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Abstract: The integration of information and physical systems in modern power grids has heightened
vulnerabilities to False Data Injection Attacks (FDIAs), threatening the secure operation of power
cyber-physical systems (CPS). This paper reviews FDIA detection, evolution, and data reconstruction
strategies, highlighting cross-domain coordination, multi-temporal evolution, and stealth
characteristics. Challenges in existing detection methods, including poor interpretability and data
imbalance, are discussed, alongside advanced state-aware and action-control data reconstruction
techniques. Key issues, such as modeling FDIA evolution and distinguishing malicious data from
regular faults, are identified. Future directions to enhance system resilience and detection accuracy
are proposed, contributing to the secure operation of power CPS.

Keywords: power cyber-physical systems; false data injection attacks; attack detection; data
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1. Introduction

As new-generation information technology deeply penetrates the power system [1-3], a
multitude of electrical, sensing, and computational devices are interconnected via electrical and
communication networks, transforming traditional systems centered on physical equipment into
highly integrated Cyber-Physical Systems (CPS), i.e., power CPS. This integration of power CPS,
underpinned by the physical network of primary electrical equipment for energy flow and the
information network for secondary control and protection information flow, signifies a shift towards
complex networks where power and information systems converge [4-7]. The architecture of the
power system from the CPS perspective is depicted in Figure 1, encompassing generation,
transmission, conversion, distribution, and utilization [8-12]. Measuring devices within the
information domain transmit operational state data of the electrical grid to the dispatch data network,
which then, through control centers, computing centers, and data centers, issues system control
commands that modify the operational state of the physical electrical grid [13-17]. The evolution of
power systems towards greater dependence on CPS is evident [18-21], but this integration also raises
the susceptibility of the grid to cyber-attacks [22-25].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Architecture of power system from the perspective of CPS.

Recent years have seen an increase in cyber-attack incidents where hackers have infiltrated
power grids, causing significant damage [26-28]. Examples include the Stuxnet virus attacking
Iranian nuclear facilities in 2010, the BlackEnergy virus attack on the Ukrainian power grid in 2015,
and the ARP cache poisoning at a U.S. wind farm in 2017, among others. These incidents are typical
cases where the cyber-physical security of the power systems was compromised, leading to
widespread outages.
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Figure 2. Actual cases of cyber attacks against power grid.
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Among the various types of cyber-attacks on power CPS, False Data Injection Attacks (FDIAs)
are particularly notable due to their accessibility, disruptiveness, and stealthiness [29-31]. Introduced
by Liu Yao et al. in 2009 [32], FDIAs against state estimation in power grids demonstrate that attackers
can infiltrate the power CPS information and communication network, gain access to network
parameters and topological structures, and manipulate measurement devices to create fake data that
evades bad data detection, thus misleading the control center into making erroneous operational
decisions, potentially destabilizing the grid [33-37]. FDIAs in power CPS render traditional bad data
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detection mechanisms completely ineffective, posing a severe threat to the robust operation of the
power grid [38,39]. The typical process of a power CPS FDIA is illustrated in Figure 3.
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Figure 3. Typical power CPS FDIAs process.

Attackers infiltrate monitoring systems through pre-designed intrinsic attack steps,
intentionally tamper with measurement data to compromise the informational integrity of the power
CPS [40-42], thereby impacting the upper-level control center's analysis and decision-making, issuing
control commands that lead to system switches and circuit breaker failures or misoperations,
resulting in severe consequences such as widespread power outages [43-45]. Analyzing the
principles and typical processes of FDIAs in power CPS allows us to summarize the characteristics
of these attacks as follows:

(1) Cross-domain Coordination: Due to the high integration of information and physical layers
in power CPS, attackers use diversified network attack methods to infiltrate the information network.
By probing, elevating privileges, and controlling information systems, the attack crosses from the
information domain to the power domain, ultimately impacting the physical power grid and causing
physical failures in the power system across time and space [46—49].

(2) Multi-temporal and Spatial Evolution: FDIAs involve multiple attack steps. As time and
space change, different attack entities interact at various stages, making the co-evolutionary attack
process complex [50,51].

(3) Covert and Persistent Nature: FDIAs, by satisfying state estimation constraints, can
successfully evade bad data detection mechanisms. Without detection, these attacks subtly influence
control center decisions, leading to incorrect perceptions of the power system's operational status by
control personnel. Additionally, attackers often conceal or destroy evidence after an attack to hide
their tracks. Moreover, to gain extensive control, attackers typically lurk within power systems for
durations ranging from several hours to days, ready to launch persistent attacks at any time [52-54].

Due to the complex characteristics and intricate evolution of FDIAs, existing attack detection
methods and defense strategies struggle to effectively address FDIAs. The limitations are primarily
evident in:

(1) Lack of Characterization Methods for FDIA Evolutionary Processes: Characterizing the
spatial and temporal evolution of FDIAs could provide theoretical support for researching attack
detection and data reconstruction methods. However, current achievements are mainly focused on
modeling attacks such as electrical quantity manipulation, topological alteration, and GPS
synchronization clock forgery, which do not suit the analysis of the temporal and spatial evolution
of FDIAs [55,56].

