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Abstract: This work studies the discontinuities features of sedimentary flysch materials in a 100 km2 area 
belonging to the Basque Arc. Such materials are common in this Spanish Alpine region located in the north of 
the Iberian Peninsula. Among the different geological materials, sedimentary flysch formations are a common 
source of slope instabilities and other geotechnical problems, which many times appear during the construction 
phase of a project (like roads and railways) or afterwards, during its exploitation phase. A good understanding 
of the behavior of those challenging materials is therefore essential to ensure a sustainable approach. A total of 
33 outcrops are investigated by an intensive geotechnical investigation including geomechanical stations, 
boreholes and mechanical laboratory tests. Two flysch units are characterized: the Upper Aguinaga Formation 
or siliciclastic flysch, and the Lower Itziar Formation or calcareous flysch. Differences between both flysch 
formation are found. Joints in the siliciclastic flysch formation present an undulated roughness, with a spacing 
narrower and a persistence lower than in the calcareous flysch formation, which exhibits higher friction angles, 
although roughness is essentially planar. In addition, the potential of using Artificial Intelligence (AI) 
techniques, particularly Artificial Neural Networks and Support Vector Machine, to estimate the Geological 
Strength Index (GSI) from the Rock Quality Design (RQD) and some discontinuities features (spacing, 
persistence, aperture and roughness) is investigated. AI techniques are found to be satisfactory, being the 
Support Vector Machine with a linear kernel the technique which achieves the best performance. It should be 
note that AI integration is becoming a common practice in a sustainable approach of geotechnical problems, 
since it helps in the analysis of complex geological data, reduces the need for extensive field surveys and 
optimizes resource usage. 

Keywords: Flysch materials; Geomechanical characterization; Discontinuities; Geological Strength Index; AI 
tools; Artificial Neural Network; Support Vector Machine 

 

1. Introduction 

Unlike soils, the geomechanical behavior of rock masses is conditioned by discontinuities. In 
sedimentary rock masses, common discontinuities include bedding planes (stratification), faults and 
joints. Discontinuities may cause addressing the geomechanical behavior of rock masses to be 
difficult, so traditionally, geomechanically classifications like Bieniawski’s RMR [1] or Barton’s Q 
index [2] are used. When only discontinuities are to be considered, the Geological Strength Index, 
GSI [3,4], provides a good insight of the state of the rock mass. One of the main uses of the GSI is as 
an input of the well-known Generalized Hoek-Brown failure criterion [5]. 

Among the different geological materials, sedimentary flysch formations are a common source 
of slope instabilities and other geotechnical problems, which many times appear during the 
construction phase of a project (like roads and railways) or afterwards, during its exploitation phase. 
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contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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This issue increases the environmental impact of such projects, and it also contributes to increase 
their carbon footprint as more work actions are needed to be conducted. A good understanding of 
the behavior of those challenging materials is therefore essential to ensure a sustainable approach.  

In Spain, flysch formations can be found in the Basque Arc, an area geologically belonging to the 
Basque-Cantabrian Basin, an inverted Mesozoic extensional basin, connecting the Pyrenees in the 
East and the Cantabrian Mountains in the West. In previous research [6], the authors studied such 
flysch materials, in particular the ones found in an area of approximately 100 km2 around the town 
of Astigarraga (Basque Country, Spain). That work aimed at characterizing the rock mass following 
the classification proposed by Morales et al. [7]. These authors use the GSI modified for flysch 
formations [4] and the uniaxial compressive strength of the intact rock to define the rock mass 
properties (in terms of Hoek-Brown parameters). 

The present work studies the flysch materials on such area, but it is focused on the 
discontinuity’s features. The work makes use of a broad geological-geotechnical investigation 
involving 40 boreholes, laboratory tests on 124 undisturbed rock samples and geomechanical stations 
on 33 locations. Additionally, two Artificial Intelligence (AI) techniques were used to estimate the 
GSI for flysch materials from the Rock Quality Design, RQD [8], and four discontinuity features 
(spacing, persistence, aperture and roughness). The GSI is a geomechanical index envisage to be 
easily obtained in field using a chart, based on the description of the rock mass geological structure 
and the discontinuities surface condition. This procedure requires some practitioner experience 
though. Some authors [9–11] proposed a more quantitative approach to obtain the GSI, but such 
expressions are designed for hard rocks and not very heterogeneous formations like flysch. 
Therefore, the GSI definition for flysch materials still relays on practitioner experience. AI techniques 
can provide an alternative way of yielding quantitative expression to define this index. It should be 
note that AI integration is becoming a common practice in a sustainable approach of geotechnical 
problems, since it helps in the analysis of complex geological data, reduces the need for extensive 
field surveys and optimizes resource usage. In this work, Artificial Neural Networks (ANNs) and 
Support Vector Machine (SVM) AI techniques were selected. ANN is of common use in civil and 
geotechnical engineering [12–17] while SVM has also been used in geological engineering for solving 
multiclass problems [12,18,19]. 

