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Abstract: Background: Electric vehicles (EVs) are at the heart of sustainable transportation, and the
need for effective charging systems is steadily increasing. The difficulty is to optimize charging tactics
that reduce charging time while retaining grid stability. To maximize performance and energy
utilization, charging must be managed effectively using variables like battery levels, grid load, and
environmental conditions. Objectives: The objective of this research is to create a sophisticated
machine-learning technique for predicting the optimal charging control for electric vehicles.
Particularly, it aims to use a Dual-Level Voting Boost (DLVB) algorithm to determine whether an EV
charging session will be optimized or not, using input features such as battery level, charging rate,
ambient temperature, and charging mode. Methodology: This paper proposes the Dual-Level Voting
Boost (DLVB) algorithm, which is a two-stage ensemble learning method. The first level employs
fundamental classifiers like Decision Trees, Logistic Regression, and K-Nearest Neighbors, whereas
the second level employs more sophisticated models like Random Forest, Support Vector Machines,
and Naive Bayes. This dual-layer structure enables a more precise classification of optimized and
non-optimized charging sessions. The model's efficacy is assessed utilizing metrics like Accuracy,
Precision, Recall, F1-Score, and the Matthews Correlation Coefficient (MCC). Results: On the test
dataset, the DLVB algorithm obtained 95% accuracy, 94% precision, 93% recall, 94% F1 score, and
92% MCC. These findings show the efficiency of the dual-level voting system in correctly predicting
optimized charging sessions, substantially surpassing conventional single-model methods.
Conclusion: The DLVB algorithm has significant potential for improving EV charging control by
correctly predicting optimization results. This approach provides a potential strategy for enhancing
charging effectiveness, decreasing energy waste, and maintaining grid stability.

Keywords: electric vehicles; grid stability; ensemble learning; classification and prediction

I Introduction

The rapid growth of electric vehicles (EVs) has raised the need for novel and effective charging
solutions that strike a balance between charging speed and energy consumption optimization [1].
Conventional charging systems, while efficient to some extent, frequently face difficulties in
maintaining a harmonious balance between rapid charging capacities and electrical grid stability [2].
This delicate balance is critical for avoiding overload, reducing energy waste, and guaranteeing
dependability. As EV adoption boosts, tackling these problems has become progressively important
to assist the increasing number of EV users and sustain the robustness of the energy infrastructure.

Machine learning (ML) has emerged as a strong and promising strategy for addressing these
difficulties [3]. By evaluating massive amounts of data created during charging sessions, ML
algorithms can detect trends and create predictive models that improve charging schedules, energy
distribution, and total effectiveness. These predictive models enable the identification of peak request
periods and the tactical adjustment of charging functions to avoid power surges or excessive energy
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consumption [4]. Furthermore, ML can enable real-time decision-making, enabling charging stations
to dynamically adapt to changing grid conditions and user requirements.

Charging tactics can be fine-tuned using machine learning to provide quicker energy
transmission while conserving resources and reducing the influence on grid stability [5]. This strategy
allows for more intelligent load management, encourages sustainable energy consumption, and
lowers the risk of grid disruptions. As a result, incorporating machine learning into EV charging
infrastructure offers an important development in building a scalable, resilient, and energy-efficient
charging ecosystem that helps the ongoing development of electric vehicle adoption.

Figure 1. EV Charging.

Figure 1 shows the connection between an electric vehicle and a charging station that uses
renewable energy sources like solar panels and wind power plants. This setup exemplifies a
sustainable method of EV charging in which the energy utilized is partially or entirely supplied by
renewable sources. This technique not only decreases the carbon footprint but also relieves the strain
on traditional power grids. When the EV links to the charging station, data gathering begins,
recording critical variables like the initial battery level, charging rate, and maximum charging power.
Environmental variables such as ambient temperature and functional modes (manual or automated)
are recorded, as well as grid load and charging priorities. These gathered data points are crucial for
creating predictive models that classify charging sessions as optimized or not, allowing for improved
charging control.