(2) Challenges in Feature Extraction for Model-driven Detection Methods: The interactive
processes in power CPS are complex. Although the characteristic results analyzed by existing model-


https://doi.org/10.20944/preprints202501.1098.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 January 2025 d0i:10.20944/preprints202501.1098.v1

4 of 24

driven detection methods are reasonable and credible, the FDIA model-driven detection processes
often remain in a passive detection state. Single model-driven methods struggle to comprehensively
analyze and extract features, thus failing to detect FDIAs efficiently and accurately [57].

(3) Poor Interpretability and Significant Data Influence in Data-driven Detection Methods:
Power CPS operates in a vast state space. Although existing data-driven detection methods can
uncover underlying data patterns, their mechanism interpretability is poor and unconvincing.
Furthermore, when system structures change, data-driven methods need time to update information.
Additionally, FDIA data-driven detection methods are highly susceptible to data quality, facing
severe issues such as data imbalance, high dimensionality, and difficult samples, which complicate
the detection process [58].

(4) Lack of Data Reconstruction Methods Post-FDIA Detection: When FDIAs are detected
within power CPS, the affected measurement data is often discarded, severely compromising the
integrity of the measurement data. In practical power networks, directly discarding a large amount
of false data may lead to unobservable local areas within the grid, creating blind spots in the network
state and triggering a series of problems. Existing methods capable of reconstructing necessary data
for system operation based on the remaining normal measurement data are scarce [59].

Recent years have witnessed significant advancements in the integration of cyber and physical
systems within modern power grids. However, this progress has also introduced new vulnerabilities,
particularly to FDIAs, which can disrupt system operations, compromise reliability, and cause
cascading failures. With the increasing adoption of advanced technologies such as Al, IoT, and big
data analytics, addressing these vulnerabilities has become both a technical and operational priority.
Existing studies have explored various FDIA detection and defense methods, yet challenges such as
the complexity of system interactions, the scalability of detection techniques, and the dynamic nature
of attack scenarios remain unresolved. Moreover, the impact of FDIAs on critical aspects such as grid
stability, economic efficiency, and system resilience has not been fully quantified in real-world
applications. This review seeks to address these gaps by comprehensively analyzing the
technological evolution, current challenges, and emerging trends in FDIA detection and defense. By
establishing a power CPS coupling security analysis framework, this work aims to characterize the
temporal and spatial evolution of FDIAs, develop innovative detection and reconstruction methods,
and enhance the overall security and resilience of power CPS in the face of evolving cyber threats.
These efforts aim to bridge the gap between theoretical advancements and practical applications,
ultimately contributing to the development of more robust and intelligent power systems.

2. Domestic and International Research Status

This section first analyzes the data transmission scenarios and false data injection methods
within power CPS, and discusses the impacts of different attack methods. It then explores the current
state of research regarding the characterization of attack evolutionary processes, enhancement of
attack detection training data, attack detection methods, and data reconstruction methods. Finally, it
summarizes the challenges faced in research on false data injection attacks in power CPS.

2.1. Power CPS Data Transmission Scenarios and False Data Injection Methods

In power CPS, Phasor Measurement Units (PMUs) collect data such as nodal current phasors
and voltage phasors [60], which are summarized to the Primary Domain Controller (PDC). Remote
Terminal Units (RTUs), sensors, or smart meters collect real-time measurement data including nodal
voltage magnitudes, reactive and active power injections at nodes, as well as reactive and active
power flow on lines, which are then aggregated into data packets sent to the Supervisory Control and
Data Acquisition (SCADA) system. Subsequently, the control center performs state estimation on
these collected data [61,62], which outputs unmeasurable state variables such as voltage angles and
magnitudes, used for decision analysis in other applications of the Energy Management System
(EMS) [63,64]. The actual data transmission scenario and the methods of false data injection are shown
in Figure 4. The injection methods can be categorized into three types:
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Method 1: In-depth intrusion into the SCADA system, PDC, or communication networks to
tamper with data, known as information communication network data injection attacks.

Method 2: Direct tampering with data at remote terminal devices, known as remote terminal
device data injection attacks.

Method 3: Intrusion into the control center.
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Figure 4. Data transmission scenario and false data injection forms of power CPS.

Due to the stringent security protections at actual dispatch data centers, the third method is
much more difficult to execute compared to the first two methods. In power CPS, according to the
principles of "security zoning, network specialization, horizontal isolation, and vertical
authentication,” the information communication network utilizes highly reliable, high-bandwidth,
and secure fiber optic dedicated networks. The likelihood of FDIAs affecting these communication
channels and devices is extremely low [65,66]. In contrast, the lower security protection levels of
public communication networks and secondary devices at grid terminals often become common
points of FDIA penetration. By targeting these potential security vulnerabilities, attackers can
successfully execute attacks on power CPS equipment [67-69]. Therefore, the main pathways for
FDIAs are through the information communication network (method 1) and remote terminal devices
(method 2).