2. Geographical and geological setting 

The study area lies in the Basque-Cantabrian Basin, located in the northern Iberian margin 
(Figure 1). The basin consists of a Mesozoic salt-bearing narrow rift basin [20,21] inverted during the 
Alpine orogeny [22,23]. The Mesozoic extension can be subdivided into two rift periods. The first 
phase took place from Permian to Triassic times [24,25], followed by a tectonic quiescence phase from 
Early to Middle Jurassic times [26]. The opening of the North Atlantic and the Bay of Biscay-Pyrenean 
rift system triggered the main and second rifting phase during the Late Jurassic and Early Cretaceous 
times (e.g. [27–29]). Overall, the basin is filled by several kilometers of a succession composed of 
marine carbonate and coastal siliciclastic deposits [28]. From Late Cretaceous to Miocene times, the 
rift basin was inverted due to the convergence between Iberia and Eurasia, resulting in the 
development of the E-W oriented orogenic Pyrenean-Cantabrian belt along the northern Iberian plate 
margin [30–32]. The synorogenic sedimentary record is mostly characterized by clastic material 
deposited and preserved in the Villarcayo and Bureba synclinal sub-basins, and especially in the 
Duero and Ebro foreland basins. The junction between them presents a drainage system controlled 
by the Miocene to present-day tectonic regime [33]. 

West of the Paleozoic Cinco Villas Massif lies the Basque Arc, a south and north-verging thrust 
belt (Figure 1), characterized by its arched shape and considered as the most intensively deformed 
area of the Basque-Cantabrian Basin [34]. This tectonic arc is affected by NW- and NE-directed thrust 
faults, sub-vertical strike-slip faults and NW-SE oriented major folds, which are represented by the 
Bilbao anticlinorium, the Biscay synclinorium and North-Biscay anticlinorium from south to north 
[35]. 
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Figure 1. Simplified geologic map of the eastern portion of the Basque-Cantabrian Basin showing the 
location of the study area (star). Inset indicates the location of the detailed map depicted in Figure 2. 
Modified from [6,35]. 

The study area is based on a railway track running through an area located between the Cinco 
Villas Massif and the eastern termination of the North-Biscay anticlinorium. The track consists of an 
8-km-long projected stretch of the high-speed Vitoria-Bilbao-San Sebastian railway line that will 
connect, from north to south, the locations of Rentería and Hernani through the Astigarraga village 
(Figure 2). The construction of the railway will encounter a wide range of different lithologies which 
recorded the Mesozoic paleogeographic evolution of the Basque-Cantabrian Basin in the region.  

The Mesozoic sedimentary record in the area starts with the Late Triassic extension phase, which 
is represented in by a thick package of evaporites and shales with dolerite intrusions, the so-called 
Keuper Formation [36,37]. This salt unit is responsible for the diapirism and constitute the main 
detachment level for the thin-skinned deformation in the Basque-Cantabrian Basin and the Pyrenees 
[38–42]. A thick package of limestones, dolostones and marlstones was deposited on top of the 
evaporite unit as result of the regional sag-type subsidence after the first rifting phase [43–45]. The 
Lower Jurassic dolostones act as a reservoir for the CO2 geological storage pilot plant of Hontomín in 
the southernmost portion of the Basque-Cantabrian Basin (e.g. [46]). The second rift phase starts with 
the deposition of Urgonian reef limestones with intercalations of sandstones, claystones and 
marlstones of Aptian to Early Albian in age. The syn-rift infilling resumed with the Oiartzum 
Formation (late Albian to early Cenomanian), represented by fluvial to transitional conglomerates, 
sandy calcarenites and sandstones. The following succession consists of a turbiditic unit (calcareous 
and siliciclastic flysch facies) deposited in a deep open marine environment from Campanian to Early 
Paleogene times. The Meso-Cenozoic basin is overlain by Quaternary fluvial and colluvial deposits 
(Figure 2). 
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Figure 2. Detailed geologic map and schematic stratigraphic section of the studied area showing 
sample locations (33) on the “Calcareous Flysch” (blue stars) and the “Siliciclastic Flysch” (red stars). 
Modified from [6,47]. 

