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Abstract: The integration of information and physical systems in modern power grids has heightened 

vulnerabilities to False Data Injection Attacks (FDIAs), threatening the secure operation of power 

cyber-physical systems (CPS). This paper reviews FDIA detection, evolution, and data reconstruction 

strategies, highlighting cross-domain coordination, multi-temporal evolution, and stealth 

characteristics. Challenges in existing detection methods, including poor interpretability and data 

imbalance, are discussed, alongside advanced state-aware and action-control data reconstruction 

techniques. Key issues, such as modeling FDIA evolution and distinguishing malicious data from 

regular faults, are identified. Future directions to enhance system resilience and detection accuracy 

are proposed, contributing to the secure operation of power CPS. 
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1. Introduction 

As new-generation information technology deeply penetrates the power system [1–3], a 

multitude of electrical, sensing, and computational devices are interconnected via electrical and 

communication networks, transforming traditional systems centered on physical equipment into 

highly integrated Cyber-Physical Systems (CPS), i.e., power CPS. This integration of power CPS, 

underpinned by the physical network of primary electrical equipment for energy flow and the 

information network for secondary control and protection information flow, signifies a shift towards 

complex networks where power and information systems converge [4–7]. The architecture of the 

power system from the CPS perspective is depicted in Figure 1, encompassing generation, 

transmission, conversion, distribution, and utilization [8–12]. Measuring devices within the 

information domain transmit operational state data of the electrical grid to the dispatch data network, 

which then, through control centers, computing centers, and data centers, issues system control 

commands that modify the operational state of the physical electrical grid [13–17]. The evolution of 

power systems towards greater dependence on CPS is evident [18–21], but this integration also raises 

the susceptibility of the grid to cyber-attacks [22–25]. 
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Figure 1. Architecture of power system from the perspective of CPS. 

Recent years have seen an increase in cyber-attack incidents where hackers have infiltrated 

power grids, causing significant damage [26–28]. Examples include the Stuxnet virus attacking 

Iranian nuclear facilities in 2010, the BlackEnergy virus attack on the Ukrainian power grid in 2015, 

and the ARP cache poisoning at a U.S. wind farm in 2017, among others. These incidents are typical 

cases where the cyber-physical security of the power systems was compromised, leading to 

widespread outages. 
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Figure 2. Actual cases of cyber attacks against power grid. 

Among the various types of cyber-attacks on power CPS, False Data Injection Attacks (FDIAs) 

are particularly notable due to their accessibility, disruptiveness, and stealthiness [29–31]. Introduced 

by Liu Yao et al. in 2009 [32], FDIAs against state estimation in power grids demonstrate that attackers 

can infiltrate the power CPS information and communication network, gain access to network 

parameters and topological structures, and manipulate measurement devices to create fake data that 

evades bad data detection, thus misleading the control center into making erroneous operational 

decisions, potentially destabilizing the grid [33–37]. FDIAs in power CPS render traditional bad data 
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detection mechanisms completely ineffective, posing a severe threat to the robust operation of the 

power grid [38,39]. The typical process of a power CPS FDIA is illustrated in Figure 3. 
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Figure 3. Typical power CPS FDIAs process. 

Attackers infiltrate monitoring systems through pre-designed intrinsic attack steps, 

intentionally tamper with measurement data to compromise the informational integrity of the power 

CPS [40–42], thereby impacting the upper-level control center's analysis and decision-making, issuing 

control commands that lead to system switches and circuit breaker failures or misoperations, 

resulting in severe consequences such as widespread power outages [43–45]. Analyzing the 

principles and typical processes of FDIAs in power CPS allows us to summarize the characteristics 

of these attacks as follows: 

(1) Cross-domain Coordination: Due to the high integration of information and physical layers 

in power CPS, attackers use diversified network attack methods to infiltrate the information network. 

By probing, elevating privileges, and controlling information systems, the attack crosses from the 

information domain to the power domain, ultimately impacting the physical power grid and causing 

physical failures in the power system across time and space [46–49]. 

(2) Multi-temporal and Spatial Evolution: FDIAs involve multiple attack steps. As time and 

space change, different attack entities interact at various stages, making the co-evolutionary attack 

process complex [50,51]. 

(3) Covert and Persistent Nature: FDIAs, by satisfying state estimation constraints, can 

successfully evade bad data detection mechanisms. Without detection, these attacks subtly influence 

control center decisions, leading to incorrect perceptions of the power system's operational status by 

control personnel. Additionally, attackers often conceal or destroy evidence after an attack to hide 

their tracks. Moreover, to gain extensive control, attackers typically lurk within power systems for 

durations ranging from several hours to days, ready to launch persistent attacks at any time [52–54]. 

Due to the complex characteristics and intricate evolution of FDIAs, existing attack detection 

methods and defense strategies struggle to effectively address FDIAs. The limitations are primarily 

evident in: 

(1) Lack of Characterization Methods for FDIA Evolutionary Processes: Characterizing the 

spatial and temporal evolution of FDIAs could provide theoretical support for researching attack 

detection and data reconstruction methods. However, current achievements are mainly focused on 

modeling attacks such as electrical quantity manipulation, topological alteration, and GPS 

synchronization clock forgery, which do not suit the analysis of the temporal and spatial evolution 

of FDIAs [55,56]. 

(2) Challenges in Feature Extraction for Model-driven Detection Methods: The interactive 

processes in power CPS are complex. Although the characteristic results analyzed by existing model-
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driven detection methods are reasonable and credible, the FDIA model-driven detection processes 

often remain in a passive detection state. Single model-driven methods struggle to comprehensively 

analyze and extract features, thus failing to detect FDIAs efficiently and accurately [57]. 