2.1.1. Information Communication Network Data Injection Attacks

Data injection attacks on the information communication network represent top-level CPS
attacks, typically carried out through side-channel or man-in-the-middle attacks that alter uplink
measurement data or downlink control commands. This manipulation leads to control devices
executing incorrect actions, thereby affecting the normal operation of the grid. The attack process
typically involves three steps: 1) exploiting security vulnerabilities to infiltrate remote interfaces and
control hosts to extract system control privileges; 2) using message or protocol vulnerabilities to
extend control privileges to related devices; 3) remotely manipulating or disrupting the normal
operation of these devices [70]. The impact of FDIAs at different stages of the information
communication network is analyzed in Table 1.
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Table 1. Impact analysis of FDIAs on different links for information and communication network.
Attack Phase Attack Type Attack Impact
FDIAs targeting software or Modification of software and
Software Information systems hardware information
System FDIAs targeting control commands Incorrect execution of control
commands
FDIAs targeting protocol Manipulation of network access
Network Access Process vulnerabilities data
FDIAs targeting data packets Data packet interception and
tampering
FDIAs targeting positioning GPS positioning information
Physical signals spoofing
Communication Process FDIAs targeting time PMU data desynchronization

synchronization

From Table 1, it is evident that such attacks can lead to alterations in software and hardware
information, execution errors in control commands, manipulation of data, forgery of information,
and data desynchronization, ultimately causing controlled physical devices to operate in faulty states
and disrupting the normal operation of the grid.

2.1.2. Remote Terminal Device Data Injection Attacks

Remote terminal device data injection attacks are launched from the lower layers of the CPS. In
practical power grids, devices such as smart meters, sensors, RTUs, and PMUs are not absolutely
secure in network security aspects, as they are primarily designed with a focus on effective control
functionality rather than network security. In certain extreme cases, terminal devices are at risk of
being attacked, such as through direct physical contact [71]. Attackers exploit security vulnerabilities
in these devices, breach encryption and authentication mechanisms, and inject false measurement
data or control commands to achieve their objectives. The impact of FDIAs on different segments of
remote terminal devices is analyzed in Table 2.

For remote terminal device FDIAs, as shown in Table 2, these attacks can cause alterations in
device settings, collection errors, and external execution of control commands, impacting the control
center’s dispatch decisions, causing devices to execute incorrect instructions, and affecting the safety
and stability of the grid's operation [72].

Table 2. Impact analysis of FDIAs on different links for remote terminal device.

Attack Phase Attack Type Attack Impact
Device Management Function FDIAs targeting the device itself ~Modification of device settings
Data Collection Process FDIAs targeting measurement Errors in collected switch and
devices analog signals
Command Control Process FDIAs targeting execution devices Incorrect execution of control
commands

Regardless of whether it is an information communication network data injection attack or a
remote terminal device data injection attack, due to different attack stages and methods, the impacts
of the attacks vary. Therefore, analyzing the impacts of different FDIAs on the grid requires the
development of security analysis models tailored to specific attack scenarios [73-75].
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2.2. Current Research Status on False Data Injection Attacks in Power CPS

The detection of FDIAs and data reconstruction in power CPS start from enhancing the system's
own protection capabilities [76,77]. The goal is to interrupt attacks before they can cause severe
consequences [78-80], leveraging an understanding of the attackers' objectives or behaviors to detect
their actions, mitigate the actual damage to the grid, and enhance system security [81,82]. In the
research of FDIA detection and data reconstruction, four key issues need to be addressed:

2.2.1. Characterization of the FDIA Evolutionary Process

The essence of characterizing the FDIA evolutionary process is to analyze the temporal and
spatial evolution mechanisms of FDIAs and to formally represent these processes. The goal is to
develop models that are applicable for analyzing FDIA detection and data reconstruction scenarios
[83-86]. Current research on FDIA evolutionary process characterization varies based on the attack
scenario and includes methods for representing electrical quantity manipulation, topology alteration,
and GPS synchronization clock forgery attacks, as illustrated in Table 3.

Table 3. Research status of evolutionary process characterization for FDIAs.

FDIA

Evolutionary

Process Attack Target Specific descriptions
Characterization

Methods

Linear programming representation model [87]

Bilevel linear programming representation model [88]

Heuristic algorithm for solving the evolutionary

representation model of an attack [89]

Electrical Sparse attack vector representation method [90]

Electrical Quantit
Q Y quantity data ~ Optimization representation method for attack-defense

Manipulation collected by strategies based on a master-slave game model [91]
Attack monitoring Feasible attack representation model constructed by
Characterization ) o
systems minimizing angular deviation of data from both sides [92]
Representation method for inferring system topology and
parameters from cyber-physical measurement data [93]
Feasible attack domain representation method using a
mixed integer linear programming model [94]
Using an attack tree representation model to implement
FDIA topological manipulation attacks [95]
Using a markov representation model to calculate the
Topological The power probability of attack success [96]
Manipulation system Designing attack methods that involve adding and
Attack network simultaneously increasing or decreasing lines [97]
Characterization topology Fdia representation model considering power flow

constraints [98]

Constructing attack vectors based on topology and flow
data after a line break [99]
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Introducing an optimal attack representation method

P
GPS under the constraint of positional distance differences [100]
Synchronizati Th

ynehromzation ¢ Constructing an attack vector that includes the attacked
Clock F timest £

o° OTEery. Hmestamps of - pyry position and optimal phase angle manipulation
Attack PMU data

values [101]

Characterization

Developing an undetectable GPS clock attack method [102]

(1) Characterization Methods for Electrical Quantity Manipulation Attack Evolution: These
methods focus on the electrical quantity data collected by monitoring systems as the target of the
attack. Reference [87] developed a linear programming representation model aimed at minimizing
deviations and the number of changed measurements. Reference [88] introduced a dual-layer linear
programming model that maximizes the consequences of an attack, calculating attack vectors under
a constrained number of tampering attempts. Reference [89] utilized heuristic algorithms to solve the
evolutionary representation model of the attack. Reference [90] proposed a method for representing
sparse attack vectors, constrained by increasing the number of untamperable state variables.
Reference [91] based on the Stackelberg game model, developed an optimized representation method
for attack-defense strategies. Reference [92] constructed a feasible attack representation model that
utilizes the minimization of measurement data deviation angles under unknown system parameters.
Reference [93] introduced a method for inferring system topology and parameters, which requires
long-term observation of data from both the information and physical sides. Reference [94] used a
mixed integer linear programming model to propose a method for determining feasible attack
domains with only partial system parameter information available.