The present work comprises data obtained from the Upper Cretaceous turbiditic sequences, also 
known as the “Upper Cretaceous flysch” [47]. The flysch formation is represented by a relatively 
thick package of more than 700 m of interbedded marlstones and marly limestones, changing to 
quartz-rich clastic turbidites towards the top of the succession. Thus, two main units can be 
differentiated in terms of their lithology and timing of deposition: 1) the Lower Itziar Formation or 
“calcareous flysch” (Cenomanian-Turonian); and 2) the Upper Aguinaga Formation or “siliciclastic 
flysch” (Santonian-Campanian) [48]. These formations were deposited at the initial stages of the 
convergence between Eurasia and Iberia in an intraplate trough, inherited from smaller rift basins 
developed in the Basque-Cantabrian Basin [49–51]. The water depth is estimated between 800 to 1500 
m in which the sediments were deposited in hemipelagic settings during an increased subsidence 
stage. A subsequent relative tectonic quiescence highly decreased the subsidence from Maastrichtian 
to Paleocene times [51]. 

3. Materials and Methods 

3.1. Field tests 

A comprehensive geological-geotechnical investigation was performed, including 24 
petrographic analyses, 33 geomechanical stations and 40 boreholes. A total of 33 locations (outcrops) 
were studied, 18 in the upper flysch unit and 15 in the lower flysch unit. Boreholes were drilled with 
an 89 mm core drill, ranging from depths of 16 to 114 meters. 

Geomechanical stations provided insights into the composition of intact rock and any structural 
irregularities, detailing their types (such as joints and faults), orientations and key properties like 
spacing, persistence and aperture. To assess the rock's overall fracturing state, discontinuities were 
analyzed through stereographic projection. This projection method involves categorizing these 
irregularities based on shared characteristics. 
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3.2. Laboratory tests 

A total of 124 undisturbed rock samples were collected for various laboratory tests, including 
uniaxial compressive strength, point load, Brazilian and triaxial tests [6]. Direct shear tests were 
conducted to determine the angle of friction for rock joints. Identification tests, such as unit weight 
measurement, were also performed. These tests followed ISRM [52,53] and ASTM standards [54–58]. 
The RQD value was either directly obtained from borehole data through drilling or calculated using 
Palmström’s [59] correlation method, based on the volumetric joint count value (Jv) and obtained 
from geomechanical stations. 

3.3. Artficial Neural Networks 

Current ANN algorithms are based on the backpropagation neuron [60]. In this work, the Matlab 
commercial software v. R2023, especially the Neural Network Toolbox, was used to build a series of 
feedforward multilayer perceptron networks. In essence, such kind of ANNs consists of a series of 
interconnected layers (Figure 3), with each layer containing a series of neurons connected to all 
neurons located in previous and following layers (but not in the same layer). A neuron (1) receives a 
value from each neuron in the previous layer, (2) linearly combines such values according to a series 
of weights (which correspond to the interconnection with the other neurons) and (3) delivers the 
output by applying a “transfer function” to the result of the linear combination. The first layer of 
neurons is the “input layer” and contains the input values of the system. Therefore, its number of 
neurons is equal to the number of inputs and no lineal combination nor transfer function is applied. 
The last layer, or “output layer”, contains a number of neurons equal to the number of outputs of the 
system. Layers between the input and output ones are called “hidden layers” and the neuron at them 
“hidden neurons”. The number of hidden layers and neurons is unknown and depends on the 
problem under study (e.g. [16,17]).  

 
Figure 3. Feedforward Artificial Neural Network scheme. 

To set the weights of each linear combination on each neuron, ANNs are trained by cases where 
inputs and their corresponding outputs are known. The Lavenberg–Marquardt algorithm with back-
propagation was used in this work to train the ANNs. Basically, starting from random weights, the 
ANN is run and the error between the computed outputs (given by the ANN) and the target outputs 
(known value) is propagated backwards, modifying the weights. The process is continued until an 
error predictor is reduced to a certain value (or until a maximum number of iterations or epochs is 
reached). As a predictor, the Mean Squared Error (MSE) is normally used: 

𝑀𝑆𝐸 = 1𝑛 ∑(𝑇𝑖 − 𝑂𝑖)2𝑛
𝑖=1    (1) 

where Ti is the target output; and Oi is the computed output.  
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Performance of an ANN developed is assessed at training as well as by testing it against other 
cases not used for training where inputs and their corresponding outputs are known. Coefficient of 
determination R2, MSE and other common statistical parameters are used. If a satisfactory 
performance is achieved, the resulting ANN can be used as a pretrained regressor to make 
predictions.  