(3) Poor Interpretability and Significant Data Influence in Data-driven Detection Methods: 

Power CPS operates in a vast state space. Although existing data-driven detection methods can 

uncover underlying data patterns, their mechanism interpretability is poor and unconvincing. 

Furthermore, when system structures change, data-driven methods need time to update information. 

Additionally, FDIA data-driven detection methods are highly susceptible to data quality, facing 

severe issues such as data imbalance, high dimensionality, and difficult samples, which complicate 

the detection process [58]. 

(4) Lack of Data Reconstruction Methods Post-FDIA Detection: When FDIAs are detected 

within power CPS, the affected measurement data is often discarded, severely compromising the 

integrity of the measurement data. In practical power networks, directly discarding a large amount 

of false data may lead to unobservable local areas within the grid, creating blind spots in the network 

state and triggering a series of problems. Existing methods capable of reconstructing necessary data 

for system operation based on the remaining normal measurement data are scarce [59]. 

Recent years have witnessed significant advancements in the integration of cyber and physical 

systems within modern power grids. However, this progress has also introduced new vulnerabilities, 

particularly to FDIAs, which can disrupt system operations, compromise reliability, and cause 

cascading failures. With the increasing adoption of advanced technologies such as AI, IoT, and big 

data analytics, addressing these vulnerabilities has become both a technical and operational priority. 

Existing studies have explored various FDIA detection and defense methods, yet challenges such as 

the complexity of system interactions, the scalability of detection techniques, and the dynamic nature 

of attack scenarios remain unresolved. Moreover, the impact of FDIAs on critical aspects such as grid 

stability, economic efficiency, and system resilience has not been fully quantified in real-world 

applications. This review seeks to address these gaps by comprehensively analyzing the 

technological evolution, current challenges, and emerging trends in FDIA detection and defense. By 

establishing a power CPS coupling security analysis framework, this work aims to characterize the 

temporal and spatial evolution of FDIAs, develop innovative detection and reconstruction methods, 

and enhance the overall security and resilience of power CPS in the face of evolving cyber threats. 

These efforts aim to bridge the gap between theoretical advancements and practical applications, 

ultimately contributing to the development of more robust and intelligent power systems. 

2. Domestic and International Research Status 

This section first analyzes the data transmission scenarios and false data injection methods 

within power CPS, and discusses the impacts of different attack methods. It then explores the current 

state of research regarding the characterization of attack evolutionary processes, enhancement of 

attack detection training data, attack detection methods, and data reconstruction methods. Finally, it 

summarizes the challenges faced in research on false data injection attacks in power CPS. 

2.1. Power CPS Data Transmission Scenarios and False Data Injection Methods 

In power CPS, Phasor Measurement Units (PMUs) collect data such as nodal current phasors 

and voltage phasors [60], which are summarized to the Primary Domain Controller (PDC). Remote 

Terminal Units (RTUs), sensors, or smart meters collect real-time measurement data including nodal 

voltage magnitudes, reactive and active power injections at nodes, as well as reactive and active 

power flow on lines, which are then aggregated into data packets sent to the Supervisory Control and 

Data Acquisition (SCADA) system. Subsequently, the control center performs state estimation on 

these collected data [61,62], which outputs unmeasurable state variables such as voltage angles and 

magnitudes, used for decision analysis in other applications of the Energy Management System 

(EMS) [63,64]. The actual data transmission scenario and the methods of false data injection are shown 

in Figure 4. The injection methods can be categorized into three types: 
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Method 1: In-depth intrusion into the SCADA system, PDC, or communication networks to 

tamper with data, known as information communication network data injection attacks. 

Method 2: Direct tampering with data at remote terminal devices, known as remote terminal 

device data injection attacks. 

Method 3: Intrusion into the control center. 
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Figure 4. Data transmission scenario and false data injection forms of power CPS. 

Due to the stringent security protections at actual dispatch data centers, the third method is 

much more difficult to execute compared to the first two methods. In power CPS, according to the 

principles of "security zoning, network specialization, horizontal isolation, and vertical 

authentication," the information communication network utilizes highly reliable, high-bandwidth, 

and secure fiber optic dedicated networks. The likelihood of FDIAs affecting these communication 

channels and devices is extremely low [65,66]. In contrast, the lower security protection levels of 

public communication networks and secondary devices at grid terminals often become common 

points of FDIA penetration. By targeting these potential security vulnerabilities, attackers can 

successfully execute attacks on power CPS equipment [67–69]. Therefore, the main pathways for 

FDIAs are through the information communication network (method 1) and remote terminal devices 

(method 2). 

2.1.1. Information Communication Network Data Injection Attacks 

Data injection attacks on the information communication network represent top-level CPS 

attacks, typically carried out through side-channel or man-in-the-middle attacks that alter uplink 

measurement data or downlink control commands. This manipulation leads to control devices 

executing incorrect actions, thereby affecting the normal operation of the grid. The attack process 

typically involves three steps: 1) exploiting security vulnerabilities to infiltrate remote interfaces and 

control hosts to extract system control privileges; 2) using message or protocol vulnerabilities to 

extend control privileges to related devices; 3) remotely manipulating or disrupting the normal 

operation of these devices [70]. The impact of FDIAs at different stages of the information 

communication network is analyzed in Table 1. 
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Table 1. Impact analysis of FDIAs on different links for information and communication network. 

