Random forest models for PFAS
groundwater testing. Other models that have been evaluated using AUC include the Weave model, Graph
convolutional model, Pyramidal multitask network, 1-hidden layer multitask (Cheng and Ng, 2019), logistic
regression (Hu et al., 2023), Spatial regressionand Boosted regression tree (Fernandez et al., 2023).

The F1 score is the harmonic mean of precision and recall, with 1 being the best value and Obeing the
worst. It is determined by dividing the total number of values by the sum of theirreciprocals. Itincreases
the effect of the lesser number on the entire calculation, resulting in a balanced measurement. The F1 score
considers both precision-recall while avoiding the overestimation that the arithmetic mean may generate.
Dong et al., (2023) used the F1 score to evaluate the performanceof several classification and regression models
for target PFAS prediction in California groundwater.
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The Root mean square error (RMSE) is a popular evaluation metric for regression events. It is the square
root of the average squared distance (the difference between actual and predicted values). It assumes that errors
are impartial and follow a normal distribution. It is utilized when there is a risk of big errors. This metric was
applied to the RF model which was used to predict PFAS contaminationin fish tissue (DeLuca et al., 2023).
Several authors used this metric for the performance evaluation of several models (Cao et al., 2022; Feinstein
et al., 2021; Hu et al., 2023).

MAE measures the average errors in a set of predictions, regardless of their direction. The MAE score is
calculated by taking the average of the absolute error numbers, hence it is always positive. Hosseinzadeh et
al., (2022) used MAE to evaluate the performances of several ML models to model and analyze PFOS removal
from contaminated water by nanofiltration. Mu et al., (2024) screened PFAS data using several ML techniques.

R-squared is a statistical measure that indicates how much of a dependent variable's variation is explained
by an independent variable or variables in a regression model. The R2 value determines how accurate our
model is in terms of distance or residuals. Cao et al., (2023) investigated the bindingfraction of PFAS in human
plasma using several ML models; these were evaluated by the R

Several other evaluation metrics have been used by authors to better understand the performances of ML
algorithms in PFAS studies. Some of these include precision, recall, accuracy, mean, sensitivity, and

Specificity

specificity.

Table 2. Implementation details and performances of ML models used in this literature.
Implementation Evaluation Model Performance Reference
details metrics
Number of The area RF outperformed linear models for all of the (George
estimators=1000, under feature subsets but for the number of nearby and Dixit,
10-fold CV with Curve airports 2021)

500 iterations on (AUC)
the training set for
hyperparameter
Train: Validation = AUC The weave model, Graph Convolutional model, (Cheng and
70:30, Grid search Pyramidal Multitask network, and 1-hidden Ng,2019)
and Gaussian layer Multitask network outperformed RF for
process techniques both CF and CsFs datasets
were used for
hyperparameter
tuning. Estimator
number=250
Train:CV = 80:20. MAE, The best-performing classification model was (DeLuca et
Iterations=100. RMSE, the 5ng/g threshold concentration, while the al., 2023)
Number of trees = ME, AUC, 1.5ng/g had the worst performance.
1000 Accuracy,
Sensitivity
and
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SMOTE and Accuracy, Based on ML model baseline performance or (Dongetal.,
ADASYN  were Precision, total PFAS prediction, RF performed the best. 2023)

used to balance Recall, F- RF>XGB>CatBoost>LightGBM>GaussianNB>Lo

data. Train: test Score, and gReg>SVM.

split=80:20. Area

Training set was Under the

further split into Receiver

model training: Operating
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hyperparameter
tuning = 80:20.
Stratified CV was
used for total PFAS
prediction.  Grid
search

optimization was

used to  tune
hyperparameters
Train_test

split=80:20. 5-fold
CV for consistency
and reduction of
overfit bias.
Hyperparameter
tuning by Bayesian

optimization

Removal of highly
collinear

predictors  before
fitting.  Stratified
10-fold Ccv
calculated TP, TN,
FP, and FN using a

confusion matrix.

Train_test

split=4:1. Number
of trees=500. A 5-
fold CV
applied to evaluate

fitness. MAE was

was

used for
hyperparameter

tuning of CV.
Number of

iterations=1500.

Characteri
stic curve
(AUROCQ)

MAE,
RMSE, R2.
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DNN performed better than RF in accuracy
(DNN>GCN>GP>RF)

AUROC  AUROC for RF>LogReg for all PFAS modeled and

R>, MAE,
RMSE,

the detection of any of the five PFAS.
Classification RF performed well in identifying
locations likely to have detectable PFAS

concentrations in private wells.