In this work, 70% of the available data was randomly selected for training. The remaining 30% 
was used for testing. Number of epochs was set to 3000. One hidden layer was defined, selecting a 
sigmoid function as the transfer function for hidden neuron. In the output layer (with only one output 
neuron, the GSI), a linear function was set as transfer function. Taking that into account, the ANNs 
developed can be mathematically expressed as: 𝐺𝑆𝐼 = 𝛼 + 𝛽 ∑ 11 + 𝑒−𝑍𝑗   ;   𝑍 = ∑ 𝜔𝑖 · 𝑖𝑛𝑝𝑢𝑡𝑖𝑖 + 𝜔0   (2) 

where inputi is a vector with the value of the corresponding input variables;  and  are two numbers 
corresponding to the weight and the bias of the output neuron; i is the vector with the weights of 
the hidden neurons and 0 is the bias of such hidden layer. Index j corresponds to the number of 
hidden neurons, normally found between the number of inputs and outputs and established by a 
trial and error process [16,17].  

Equation (2) is a pretrained regressor that allows obtaining the output value of the ANN by a 
mathematic expression (e.g. [13]). However, to ensure the stability of the training process and obtain 
a higher degree of accuracy, input and output data should be normalized before developing any 
ANN, and such normalization must be considered in Equation (2). In this work, normalization was 
done by dividing each variable by the maximum value attained for the variable considered. For 
instance, for a given input: 𝑖𝑛𝑝𝑢𝑡𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 = 𝑖𝑛𝑝𝑢𝑡max (𝑖𝑛𝑝𝑢𝑡)  (3) 

where max(input) refers to the maximum value that such input takes for the whole data considered. 
A total of 20 network architectures 27-X-1 were set (being 27 the number of input neurons, see 

4.3, X the number of hidden neurons and 1 the output neuron, the GSI), ranging the number of hidden 
neurons X from 5 to 25. For each architecture, 100 models were considered (this means running a 
total of 2000 models) to find the optimum ANN with the best performance for each architecture both 
at training and testing.  

3.4. Support Vector Machine 

The SVM technique appeared in the early sixties [61] and consists of using algebraic methods to 
find linear decision boundaries (“hyperplanes”) that separate variables. If data are nonlinear, a kernel 
function (linear, polynomial and sigmoidal) [62,63] may be used to transform such data into higher 
dimensions, where finding the hyperplanes is possible. In this work, the Matlab commercial software 
v. R2023 was used to apply the SVM technique, particularly the Deep Learning Toolbox and the 
function “fitcecoc”. 

Like ANN, training of SVM is done by cases where inputs and their corresponding outputs are 
known. However, training of a SVM algorithm is similar to solving a quadratic programming 
problem. The objective is finding the best hyperplane with the largest “margin”, i.e. a hyperplane 
with the maximum width of the slab parallel to the hyperplane (margin) with no interior data points. 
For instance, given a linear hyperplane f(x) defined by a parameter , the aim is minimizing the norm 
of  so the margin is maximum. This is done by maximizing a series of Lagrange multipliers j that 
optimized the expression: 𝐿𝐷 = ∑ 𝛼𝑗𝑗 − 12 ∑ ∑ 𝛼𝑗𝛼𝑘𝑦𝑗𝑦𝑘𝑥𝑗′𝑥𝑘𝑘𝑗    (4) 
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where yj is the output data and xj are the data vectors corresponding to the inputs. The term jyjxj 
corresponds to the hyperplane (parameter ). Data points xj corresponding to nonzero j values are 
called support vectors. 

Performance of SVM developed is, as in the case of ANN, assessed at training as well as at testing 
against other cases not used for training where inputs and their corresponding outputs are known 
(using R2, MSE and other statistical parameters). If an acceptable performance is achieved, the 
resulting SVM can be used as a pretrained regressor to make predictions. Unlike ANN, SVM does 
not need the input and output data to be normalized, but, due to its algebraic nature, the pretrained 
regressor cannot be easily written as a simple mathematical expression. 

As in the case of the ANN developed, in this work 70% of the available data was randomly 
selected for training, using the remaining 30% of data for testing. Two kernel functions were 
considered: linear and gaussian (radial basis function). For each kernel function, 1000 models were 
considered to find the optimum SVM model with the best performance. 