Attack Phase Attack Type Attack Impact 

Software Information 

System 

FDIAs targeting software or 

systems 

Modification of software and 

hardware information 

FDIAs targeting control commands Incorrect execution of control 

commands 

Network Access Process 

FDIAs targeting protocol 

vulnerabilities 

Manipulation of network access 

data 

FDIAs targeting data packets Data packet interception and 

tampering 

Physical 

Communication Process 

FDIAs targeting positioning 

signals 

GPS positioning information 

spoofing 

FDIAs targeting time 

synchronization 

PMU data desynchronization 

From Table 1, it is evident that such attacks can lead to alterations in software and hardware 

information, execution errors in control commands, manipulation of data, forgery of information, 

and data desynchronization, ultimately causing controlled physical devices to operate in faulty states 

and disrupting the normal operation of the grid. 

2.1.2. Remote Terminal Device Data Injection Attacks 

Remote terminal device data injection attacks are launched from the lower layers of the CPS. In 

practical power grids, devices such as smart meters, sensors, RTUs, and PMUs are not absolutely 

secure in network security aspects, as they are primarily designed with a focus on effective control 

functionality rather than network security. In certain extreme cases, terminal devices are at risk of 

being attacked, such as through direct physical contact [71]. Attackers exploit security vulnerabilities 

in these devices, breach encryption and authentication mechanisms, and inject false measurement 

data or control commands to achieve their objectives. The impact of FDIAs on different segments of 

remote terminal devices is analyzed in Table 2. 

For remote terminal device FDIAs, as shown in Table 2, these attacks can cause alterations in 

device settings, collection errors, and external execution of control commands, impacting the control 

center’s dispatch decisions, causing devices to execute incorrect instructions, and affecting the safety 

and stability of the grid's operation [72]. 

Table 2. Impact analysis of FDIAs on different links for remote terminal device. 

Attack Phase Attack Type Attack Impact 

Device Management Function FDIAs targeting the device itself Modification of device settings 

Data Collection Process FDIAs targeting measurement 

devices 

Errors in collected switch and 

analog signals 

Command Control Process FDIAs targeting execution devices Incorrect execution of control 

commands 

Regardless of whether it is an information communication network data injection attack or a 

remote terminal device data injection attack, due to different attack stages and methods, the impacts 

of the attacks vary. Therefore, analyzing the impacts of different FDIAs on the grid requires the 

development of security analysis models tailored to specific attack scenarios [73–75]. 
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2.2. Current Research Status on False Data Injection Attacks in Power CPS 

The detection of FDIAs and data reconstruction in power CPS start from enhancing the system's 

own protection capabilities [76,77]. The goal is to interrupt attacks before they can cause severe 

consequences [78–80], leveraging an understanding of the attackers' objectives or behaviors to detect 

their actions, mitigate the actual damage to the grid, and enhance system security [81,82]. In the 

research of FDIA detection and data reconstruction, four key issues need to be addressed: 

2.2.1. Characterization of the FDIA Evolutionary Process 

The essence of characterizing the FDIA evolutionary process is to analyze the temporal and 

spatial evolution mechanisms of FDIAs and to formally represent these processes. The goal is to 

develop models that are applicable for analyzing FDIA detection and data reconstruction scenarios 

[83–86]. Current research on FDIA evolutionary process characterization varies based on the attack 

scenario and includes methods for representing electrical quantity manipulation, topology alteration, 

and GPS synchronization clock forgery attacks, as illustrated in Table 3. 

Table 3. Research status of evolutionary process characterization for FDIAs. 

FDIA 

Evolutionary 

Process 

Characterization 

Methods 

Attack Target  Specific descriptions 

Electrical Quantity 

Manipulation 

Attack 

Characterization 

Electrical 

quantity data 

collected by 

monitoring 

systems 

Linear programming representation model [87] 

Bilevel linear programming representation model [88] 

Heuristic algorithm for solving the evolutionary 

representation model of an attack [89] 

Sparse attack vector representation method [90] 

Optimization representation method for attack-defense 

strategies based on a master-slave game model [91] 

Feasible attack representation model constructed by 

minimizing angular deviation of data from both sides [92] 

Representation method for inferring system topology and 

parameters from cyber-physical measurement data [93] 

Feasible attack domain representation method using a 

mixed integer linear programming model [94] 

Topological 

Manipulation 

Attack 

Characterization 

The power 

system 

network 

topology 

Using an attack tree representation model to implement 

FDIA topological manipulation attacks [95] 

Using a markov representation model to calculate the 

probability of attack success [96] 

Designing attack methods that involve adding and 

simultaneously increasing or decreasing lines [97] 

Fdia representation model considering power flow 

constraints [98] 

Constructing attack vectors based on topology and flow 

data after a line break [99] 
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GPS 

Synchronization 

Clock Forgery 

Attack 

Characterization 

The 

timestamps of 

PMU data 

Introducing an optimal attack representation method 

under the constraint of positional distance differences [100] 

Constructing an attack vector that includes the attacked 

PMU position and optimal phase angle manipulation 

values [101] 

Developing an undetectable GPS clock attack method [102] 

(1) Characterization Methods for Electrical Quantity Manipulation Attack Evolution: These 

methods focus on the electrical quantity data collected by monitoring systems as the target of the 

attack. Reference [87] developed a linear programming representation model aimed at minimizing 

deviations and the number of changed measurements. Reference [88] introduced a dual-layer linear 

programming model that maximizes the consequences of an attack, calculating attack vectors under 

a constrained number of tampering attempts. Reference [89] utilized heuristic algorithms to solve the 

evolutionary representation model of the attack. Reference [90] proposed a method for representing 

sparse attack vectors, constrained by increasing the number of untamperable state variables. 

