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Abstract: This work studies the discontinuities features of sedimentary flysch materials in a 100 km? area
belonging to the Basque Arc. Such materials are common in this Spanish Alpine region located in the north of
the Iberian Peninsula. Among the different geological materials, sedimentary flysch formations are a common
source of slope instabilities and other geotechnical problems, which many times appear during the construction
phase of a project (like roads and railways) or afterwards, during its exploitation phase. A good understanding
of the behavior of those challenging materials is therefore essential to ensure a sustainable approach. A total of
33 outcrops are investigated by an intensive geotechnical investigation including geomechanical stations,
boreholes and mechanical laboratory tests. Two flysch units are characterized: the Upper Aguinaga Formation
or siliciclastic flysch, and the Lower Itziar Formation or calcareous flysch. Differences between both flysch
formation are found. Joints in the siliciclastic flysch formation present an undulated roughness, with a spacing
narrower and a persistence lower than in the calcareous flysch formation, which exhibits higher friction ang]les,
although roughness is essentially planar. In addition, the potential of using Artificial Intelligence (AI)
techniques, particularly Artificial Neural Networks and Support Vector Machine, to estimate the Geological
Strength Index (GSI) from the Rock Quality Design (RQD) and some discontinuities features (spacing,
persistence, aperture and roughness) is investigated. Al techniques are found to be satisfactory, being the
Support Vector Machine with a linear kernel the technique which achieves the best performance. It should be
note that Al integration is becoming a common practice in a sustainable approach of geotechnical problems,
since it helps in the analysis of complex geological data, reduces the need for extensive field surveys and
optimizes resource usage.

Keywords: Flysch materials; Geomechanical characterization; Discontinuities; Geological Strength Index; Al
tools; Artificial Neural Network; Support Vector Machine

1. Introduction

Unlike soils, the geomechanical behavior of rock masses is conditioned by discontinuities. In
sedimentary rock masses, common discontinuities include bedding planes (stratification), faults and
joints. Discontinuities may cause addressing the geomechanical behavior of rock masses to be
difficult, so traditionally, geomechanically classifications like Bieniawski’s RMR [1] or Barton’s Q
index [2] are used. When only discontinuities are to be considered, the Geological Strength Index,
GSI [3,4], provides a good insight of the state of the rock mass. One of the main uses of the GSI is as
an input of the well-known Generalized Hoek-Brown failure criterion [5].

Among the different geological materials, sedimentary flysch formations are a common source
of slope instabilities and other geotechnical problems, which many times appear during the
construction phase of a project (like roads and railways) or afterwards, during its exploitation phase.
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This issue increases the environmental impact of such projects, and it also contributes to increase
their carbon footprint as more work actions are needed to be conducted. A good understanding of
the behavior of those challenging materials is therefore essential to ensure a sustainable approach.

In Spain, flysch formations can be found in the Basque Arc, an area geologically belonging to the
Basque-Cantabrian Basin, an inverted Mesozoic extensional basin, connecting the Pyrenees in the
East and the Cantabrian Mountains in the West. In previous research [6], the authors studied such
flysch materials, in particular the ones found in an area of approximately 100 km2 around the town
of Astigarraga (Basque Country, Spain). That work aimed at characterizing the rock mass following
the classification proposed by Morales et al. [7]. These authors use the GSI modified for flysch
formations [4] and the uniaxial compressive strength of the intact rock to define the rock mass
properties (in terms of Hoek-Brown parameters).

The present work studies the flysch materials on such area, but it is focused on the
discontinuity’s features. The work makes use of a broad geological-geotechnical investigation
involving 40 boreholes, laboratory tests on 124 undisturbed rock samples and geomechanical stations
on 33 locations. Additionally, two Artificial Intelligence (Al) techniques were used to estimate the
GSI for flysch materials from the Rock Quality Design, RQD [8], and four discontinuity features
(spacing, persistence, aperture and roughness). The GSI is a geomechanical index envisage to be
easily obtained in field using a chart, based on the description of the rock mass geological structure
and the discontinuities surface condition. This procedure requires some practitioner experience
though. Some authors [9-11] proposed a more quantitative approach to obtain the GSI, but such
expressions are designed for hard rocks and not very heterogeneous formations like flysch.
Therefore, the GSI definition for flysch materials still relays on practitioner experience. Al techniques
can provide an alternative way of yielding quantitative expression to define this index. It should be
note that Al integration is becoming a common practice in a sustainable approach of geotechnical
problems, since it helps in the analysis of complex geological data, reduces the need for extensive
field surveys and optimizes resource usage. In this work, Artificial Neural Networks (ANNs) and
Support Vector Machine (SVM) Al techniques were selected. ANN is of common use in civil and
geotechnical engineering [12-17] while SVM has also been used in geological engineering for solving
multiclass problems [12,18,19].