4. Results 

4.1. Field tests 

Geomechanical assessments of flysch materials indicated the presence of at least three sets of 
discontinuities, occasionally four. Notably, no faults were found in either flysch unit. These findings 
align with the ISRM (1981) classification, which categorizes the level of fracturing in the studied rock 
masses as class VI ("three sets of discontinuities") and class VII ("three sets of discontinuities plus an 
occasional one"). Furthermore, the block shape observed in the slope inventory revealed that the rock 
masses analyzed primarily consisted of tabular-prismatic blocks, often vertically flattened and 
occasionally exhibiting a planar shape. This block morphology is characteristic of flysch deposits. 

The discontinuities structural parameters were recorded in each outcrop from the two studied 
flysch units (Figure 4). Most of the studied outcrops related to the siliciclastic flysch formation are 
represented by 20 to 200 mm in terms of spacing. For the carbonated flysch formation, the spacing 
increased, ranging from 20 to 600 mm. 
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Figure 4. Discontinuities structural parameters. 

In terms of persistence strike/dip parameter, the siliciclastic flysch is characterized by very low 
(< 1 m) to low (1 – 3 m) values, while the carbonated flysch is mainly represented by low persistence 
values. The rock fracture aperture is also differentiated between the two formations. The siliciclastic 
flysch shows two types of apertures, very tight (< 0.1 mm) to tight (0.1 – 0.25 mm) and opened to 
moderately wide (2.5 –10 mm), whereas the highest values of the carbonated flysch outcrops are 
concentrated in the very tight to tight aperture. The undulated roughness, both rough and smooth, 
is representative of the siliciclastic flysch, followed by the irregular roughness (rough). The 
carbonated flysch presents the highest values related with planar roughness (rough and smooth), 
followed by undulated (smooth). The seepage also shows notable differences between both units, 
where most of the outcrops of the siliciclastic flysch unit are dry, while those in the carbonated flysch 
are mostly wet. 

Table 1 provides the rock mass geomechanical behavior at the 33 investigated flysch outcrops. 
It includes the intact rock uniaxial compressive strength (σci), the RQD, the RMR quality index and 
the GSI (following the modifications proposed by [4] for flysch formations).  

Table 1. Results of the geomechanical tests. 

Point Geological flysch unit ci (MPa) RQD RMR GSI  Point Geological flysch unit ci (MPa) RQD RMR GSI 

1 Siliciclastic  37.7 50 60 54  18 Calcareous 27.4 45 41 36 
2 Siliciclastic 42.4 45 62 55  19 Siliciclastic 50.2 70 74 69 
3 Siliciclastic 40.0 55 57 52  20 Siliciclastic 51.3 77 74 69 
4 Siliciclastic 42.3 65 61 48  21 Calcareous 25.6 26 23 20 
5 Siliciclastic 38.6 63 64 47  22 Calcareous 30.1 18 26 18 
6 Siliciclastic 40.1 65 47 35  23 Calcareous 31.0 43 49 41 
7 Siliciclastic 41.1 54 58 43  24 Calcareous 30.5 65 62 54 
8 Siliciclastic 32.5 48 59 38  25 Calcareous 17.5 29 37 19 
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9 Siliciclastic 42.5 72 69 58  26 Calcareous 12.3 36 45 38 
10 Siliciclastic 43.2 69 72 63  27 Siliciclastic 13.4 60 66 58 
11 Siliciclastic 26.5 64 60 49  28 Calcareous 20.5 24 23 17 
12 Siliciclastic 32.1 63 55 47  29 Calcareous 20.0 25 44 37 
13 Siliciclastic 37.8 53 45 38  30 Calcareous 19.8 39 45 36 
14 Calcareous 23.5 20 43 37  31 Calcareous 23.4 32 47 42 
15 Calcareous 21.5 21 27 20  32 Siliciclastic 22.6 55 62 57 
16 Calcareous 22.3 23 21 18  33 Siliciclastic 32.1 50 63 56 
17 Calcareous 30.0 35 28 25        

4.2. Laboratory tests 

The laboratory analyses and mechanical testing results, encompassing parameters such as unit 
weight, uniaxial compressive strength, tensile strength, point load index, confined compression, and 
shear strength of joints, are summarized in Table 2. Siliciclastic flysch materials displayed an average 
dry unit weight of 26.4 kN/m³, with an average uniaxial compressive strength of 24.83 MPa and a 
tensile strength averaging 8.43 MPa. The triaxial test conducted under confined compression 
conditions revealed average values of 10 MPa for cohesion and a 40° friction angle for the intact rock, 
while the average residual friction angle of joints within this formation was determined to be 23°.  