GBR performed better than RF. The predictive
results for 25 emerging PFAS revealed that most
of these compounds, such as PFOS alternatives,
were recalcitrant to reductive defluorination,
PFECAs had relatively
defluorination abilities than PFPiA or diPAP.

whereas stronger

(Feinstein

etal., 2021)

(Hu et al.,
2023)

(Cao et al.,
2022)
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Train: test split = R?, RMSE, The RF model performed well with 2D (Hu et al,
80:20. 5-fold CV and autocorrelation descriptors as the most critical 2023)
Prediction features

error
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Training:Validatio
n: Test=70:20:10.
Grid
stratified

search  +
10-fold

CV was used to

tune
hyperparameters
and check for
fitting.
Estimators=10,100,
1000. RFE was

used to overcome
the curse of

dimensionality.

Train-test split =
75%:25%. The 75%
training set was
further split into

test and tunemodel

following a
stratified  10-fold
CV method
Train-test

split=80:20. A 5-
fold CV
applied to prevent

was
overfitting and
data wastage. Grid
search
hyperparameter
was used for
tuning.

Train_test
split=80:20. 80% of
the

training set

Balanced

accuracy

ROC-AUC

was used
to train
the model
and the
remaining
20%
was on
the test

set.
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In Case 1, RF outperformed SVC and LR in 67%
of the testing set BA, SVC performed best for
both the training set BA (83%) and validation set
BA (50%). In cases 2 and 3 model performances

do not vary much differently.

RF achieved the highest accuracy for PFHpA
and PFOS (>98%) and the lowest for total PFAS
(>0.90%).

MSE, R2
and MAE

(Joseph et
al., 2023)

(Fernandez

etal., 2023)

GBM model
performed better
than AdaBoost and

RF based on error

and correlation
indices. The PFOS
rejection rates

predicted by the RF
model can reliably
predict the rejection
rate of PFOS during
the

process.

nanofiltration
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(Hosseinza
deh et al,,
2022)

(Kibbey et
al., 2021a,
2021b;
McMahon
et al,,
2022)
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Hyperparameters
were selected by
initial ~ validation
using a subset of
the training data.
Variants made use

of 1000 individual

decision trees.
Train_test
split=80:20.  Grid
search CV was
used for
hyperparameter

tuning with a 10-
fold CV on the

training set.

Train_test
split=80:20.
Optimization  of
hyperparameters
was by Grid search
and 5-fold CV for

resampling.

AUC, SVM performed better than RF, LogReg, KNN, (Azhagiya
Sensitivity, and AdaBoost; suggesting thatitisasuitable ML Singam et
Specificity, method for NR binding chemicals. al., 2020)
Accuracy,

Mathew’s

correlation

coefficient

(MCC)

MRE, RF models performed best among 15 (Mu et al,
MAE, combinations 2024)
RMSE, R?
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Use Cases of ML In PFAS

Source and Occurrence

Machine learning has been used to predict PFAS source in different media. Enabling the
algorithm to understand the given data would enable prediction to a high degree, the source of PFAS.
PCA identified the fire training site as the primary contamination source of PFAS in some wells
(Sorengard et al., 2022). Source apportionment of PFAS in groundwater was performed by Antell et
al., (2023) using ML by considering the geochemical signatures in the observations; thereby
identifying the source of contamination. Kibbey et al., (2020) used data from sampling reports, journal
publications, organizational datasets, and well data to train a ML model to predict PFAS source.
Several authors (Breitmeyer et al., 2023; Hu et al., 2023; Stults et al., 2023) trained data from a source
to predict the PFAS occurrence in a similar media. Han et al., (2023) and Mu et al., (2024) used ML
algorithms to improve targeted and non-targeted screening of PFAS.

Behavior and Pattern

It has been proven that ML algorithms can be used to predict behavior and identify distinct
patterns of individual PFAS types. Biologically active PFAS have been found to correlate positively
with chain length; this has added to the knowledge base for predicting PFAS behavior. Human
plasma PFAS behavior was investigated by observing the behavior of PFAS in blood protein (Cao et
al., 2023). Predicting bioactivities in PFAS was done using semi-supervised learning by identifying
patterns and clusters thereby predicting the functional group that is crucial to bioactivity (Kwon et
al., 2023).