2. Geographical and geological setting

The study area lies in the Basque-Cantabrian Basin, located in the northern Iberian margin
(Figure 1). The basin consists of a Mesozoic salt-bearing narrow rift basin [20,21] inverted during the
Alpine orogeny [22,23]. The Mesozoic extension can be subdivided into two rift periods. The first
phase took place from Permian to Triassic times [24,25], followed by a tectonic quiescence phase from
Early to Middle Jurassic times [26]. The opening of the North Atlantic and the Bay of Biscay-Pyrenean
rift system triggered the main and second rifting phase during the Late Jurassic and Early Cretaceous
times (e.g. [27-29]). Overall, the basin is filled by several kilometers of a succession composed of
marine carbonate and coastal siliciclastic deposits [28]. From Late Cretaceous to Miocene times, the
rift basin was inverted due to the convergence between Iberia and Eurasia, resulting in the
development of the E-W oriented orogenic Pyrenean-Cantabrian belt along the northern Iberian plate
margin [30-32]. The synorogenic sedimentary record is mostly characterized by clastic material
deposited and preserved in the Villarcayo and Bureba synclinal sub-basins, and especially in the
Duero and Ebro foreland basins. The junction between them presents a drainage system controlled
by the Miocene to present-day tectonic regime [33].

West of the Paleozoic Cinco Villas Massif lies the Basque Arc, a south and north-verging thrust
belt (Figure 1), characterized by its arched shape and considered as the most intensively deformed
area of the Basque-Cantabrian Basin [34]. This tectonic arc is affected by NW- and NE-directed thrust
faults, sub-vertical strike-slip faults and NW-SE oriented major folds, which are represented by the
Bilbao anticlinorium, the Biscay synclinorium and North-Biscay anticlinorium from south to north
[35].
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Figure 1. Simplified geologic map of the eastern portion of the Basque-Cantabrian Basin showing the
location of the study area (star). Inset indicates the location of the detailed map depicted in Figure 2.
Modified from [6,35].

The study area is based on a railway track running through an area located between the Cinco
Villas Massif and the eastern termination of the North-Biscay anticlinorium. The track consists of an
8-km-long projected stretch of the high-speed Vitoria-Bilbao-San Sebastian railway line that will
connect, from north to south, the locations of Renteria and Hernani through the Astigarraga village
(Figure 2). The construction of the railway will encounter a wide range of different lithologies which
recorded the Mesozoic paleogeographic evolution of the Basque-Cantabrian Basin in the region.

The Mesozoic sedimentary record in the area starts with the Late Triassic extension phase, which
is represented in by a thick package of evaporites and shales with dolerite intrusions, the so-called
Keuper Formation [36,37]. This salt unit is responsible for the diapirism and constitute the main
detachment level for the thin-skinned deformation in the Basque-Cantabrian Basin and the Pyrenees
[38—42]. A thick package of limestones, dolostones and marlstones was deposited on top of the
evaporite unit as result of the regional sag-type subsidence after the first rifting phase [43—45]. The
Lower Jurassic dolostones act as a reservoir for the CO:z geological storage pilot plant of Hontomin in
the southernmost portion of the Basque-Cantabrian Basin (e.g. [46]). The second rift phase starts with
the deposition of Urgonian reef limestones with intercalations of sandstones, claystones and
marlstones of Aptian to Early Albian in age. The syn-rift infilling resumed with the Oiartzum
Formation (late Albian to early Cenomanian), represented by fluvial to transitional conglomerates,
sandy calcarenites and sandstones. The following succession consists of a turbiditic unit (calcareous
and siliciclastic flysch facies) deposited in a deep open marine environment from Campanian to Early
Paleogene times. The Meso-Cenozoic basin is overlain by Quaternary fluvial and colluvial deposits
(Figure 2).
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Figure 2. Detailed geologic map and schematic stratigraphic section of the studied area showing
sample locations (33) on the “Calcareous Flysch” (blue stars) and the “Siliciclastic Flysch” (red stars).
Modified from [6,47].