Calcareous flysch materials exhibited an average dry unit weight of 26.4 kN/m³, with an average 
uniaxial compressive strength of 22.89 MPa and a tensile strength averaging 6.49 MPa. The triaxial 
test under confined compression yielded average values of 8.6 MPa for cohesion and a 49° friction 
angle for the intact rock, along with an average residual friction angle of 30° for the joints within this 
formation.  

Table 2. Laboratory testing outcomes for the flysch geological formations. 

Geological unit 

Unit 

weight 

(dry), d 

(kN/m3) 

Uniaxial 

compression 

strength (MPa) 

Tensile 

strength 

(MPa) 

Point 

load 

index, 

Is50 

(MPa) 

Triaxial test on 

rocks (confined 

compression) 

Shear 

strength of 

joints r () 
ccu (MPa) cu () 

Siliciclastic 

Flysch 

Minimum 20.7 0.14 0.04 1.24 0.2 35 18 
Maximum 28.5 76.25 12.47 4.38 19.9 44 30 
Average 26.4 24.83 8.43 2.95 10.0 40 23 
Std. dev. 1.4 18.08 3.56 1.30 13.9 6 10 

Calcareous 

Flysch 

Minimum 24.5 6.03 4.55 0.91 0.2 42 23 
Maximum 27.6 49.87 9.83 4.55 16.9 57 37 
Average 26.4 22.89 6.49 2.74 8.6 49 30 
Std. dev. 0.9 14.10 2.40 1.76 11.3 3 12 

4.3. Data for ANN and SVM models developed 

Field data obtained in the characterization of the discontinuities studied were used to train and 
test the ANN and SVM models developed to estimate the GSI. The input parameters considered were 
RQD, spacing, persistence, aperture and roughness. The RQD value was introduced directly 
(previously normalized for the ANN models, dividing it by 100, maximum theoretical value for 
RQD). The discontinuities features were considered in terms of the ranges used for their 
characterization. This means 7 variables for spacing (< 20 cm extremely narrow, 20 – 60 cm very 
narrow, 60 – 200 cm narrow, 200 – 600 cm moderately narrow, 600 – 2000 cm wide, 2000 – 6000 cm 
very wide and > 6000 cm extremely wide), 5 for persistence (< 1 m very low, 1 – 3 m low, 3 – 10 m 
medium, 10 – 20 m high and > 20 m very high), 9 for aperture (< 0.1 mm very tight, 0.1 – 0.25 mm 
tight, 0.25 – 0.5 mm partially opened, 0.5 – 2.5 mm opened, 2.5 – 10 mm partially wide, > 10 mm very 
wide, 10 – 100, 100 – 1000 mm extremely wide and > 1000 mm cavernous) and 9 for roughness 
(irregular-rough, irregular-smooth, irregular-slickensided, waved-rough, waved-smooth, waved-
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slickensided, planar-rough, planar-smooth and planar-slickensided). Each variable was introduced 
in terms of the percentage that the variable represents against the rest of possible ranges for the same 
feature; values were normalized to the maximum for ANN models. 

All in all, the total number of variables to consider as inputs in the AI models would be 31. 
However, since some discontinuities feature ranges were always null (spacing > 6000 cm, aperture 
100 – 1000 mm and > 1000 mm, and roughness planar-slickensided), these variables were removed 
from the data for the AI techniques developed to avoid including noise. That resulted in considering 
27 variables (RQD, 6 for spacing, 5 for persistence, 7 for aperture and 8 for roughness) as inputs for 
the ANN and SVM models developed. 

4.4. ANN and SVM results 

Table 3 shows the best performance reached by each model developed using the AI techniques 
ANN and SVM. As training performance achieved very satisfactory results in all cases (with low MSE 
values and R2 very close to 1), for the sake of brevity, these values are not included here. Only testing 
performance is shown. To complement the analysis, maximum, minimum and average value of the 
ratio between the GSI computed using the pretrained regressor obtained with each AI model and the 
GSI measured on field is shown. The term ANN_27-X-1, with X equal to the number of hidden 
neurons, is used for referring to the ANN developed, while SVM_linear and SVM_radial refer to SVM 
models developed considering a linear or radial (gaussian) kernel, respectively.  

Table 3. Best performance at testing of ANN and SVM models developed. 