Reference [91] based on the Stackelberg game model, developed an optimized representation method 

for attack-defense strategies. Reference [92] constructed a feasible attack representation model that 

utilizes the minimization of measurement data deviation angles under unknown system parameters. 

Reference [93] introduced a method for inferring system topology and parameters, which requires 

long-term observation of data from both the information and physical sides. Reference [94] used a 

mixed integer linear programming model to propose a method for determining feasible attack 

domains with only partial system parameter information available. 

(2) Topological Alteration Attack Evolution Representation Methods: These focus on the 

power system network topology as the target of the attack. Reference [95] introduced an attack tree 

representation model that facilitates FDIA topology alteration attacks. Reference [96] proposed a 

Markov representation model that enumerates FDIAs data infiltration attempts into power CPS and 

calculates the probability of successful attacks. Reference [97] developed a representation model 

targeting flow, marginal prices, and generation costs, designing attacks that increase or 

simultaneously increase and decrease lines, and employed a natural aggregation algorithm to solve 

for the attack representation model. Reference [98] aimed to increase customer electricity costs and 

established an FDIA representation model considering power flow constraints. Reference [99] 

constructed attack vectors based on topology and flow data after a line break, using false data 

injection to hide real line breaks, leading to more severe cascading failures. 

(3) GPS Synchronization Clock Forgery Attack Evolution Representation Methods: These 

methods focus on the timestamps of synchronized phasor data collected by PMUs as the target of the 

attack. Reference [100] proposed an optimal attack representation method based on GPS positioning 

and synchronized time under the constraints of positioning distance differences. Reference [101] 

constructed an attack vector that includes the location of the attacked PMU and optimal phase angle 

tampering values, considering the principle of state estimation deviation between PMU and SCADA 

hybrid measurement systems. Reference [102] developed a method for undetectable GPS clock 

attacks, identifying one or more optimal attack targets within the PMU measurement system. 

In summary, current research on FDIA evolutionary process characterization in power CPS is 

diverse and varied, with some focusing on attacks on electrical quantity monitoring data, others on 

switch quantity monitoring data and control commands, and still others on synchronized clock signal 

attacks. However, from any perspective, the current research focuses on attack modeling or 

evolutionary process characterization for specific attack targets and lacks methods that consider "data 

closed-loop flow characteristics" as the driving force for representing the FDIA evolutionary process. 

The essence of FDIA temporal and spatial evolution is the impact of the attack data stream on the 

information flow-energy flow conversion process in power CPS. Most existing studies model specific 

attack scenarios such as electrical quantity manipulation, topology alteration, and GPS 
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synchronization clock forgery, and their representation methods are not suitable for analyzing the 

temporal and spatial evolution of FDIAs, nor can they provide a theoretical basis for subsequent 

FDIA detection and data reconstruction methods. 

2.2.2. FDIA Detection Training Data Enhancement 

Enhancing FDIA detection training data essentially involves algorithmic data balancing and 

redundancy reduction to improve the classification accuracy of detection models and reduce 

computational costs [103,104]. Current research on FDIA detection training data enhancement varies 

based on the data processing method and includes oversampling, undersampling, hybrid sampling, 

and feature selection data enhancement methods, as shown in Table 4. 

Table 4. Research status of training data augmentation for FDIAs detection. 

Data enhancement 

methods 

Specific descriptions Principles 

Over-sampling 

K-nearest neighbor based SMOTE algorithm [105] 

Introduce new 

minority samples 

for balance 

Neighborhood safety coefficient based oversampling 

[106] 

Heilinger distance guided sample synthesis direction 

[107,108] 

Secondary synthetic sample strategy [109] 

Adaptive synthetic oversampling algorithm [110] 

Classification sorting and weight-based oversampling 

[111] 

Under-sampling 

Class overlap degree-based undersampling method 

[112] 
Remove some 

majority samples 

for balance 
Cluster-based undersampling method [113] 

Undersampling + genetic algorithm [114] 

Hybrid sampling 

SMOTE oversampling + EM clustering 

undersampling [115] 

Combine 

oversampling 

and 

undersampling 

for balance 

SMOTE oversampling and fuzzy C-means clustering 

undersampling [116] 

Minority oversampling + editing nearest neighbor 

undersampling [117] 

Random undersampling + SMOTE oversampling 

[118] 

SMOTE oversampling + clustering undersampling 

[119] 

Feature selection 

Feature selection + instance selection [120] 

Select relevant 

features for 

dimension 

reduction 

Firework algorithm based on feature weight selection 

[121] 

Rough balance-based feature selection method [122] 

Feature significance based feature selection method 

[123] 
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(1) Oversampling Data Enhancement Methods involve introducing new minority class samples 

to achieve data balance. Reference [105] addresses the issue of overgeneralization in Synthetic 

Minority Over-sampling Technique (SMOTE) by proposing a k-nearest neighbor-based SMOTE 

algorithm that assigns smaller selection weights to neighboring directions where serious 

overgeneralization may occur. Reference [106] introduced an oversampling method based on 

neighborhood safety coefficients, using inverse neighbor sampling safety coefficients to prevent 

newly generated data from encroaching into other classes' areas. References [107,108] guide the 

synthesis of samples by comparing the Hellinger distance within the neighborhood of minority class 

instances and evaluate the quality of sampling. Reference [109] employs a secondary synthesis 

strategy, performing an initial synthesis based on support for minority class samples containing 

important information, followed by a second synthesis through neighborhood samples of minority 

class sample clusters. Reference [110] uses an adaptive synthetic oversampling algorithm for data 

balancing, providing different weights to minority classes to adaptively generate minority class 

samples. Reference [111] proposed an oversampling method based on classification ranking and 

weights, first sorting within-class samples based on their distance to the hyperplane, then sampling 

the original samples based on the density of data around the sampling points. 