The present work comprises data obtained from the Upper Cretaceous turbiditic sequences, also
known as the “Upper Cretaceous flysch” [47]. The flysch formation is represented by a relatively
thick package of more than 700 m of interbedded marlstones and marly limestones, changing to
quartz-rich clastic turbidites towards the top of the succession. Thus, two main units can be
differentiated in terms of their lithology and timing of deposition: 1) the Lower Itziar Formation or
“calcareous flysch” (Cenomanian-Turonian); and 2) the Upper Aguinaga Formation or “siliciclastic
flysch” (Santonian-Campanian) [48]. These formations were deposited at the initial stages of the
convergence between Eurasia and Iberia in an intraplate trough, inherited from smaller rift basins
developed in the Basque-Cantabrian Basin [49-51]. The water depth is estimated between 800 to 1500
m in which the sediments were deposited in hemipelagic settings during an increased subsidence
stage. A subsequent relative tectonic quiescence highly decreased the subsidence from Maastrichtian
to Paleocene times [51].

3. Materials and Methods

3.1. Field tests

A comprehensive geological-geotechnical investigation was performed, including 24
petrographic analyses, 33 geomechanical stations and 40 boreholes. A total of 33 locations (outcrops)
were studied, 18 in the upper flysch unit and 15 in the lower flysch unit. Boreholes were drilled with
an 89 mm core drill, ranging from depths of 16 to 114 meters.

Geomechanical stations provided insights into the composition of intact rock and any structural
irregularities, detailing their types (such as joints and faults), orientations and key properties like
spacing, persistence and aperture. To assess the rock's overall fracturing state, discontinuities were
analyzed through stereographic projection. This projection method involves categorizing these
irregularities based on shared characteristics.
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3.2. Laboratory tests

A total of 124 undisturbed rock samples were collected for various laboratory tests, including
uniaxial compressive strength, point load, Brazilian and triaxial tests [6]. Direct shear tests were
conducted to determine the angle of friction for rock joints. Identification tests, such as unit weight
measurement, were also performed. These tests followed ISRM [52,53] and ASTM standards [54-58].
The RQD value was either directly obtained from borehole data through drilling or calculated using
Palmstrom’s [59] correlation method, based on the volumetric joint count value (Jv) and obtained
from geomechanical stations.

3.3. Artficial Neural Networks

Current ANN algorithms are based on the backpropagation neuron [60]. In this work, the Matlab
commercial software v. R2023, especially the Neural Network Toolbox, was used to build a series of
feedforward multilayer perceptron networks. In essence, such kind of ANNs consists of a series of
interconnected layers (Figure 3), with each layer containing a series of neurons connected to all
neurons located in previous and following layers (but not in the same layer). A neuron (1) receives a
value from each neuron in the previous layer, (2) linearly combines such values according to a series
of weights (which correspond to the interconnection with the other neurons) and (3) delivers the
output by applying a “transfer function” to the result of the linear combination. The first layer of
neurons is the “input layer” and contains the input values of the system. Therefore, its number of
neurons is equal to the number of inputs and no lineal combination nor transfer function is applied.
The last layer, or “output layer”, contains a number of neurons equal to the number of outputs of the
system. Layers between the input and output ones are called “hidden layers” and the neuron at them
“hidden neurons”. The number of hidden layers and neurons is unknown and depends on the
problem under study (e.g. [16,17]).

Intputlayer Hidden layer Output layer

Output
neuron

—— output
value

\ J l . Neuron
Weights

Neuron inputvalues

[ ]
[ [ ]
[ ] [ ]
Information flow
[ —

Figure 3. Feedforward Artificial Neural Network scheme.