AI Model MSE * R2 
Ratio GSIIA / GSIfield 

Average Maximum Minimum 

ANN_27-5-1 224 0.79 0.85 1.47 -0.35 
ANN_27-6-1 558 0.80 0.48 0.95 -1.88 
ANN_27-7-1 91 0.70 1.22 1.83 0.87 
ANN_27-8-1 571 0.80 0.93 1.76 -1.12 
ANN_27-9-1 84 0.74 1.13 1.54 0.71 

ANN_27-10-1 265 0.62 0.79 1.54 -0.17 
ANN_27-11-1 98 0.72 1.27 2.26 0.79 
ANN_27-12-1 147 0.88 0.69 1.11 -0.59 
ANN_27-13-1 225 0.74 0.72 1.19 0.25 
ANN_27-14-1 115 0.91 1.23 1.66 1.02 
ANN_27-15-1 253  0.73 1.29 2.50 0.39 
ANN_27-16-1 419 0.76 0.74 1.54 -1.77 
ANN_27-17-1 82 0.75 1.00 1.29 0.20 
ANN_27-18-1 167 0.73 0.86 1.21 -0.29 
ANN_27-19-1 115 0.75 0.97 1.43 0.22 
ANN_27-20-1 173 0.70 0.84 1.40 -0.77 
ANN_27-21-1 630 0.62 0.52 1.14 -0.25 
ANN_27-22-1 736 0.68 0.27 0.86 -0.66 
ANN_27-23-1 96 0.81 1.03 1.46 0.59 
ANN_27-24-1 156 0.77 0.76 1.14 0.19 
ANN_27-25-1 250 0.77 1.24 2.03 0.74 
SVM_linear 51 0.88 0.94 1.12 0.51 
SVM_radial 182 0.70 1.35 1.85 0.93 

* MSE considers real GSI values, which are found between 0 and 100. 

A general inspection of the statistical predictors reveals that the ANN technique struggles to 
find a satisfactory performance. In terms of R2, the best model is ANN_27-14-1 with R2 = 0.91, being 
the MSE 115 and the value of predictors considered for the ratio between the GSI computed and the 
GSI measured very acceptable: minimum of such ratio is close to 1.0, average has an error about 20 
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% and maximum of 65 %. The next best model in terms of R2 is ANN_27-12-1 with R2 = 0.88 and MSE 
= 147, but the value of predictors for the ratio between the GSI computed and the GSI measured are 
very poor (average and minimum are far from 1.0, especially the second one).  

If the MSE predictor is considered, the best ANN model corresponds to ANN_27-17-1, with R2 
= 0.75 and MSE = 82, and while maximum and average values for the ratio between the GSI computed 
and the GSI measured are good, the minimum is poor. The next best model in terms of MSE is 
ANN_27-9-1 with R2 = 0.74 and MSE = 84, and with acceptable values of the ratio between the GSI 
computed and the GSI measured (average 1.13, maximum 1.53, minimum 0.71). Taking into account 
such ratio as the main predictor, the best models can be considered ANN_27-9-1, second best model 
in terms of MSE, and ANN_27-14-1, best model in terms of R2, as well as ANN_27-7-1, which achieves 
R2 = 0.70 and MSE = 91. Thus, considering all statistical predictors, the model ANN_27-14-1 (14 hidden 
neurons) may be selected as the ANN model that reaches the best performance: low MSE, R2 close to 
1.0 and ratio between the GSI computed and the GSI measured close to 1.0. 

Regarding the SVM models, the best model is SVM_linear, which achieves R2 = 0.88 and MSE = 
51 (a very low value), as well as satisfactory values of the ratio between the GSI computed and the 
GSI measured (average 0.94, maximum 1.12, minimum 0.51). SVM_radial does not attain such good 
performance, especially in terms of MSE (182) and R2 (0.70), but values for the ratio between the GSI 
computed and the GSI measured are good and better than some ANN models.  

To compare the performance of both AI tools used, Figure 5 shows the relationship between the 
GSI values experimentally obtained (all data, both used for testing and training) and the GSI values 
obtained using the best AI models, i.e. ANN_27-14-1 and SVM_linear. As observed, for the case under 
study, SVM technique appears to be more appropriate to estimate the GSI. Estimated values using 
SVM are closer to a perfect match (R2 = 1) and all values except one provide a GSI value with an error 
of less than 10 points (i.e. they are inside the GSI  10 buffer showed), which is a reasonable error for 
the GSI index (note that the definition of GSI for flysch materials is mainly qualitative). Conversely, 
several values estimated using ANN are not close to the R2 = 1 line and some of them give errors of 
more than 10 points from the experimental GSI value (they are outside the GSI  10 buffer). 