(2) Undersampling Data Enhancement Methods involve removing some majority class samples 

to achieve data balance. Reference [112] proposes an undersampling method based on class overlap, 

selecting samples that are crucial for classification based on the degree of class overlap. Reference 

[113] combines clustering with undersampling to propose a clustering-based undersampling method, 

undersampling the most informative classes by clustering majority class samples. Reference [114] 

introduces a genetic algorithm, combining undersampling with the genetic algorithm to achieve a 

balanced data processing method that trains first and balances later, obtaining multiple sets of classes 

with the highest information value through a single-class classifier, then using the genetic algorithm 

to optimize multiple random undersampled data subsets to achieve the best dataset. 

(3) Hybrid Sampling Data Enhancement Methods combine oversampling and undersampling 

techniques to achieve data balance. Reference [115] mixes the SMOTE oversampling method with an 

Expectation Maximization (EM) clustering undersampling method, with SMOTE responsible for 

oversampling minority class samples and EM for undersampling majority class samples. Reference 

[116] combines the SMOTE method with the Fuzzy C-Means clustering method to make all classes 

have a similar number of instances and randomly selects instances from each cluster to achieve data 

balance. Reference [117] balances multiple classes based on the overlap of classes and uses minority 

oversampling and edited nearest neighbor methods separately for minority and majority classes. 

Reference [118] proposed a multiple random balancing method, using random class proportions for 

random undersampling and SMOTE oversampling, extending it to multiclass imbalanced datasets, 

using randomly generated priors for sampling. Reference [119] performs random balanced 

resampling of majority and minority class samples based on sample weights, using SMOTE 

oversampling for heavily weighted minority class samples and clustering undersampling for heavily 

weighted majority class samples. 

(4) Feature Selection Data Enhancement Methods involve selecting strongly correlated features 

to achieve data dimension reduction. Reference [120] proposes a method combining feature selection 

with instance selection, using feature selection to limit features that may complicate class boundary 

recognition and instance selection to find the right class distribution to address imbalance and 

eliminate noise instances. Reference [121] introduces a fireworks algorithm for feature selection based 

on feature weight selection, continuously updating the optimal feature selection process through 

storage and selection pools. Reference [122] proposes a rough balance-based feature selection 

method, borrowing ideas from random subspace and random forest approaches, randomly 

extracting a subset of attributes from a set containing all attributes to train base classifiers. Reference 

[123] considers class distribution unevenness through feature significance, calculates the feature 

significance of each attribute based on the granular structure of each instance in the boundary region, 

then selects the optimal feature dataset based on feature significance. 
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In summary, current research on data enhancement for training detection models for false data 

injection attacks in power CPS is varied and competitive. However, each method has its drawbacks: 

1) Oversampling methods generate minority class samples that differ from real collected samples, 

increasing sample diversity and quantity while introducing sample noise, which may reduce the 

classification accuracy for minority class samples. 2) Undersampling methods lose a large amount of 

majority class sample data, preventing the model from fully learning the sample features, thus 

reducing the accuracy of majority class sample classification. 3) Hybrid sampling methods do not 

show significant improvement in cases with a low imbalance ratio and have a high time complexity 

for training. 4) Feature selection methods have poor time performance on large datasets, and selecting 

features in noisy classes can reduce the generalization ability of classifiers. 

2.2.3. FDIA Detection Approaches  

FDIA detection essentially involves using data on the operational state of power CPS to 

determine if there are anomalies within the system and to identify whether these anomalies are 

caused by natural faults or by attack events [124,125]. Current research on FDIA detection primarily 

utilizes state estimation, trajectory prediction, and Artificial Intelligence (AI) to detect FDIA 

incidents, as shown in Table 5. 

Table 5. Research status of FDIAs behavior detection. 

Detection 

Methods 

Specific descriptions Advantages and 

Disadvantages 

State 

Estimation 

Equivalent Measurement Transformation + Residual 

Detection Method [126] 

Mature algorithms; 

fast but sensitive to 

threshold settings  Measurement Protection Strategy + State Variable 

Verification [127] 

Parallel Estimators + Improved State Estimation 

Algorithm [128] 

Graph Partitioning + Chi-Square Test Method [129–131] 

Trajectory 

Prediction 

Short-Term State Forecasting + Consistency Testing 

Method [132] 

Detects false data 

well, but high 

complexity and slow; 

unsuitable for 

complex systems  

Generalized Likelihood Ratio+ High-Performance 

Computing [133] 

Multi-Sensor Track Fusion + Particle Filtering [134] 

Artificial 

Intelligence 

XGBoost Load Forecasting + UKF Dynamic Estimation 

[135] 

Strong computational 

capabilities; clear 

framework; generally 

poor interpretability 

Deep Learning Techniques + Feature Extraction [136] 

Batch Processing + Online Learning Algorithms [137] 

Convolutional Neural Network + Model Design [138] 

Equivalent Measurement Transformation+ Residual 

Detection [110] 

 (1) State Estimation Detection Methods: Reference [126] proposed a new method for FDIA 

detection and identification that uses equivalent measurement transformation instead of traditional 

weighted least squares in the state estimation process, with residual detection methods to identify 