1.1. Important Elements in an Optimized Charging Control System

Optimal charging control entails combining a variety of factors that impact charging efficiency.
The initial battery level determines the tactic, whereas the charging rate and maximum power
capacity determine the speed and security of charging. The ambient temperature influences charging
efficiency, whereas the mode of charging (automatic or manual) determines how the session is
managed. Grid load conditions and charging priority are essential to balancing energy needs. Lastly,
charging effectiveness assesses the efficiency of energy transfer, guaranteeing that the charging
session is productive while conserving energy.

1.2. Research Objective

This research aims to create a sophisticated predictive algorithm that can determine whether or
not EV charging sessions are optimized. The research introduces the Dual-Level Voting Boost (DLVB)
algorithm, which enhances prediction accuracy by integrating numerous classifiers using a dual-
voting mechanism. The goal is to improve charging session management, balance user needs with
grid stability and maximize total energy effectiveness.
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1.3. The Remainder of the Research

The rest of the paper is structured as follows: Section 2 covers related works. Section 3 describes
the methodology used in the research. Section 4 describes the experimental setup, and the evaluation
metrics utilized for performance evaluation, followed by a result evaluation and discussion of the
algorithm's effectiveness. Section 5 concludes the study by summarizing the key results and
proposing directions for future research.

II. Literature Review

The increasing adoption of electric vehicles (EVs) has highlighted the requirement for effective
charging systems that not only reduce charging times but also guarantee grid stability. As the need
for electric vehicles grows, it becomes progressively essential to optimize charging tactics that take
into account elements like battery levels, grid load, and environmental circumstances. Several
techniques have been proposed to enhance charging effectiveness, but there are still difficulties in
tackling the dynamic interactions between these factors, which frequently result in suboptimal
efficiency. This section examines existing research on EV charging enhancement, including machine
learning techniques, hybrid models, and renewable energy incorporation.

Table 1. Summary Table.

Reference No Objective Methodology Result Limitations
[6] Predict EV charging  XGBoost with SHAP XGBoost had the Data restricted to
station selection for 500 EVs in Japan greatest accuracy, and Japan, generalizability
behavior. SHAP explained the uncertain
feature's significance.
[7] Forecast EV charging ELM, FFNN, and SVR GWO-based models The optimization
period enhanced by GWO, surpassed others method may require
PSO, GA on 500 EVs in validation with other
Japan datasets
[8] Forecast session RF, SVM, XGBoost, Ensemble learning Findings may not
duration and power DNN with historical, attained 9.9% SMAPE generalize beyond the
utilization traffic, weather, and for duration and 11.6% dataset.
event data for energy
[9] Use ensemble machine RF, XGBoost, CatBoost, XGBoost demonstrated Outcomes particular to
learning to forecast the LightGBM with SHAP the highest accuracy,  Japan, not broadly
charging time. on 500 EVsin Japan =~ SHAP emphasized applicable
important variables
[10] Allow dynamic Hybrid DWC system Dependable DWC with Scalability and
wireless charging ~ with Improved-DSDV enhanced throughput deployment difficulties
protocol and magnetic and latency not tackled
coupling
[11] Predict EV metrics ~ Hybrid ML predicts  Decreased peak load Concentrated on
utilizing ML in MPC ~ and MPC to reduce by 46.7% and expenses controlled studies, real-
electricity expenses by 20.9% world difficulties not
discussed
[12] Evaluate EV charging ML classifierson 10 ~ Government-owned Constrained data-
infrastructure years of multilingual  stations had higher  sharing and region-
dependability customer reviews failure rates specific pertinency
[13] Forecast EV charging  RF, CatBoost,and  Attained R2 of 20.5% Requires enhancement
time with XGBoost enhanced by (training), 12.4%  in accuracy and cross-
metaheuristic Ant Colony (testing) validation

optimization Optimization
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[14] Enhance charging to Heuristic algorithm for Decreased emissions Findings may differ by
decrease emissions  enhanced scheduling by 97% compared to regional creation
in Ontario the base case profiles and emissions
[15] Enhance EV charging MOPSO and TOPSIS Enhanced optimization Constrained to Inner
stations with for design with wind, and quicker calculation Mongolia,
renewables PV, and storing generalizability
uncertain