(2) Topological Alteration Attack Evolution Representation Methods: These focus on the
power system network topology as the target of the attack. Reference [95] introduced an attack tree
representation model that facilitates FDIA topology alteration attacks. Reference [96] proposed a
Markov representation model that enumerates FDIAs data infiltration attempts into power CPS and
calculates the probability of successful attacks. Reference [97] developed a representation model
targeting flow, marginal prices, and generation costs, designing attacks that increase or
simultaneously increase and decrease lines, and employed a natural aggregation algorithm to solve
for the attack representation model. Reference [98] aimed to increase customer electricity costs and
established an FDIA representation model considering power flow constraints. Reference [99]
constructed attack vectors based on topology and flow data after a line break, using false data
injection to hide real line breaks, leading to more severe cascading failures.

(3) GPS Synchronization Clock Forgery Attack Evolution Representation Methods: These
methods focus on the timestamps of synchronized phasor data collected by PMUs as the target of the
attack. Reference [100] proposed an optimal attack representation method based on GPS positioning
and synchronized time under the constraints of positioning distance differences. Reference [101]
constructed an attack vector that includes the location of the attacked PMU and optimal phase angle
tampering values, considering the principle of state estimation deviation between PMU and SCADA
hybrid measurement systems. Reference [102] developed a method for undetectable GPS clock
attacks, identifying one or more optimal attack targets within the PMU measurement system.

In summary, current research on FDIA evolutionary process characterization in power CPS is
diverse and varied, with some focusing on attacks on electrical quantity monitoring data, others on
switch quantity monitoring data and control commands, and still others on synchronized clock signal
attacks. However, from any perspective, the current research focuses on attack modeling or
evolutionary process characterization for specific attack targets and lacks methods that consider "data
closed-loop flow characteristics" as the driving force for representing the FDIA evolutionary process.
The essence of FDIA temporal and spatial evolution is the impact of the attack data stream on the
information flow-energy flow conversion process in power CPS. Most existing studies model specific
attack scenarios such as electrical quantity manipulation, topology alteration, and GPS
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synchronization clock forgery, and their representation methods are not suitable for analyzing the
temporal and spatial evolution of FDIAs, nor can they provide a theoretical basis for subsequent
FDIA detection and data reconstruction methods.

2.2.2. FDIA Detection Training Data Enhancement

Enhancing FDIA detection training data essentially involves algorithmic data balancing and
redundancy reduction to improve the classification accuracy of detection models and reduce
computational costs [103,104]. Current research on FDIA detection training data enhancement varies
based on the data processing method and includes oversampling, undersampling, hybrid sampling,

and feature selection data enhancement methods, as shown in Table 4.

Table 4. Research status of training data augmentation for FDIAs detection.

Data

methods

enhancement

Specific descriptions

Principles

Over-sampling

K-nearest neighbor based SMOTE algorithm [105]

Neighborhood safety coefficient based oversampling
[106]

Heilinger distance guided sample synthesis direction
[107,108]

Secondary synthetic sample strategy [109]

Adaptive synthetic oversampling algorithm [110]

Classification sorting and weight-based oversampling
[111]

Introduce  new
minority samples

for balance

Under-sampling

Class overlap degree-based undersampling method
[112]

Cluster-based undersampling method [113]

Undersampling + genetic algorithm [114]

Remove  some
majority samples

for balance

Hybrid sampling

SMOTE
undersampling [115]

oversampling + EM  clustering

SMOTE oversampling and fuzzy C-means clustering

undersampling [116]

Minority oversampling + editing nearest neighbor

undersampling [117]

Random wundersampling + SMOTE oversampling
[118]

SMOTE oversampling + clustering undersampling
[119]

Combine
oversampling
and
undersampling

for balance

Feature selection

Feature selection + instance selection [120]

Firework algorithm based on feature weight selection
[121]

Rough balance-based feature selection method [122]

Feature significance based feature selection method
[123]

Select relevant
features for
dimension
reduction
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(1) Oversampling Data Enhancement Methods involve introducing new minority class samples
to achieve data balance. Reference [105] addresses the issue of overgeneralization in Synthetic
Minority Over-sampling Technique (SMOTE) by proposing a k-nearest neighbor-based SMOTE
algorithm that assigns smaller selection weights to neighboring directions where serious
overgeneralization may occur. Reference [106] introduced an oversampling method based on
neighborhood safety coefficients, using inverse neighbor sampling safety coefficients to prevent
newly generated data from encroaching into other classes' areas. References [107,108] guide the
synthesis of samples by comparing the Hellinger distance within the neighborhood of minority class
instances and evaluate the quality of sampling. Reference [109] employs a secondary synthesis
strategy, performing an initial synthesis based on support for minority class samples containing
important information, followed by a second synthesis through neighborhood samples of minority
class sample clusters. Reference [110] uses an adaptive synthetic oversampling algorithm for data
balancing, providing different weights to minority classes to adaptively generate minority class
samples. Reference [111] proposed an oversampling method based on classification ranking and
weights, first sorting within-class samples based on their distance to the hyperplane, then sampling
the original samples based on the density of data around the sampling points.