FDIA. Reference [127], after analyzing the FDIA process, explored a detection method by 
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independently verifying or measuring state variable values chosen by a set of strategic sensor 

measurements. Reference [128], considering the robustness of different state estimators, improved 

the grid state estimation attack detection by running multiple robust least squares estimators with 

different breakdown points in parallel, thereby enhancing the overall network security of power CPS 

state estimation. References [129,130] proposed a tolerable FDIA detection method based on extended 

distributed state estimation, using graph partitioning to divide the power grid into multiple 

subsystems. Each subsystem is expanded to generate extended subsystems, and the chi-square test is 

used to detect erroneous data in each expanded subsystem. This significantly differentiates false data 

from normal observational errors, thus enhancing detection sensitivity. The existing state estimation 

detection methods are passive, with the advantage of using mature algorithms that can reflect the 

characteristics of power CPS well and provide fast detection speeds [131]. However, their drawback 

lies in their susceptibility to detection threshold settings, which can lead to high rates of false 

negatives or false positives. 

(2) Trajectory Prediction Detection Methods: Reference [132] extended the approximate direct 

current model to a general linear model, derived a universal FDIA model, and based on this 

developed a short-term state prediction method considering temporal correlations and statistical 

consistency testing methods to verify the consistency between predicted and received measurement 

values. Reference [133] proposed a generalized likelihood ratio sequence detector to address FDIA 

detection, which is robust against various attack strategies and load conditions in power systems, 

and its computational complexity is linearly proportional to the number of measurement devices, 

ensuring high-performance characteristics of the detector. Reference [134] introduced a multi-sensor 

trajectory fusion model prediction method to extract initial correlation information of attacked 

oscillation parameters, using a Kalman-like particle filter smoother at each monitoring node, and 

diagonalized this smoother into subsystems to handle continuous load fluctuations and disturbances 

caused by FDIA in the grid. Existing trajectory prediction detection methods are passive, with the 

advantage of predicting the distribution of state variables based on the historical database and 

operational rules of the system, matching operational trajectories, and effectively detecting various 

types of false data. However, their drawbacks include inapplicability to complex systems, slow 

detection speeds, and high computational complexity. 

(3) AI Detection Methods: Reference [135] proposed a grid FDIA detection method based on 

XGBoost combined with Unscented Kalman Filter (UKF), where XGBoost load prediction results are 

adaptively mixed with state quantities obtained from UKF dynamic state estimation. This method 

uses the central limit theorem to compare the distribution of random variables for FDIA detection. 

Reference [138] used deep learning techniques to extract historical measurement data characteristics 

of FDIA behaviors and employed the captured features for real-time FDIA detection, effectively 

relaxing assumptions about potential attack scenarios and achieving high detection accuracy. 

Reference [137] combined batch and online learning algorithms (supervised and semi-supervised) 

with decision and feature-level fusion to build an attack detection model, analyzing the statistical 

and geometric properties of attack vectors used in attack scenarios and learning algorithms to detect 

unobservable attacks. Reference [138] constructed an FDIA detection model based on an improved 

convolutional neural network, implementing an efficient real-time FDIA detector based on the 

proposed model. Existing AI detection methods are active, with the advantage of a clear framework 

and strong computational power, but they suffer from poor interpretability under the complex 

operational mechanics of power CPS. 

In summary, current research on FDIA detection in power CPS is diverse and strong in various 

aspects. Some focus on state estimation for detection speed, others on trajectory prediction for 

accuracy, and still others on AI for computational power and framework. However, each approach 

has its strengths and weaknesses. This paper tentatively classifies state estimation and trajectory 

prediction as model-driven methods, and AI approaches as data-driven methods, offering a 

comprehensive analysis of both: on one hand, model-driven methods are theoretically supported, 

producing reasonable and credible feature results. On the other hand, purely data-driven AI 
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methods, although capable of uncovering underlying data patterns, suffer from poor interpretability 

and credibility, especially when system structures change and data-driven methods require time to 

update information. In the vast state space of power CPS, relying solely on model-driven methods 

makes it challenging to analyze and extract features comprehensively, whereas data-driven methods 

can capture features that may not yet be understood, overly simplified, or overlooked in theoretical 

analysis. 

2.2.4. FDIAs Data Reconstruction in Power CPS 

FDIAs data reconstruction is fundamentally a corrective protection method that uses knowledge 

of attack vectors or system characteristics to reconstruct damaged data and control signals, aiming to 

achieve desired control effects [139]. Current research on FDIAs data reconstruction is mainly divided 

into two categories: state-aware attack data reconstruction methods and action control attack data 

reconstruction methods, as illustrated in Table 6. 

Table 6. Research status of FDIAs data reconstruction. 

Reconstruction 

methods 

Specific descriptions Response 

Strategies 

State Awareness 

Attack Data 

Reconstruction 

Method 

Online GAN Measurement Data Reconstruction 

Method [140,141] 

Response to 

Attacks 

Targeting State 

Awareness 

Derivation of Reconstruction Matrix to Correct 

Attacked Angle Counters [142] 

Using IGAN to Reconstruct Attacked Measurement 

Data [143] 

Utilizing System Model to Calculate and Reconstruct 

Monitoring Errors [144] 

Determining Mode Parameters and Reconstructing 

Mode Analysis Results [145] 

Using SAGAN Generated Data to Restore Deceptive 

Data [146,147] 

Using MisGAN to Reconstruct Malicious Attack Data 

[148] 

Using WAE Model to Restore Anomalous Data [149] 