While the current study has made important progress in enhancing EV charging mechanisms,
numerous existing techniques fail to efficiently handle the charging procedure's complexity and
dynamics. Conventional methods frequently oversimplify interactions between features or the
absence of generalizability across circumstances. The Dual-Level Voting Boost (DLVB) algorithm
introduced in this research offers a promising solution to these constraints. By integrating a dual-
layer ensemble learning method, DLVB efficiently addresses the complexities of EV charging
optimization, providing higher prediction accuracy and efficiency than conventional models. This
method fills important gaps in existing techniques, paving the manner for more effective and
trustworthy EV charging control mechanisms.

III. Methodology

The Dual-Level Voting Boost (DLVB) algorithm is a novel technique for improving electric
vehicle (EV) charging that predicts whether a session will be effective depending on a variety of input
features. The algorithm integrates numerous machine learning models organized into two levels,
with each contributing to the entire prediction via majority voting. The primary level utilizes simpler
models for rapid and comprehensive learning, whereas the second level utilizes intricate models for
precise decision-making. This structured method, improved by weighted voting, enables superior
predictive accuracy and resilience.

3.1. Data Collection

The dataset, namely "EV Charging Session Optimization Dataset," was created using real-world
electric vehicle (EV) charging data collected from different charging stations and EV management
mechanisms. Each entry in this dataset indicates a single charging session, with comprehensive data
regarding the charging procedure and environment. Important features comprise Initial Battery
Level (%), which denotes the initial level of charge; Charging Rate (kW), which details the power
provided during charging; Max Charging Power (kW), which specifies the maximum power the EV
can handle; and Ambient Temperature (°C), which highlights the impacts of outside temperature on
effectiveness. The dataset also includes Charging Mode (Auto/Manual) to distinguish between
automatic and manual controls, Vehicle Battery Capacity (kWh) for total energy storage, Grid Load
(Low/High) to indicate grid request, and Charging Priority (High/Low) to indicate user or system
choice. The Charging Efficiency (%) reflects the efficiency of the charging session, whereas the Target
feature denotes whether the session was "Optimized" or "Not Optimized." The "EV Charging Session
Optimization Dataset" was safely stored in CSV format for easy access during data preprocessing,
evaluation, and machine learning model training. The data-gathering method highlighted accuracy
and variety to offer a strong basis for machine learning growth. Figure 2 shows the flow diagram of
the proposed DLVB algorithm.
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Figure 2. Flow diagram of proposed DLVB algorithm.
3.2. Data Preprocessing Steps

3.2.1. Loading and Cleaning the Dataset

The first phase is to load the dataset, which contains important attributes like the beginning
battery level, charging rate, maximum charging power, ambient temperature, and so on. This phase
is critical for comprehending the structure and maintaining data integrity. The dataset is checked for
missing or inconsistent data points that may skew the outcomes. Any such inconsistencies are
addressed by either eliminating the impacted records or utilizing imputation methods.

3.2.2. Encoding Categorical Features

Certain features, like Charging Mode, Grid Load, and Charging Priority, are categorical and
must be converted to numerical values for model compatibility. This conversion is carried out
utilizing label encoding, which allocates a distinctive integer to each category:

Xencoded = LabelEnCOding(xcategorical) (1)
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Transforming these variables allows the models to manage them as numerical inputs, enabling
superior learning.

3.2.3. Normalizing Numerical Features

Standardizing numerical features is critical for achieving consistent performance across multiple
machine-learning models. StandardScaler is employed to scale the data so that each feature has a
mean of 0 and a standard deviation of 1:

xX—H
Xnormalized = o (2)

Where u signifies the mean and o the standard deviation of each feature. This normalization

benefits models that are sensitive to the scale of input data, such as K-Nearest Neighbors (KNN) and

Random Forest (RF).