(2) Undersampling Data Enhancement Methods involve removing some majority class samples
to achieve data balance. Reference [112] proposes an undersampling method based on class overlap,
selecting samples that are crucial for classification based on the degree of class overlap. Reference
[113] combines clustering with undersampling to propose a clustering-based undersampling method,
undersampling the most informative classes by clustering majority class samples. Reference [114]
introduces a genetic algorithm, combining undersampling with the genetic algorithm to achieve a
balanced data processing method that trains first and balances later, obtaining multiple sets of classes
with the highest information value through a single-class classifier, then using the genetic algorithm
to optimize multiple random undersampled data subsets to achieve the best dataset.

(3) Hybrid Sampling Data Enhancement Methods combine oversampling and undersampling
techniques to achieve data balance. Reference [115] mixes the SMOTE oversampling method with an
Expectation Maximization (EM) clustering undersampling method, with SMOTE responsible for
oversampling minority class samples and EM for undersampling majority class samples. Reference
[116] combines the SMOTE method with the Fuzzy C-Means clustering method to make all classes
have a similar number of instances and randomly selects instances from each cluster to achieve data
balance. Reference [117] balances multiple classes based on the overlap of classes and uses minority
oversampling and edited nearest neighbor methods separately for minority and majority classes.
Reference [118] proposed a multiple random balancing method, using random class proportions for
random undersampling and SMOTE oversampling, extending it to multiclass imbalanced datasets,
using randomly generated priors for sampling. Reference [119] performs random balanced
resampling of majority and minority class samples based on sample weights, using SMOTE
oversampling for heavily weighted minority class samples and clustering undersampling for heavily
weighted majority class samples.

(4) Feature Selection Data Enhancement Methods involve selecting strongly correlated features
to achieve data dimension reduction. Reference [120] proposes a method combining feature selection
with instance selection, using feature selection to limit features that may complicate class boundary
recognition and instance selection to find the right class distribution to address imbalance and
eliminate noise instances. Reference [121] introduces a fireworks algorithm for feature selection based
on feature weight selection, continuously updating the optimal feature selection process through
storage and selection pools. Reference [122] proposes a rough balance-based feature selection
method, borrowing ideas from random subspace and random forest approaches, randomly
extracting a subset of attributes from a set containing all attributes to train base classifiers. Reference
[123] considers class distribution unevenness through feature significance, calculates the feature
significance of each attribute based on the granular structure of each instance in the boundary region,
then selects the optimal feature dataset based on feature significance.
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In summary, current research on data enhancement for training detection models for false data
injection attacks in power CPS is varied and competitive. However, each method has its drawbacks:
1) Oversampling methods generate minority class samples that differ from real collected samples,
increasing sample diversity and quantity while introducing sample noise, which may reduce the
classification accuracy for minority class samples. 2) Undersampling methods lose a large amount of
majority class sample data, preventing the model from fully learning the sample features, thus
reducing the accuracy of majority class sample classification. 3) Hybrid sampling methods do not
show significant improvement in cases with a low imbalance ratio and have a high time complexity
for training. 4) Feature selection methods have poor time performance on large datasets, and selecting
features in noisy classes can reduce the generalization ability of classifiers.

2.2.3. FDIA Detection Approaches

FDIA detection essentially involves using data on the operational state of power CPS to
determine if there are anomalies within the system and to identify whether these anomalies are
caused by natural faults or by attack events [124,125]. Current research on FDIA detection primarily
utilizes state estimation, trajectory prediction, and Artificial Intelligence (Al) to detect FDIA
incidents, as shown in Table 5.

Table 5. Research status of FDIAs behavior detection.

Detection Specific descriptions Advantages and
Methods Disadvantages

State Equivalent Measurement Transformation + Residual Mature algorithms;
Estimation Detection Method [126] fast but sensitive to

Measurement Protection Strategy + State Variable threshold settings

Verification [127]

Parallel Estimators + Improved State Estimation
Algorithm [128]
Graph Partitioning + Chi-Square Test Method [129-131]

Trajectory Short-Term State Forecasting + Consistency Testing Detects false data

Prediction Method [132] well, but high

Generalized  Likelihood Ratio+ High-Performance complexity and slow;

Computing [133] unsuitable for
Multi-Sensor Track Fusion + Particle Filtering [134] complex systems
Artificial XGBoost Load Forecasting + UKF Dynamic Estimation Strong computational
Intelligence [135] capabilities; clear
Deep Learning Techniques + Feature Extraction [136] framework; generally
Batch Processing + Online Learning Algorithms [137] poor interpretability

Convolutional Neural Network + Model Design [138]

Equivalent Measurement Transformationt Residual
Detection [110]