Action Control 

Attack Data 

Reconstruction 

Method 

Deriving FDIAS Signal and Its Reconstruction, 

Reference [150] 

Response to 

Attacks 

Targeting 

Control 

Functions 

Adjustment Method for Feedback Controller Gain 

Parameters [151] 

DER Attack Scenario Data Reconstruction Control 

Scheme [152] 

(1) State-Aware Attack Data Reconstruction Methods: These methods address attacks targeting 

state awareness. References [140,141] proposed an online Generative Adversarial Network (GAN) 

measurement data reconstruction method for FDIAs, effectively reducing the impact of FDIAs on the 

power grid. Reference [142] introduced a method based on phase angle deviations to determine the 

presence of FDIAs and, based on this determination, to localize the attack and correct the affected 

phase angle data using a reconstruction matrix. Reference [143] utilized a Wasserstein GAN (WGAN) 

to reconstruct attack measurement data, achieving data integrity defense. Reference [144] employed 
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an approximate Bayesian filter for attack vector estimation and attack detection, reconstructing 

monitoring errors using the system model based on dynamic power system model analysis of PMU 

measurement data. Reference [145] proposed a method based on spatial distribution deviation and 

historical bias to determine the existence of GPS spoofing attacks, deciding whether to reconstruct 

the pattern analysis results based on model parameters. References [146,147] improved a Self-

Attention Mechanism GAN (SAGAN) through training, using the generator to restore deceptive data 

and enabling proactive defense against GPS spoofing attacks in smart grids. Reference [148] used a 

GAN trained on incomplete data (MisGAN) to reconstruct malicious attack data in a pervasive power 

IoT environment. Reference [149] applied a Variational Autoencoder (VAE) model to restore 

anomalous data to normal operating states, achieving FDIAs data reconstruction. 

(2) Action Control Attack Data Reconstruction Methods: These methods address attacks 

targeting control functions. Reference [150] used an adaptive sliding mode observer to calculate 

errors in system control and state variables, detecting the presence of FDIAs and reconstructing the 

signals in case of an attack. Reference [151] proposed a method to adjust feedback controller gain 

parameters using an energy storage system frequency control signal as an example. Reference [152] 

designed a reconstruction control scheme suitable for microgrid Distributed Energy Resource (DER) 

attack scenarios, adopting centralized and distributed control methods for normal DER devices and 

those affected by attacks, respectively, and implementing additional control loops and adjusting 

frequency reference values to ensure stable operation and frequency control of the microgrid. 

In summary, current research on data reconstruction for FDIAs in power CPS is vibrant and 

varied. However, there are several limitations in the existing research: 1) Electrical quantities 

collected by power CPS have certain characteristics of normal measurement data, but existing FDIA 

data reconstruction methods lack consideration for the distribution characteristics or patterns of 

electrical quantities; 2) Existing FDIA data reconstruction methods involve the removal, correction, 

or restoration of measurements, but due to computational resource limitations, convergence speed, 

and the dynamic variability of power systems, issues such as gradient vanishing can arise. 

2.3. Challenges in Research on FDIAs in Power CPS 

(1) The Essence of CPS and the Impact of FDIAs: Power CPS fundamentally involves the cyclic 

conversion between information flow and energy flow, while the essence of FDIA temporal and 

spatial evolution is the impact of the attack data stream on this conversion process. Most existing 

research models specific attack scenarios such as electrical quantity manipulation, topology 

alteration, and GPS synchronization clock forgery, with their representation methods not suitable for 

analyzing the temporal and spatial evolution of FDIAs. There is a lack of methods to characterize the 

FDIA evolutionary process from the perspective of CPS “data closed-loop flow characteristics” [153–

156]. 

(2) Challenges of High-Risk, Low-Frequency Events in Power CPS: FDIAs in power CPS are 

"low-probability, high-risk" events characterized by imbalanced attack samples, high data 

dimensions, and noise. From a data-driven perspective, these characteristics are not conducive to 

training FDIA detection models, leading to low detection accuracy, slow real-time detection 

efficiency, and poor generalization capabilities [157,158]. 

(3) Passive Detection Status of FDIAs and Related Issues: Power CPS FDIAs often remain in a 

passive detection state. Model-driven detection methods struggle with feature extraction, and data-

driven detection methods have poor interpretability. Additionally, conventional fault measurement 

data and FDIA measurement data have high similarity, making it difficult for single model-driven or 

data-driven detection methods to accurately classify challenging samples, resulting in high false 

positive and false negative rates [159–161]. 

(4) Immediate Action Required Upon Detection: To prevent further impact of false data on 

power CPS, it is crucial to promptly remove detected false data. However, this removal can severely 

compromise the integrity of PMU data and other measurements. In practice, when a large amount of 
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false data is detected and removed, it can lead to unobservable local areas within the grid, thereby 

triggering a series of problems [162–164]. 

3. Future Research Directions 

To address the challenges identified in this review and advance the resilience and security of 

power CPS, future research should focus on the following areas with clear technical pathways: 

3.1. Comprehensive Characterization of FDIA Temporal-Spatial Evolution 

FDIAs exhibit complex temporal and spatial evolution characteristics, significantly impacting 

the interaction between information and energy flows in CPS. Existing studies primarily focus on 

specific attack scenarios, such as electrical quantity manipulation or topology alterations. However, 

future research should aim to develop unified modeling frameworks that capture the broader "data 

closed-loop flow characteristics" of CPS. Advanced techniques, such as graph neural networks 

(GNNs), spatiotemporal correlation models, and causality analysis tools, can be employed to uncover 

latent relationships between cyber events and physical system responses. Additionally, hybrid 

models integrating system dynamics with real-time network behaviors could provide valuable 

insights into the propagation and mitigation of cascading failures caused by FDIAs. 