3.2.4. Data Splitting

The data is divided into training and testing subsets, typically in an 80/20 ratio. The training set
is employed to fit the models, and the testing set assesses the algorithm's effectiveness:

Train data = 0.8 X Total data

3)
Test data = 0.2 X Total data

3.3. First-Level Ensemble of Classifiers

3.3.1. Selection of Basic Classifiers

The initial level of the DLVB algorithm uses simpler classifiers to gain an initial comprehension
of the data. They comprise:

e  Decision Tree (C1): Recognized for its clear interpretation and capacity to model intricate
relationships.

¢ Logistic Regression (C2): Suitable for binary classification with probabilistic outcomes.

e  K-Nearest Neighbors (KNN, C3): A non-parametric model generates predictions depending on
the proximity of data points.

Each of these classifiers is trained on the training dataset and independently provides
predictions Py, Pc, and Pes.

3.3.2. Majority Voting Mechanism

The initial result is determined by combining the predictions from the first-level classifiers
through a majority voting system:

Prirst—rever(x) = Mode(P¢1(x), P2 (x), Pe3 (%)) 4)
This method guarantees that the decision represents the consensus of the basic models, thus
offering a dependable preliminary classification.

3.3.3. Calculating Importance Score cu

The importance score is computed to determine how well the first-level ensemble performs. This
score is calculated using the ensemble's accuracy:
Accuracy of First — Level

=1 5
% 0g(1 — Accuracy of First — Level )

A higher a1 shows superior performance and therefore greater impact in the last combined
prediction.
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3.4. Weight Adjustment for Misclassified Examples

3.4.1. Adjusting Weights

Following the first-level ensemble's predictions, the weights of misclassified instances are
adjusted to highlight their significance at the next level. This guarantees that the second-level models
concentrate more on difficult cases. The weight update formula for an inaccurately classified example
iis:

w; = wy.exp(ay)) (6)

This mechanism aids in the training of second-level classifiers, improving total accuracy by
tackling prior misclassified data.

3.5. Second-Level Ensemble of Classifiers

3.5.1. Selection of Complex Classifiers
The second-level ensemble consists of more advanced classifiers that improve the predictions
further. They comprise:

e Random Forest (C4): A powerful ensemble technique that uses numerous decision trees to
generate more reliable predictions.

e  Support Vector Machine (C5): Efficient in high-dimensional spaces and situations where classes
are separated by a hyperplane.

e Naive Bayes (C6): A probabilistic classifier depending on Bayes' theorem is renowned for its
effectiveness and simplicity.
These classifiers are trained to utilize the training dataset and the updated weights,
concentrating on the examples that were misclassified at the first level.

3.5.2. Second-Level Majority Voting

Similar to the initial level, the predictions from these classifiers are merged via majority voting
to create a second-level prediction.

PSecond—Level(x) = MOde(PC4(x): PCS (x): PC6(x)) (7)

3.5.3. Computing Importance Score (a2)

The second-level ensemble's effectiveness is assessed utilizing a significance score a2, which is
calculated similarly to the initial level.
Accuracy of Second — Level

= L
%2 °9 1 — Accuracy of Second — Level

(8)

3.6. Final Combined Predictions

3.6.1. Weighted Voting for Final Prediction

To generate a final prediction for a novel input, weighted voting is used to integrate the first-
and second-level predictions. The weights are depending on the significance scores a1 and a:

PFinal(x) = Sign(al- PFirst—Level(x) + ;. PSecond—Level(x)) (9)
This combination guarantees that the final prediction draws on the advantages of both ensemble
levels. The first level presents a wide, rapid evaluation, whereas the second level offers detailed
knowledge depending on intricate models. The weighted voting mechanism guarantees that the most
dependable predictions have the most impact, resulting in a reliable result that optimizes EV charging
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control dependent on input features. Pseudocode 1 outlines the step-by-step process of the Dual-
Level Voting Boost (DLVB) technique.

Pseudocode 1: Dual-Level Voting Boost (DLVB)

Handle missing data, encode categorical features, and normalize numerical values.
Divide into training and testing sets.