Classification and Grouping

Cheng and Ng, (2019) classified bioactivity of PFAS using several ML algorithms. It was reported
that a lot of biologically active PFAS have chain lengths shorter than 12 carbon atoms. Body length
and species of marine mammals were found to be the most important features in determining the
coexistence mechanisms of trace elements and PFAS (Liu et al., 2023).

Removal Efficiency

ML algorithms have been found to also play important roles in removing of PFAS from the
environment. Jiang et al., (2023) observed that molecular weight is the most important feature for the
removal of PFAS. This is agreeable as there is a tendency of partition for relatively heavy molecules
than their lighter counterparts. PFOS removal by nanofiltration was modeled using ML parameters.
It was determined that pH, valent cations, amongst others, are important features for a successful
nanofiltration procedure (Hosseinzadeh et al., 2022).

Contamination

Contamination levels and risk assessments of PFAS in various organisms and media have been
modeled using ML. DeLuca et al., (2023) used geographical data to forecast the contamination level
of fish tissue. It was reported that nearness to industries, land development, and distance from fire
training facility were some of the important features to determine the contamination level in the
media. Models were able to distinguish groundwater wells based on their level of exposure to PFOA
(Li and Gibson, 2023).

Model Performance

RF outperformed other models when employed independently, and can distinguish wells with
concerningly high quantities of PFAS (AUC of 0.90). The combined model performed better than
individual feature subsets (George and Dixit, 2021).
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LGB exhibited the highest performance on the test data with 89.45%. LGB+MLP achieved the
highest accuracy when blended together. When LGB, XGB, CB, MLP, and SVM were stacked , there
was a high accuracy (Cao et al., 2023).

Mean values of the ROC-AUC show that the 1-hidden layer multitask network performed best
with the validation set of the CF dataset, while the Pyramidal multitask network performed best with
the validation data of the CsFs dataset. AUC scores for training sets on all models showed larger
scores, meaning there is an overfitting problem (Cheng and Ng, 2019).

NNA outperformed other models; GFA performed worst but MLR did not fit in with the criteria
(Yuan et al., 2023).

The best-performing classification model was the 5 ng/g and 1.5ng/g threshold PFAS
concentration had the best and worst performance based on their mean AUC, accuracy, sensitivity,
and specificity over 100 Monte Carlo iterations (DeLuca et al., 2023).

Tuning hyperparameters increased accuracy and AUROC for all models with RF model accuracy
increasing by 4.58%. RF performed best in Class 3 (>100 observations) and XGboost is the overall best
model for the classifier chain(Dong et al., 2023, p. 35).

Feinstein et al., (2021) showed that the deep ensemble had a better accuracy of 0.68, while RF
regression performed worst with 0.574. There is a 1 in 6 overconfident level when model is validated
on data from point estimates of PEAS-like compounds

All BN models had accuracy >97% when trained with the full datasets. The order of accuracy is
as follows: PFHxA>PFBA>PFBS>PFHXS. High accuracies were maintained in multiple iterations of
CV when model accuracy was tested. All 95% CI had narrow validation, meaning that trained BNs
could provide a good prediction performance with low variation (Li and MacDonald Gibson, 2022).
The AUROC for RF was higher than the LogReg for all modeled PFAS and their individual detection.
This ranged from 0.74 for PFOS to 0.86 for PFHpA. AUROC for LogReg ranged from 0.1

for PFOS to 0.15 for PFOA. Hyperparameter tuning had less impact on the models (Hu et
al., 2021).

The RF model performed well with appreciable R? and RMSE values (Hu et al., 2023).

Values of R2show that the best performance was obtained for PFOS since the model captured
74% of the concentration variance. High accuracy and ROC-AUC were obtained for PFHpA, PFOS,
other remaining species and total PFAS values (Fernandez et al., 2023).

Data preprocessing performed well during model training, with AUC not less than 0.85. All
models performed well in 5 fold CV and AUC up to 0.89 (Li and Gibson, 2023).

Low Sorption strength of PFAS, and high hydraulic conductivity explains the postulation that
PFAS plume migrated over 10km. It was reported that a Fire training site is the most likely PFAS
contamination source in the aquifer (Sorengard et al., 2022).

The GBM model demonstrated better performance than both AdaBoost and RF, based on. By
using error and correlation indexes, GBM outperformed other models. The PFOS rejection rates
during NF process by RF was close to the actual values, with no overfitting issues. (Hosseinzadeh et
al., 2022).