3.2. Hybrid Detection Frameworks Integrating Model- and Data-Driven Approaches 

Current detection methods often rely on either model-driven or data-driven approaches, each 

with inherent limitations. Model-driven methods provide theoretical robustness but struggle with 

scalability in complex systems, while data-driven techniques offer adaptability but lack 

interpretability. Future research should focus on hybrid frameworks that leverage the strengths of 

both approaches. For instance, explainable AI (XAI) can enhance the transparency of data-driven 

methods, allowing system operators to understand and trust detection results. Additionally, 

integrating domain-specific knowledge from physics-based models with machine learning 

algorithms can improve detection accuracy in dynamic environments. Practical implementations 

could include multi-layer defense architectures combining real-time anomaly detection with 

predictive diagnostics. 

3.3. Advanced Data Augmentation for FDIA Detection 

Training robust detection models requires addressing the imbalance and high-dimensional 

nature of FDIA datasets. Existing methods, such as oversampling and undersampling, often fail to 

preserve the statistical characteristics of minority-class samples. Future research should explore 

advanced techniques, such as generative adversarial networks (GANs), to create realistic synthetic 

data for training. Federated learning frameworks could enable multiple entities to collaboratively 

train detection models without compromising data privacy. Furthermore, automated feature 

engineering methods, including dimensionality reduction and clustering algorithms, can help extract 

meaningful patterns from high-dimensional datasets, improving detection performance. 

3.4. Resilient Data Reconstruction Techniques 

When FDIAs compromise measurement data, ensuring the integrity and availability of system 

information is critical. Current reconstruction methods often ignore the dynamic variability of CPS 

data and may lead to system observability gaps. Future research should develop probabilistic 

models, such as VAEs, and self-supervised learning techniques to recover missing or corrupted data 

while preserving its statistical and temporal characteristics. Incorporating robust optimization 

methods, such as reinforcement learning, can enhance real-time decision-making during 

reconstruction. Case studies on practical power grid scenarios will help validate these methods and 

improve their applicability. 
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3.5. Information Security in Integrated Energy Systems 

Integrated energy systems (IESs) represent the convergence of electricity, gas, heat, and 

renewable energy resources [165–168], creating unique cybersecurity challenges. Unlike traditional 

power grids, an IES involves uncertain renewable energy resources [169,170], together with multiple 

domains with varying communication protocols and security vulnerabilities. Future research should 

develop cross-domain security frameworks that address these challenges by leveraging blockchain 

for secure transactions, digital twins for real-time threat simulations, and multi-layered defense 

strategies to mitigate cascading attacks. For instance, adaptive intrusion detection systems could 

analyze communication patterns across domains, enabling early detection of cyberattacks. 

Collaborative efforts between researchers and industry stakeholders are essential to develop scalable 

solutions tailored to the complexity of IESs. 

3.6. Integration of Emerging Technologies 

Emerging technologies offer transformative opportunities to enhance CPS and IES security. 

Blockchain can ensure tamper-proof records for critical data exchanges [171], while digital twins can 

model and simulate system behaviors to anticipate vulnerabilities [172]. Data Encryption is able to 

enchane the security of CPS [173]. In addition, advanced AI is capable of optimizing the secure and 

economic operation of CPS and identifying appliances’ behaviors through appliance-specific 

networks [174,175]. Quantum computing, with its unparalleled computational capabilities, could 

revolutionize attack detection and optimization methods by accelerating the resolution of complex 

problems [176]. Future research should focus on integrating these technologies into practical systems, 

emphasizing interoperability, scalability, and cost-effectiveness. Pilot projects demonstrating their 

real-world applications in smart grids and multi-energy systems will be instrumental in gaining 

broader acceptance. 

3.7. Policy and Standardization 

The development of robust technical solutions must be complemented by clear regulatory 

frameworks and international standards to ensure widespread adoption. Future research should 

explore the interplay between technology and policy, focusing on areas such as data privacy, cross-

border energy trading, and incident response protocols. For example, establishing guidelines for 

cybersecurity audits and compliance in CPS and IES environments can promote trust among 

stakeholders. Collaborative efforts between academia, industry, and regulatory bodies are essential 

to develop cohesive strategies that balance innovation with security requirements. 

4. Conlcusions 

This review has comprehensively examined the detection, evolution, and data reconstruction 

strategies for FDIAs in CPS. By analyzing the temporal and spatial evolution of FDIAs, this work has 

highlighted the significant vulnerabilities introduced by the integration of cyber and physical 

domains in modern power systems. A critical assessment of existing detection methods has revealed 

gaps in addressing the scalability, interpretability, and resilience of current solutions. Similarly, data 

reconstruction approaches were evaluated, underscoring the challenges of maintaining data integrity 

and system observability during and after an attack. 

Future research must focus on developing unified frameworks that incorporate advanced 

modeling techniques, such as spatiotemporal analysis and machine learning, to better characterize 

FDIA evolution and enhance detection accuracy. The integration of emerging technologies, including 

blockchain, digital twins, and quantum computing, also holds promise for improving system 

resilience and operational security. 

By addressing the identified challenges, this work aims to bridge theoretical advancements with 

practical applications, contributing to the development of robust, intelligent, and secure power CPS 
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capable of withstanding evolving cyber threats. These efforts not only safeguard the reliability of 

power grids but also provide a foundation for the broader adoption of integrated energy systems. 
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