Train classifiers: Decision Tree (C1), Logistic Regression (C2), KNN (C3).

Execute majority voting for predictions.

Compute importance score a.

Rise weights of misclassified samples for the next level.

Train classifiers: Random Forest (C4), SVM (C5), Naive Bayes (C6).

Execute majority voting for predictions.

Compute importance score a2.

Utilize weighted voting depending on al and a2 for final prediction.

IV. Performance Analysis

4.1. Experimental Setup

To assess the efficiency of the Dual-Level Voting Boost (DLVB) algorithm, experiments were
carried out on a high-performance computing system. This configuration guarantees the capacity to
manage huge amounts of data while also performing intricate functions effectively. Table 2 details
the specifications, including the utilization of an Intel Core i7-1260P processor with a 12-core
architecture able to efficiently handle parallel procedures. The system had 64 GB of RAM to
accommodate data management and training procedures, as well as a clock speed of 2.1 GHz to allow
for rapid computational functions. The experiments were carried out on a Windows 11 Home
operating system, using Python 3.10 via Anaconda Spyder, which offers a reliable development
context for scientific computing.

Table 2. Experimental Setup.

Component Specification
Processor Model Intel Core i7-1260P
CPU Type 12-Core Architecture
Brand Aspire 3
Memory (RAM) 64 GB
Clock Speed 2.1 GHz
Operating System Windows 11 Home
L3 Cache Size 18 MB
Software Python 3.10, Anaconda Spyder

4.2. Comparative Analysis

To show the DLVB algorithm's efficiency, it was compared to four famous classifiers: K-Nearest
Neighbors (KNN), Random Forest (RF), Support Vector Machine (SVM), and Naive Bayes. To offer a
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complete evaluation of predictive performance, the models were assessed utilizing five important
performance metrics: accuracy, precision, recall, Fl-score, and Matthew’s correlation coefficient
(MCQ).

The equation for these metrics is demonstrated below: Accuracy is the percentage of correct
predictions among all predictions provided:

TP+ TN (10)

TP+TN+FP+FN
Where, TP represents True Positives, TN represents True Negatives, FP represents False Positives,

Accuracy =

and FN represents False Negatives. Precision denotes to the accuracy of positive predictions:

_ e (11)
TP + FP

A higher precision recommends fewer false positives. Recall, represented as sensitivity, quantifies

Precision =

the model's capacity to compute all relevant cases (true positives):

_ (12)
TP + FN

A higher recall denotes fewer false negatives. The F1 score is the harmonic mean of precision and

Recall =

recall, offering a balance between the two:
Precision * Recall (13)

F1-— = 2
score * Precision + Recall

The Matthews Correlation Coefficient (MCC) assesses the competence of binary classifications by
considering all four confusion matrix categories:

(TP * TN) — (FP * FN) (14)

MCC =
J@TP +FP)(TP + FN)(TN + FP)(TN + FN)

MCC values range from -1 to 1, with 1 denoting perfect prediction. Table 2 compares the
performance metrics of each classifier.

Table 3 shows the metrics for each model. The DLVB algorithm significantly excels across all
metrics, demonstrating its capability to make precise, dependable, and well-balanced predictions
when compared to its counterparts.

Table 3. Performance Metrics Comparison.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%)
KNN 83 81 79 80 78
RF 88 86 84 85 84
SVM 85 83 82 82 80
NB 80 78 76 77 75
DLVB 95 94 93 94 92

Table 3 shows how the DLVB algorithm outperforms the other classifiers. With an accuracy of
95%, DLVB outperforms models such as RF, SVM, and KNN. DLVB's precision, recall, and F1-score
all fall between 93 and 94%, indicating a strong capacity to reduce both false positives and false
negatives. The MCC score of 92% suggests an excellent balance between true and false results, further
confirming its overall resilience and dependability in predicting enhanced EV charging sessions.

d0i:10.20944/preprints202501.1891.v1
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Figure 3. Accuracy Comparison.