To set the weights of each linear combination on each neuron, ANNSs are trained by cases where
inputs and their corresponding outputs are known. The Lavenberg-Marquardt algorithm with back-
propagation was used in this work to train the ANNSs. Basically, starting from random weights, the
ANN is run and the error between the computed outputs (given by the ANN) and the target outputs
(known value) is propagated backwards, modifying the weights. The process is continued until an
error predictor is reduced to a certain value (or until a maximum number of iterations or epochs is
reached). As a predictor, the Mean Squared Error (MSE) is normally used:

1 n
MSE == (T, = 0" (1)
i=1

where Ti is the target output; and Oi is the computed output.
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Performance of an ANN developed is assessed at training as well as by testing it against other
cases not used for training where inputs and their corresponding outputs are known. Coefficient of
determination R?, MSE and other common statistical parameters are used. If a satisfactory
performance is achieved, the resulting ANN can be used as a pretrained regressor to make
predictions.

In this work, 70% of the available data was randomly selected for training. The remaining 30%
was used for testing. Number of epochs was set to 3000. One hidden layer was defined, selecting a
sigmoid function as the transfer function for hidden neuron. In the output layer (with only one output
neuron, the GSI), a linear function was set as transfer function. Taking that into account, the ANNs
developed can be mathematically expressed as:

1
GSI=0:+BZI+€_Z;Z=Zwi-inputi+a)0 )
j i

where inputi is a vector with the value of the corresponding input variables; o and 3 are two numbers
corresponding to the weight and the bias of the output neuron; wi is the vector with the weights of

the hidden neurons and wo is the bias of such hidden layer. Index j corresponds to the number of
hidden neurons, normally found between the number of inputs and outputs and established by a
trial and error process [16,17].

Equation (2) is a pretrained regressor that allows obtaining the output value of the ANN by a
mathematic expression (e.g. [13]). However, to ensure the stability of the training process and obtain
a higher degree of accuracy, input and output data should be normalized before developing any
ANN, and such normalization must be considered in Equation (2). In this work, normalization was
done by dividing each variable by the maximum value attained for the variable considered. For
instance, for a given input:

input

®)

input ize — ——— <
PUlnormaiize max (mput)

where max(input) refers to the maximum value that such input takes for the whole data considered.

A total of 20 network architectures 27-X-1 were set (being 27 the number of input neurons, see
4.3, X the number of hidden neurons and 1 the output neuron, the GSI), ranging the number of hidden
neurons X from 5 to 25. For each architecture, 100 models were considered (this means running a
total of 2000 models) to find the optimum ANN with the best performance for each architecture both
at training and testing.

3.4. Support Vector Machine

The SVM technique appeared in the early sixties [61] and consists of using algebraic methods to
find linear decision boundaries (“hyperplanes”) that separate variables. If data are nonlinear, a kernel
function (linear, polynomial and sigmoidal) [62,63] may be used to transform such data into higher
dimensions, where finding the hyperplanes is possible. In this work, the Matlab commercial software
v. R2023 was used to apply the SVM technique, particularly the Deep Learning Toolbox and the
function “fitcecoc”.

Like ANN, training of SVM is done by cases where inputs and their corresponding outputs are
known. However, training of a SVM algorithm is similar to solving a quadratic programming
problem. The objective is finding the best hyperplane with the largest “margin”, i.e. a hyperplane
with the maximum width of the slab parallel to the hyperplane (margin) with no interior data points.
For instance, given a linear hyperplane f(x) defined by a parameter 3, the aim is minimizing the norm
of B so the margin is maximum. This is done by maximizing a series of Lagrange multipliers o; that

optimized the expression:
1 !
L, = Zaj —EZZajakyjykxjxk (4)
J ik


https://doi.org/10.20944/preprints202312.1455.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1455.v1

where yj is the output data and xj are the data vectors corresponding to the inputs. The term Zajyix;
corresponds to the hyperplane (parameter ). Data points xj corresponding to nonzero o; values are
called support vectors.

Performance of SVM developed is, as in the case of ANN, assessed at training as well as at testing
against other cases not used for training where inputs and their corresponding outputs are known
(using R?, MSE and other statistical parameters). If an acceptable performance is achieved, the
resulting SVM can be used as a pretrained regressor to make predictions. Unlike ANN, SVM does
not need the input and output data to be normalized, but, due to its algebraic nature, the pretrained
regressor cannot be easily written as a simple mathematical expression.

As in the case of the ANN developed, in this work 70% of the available data was randomly
selected for training, using the remaining 30% of data for testing. Two kernel functions were
considered: linear and gaussian (radial basis function). For each kernel function, 1000 models were
considered to find the optimum SVM model with the best performance.