(1) State Estimation Detection Methods: Reference [126] proposed a new method for FDIA
detection and identification that uses equivalent measurement transformation instead of traditional
weighted least squares in the state estimation process, with residual detection methods to identify
FDIA. Reference [127], after analyzing the FDIA process, explored a detection method by
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independently verifying or measuring state variable values chosen by a set of strategic sensor
measurements. Reference [128], considering the robustness of different state estimators, improved
the grid state estimation attack detection by running multiple robust least squares estimators with
different breakdown points in parallel, thereby enhancing the overall network security of power CPS
state estimation. References [129,130] proposed a tolerable FDIA detection method based on extended
distributed state estimation, using graph partitioning to divide the power grid into multiple
subsystems. Each subsystem is expanded to generate extended subsystems, and the chi-square test is
used to detect erroneous data in each expanded subsystem. This significantly differentiates false data
from normal observational errors, thus enhancing detection sensitivity. The existing state estimation
detection methods are passive, with the advantage of using mature algorithms that can reflect the
characteristics of power CPS well and provide fast detection speeds [131]. However, their drawback
lies in their susceptibility to detection threshold settings, which can lead to high rates of false
negatives or false positives.

(2) Trajectory Prediction Detection Methods: Reference [132] extended the approximate direct
current model to a general linear model, derived a universal FDIA model, and based on this
developed a short-term state prediction method considering temporal correlations and statistical
consistency testing methods to verify the consistency between predicted and received measurement
values. Reference [133] proposed a generalized likelihood ratio sequence detector to address FDIA
detection, which is robust against various attack strategies and load conditions in power systems,
and its computational complexity is linearly proportional to the number of measurement devices,
ensuring high-performance characteristics of the detector. Reference [134] introduced a multi-sensor
trajectory fusion model prediction method to extract initial correlation information of attacked
oscillation parameters, using a Kalman-like particle filter smoother at each monitoring node, and
diagonalized this smoother into subsystems to handle continuous load fluctuations and disturbances
caused by FDIA in the grid. Existing trajectory prediction detection methods are passive, with the
advantage of predicting the distribution of state variables based on the historical database and
operational rules of the system, matching operational trajectories, and effectively detecting various
types of false data. However, their drawbacks include inapplicability to complex systems, slow
detection speeds, and high computational complexity.

(3) Al Detection Methods: Reference [135] proposed a grid FDIA detection method based on
XGBoost combined with Unscented Kalman Filter (UKF), where XGBoost load prediction results are
adaptively mixed with state quantities obtained from UKF dynamic state estimation. This method
uses the central limit theorem to compare the distribution of random variables for FDIA detection.
Reference [138] used deep learning techniques to extract historical measurement data characteristics
of FDIA behaviors and employed the captured features for real-time FDIA detection, effectively
relaxing assumptions about potential attack scenarios and achieving high detection accuracy.
Reference [137] combined batch and online learning algorithms (supervised and semi-supervised)
with decision and feature-level fusion to build an attack detection model, analyzing the statistical
and geometric properties of attack vectors used in attack scenarios and learning algorithms to detect
unobservable attacks. Reference [138] constructed an FDIA detection model based on an improved
convolutional neural network, implementing an efficient real-time FDIA detector based on the
proposed model. Existing Al detection methods are active, with the advantage of a clear framework
and strong computational power, but they suffer from poor interpretability under the complex
operational mechanics of power CPS.

In summary, current research on FDIA detection in power CPS is diverse and strong in various
aspects. Some focus on state estimation for detection speed, others on trajectory prediction for
accuracy, and still others on Al for computational power and framework. However, each approach
has its strengths and weaknesses. This paper tentatively classifies state estimation and trajectory
prediction as model-driven methods, and Al approaches as data-driven methods, offering a
comprehensive analysis of both: on one hand, model-driven methods are theoretically supported,
producing reasonable and credible feature results. On the other hand, purely data-driven Al
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methods, although capable of uncovering underlying data patterns, suffer from poor interpretability
and credibility, especially when system structures change and data-driven methods require time to
update information. In the vast state space of power CPS, relying solely on model-driven methods
makes it challenging to analyze and extract features comprehensively, whereas data-driven methods
can capture features that may not yet be understood, overly simplified, or overlooked in theoretical
analysis.

2.2.4. FDIAs Data Reconstruction in Power CPS

FDIAs data reconstruction is fundamentally a corrective protection method that uses knowledge
of attack vectors or system characteristics to reconstruct damaged data and control signals, aiming to
achieve desired control effects [139]. Current research on FDIAs data reconstruction is mainly divided
into two categories: state-aware attack data reconstruction methods and action control attack data
reconstruction methods, as illustrated in Table 6.

Table 6. Research status of FDIAs data reconstruction.

Reconstruction Specific descriptions Response
methods Strategies
State Awareness Online GAN Measurement Data Reconstruction Response to
Attack Data _Method [140,141] Attacks
. Derivation of Reconstruction Matrix to Correct .

Reconstruction Targeting State

Attacked Angle Counters [142]
Method ) Awareness

Using IGAN to Reconstruct Attacked Measurement

Data [143]

Utilizing System Model to Calculate and Reconstruct

Monitoring Errors [144]

Determining Mode Parameters and Reconstructing
Mode Analysis Results [145]

Using SAGAN Generated Data to Restore Deceptive
Data [146,147]

Using MisGAN to Reconstruct Malicious Attack Data
[148]

Using WAE Model to Restore Anomalous Data [149]

Action Control Deriving FDIAS Signal and Its Reconstruction, Response to
Attack Data Reference [150] Attacks
. Adjustment Method for Feedback Controller Gain .