The boosted regression tree had a good performance for the training and holdout data in
determining the likely PFAS sources. Evaluation matrices such as accuracy, sensitivity, specificity,
and ROC (McMahon et al., 2022).

R2 varies between 0.45 and 0.51 for PFAS yield with no development with outlier and PFAS yield
with development respectively; while their corresponding Normalized RMSE ranges between 0.110
and 0.104 respectively(Breitmeyer et al., 2023).

There is an improved performance of the RF model based on accuracy (up to 100% in some
cases), except for Wolverine soil where the performance was 5.4% due to the non-detectability of the
PFAS samples (Kibbey et al., 2021a).

GPR and fine tree regression models performed better with Carbon and mineral-based
adsorbents respectively. Carbon-based adsorbents had average RMSE, MSE, MAE, and R?values of
0.11, 0.015, 0.06, and 0.98 respectively. The average RMSE, MSE, MAE, and R? for mineral based
adsorbent using the fine tree model are 0.16, 0.03, 0.12, and 0.94 respectively. When tested with
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previous studies data, GPR achieved 99% with Carbon-based adsorbent and the fine tree model
achieved 94% prediction accuracy (Patel et al., 2022).

The FNN approach yields the best predictions with an R? of 0.93 when tested with various
training/test sets (Raza et al., 2019).

RF had the best performance with an accuracy of 96.4% while classification by ratio had the least
performance with 79.6% accuracy. The order of accuracy includes RF>DNN ensemble>KNN>GP
classifier>Support Vector (RBF)>Classification by ratio (Kibbey et al., 2021b).

SVM outperformed other models, and is a suitable ML method for binding chemicals due to its
consistency. AUC, specificity, sensitivity, and accuracy value for this model is not less than 89%
(Azhagiya Singam et al., 2020).

Accuracy values for KNN, SVM, and decision tree classifiers were 88.2%, 87.4%, and 91.4%,
respectively. With only four features, the overall model accuracy was 95%, indicating that the increase
in accuracy is most likely due to model overfitting (Stults et al., 2023).

Accuracy and F1 quotients for NN ensemble and ratio classification are 96.3% and 97%; and
91.7% and 92.9%. For the Portland-Clarendon subset, ratio classification (38.3% accuracy) did not
perform well, whereas the neural network ensemble (83.3% accuracy) and Extra Trees (75.0%
accuracy) had a better performance (Kibbey et al., 2020).

The range of MRE, MAE, RMSE and R3 for all algorithms ranged from 1.78 to 2.61, 4.48 to 6.34,
6.56 0 9.38, and 0.92 to 0.96 respectively. The RF algorithm had the best performance in all the models.
The testing set's MRE, MAE, RMSE, and R2 values were 1.75, 4.56, 6.30, and 0.97, respectively, after
updating the model with the optimal features (Mu et al., 2024).

Conclusions

Machine learning and Artificial intelligence have been used to better understand the behavior
and transportation of water contaminants (Banerjee et al., 2022; Hu et al., 2022; Jiang et al., 2021; Ragi
et al.,, 2019). They have been very helpful in assessing water quality based on the predictions and
performances of the models. This review summarizes the use of machine learning algorithms to
understand PFAS. Due to the complex nature of PFAS and the difficulty in heterogeneity of their
structures, it is important to have a proper understanding of the various possibilities that exist in the
understanding of this concept. Part of the limitations in the proper understanding of PFAS using ML
is the lack of sufficient data. Data sources that have been used for modeling PFAS with ML range
from government agencies to a combination of several research data. Supervised, semi-supervised,
and unsupervised learning have been employed to model PFAS; while some authors used singular
algorithms, others have used ensemble models and a combination of ML algorithms to determine the
model with the best performance. Various metrics have been used to evaluate the performance of the
ML algorithms. It is observed from this literature that ML can make accurate predictions on the
occurrence, behavior, partitioning, and removal techniques of PFAS in all types of water.

It is recommended that the impact of water quality parameters on PFAS should be studied using
various ML algorithms to give a clearer understanding of the relationship between chemical elements
in water and PFAS and to have a better understanding of the adsorption potential of the PFAS. More
databases should be made available to improve the understanding of PFAS using machine learning.
From Figure (2) above, ML algorithms have not been extensively used for anomaly detection in data.
Also, there is need to use ML algorithms to understand better the behavior of PFAS in soils,
sediments, humans, aquatic organisms, terrestrial organisms, plants uptake and even in the
atmosphere. The major focus has been on water, there is need to consider these medium as well.
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