4. Results

4.1. Field tests

Geomechanical assessments of flysch materials indicated the presence of at least three sets of
discontinuities, occasionally four. Notably, no faults were found in either flysch unit. These findings
align with the ISRM (1981) classification, which categorizes the level of fracturing in the studied rock
masses as class VI ("three sets of discontinuities") and class VII ("three sets of discontinuities plus an
occasional one"). Furthermore, the block shape observed in the slope inventory revealed that the rock
masses analyzed primarily consisted of tabular-prismatic blocks, often vertically flattened and
occasionally exhibiting a planar shape. This block morphology is characteristic of flysch deposits.

The discontinuities structural parameters were recorded in each outcrop from the two studied
flysch units (Figure 4). Most of the studied outcrops related to the siliciclastic flysch formation are
represented by 20 to 200 mm in terms of spacing. For the carbonated flysch formation, the spacing
increased, ranging from 20 to 600 mm.
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Figure 4. Discontinuities structural parameters.

In terms of persistence strike/dip parameter, the siliciclastic flysch is characterized by very low
(<1 m) to low (1 — 3 m) values, while the carbonated flysch is mainly represented by low persistence
values. The rock fracture aperture is also differentiated between the two formations. The siliciclastic
flysch shows two types of apertures, very tight (< 0.1 mm) to tight (0.1 — 0.25 mm) and opened to
moderately wide (2.5 -10 mm), whereas the highest values of the carbonated flysch outcrops are
concentrated in the very tight to tight aperture. The undulated roughness, both rough and smooth,
is representative of the siliciclastic flysch, followed by the irregular roughness (rough). The
carbonated flysch presents the highest values related with planar roughness (rough and smooth),
followed by undulated (smooth). The seepage also shows notable differences between both units,
where most of the outcrops of the siliciclastic flysch unit are dry, while those in the carbonated flysch
are mostly wet.

Table 1 provides the rock mass geomechanical behavior at the 33 investigated flysch outcrops.
It includes the intact rock uniaxial compressive strength (o«), the RQD, the RMR quality index and
the GSI (following the modifications proposed by [4] for flysch formations).

Table 1. Results of the geomechanical tests.

PointGeological flysch unito. (MPa)RQDRMRGSIPointGeological flysch unito« (MPa)RQDRMRGSI

1 Siliciclastic 37.7 50 60 54 18 Calcareous 274 45 41 36
2 Siliciclastic 424 45 62 55 19 Siliciclastic 50.2 70 74 69
3 Siliciclastic 400 55 57 52 20 Siliciclastic 51.3 77 74 69
4 Siliciclastic 423 65 61 48 21 Calcareous 25.6 26 23 20
5 Siliciclastic 38.6 63 64 47 22 Calcareous 30.1 18 26 18
6 Siliciclastic 40.1 65 47 35 23 Calcareous 31.0 43 49 41
7 Siliciclastic 41.1 54 58 43 24 Calcareous 30.5 65 62 54
8 Siliciclastic 325 48 59 38 25 Calcareous 17.5 29 37 19
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9 Siliciclastic 42,5 72 69 58 26 Calcareous 12.3 36 45 38
10 Siliciclastic 43.2 69 72 63 27 Siliciclastic 134 60 66 58
11 Siliciclastic 26.5 64 60 49 28 Calcareous 20.5 24 23 17
12 Siliciclastic 32.1 63 55 47 29 Calcareous 20.0 25 44 37
13 Siliciclastic 37.8 53 45 38 30 Calcareous 19.8 39 45 36
14 Calcareous 235 20 43 37 31 Calcareous 234 32 47 42
15 Calcareous 21.5 21 27 20 32 Siliciclastic 22.6 55 62 57
16 Calcareous 22.3 23 21 18 33 Siliciclastic 321 50 63 56
17 Calcareous 30.0 35 28 25

4.2. Laboratory tests

The laboratory analyses and mechanical testing results, encompassing parameters such as unit
weight, uniaxial compressive strength, tensile strength, point load index, confined compression, and
shear strength of joints, are summarized in Table 2. Siliciclastic flysch materials displayed an average
dry unit weight of 26.4 kN/m? with an average uniaxial compressive strength of 24.83 MPa and a
tensile strength averaging 8.43 MPa. The triaxial test conducted under confined compression
conditions revealed average values of 10 MPa for cohesion and a 40° friction angle for the intact rock,
while the average residual friction angle of joints within this formation was determined to be 23°.