Reconstruction Targeting

Parameters [151]
Method Control

DER Attack Scenario Data Reconstruction Control

Scheme [152] Functions

(1) State-Aware Attack Data Reconstruction Methods: These methods address attacks targeting
state awareness. References [140,141] proposed an online Generative Adversarial Network (GAN)
measurement data reconstruction method for FDIAs, effectively reducing the impact of FDIAs on the
power grid. Reference [142] introduced a method based on phase angle deviations to determine the
presence of FDIAs and, based on this determination, to localize the attack and correct the affected
phase angle data using a reconstruction matrix. Reference [143] utilized a Wasserstein GAN (WGAN)
to reconstruct attack measurement data, achieving data integrity defense. Reference [144] employed
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an approximate Bayesian filter for attack vector estimation and attack detection, reconstructing
monitoring errors using the system model based on dynamic power system model analysis of PMU
measurement data. Reference [145] proposed a method based on spatial distribution deviation and
historical bias to determine the existence of GPS spoofing attacks, deciding whether to reconstruct
the pattern analysis results based on model parameters. References [146,147] improved a Self-
Attention Mechanism GAN (SAGAN) through training, using the generator to restore deceptive data
and enabling proactive defense against GPS spoofing attacks in smart grids. Reference [148] used a
GAN trained on incomplete data (MisGAN) to reconstruct malicious attack data in a pervasive power
IoT environment. Reference [149] applied a Variational Autoencoder (VAE) model to restore
anomalous data to normal operating states, achieving FDIAs data reconstruction.

(2) Action Control Attack Data Reconstruction Methods: These methods address attacks
targeting control functions. Reference [150] used an adaptive sliding mode observer to calculate
errors in system control and state variables, detecting the presence of FDIAs and reconstructing the
signals in case of an attack. Reference [151] proposed a method to adjust feedback controller gain
parameters using an energy storage system frequency control signal as an example. Reference [152]
designed a reconstruction control scheme suitable for microgrid Distributed Energy Resource (DER)
attack scenarios, adopting centralized and distributed control methods for normal DER devices and
those affected by attacks, respectively, and implementing additional control loops and adjusting
frequency reference values to ensure stable operation and frequency control of the microgrid.

In summary, current research on data reconstruction for FDIAs in power CPS is vibrant and
varied. However, there are several limitations in the existing research: 1) Electrical quantities
collected by power CPS have certain characteristics of normal measurement data, but existing FDIA
data reconstruction methods lack consideration for the distribution characteristics or patterns of
electrical quantities; 2) Existing FDIA data reconstruction methods involve the removal, correction,
or restoration of measurements, but due to computational resource limitations, convergence speed,
and the dynamic variability of power systems, issues such as gradient vanishing can arise.

2.3. Challenges in Research on FDIAs in Power CPS

(1) The Essence of CPS and the Impact of FDIAs: Power CPS fundamentally involves the cyclic
conversion between information flow and energy flow, while the essence of FDIA temporal and
spatial evolution is the impact of the attack data stream on this conversion process. Most existing
research models specific attack scenarios such as electrical quantity manipulation, topology
alteration, and GPS synchronization clock forgery, with their representation methods not suitable for
analyzing the temporal and spatial evolution of FDIAs. There is a lack of methods to characterize the
FDIA evolutionary process from the perspective of CPS “data closed-loop flow characteristics” [153—
156].

(2) Challenges of High-Risk, Low-Frequency Events in Power CPS: FDIAs in power CPS are
"low-probability, high-risk" events characterized by imbalanced attack samples, high data
dimensions, and noise. From a data-driven perspective, these characteristics are not conducive to
training FDIA detection models, leading to low detection accuracy, slow real-time detection
efficiency, and poor generalization capabilities [157,158].

(3) Passive Detection Status of FDIAs and Related Issues: Power CPS FDIAs often remain in a
passive detection state. Model-driven detection methods struggle with feature extraction, and data-
driven detection methods have poor interpretability. Additionally, conventional fault measurement
data and FDIA measurement data have high similarity, making it difficult for single model-driven or
data-driven detection methods to accurately classify challenging samples, resulting in high false
positive and false negative rates [159-161].

(4) Immediate Action Required Upon Detection: To prevent further impact of false data on
power CPS, it is crucial to promptly remove detected false data. However, this removal can severely
compromise the integrity of PMU data and other measurements. In practice, when a large amount of
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false data is detected and removed, it can lead to unobservable local areas within the grid, thereby
triggering a series of problems [162-164].

3. Future Research Directions

To address the challenges identified in this review and advance the resilience and security of
power CPS, future research should focus on the following areas with clear technical pathways:

3.1. Comprehensive Characterization of FDIA Temporal-Spatial Evolution

FDIAs exhibit complex temporal and spatial evolution characteristics, significantly impacting
the interaction between information and energy flows in CPS. Existing studies primarily focus on
specific attack scenarios, such as electrical quantity manipulation or topology alterations. However,
future research should aim to develop unified modeling frameworks that capture the broader "data
closed-loop flow characteristics" of CPS. Advanced techniques, such as graph neural networks
(GNNSs), spatiotemporal correlation models, and causality analysis tools, can be employed to uncover
latent relationships between cyber events and physical system responses. Additionally, hybrid
models integrating system dynamics with real-time network behaviors could provide valuable
insights into the propagation and mitigation of cascading failures caused by FDIAs.