 
Figure 5. Performance of the estimation of GSI values for the best AI models developed. 

5. Discussion and Conclusions 

Flysch materials found in the area under study belonging to the Basque Arc (North of Iberian 
Peninsula) are geologically classify in two units [48]: the Lower Itziar Formation (calcareous flysch) 
and the Upper Aguinaga Formation (siliciclastic flysch). This distinction is also evidenced in the 
geomechanical characterization of the discontinuities of such materials. Differences observed in the 
structural parameters (Figure 4) highlight the unique characteristics of the two flysch units. 

The variations in discontinuity spacing suggest differing rheological and diagenetic histories, 
with the siliciclastic flysch likely experiencing more frequent but narrower discontinuities compared 
to the carbonated flysch.  

0

20

40

60

80

100

0 20 40 60 80 100

G
S

I 
co

m
p

ut
ed

 w
ith

 A
I 

to
o

ls

GSI measured

ANN_27-14-1

SVM_linear

R2 = 1

GSI +10

GSI -10

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2023                   doi:10.20944/preprints202312.1455.v1

https://doi.org/10.20944/preprints202312.1455.v1


 12 

 

The persistence strike/dip values provide additional clues about the role of rock composition on 
the deformational processes these formations underwent. The low to very low persistence values in 
the siliciclastic flysch suggest a more localized failure related to a more heterogenous lithology, 
whereas the predominantly low persistence values in the carbonated flysch point towards a more 
homogeneous rock composition, where deformation is more consistently distributed. 

The distinct rock fracture apertures further emphasize the heterogeneity between the 
formations. The siliciclastic flysch’s range of aperture types indicates varied mechanical properties, 
potentially linked to differences in lithology or stress regimes during formation. Meanwhile, the 
prevalence of very tight to tight apertures in the carbonated flysch suggests a more compact and less 
permeable rock matrix. 

Surface roughness characteristics provide insight into the erosional and depositional processes 
that shaped these flysch formations. The prevalence of undulated roughness in the siliciclastic flysch 
suggests a history of fluctuating energy conditions, possibly related to changes in sediment transport 
dynamics. In contrast, the dominance of planar roughness in the carbonated flysch implies more 
uniform and stable depositional environments. 

The contrasting seepage patterns not only reflect the current hydrological conditions but also 
hint at potential differences in the porosity and permeability of the two formations. The dry nature 
of most siliciclastic flysch outcrops suggests limited water infiltration, whereas the wet conditions in 
the carbonated flysch imply higher permeability and a greater potential for fluid flow through the 
rock, more likely to produce rock instabilities and slope movement. 

Differences between siliciclastic flysch and calcareous flysch formations also exist when 
considering geomechanical parameters. Although both formations show similar average dry unit 
weights, uniaxial compression strength and tensile strength average values of the intact rock are 
slightly higher for the siliciclastic flysch formation. Nevertheless, the calcareous flysch formation 
exhibits higher friction angles for discontinuities (about 20% higher) and greater mechanical values 
(about 25% higher) for the intact rock under confined compression tests compared to siliciclastic 
flysch formation. 

GSI estimation by SVM and ANN AI tools proves the ability of those techniques to define this 
geomechanical index in flysch materials. The analysis of the statistical predictors considered for the 
testing data (MSE, R2 and ratio of the GSI obtained by the AI model and the GSI measured on field) 
show satisfactory results. Comparing the two techniques used, SVM appears to be more appropriate 
to estimate the GSI, in particular the SVM with a linear kernel. This achieves a high value of R2 (0.88), 
very low value of MSE and an average ratio of the GSI estimated and the GSI measured close to 1.0. 
In addition, except 1 value, all GSI estimations show a deviation of less than 10 points from the GSI 
measured on field. The result obtained is relevant since a linear kernel does not usually reach a high 
performance when classifying not linear relationships [12]. This means either the relationship for 
flysch formations between the GSI and the variables considered (RQD and discontinuities features) 
is close to be linear or the SVM technique with a linear kernel is also capable of working satisfactorily 
with some non-linear relationships. More research is needed about this aspect. Finally, it should be 
note that AI integration is becoming a common practice in a sustainable approach of geotechnical 
problems, since it helps in the analysis of complex geological data, reduces the need for extensive 
field surveys and optimizes resource usage. 
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