Calcareous flysch materials exhibited an average dry unit weight of 26.4 kN/m?, with an average
uniaxial compressive strength of 22.89 MPa and a tensile strength averaging 6.49 MPa. The triaxial
test under confined compression yielded average values of 8.6 MPa for cohesion and a 49° friction
angle for the intact rock, along with an average residual friction angle of 30° for the joints within this
formation.

Table 2. Laboratory testing outcomes for the flysch geological formations.

) Point Triaxial test on
Unit

. Uniaxial Tensile load rocks (confined Shear
) . weight . . .

Geological unit (dry), ya compression strength index, compression) ‘stl.'ength 2f
(N/m?) strength (MPa) (MPa) (l\;s;:a) e (MP2) e () joints ¢r (°)

Minimum  20.7 0.14 0.04 1.24 0.2 35 18

Siliciclastic Maximum  28.5 76.25 12.47 4.38 19.9 44 30

Flysch ~ Average 26.4 24.83 8.43 2.95 10.0 40 23

Std. dev. 1.4 18.08 3.56 1.30 13.9 6 10

Minimum  24.5 6.03 4.55 091 0.2 42 23

Calcareous Maximum  27.6 49.87 9.83 4.55 16.9 57 37

Flysch ~ Average 26.4 22.89 6.49 2.74 8.6 49 30

Std. dev. 0.9 14.10 2.40 1.76 11.3 3 12

4.3. Data for ANN and SVM models developed

Field data obtained in the characterization of the discontinuities studied were used to train and
test the ANN and SVM models developed to estimate the GSI. The input parameters considered were
RQD, spacing, persistence, aperture and roughness. The RQD value was introduced directly
(previously normalized for the ANN models, dividing it by 100, maximum theoretical value for
RQD). The discontinuities features were considered in terms of the ranges used for their
characterization. This means 7 variables for spacing (< 20 cm extremely narrow, 20 — 60 cm very
narrow, 60 — 200 cm narrow, 200 — 600 cm moderately narrow, 600 — 2000 cm wide, 2000 — 6000 cm
very wide and > 6000 cm extremely wide), 5 for persistence (< 1 m very low, 1 — 3 m low, 3 - 10 m
medium, 10 — 20 m high and > 20 m very high), 9 for aperture (< 0.1 mm very tight, 0.1 — 0.25 mm
tight, 0.25 — 0.5 mm partially opened, 0.5 — 2.5 mm opened, 2.5 — 10 mm partially wide, > 10 mm very
wide, 10 — 100, 100 — 1000 mm extremely wide and > 1000 mm cavernous) and 9 for roughness
(irregular-rough, irregular-smooth, irregular-slickensided, waved-rough, waved-smooth, waved-
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slickensided, planar-rough, planar-smooth and planar-slickensided). Each variable was introduced
in terms of the percentage that the variable represents against the rest of possible ranges for the same
feature; values were normalized to the maximum for ANN models.

All in all, the total number of variables to consider as inputs in the Al models would be 31.
However, since some discontinuities feature ranges were always null (spacing > 6000 cm, aperture
100 — 1000 mm and > 1000 mm, and roughness planar-slickensided), these variables were removed
from the data for the Al techniques developed to avoid including noise. That resulted in considering
27 variables (RQD, 6 for spacing, 5 for persistence, 7 for aperture and 8 for roughness) as inputs for
the ANN and SVM models developed.

4.4. ANN and SVM results

Table 3 shows the best performance reached by each model developed using the Al techniques
ANN and SVM. As training performance achieved very satisfactory results in all cases (with low MSE
values and R? very close to 1), for the sake of brevity, these values are not included here. Only testing
performance is shown. To complement the analysis, maximum, minimum and average value of the
ratio between the GSI computed using the pretrained regressor obtained with each Al model and the
GSI measured on field is shown. The term ANN_27-X-1, with X equal to the number of hidden
neurons, is used for referring to the ANN developed, while SVM_linear and SVM_radial refer to SVM
models developed considering a linear or radial (gaussian) kernel, respectively.