Figure 3 shows the DLVB algorithm's high accuracy, which can be attributed to its distinctive
two-tier ensemble structure. DLVB captures various patterns and relationships in the data by
combining simple classifiers (Decision Tree, Logistic Regression, KNN) and intricate classifiers

(Random Forest, SVM, Naive Bayes). This extensive learning enables the algorithm to generalize
effectively and make highly precise predictions.

DLVB

NB

SVM

Model

|
|
|
RF o |
KNN: e

0 20 40 60 80 100
Precision (%)

Figure 4. Precision Comparison.

Figure 4 demonstrates the DLVB algorithm's improved precision. The algorithm uses weighted
voting to allocate importance scores (al and a2) to predictions depending on ensemble level
efficiency, resulting in high precision. This mechanism guarantees that only the most dependable

findings from each level contribute substantially to the final prediction, thereby decreasing false
positive rates and enhancing total precision.
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Figure 5. Recall Comparison.

Figure 5 demonstrates how the DLVB algorithm produces a high recall. This finding is because
of the step in which misclassified examples from the first-level ensemble are prioritized for the
second-level training phase. By adjusting the weights of misclassified data, DLVB improves its
capacity to accurately detect true positives, guaranteeing that instances that may have been
overlooked by simpler models are correctly predicted at the second level.

v

NB |

SVM |

Model

RF ... |
LSO B ——

0 20 40 60 80 100

F1-score (%)

Figure 6. F1-score Comparison.

Figure 6 shows an Fl-score comparison that demonstrates DLVB's balanced performance in
terms of precision and recall. The dual-level voting tactic optimizes both metrics by combining
insights from simple and intricate classifiers. The final result is a higher F1-score, which indicates the
algorithm's capacity to efficiently manage both false positives and false negatives, rendering it
suitable for real-world applications where both errors are expensive.
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Figure 7. MCC Comparison.

In Figure 7, DLVB's high MCC score demonstrates its total predictive power and balanced
method. MCC is a useful metric since it takes into account all outcomes—true positives, true
negatives, false positives, and false negatives—to provide a single measure of classification
excellence. DLVB's better MCC score suggests that its predictions are not biased and have strong
correlations with the real findings, showing consistent and trustworthy performance.

Overall, the performance analysis shows that the DLVB algorithm surpasses conventional
approaches like KNN, RF, SVM, and NB on all metrics. The dual-level ensemble structure,
incorporated with weighted voting, allows DLVB to attain high accuracy, precision, recall, F1-score,
and MCC. This makes it ideal for applications that need extremely precise predictions, like enhancing
EV charging sessions. The thorough assessment confirms the efficiency of the DLVB algorithm,
highlighting its resilience and flexibility.

V. Conclusions

The Dual-Level Voting Boost (DLVB) Algorithm was developed to tackle constraints in current
predictive models for EV charging optimization. Conventional classification models frequently fail
to capture intricate relationships in datasets with numerous interacting variables, like those
encountered in EV charging settings. DLVB uses a two-tier ensemble technique to efficiently integrate
simple and intricate classifiers, resulting in more extensive and precise forecasts. The technique's
dual-level structure guarantees that the algorithm takes advantage of the quick-learning capacities of
simpler models before refining these insights with more intricate algorithms, resulting in a balance
of speed and accuracy. Experimental findings confirmed DLVB's superiority, surpassing common
models including KNN, RF, SVM, and NB across important performance metrics, emphasizing its
resilience and dependability in enhancing EV charging predictions.

Drawbacks and Future Scope: While the DLVB Algorithm has numerous benefits, it is important to
note some constraints. The main disadvantage of DLVB is its high computational intricacy. The two-
tier structure, incorporated with weighted voting, requires more training time and computational
resources, rendering it inefficient for real-time or resource-constrained applications. Furthermore, the
algorithm's dependence on parameter tuning for both ensemble levels and weight adjustments may
add intricacy to execution. In the future, multiple improvements could be investigated to enhance
the DLVB algorithm. Incorporating deep learning models into the second-level ensemble may
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improve predictive accuracy, especially for intricate and large-scale datasets with more pronounced
nonlinear relationships. The use of distributed and parallel computing methods may reduce
computational load, rendering the algorithm more appropriate for real-time deployment.