3.2. Hybrid Detection Frameworks Integrating Model- and Data-Driven Approaches

Current detection methods often rely on either model-driven or data-driven approaches, each
with inherent limitations. Model-driven methods provide theoretical robustness but struggle with
scalability in complex systems, while data-driven techniques offer adaptability but lack
interpretability. Future research should focus on hybrid frameworks that leverage the strengths of
both approaches. For instance, explainable Al (XAI) can enhance the transparency of data-driven
methods, allowing system operators to understand and trust detection results. Additionally,
integrating domain-specific knowledge from physics-based models with machine learning
algorithms can improve detection accuracy in dynamic environments. Practical implementations
could include multi-layer defense architectures combining real-time anomaly detection with
predictive diagnostics.

3.3. Advanced Data Augmentation for FDIA Detection

Training robust detection models requires addressing the imbalance and high-dimensional
nature of FDIA datasets. Existing methods, such as oversampling and undersampling, often fail to
preserve the statistical characteristics of minority-class samples. Future research should explore
advanced techniques, such as generative adversarial networks (GANSs), to create realistic synthetic
data for training. Federated learning frameworks could enable multiple entities to collaboratively
train detection models without compromising data privacy. Furthermore, automated feature
engineering methods, including dimensionality reduction and clustering algorithms, can help extract
meaningful patterns from high-dimensional datasets, improving detection performance.

3.4. Resilient Data Reconstruction Techniques

When FDIAs compromise measurement data, ensuring the integrity and availability of system
information is critical. Current reconstruction methods often ignore the dynamic variability of CPS
data and may lead to system observability gaps. Future research should develop probabilistic
models, such as VAEs, and self-supervised learning techniques to recover missing or corrupted data
while preserving its statistical and temporal characteristics. Incorporating robust optimization
methods, such as reinforcement learning, can enhance real-time decision-making during
reconstruction. Case studies on practical power grid scenarios will help validate these methods and
improve their applicability.
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3.5. Information Security in Integrated Energy Systems

Integrated energy systems (IESs) represent the convergence of electricity, gas, heat, and
renewable energy resources [165-168], creating unique cybersecurity challenges. Unlike traditional
power grids, an IES involves uncertain renewable energy resources [169,170], together with multiple
domains with varying communication protocols and security vulnerabilities. Future research should
develop cross-domain security frameworks that address these challenges by leveraging blockchain
for secure transactions, digital twins for real-time threat simulations, and multi-layered defense
strategies to mitigate cascading attacks. For instance, adaptive intrusion detection systems could
analyze communication patterns across domains, enabling early detection of cyberattacks.
Collaborative efforts between researchers and industry stakeholders are essential to develop scalable
solutions tailored to the complexity of IESs.

3.6. Integration of Emerging Technologies

Emerging technologies offer transformative opportunities to enhance CPS and IES security.
Blockchain can ensure tamper-proof records for critical data exchanges [171], while digital twins can
model and simulate system behaviors to anticipate vulnerabilities [172]. Data Encryption is able to
enchane the security of CPS [173]. In addition, advanced Al is capable of optimizing the secure and
economic operation of CPS and identifying appliances’ behaviors through appliance-specific
networks [174,175]. Quantum computing, with its unparalleled computational capabilities, could
revolutionize attack detection and optimization methods by accelerating the resolution of complex
problems [176]. Future research should focus on integrating these technologies into practical systems,
emphasizing interoperability, scalability, and cost-effectiveness. Pilot projects demonstrating their
real-world applications in smart grids and multi-energy systems will be instrumental in gaining
broader acceptance.

3.7. Policy and Standardization

The development of robust technical solutions must be complemented by clear regulatory
frameworks and international standards to ensure widespread adoption. Future research should
explore the interplay between technology and policy, focusing on areas such as data privacy, cross-
border energy trading, and incident response protocols. For example, establishing guidelines for
cybersecurity audits and compliance in CPS and IES environments can promote trust among
stakeholders. Collaborative efforts between academia, industry, and regulatory bodies are essential
to develop cohesive strategies that balance innovation with security requirements.

4. Conlcusions

This review has comprehensively examined the detection, evolution, and data reconstruction
strategies for FDIAs in CPS. By analyzing the temporal and spatial evolution of FDIAs, this work has
highlighted the significant vulnerabilities introduced by the integration of cyber and physical
domains in modern power systems. A critical assessment of existing detection methods has revealed
gaps in addressing the scalability, interpretability, and resilience of current solutions. Similarly, data
reconstruction approaches were evaluated, underscoring the challenges of maintaining data integrity
and system observability during and after an attack.

Future research must focus on developing unified frameworks that incorporate advanced
modeling techniques, such as spatiotemporal analysis and machine learning, to better characterize
FDIA evolution and enhance detection accuracy. The integration of emerging technologies, including
blockchain, digital twins, and quantum computing, also holds promise for improving system
resilience and operational security.

By addressing the identified challenges, this work aims to bridge theoretical advancements with
practical applications, contributing to the development of robust, intelligent, and secure power CPS
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capable of withstanding evolving cyber threats. These efforts not only safeguard the reliability of
power grids but also provide a foundation for the broader adoption of integrated energy systems.
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