Table 3. Best performance at testing of ANN and SVM models developed.

Ratio GSIia / GSIfieta
AverageMaximumMinimum

Al Model MSE * R?

ANN_27-5-1 224 0.79 0.85 1.47 -0.35
ANN_27-6-1 558 0.80 0.48 0.95 -1.88
ANN_27-7-1 91 0.70 1.22 1.83 0.87
ANN_27-8-1 571 0.80 0.93 1.76 -1.12
ANN_279-1 84 074 1.13 1.54 0.71
ANN_27-10-1 265 0.62 0.79 1.54 -0.17
ANN_27-11-1 98 0.72 1.27 2.26 0.79
ANN_27-12-1 147 0.88 0.69 1.11 -0.59
ANN_27-13-1 225 0.74 0.72 1.19 0.25
ANN_27-14-1 115 091 1.23 1.66 1.02
ANN_27-15-1 253 0.73 1.29 2.50 0.39
ANN_27-16-1 419 0.76 0.74 1.54 -1.77
ANN_27-17-1 82 0.75 1.00 1.29 0.20
ANN_27-18-1 167 0.73 0.86 1.21 -0.29
ANN_27-19-1 115 0.75 0.97 1.43 0.22
ANN_27-20-1 173 0.70 0.84 1.40 -0.77
ANN_27-21-1 630 0.62 0.52 1.14 -0.25
ANN_27-22-1 736 0.68 0.27 0.86 -0.66
ANN_27-23-1 96 0.81 1.03 1.46 0.59
ANN_27-24-1 156 0.77 0.76 1.14 0.19
ANN_27-25-1 250 0.77 1.24 2.03 0.74
SVM_linear 51 0.88 0.94 1.12 0.51
SVM_radial 182 0.70 1.35 1.85 0.93

* MSE considers real GSI values, which are found between 0 and 100.

A general inspection of the statistical predictors reveals that the ANN technique struggles to
find a satisfactory performance. In terms of R?, the best model is ANN_27-14-1 with R2=0.91, being
the MSE 115 and the value of predictors considered for the ratio between the GSI computed and the
GSI measured very acceptable: minimum of such ratio is close to 1.0, average has an error about 20
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% and maximum of 65 %. The next best model in terms of R2is ANN_27-12-1 with R? = 0.88 and MSE
=147, but the value of predictors for the ratio between the GSI computed and the GSI measured are
very poor (average and minimum are far from 1.0, especially the second one).

If the MSE predictor is considered, the best ANN model corresponds to ANN_27-17-1, with R?
=(.75 and MSE =82, and while maximum and average values for the ratio between the GSI computed
and the GSI measured are good, the minimum is poor. The next best model in terms of MSE is
ANN_27-9-1 with R? = 0.74 and MSE = 84, and with acceptable values of the ratio between the GSI
computed and the GSI measured (average 1.13, maximum 1.53, minimum 0.71). Taking into account
such ratio as the main predictor, the best models can be considered ANN_27-9-1, second best model
in terms of MSE, and ANN_27-14-1, best model in terms of R2, as well as ANN_27-7-1, which achieves
R2=0.70 and MSE =91. Thus, considering all statistical predictors, the model ANN_27-14-1 (14 hidden
neurons) may be selected as the ANN model that reaches the best performance: low MSE, R? close to
1.0 and ratio between the GSI computed and the GSI measured close to 1.0.

Regarding the SVM models, the best model is SVM_linear, which achieves R? = 0.88 and MSE =
51 (a very low value), as well as satisfactory values of the ratio between the GSI computed and the
GSI measured (average 0.94, maximum 1.12, minimum 0.51). SVM_radial does not attain such good
performance, especially in terms of MSE (182) and R? (0.70), but values for the ratio between the GSI
computed and the GSI measured are good and better than some ANN models.

To compare the performance of both Al tools used, Figure 5 shows the relationship between the
GSI values experimentally obtained (all data, both used for testing and training) and the GSI values
obtained using the best Al models, i.e. ANN_27-14-1 and SVM_linear. As observed, for the case under
study, SVM technique appears to be more appropriate to estimate the GSI. Estimated values using
SVM are closer to a perfect match (R?=1) and all values except one provide a GSI value with an error
of less than 10 points (i.e. they are inside the GSI * 10 buffer showed), which is a reasonable error for
the GSI index (note that the definition of GSI for flysch materials is mainly qualitative). Conversely,
several values estimated using ANN are not close to the R? =1 line and some of them give errors of
more than 10 points from the experimental GSI value (they are outside the GSI + 10 buffer).