References

1. adeghian, O., Oshnoei, A., Mohammadi-Ivatloo, B., Vahidinasab, V. and Anvari-Moghaddam, A., 2022. A
comprehensive review on electric vehicles smart charging: Solutions, strategies, technologies, and
challenges. Journal of Energy Storage, 54, p.105241.

2. Hemavathi, S. and Shinisha, A., 2022. A study on trends and developments in electric vehicle charging
technologies. Journal of energy storage, 52, p.105013.

3. Shibl, M,, Ismail, L. and Massoud, A., 2021. Electric vehicle charging management using machine learning
considering fast charging and vehicle-to-grid operation. Energies, 14(19), p.6199.

4. Shibl, M., Ismail, L. and Massoud, A., 2020. Machine learning-based management of electric vehicles
charging: Towards highly-dispersed fast chargers. Energies, 13(20), p.5429.

5. Mazhar, T, Asif, RN., Malik, M.A.,, Nadeem, M.A., Hagq, L., Igbal, M., Kamran, M. and Ashraf, S., 2023.
Electric vehicle charging system in the smart grid using different machine learning methods. Sustainability,
15(3), p.2603.

6.  Ullah, I, Liu, K., Yamamoto, T., Zahid, M. and Jamal, A., 2023. Modeling of machine learning with SHAP
approach for electric vehicle charging station choice behavior prediction. Travel Behaviour and Society, 31,
pp-78-92.

7. Ullah, L, Liu, K., Yamamoto, T., Shafiullah, M. and Jamal, A., 2023. Grey wolf optimizer-based machine
learning algorithm to predict electric vehicle charging duration time. Transportation Letters, 15(8), pp.889-
906.

8. Shahriar, S., Al-Ali, A.R., Osman, A.H., Dhou, S. and Nijim, M., 2021. Prediction of EV charging behavior
using machine learning. Ieee Access, 9, pp.111576-111586.

9. Ullah, I, Liu, K., Yamamoto, T., Zahid, M. and Jamal, A., 2022. Prediction of electric vehicle charging
duration time using ensemble machine learning algorithm and Shapley additive explanations.
International Journal of Energy Research, 46(11), pp.15211-15230.

10. Adil, M., Alj, J.,, Ta, Q.T.H., Attique, M. and Chung, T.S., 2020. A reliable sensor network infrastructure for
electric vehicles to enable dynamic wireless charging based on machine learning techniques. IEEE Access,
8, pp.187933-187947.

11. McClone, G., Ghosh, A., Khurram, A., Washom, B. and Kleissl, J., 2023. Hybrid Machine Learning
Forecasting for Online MPC of Workplace Electric Vehicle Charging. IEEE Transactions on Smart Grid.

12.  Liu, Y., Francis, A., Hollauer, C., Lawson, M.C., Shaikh, O., Cotsman, A., Bhardwaj, K., Banboukian, A., Li,
M., Webb, A. and Asensio, O.1., 2023. Reliability of electric vehicle charging infrastructure: A cross-lingual
deep learning approach. Communications in Transportation Research, 3, p.100095.

13. Alshammari, A. and Chabaan, R.C., 2023. Metaheuristic optimization-based Ensemble machine learning
model for designing Detection Coil with prediction of electric vehicle charging time. Sustainability, 15(8),
p.6684.

14. Tu, R, Gai, Y.J., Farooq, B., Posen, D. and Hatzopoulou, M., 2020. Electric vehicle charging optimization to
minimize marginal greenhouse gas emissions from power generation. Applied Energy, 277, p.115517.

15.  Sun, B., 2021. A multi-objective optimization model for fast electric vehicle charging stations with wind, PV

power, and energy storage. Journal of Cleaner Production, 288, p.125564.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.


https://doi.org/10.20944/preprints202501.1891.v1