100

2 ANN 27-14-1 P
0 SVM_linear ’

*

60

'S
S

GSI computed with Al tools

0 20 40 60 80 100
GSI measured

Figure 5. Performance of the estimation of GSI values for the best Al models developed.

5. Discussion and Conclusions

Flysch materials found in the area under study belonging to the Basque Arc (North of Iberian
Peninsula) are geologically classify in two units [48]: the Lower Itziar Formation (calcareous flysch)
and the Upper Aguinaga Formation (siliciclastic flysch). This distinction is also evidenced in the
geomechanical characterization of the discontinuities of such materials. Differences observed in the
structural parameters (Figure 4) highlight the unique characteristics of the two flysch units.

The variations in discontinuity spacing suggest differing rheological and diagenetic histories,
with the siliciclastic flysch likely experiencing more frequent but narrower discontinuities compared
to the carbonated flysch.
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The persistence strike/dip values provide additional clues about the role of rock composition on
the deformational processes these formations underwent. The low to very low persistence values in
the siliciclastic flysch suggest a more localized failure related to a more heterogenous lithology,
whereas the predominantly low persistence values in the carbonated flysch point towards a more
homogeneous rock composition, where deformation is more consistently distributed.

The distinct rock fracture apertures further emphasize the heterogeneity between the
formations. The siliciclastic flysch’s range of aperture types indicates varied mechanical properties,
potentially linked to differences in lithology or stress regimes during formation. Meanwhile, the
prevalence of very tight to tight apertures in the carbonated flysch suggests a more compact and less
permeable rock matrix.

Surface roughness characteristics provide insight into the erosional and depositional processes
that shaped these flysch formations. The prevalence of undulated roughness in the siliciclastic flysch
suggests a history of fluctuating energy conditions, possibly related to changes in sediment transport
dynamics. In contrast, the dominance of planar roughness in the carbonated flysch implies more
uniform and stable depositional environments.

The contrasting seepage patterns not only reflect the current hydrological conditions but also
hint at potential differences in the porosity and permeability of the two formations. The dry nature
of most siliciclastic flysch outcrops suggests limited water infiltration, whereas the wet conditions in
the carbonated flysch imply higher permeability and a greater potential for fluid flow through the
rock, more likely to produce rock instabilities and slope movement.

Differences between siliciclastic flysch and calcareous flysch formations also exist when
considering geomechanical parameters. Although both formations show similar average dry unit
weights, uniaxial compression strength and tensile strength average values of the intact rock are
slightly higher for the siliciclastic flysch formation. Nevertheless, the calcareous flysch formation
exhibits higher friction angles for discontinuities (about 20% higher) and greater mechanical values
(about 25% higher) for the intact rock under confined compression tests compared to siliciclastic
flysch formation.

GSI estimation by SVM and ANN Al tools proves the ability of those techniques to define this
geomechanical index in flysch materials. The analysis of the statistical predictors considered for the
testing data (MSE, R? and ratio of the GSI obtained by the Al model and the GSI measured on field)
show satisfactory results. Comparing the two techniques used, SVM appears to be more appropriate
to estimate the GSI, in particular the SVM with a linear kernel. This achieves a high value of R? (0.88),
very low value of MSE and an average ratio of the GSI estimated and the GSI measured close to 1.0.
In addition, except 1 value, all GSI estimations show a deviation of less than 10 points from the GSI
measured on field. The result obtained is relevant since a linear kernel does not usually reach a high
performance when classifying not linear relationships [12]. This means either the relationship for
flysch formations between the GSI and the variables considered (RQD and discontinuities features)
is close to be linear or the SVM technique with a linear kernel is also capable of working satisfactorily
with some non-linear relationships. More research is needed about this aspect. Finally, it should be
note that Al integration is becoming a common practice in a sustainable approach of geotechnical
problems, since it helps in the analysis of complex geological data, reduces the need for extensive
field surveys and optimizes resource usage.
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