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Abstract: Background: Electric vehicles (EVs) are at the heart of sustainable transportation, and the 
need for effective charging systems is steadily increasing. The difficulty is to optimize charging tactics 
that reduce charging time while retaining grid stability. To maximize performance and energy 
utilization, charging must be managed effectively using variables like battery levels, grid load, and 
environmental conditions. Objectives: The objective of this research is to create a sophisticated 
machine-learning technique for predicting the optimal charging control for electric vehicles. 
Particularly, it aims to use a Dual-Level Voting Boost (DLVB) algorithm to determine whether an EV 
charging session will be optimized or not, using input features such as battery level, charging rate, 
ambient temperature, and charging mode. Methodology: This paper proposes the Dual-Level Voting 
Boost (DLVB) algorithm, which is a two-stage ensemble learning method. The first level employs 
fundamental classifiers like Decision Trees, Logistic Regression, and K-Nearest Neighbors, whereas 
the second level employs more sophisticated models like Random Forest, Support Vector Machines, 
and Naive Bayes. This dual-layer structure enables a more precise classification of optimized and 
non-optimized charging sessions. The model's efficacy is assessed utilizing metrics like Accuracy, 
Precision, Recall, F1-Score, and the Matthews Correlation Coefficient (MCC). Results: On the test 
dataset, the DLVB algorithm obtained 95% accuracy, 94% precision, 93% recall, 94% F1 score, and 
92% MCC. These findings show the efficiency of the dual-level voting system in correctly predicting 
optimized charging sessions, substantially surpassing conventional single-model methods. 
Conclusion: The DLVB algorithm has significant potential for improving EV charging control by 
correctly predicting optimization results. This approach provides a potential strategy for enhancing 
charging effectiveness, decreasing energy waste, and maintaining grid stability.  

Keywords: electric vehicles; grid stability; ensemble learning; classification and prediction 
 

I Introduction 

The rapid growth of electric vehicles (EVs) has raised the need for novel and effective charging 
solutions that strike a balance between charging speed and energy consumption optimization [1]. 
Conventional charging systems, while efficient to some extent, frequently face difficulties in 
maintaining a harmonious balance between rapid charging capacities and electrical grid stability [2]. 
This delicate balance is critical for avoiding overload, reducing energy waste, and guaranteeing 
dependability. As EV adoption boosts, tackling these problems has become progressively important 
to assist the increasing number of EV users and sustain the robustness of the energy infrastructure. 

Machine learning (ML) has emerged as a strong and promising strategy for addressing these 
difficulties [3]. By evaluating massive amounts of data created during charging sessions, ML 
algorithms can detect trends and create predictive models that improve charging schedules, energy 
distribution, and total effectiveness. These predictive models enable the identification of peak request 
periods and the tactical adjustment of charging functions to avoid power surges or excessive energy 
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consumption [4]. Furthermore, ML can enable real-time decision-making, enabling charging stations 
to dynamically adapt to changing grid conditions and user requirements. 

Charging tactics can be fine-tuned using machine learning to provide quicker energy 
transmission while conserving resources and reducing the influence on grid stability [5]. This strategy 
allows for more intelligent load management, encourages sustainable energy consumption, and 
lowers the risk of grid disruptions. As a result, incorporating machine learning into EV charging 
infrastructure offers an important development in building a scalable, resilient, and energy-efficient 
charging ecosystem that helps the ongoing development of electric vehicle adoption. 

 
Figure 1. EV Charging. 

Figure 1 shows the connection between an electric vehicle and a charging station that uses 
renewable energy sources like solar panels and wind power plants. This setup exemplifies a 
sustainable method of EV charging in which the energy utilized is partially or entirely supplied by 
renewable sources. This technique not only decreases the carbon footprint but also relieves the strain 
on traditional power grids. When the EV links to the charging station, data gathering begins, 
recording critical variables like the initial battery level, charging rate, and maximum charging power. 
Environmental variables such as ambient temperature and functional modes (manual or automated) 
are recorded, as well as grid load and charging priorities. These gathered data points are crucial for 
creating predictive models that classify charging sessions as optimized or not, allowing for improved 
charging control. 

1.1. Important Elements in an Optimized Charging Control System 

Optimal charging control entails combining a variety of factors that impact charging efficiency. 
The initial battery level determines the tactic, whereas the charging rate and maximum power 
capacity determine the speed and security of charging. The ambient temperature influences charging 
efficiency, whereas the mode of charging (automatic or manual) determines how the session is 
managed. Grid load conditions and charging priority are essential to balancing energy needs. Lastly, 
charging effectiveness assesses the efficiency of energy transfer, guaranteeing that the charging 
session is productive while conserving energy. 

1.2. Research Objective 

This research aims to create a sophisticated predictive algorithm that can determine whether or 
not EV charging sessions are optimized. The research introduces the Dual-Level Voting Boost (DLVB) 
algorithm, which enhances prediction accuracy by integrating numerous classifiers using a dual-
voting mechanism. The goal is to improve charging session management, balance user needs with 
grid stability and maximize total energy effectiveness. 
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1.3. The Remainder of the Research 

The rest of the paper is structured as follows: Section 2 covers related works. Section 3 describes 
the methodology used in the research. Section 4 describes the experimental setup, and the evaluation 
metrics utilized for performance evaluation, followed by a result evaluation and discussion of the 
algorithm's effectiveness. Section 5 concludes the study by summarizing the key results and 
proposing directions for future research. 

II. Literature Review 

The increasing adoption of electric vehicles (EVs) has highlighted the requirement for effective 
charging systems that not only reduce charging times but also guarantee grid stability. As the need 
for electric vehicles grows, it becomes progressively essential to optimize charging tactics that take 
into account elements like battery levels, grid load, and environmental circumstances. Several 
techniques have been proposed to enhance charging effectiveness, but there are still difficulties in 
tackling the dynamic interactions between these factors, which frequently result in suboptimal 
efficiency. This section examines existing research on EV charging enhancement, including machine 
learning techniques, hybrid models, and renewable energy incorporation. 

Table 1. Summary Table. 

Reference No Objective Methodology Result Limitations 
[6] Predict EV charging 

station selection 
behavior. 

XGBoost with SHAP 
for 500 EVs in Japan 

XGBoost had the 
greatest accuracy, and 
SHAP explained the 
feature's significance. 

Data restricted to 
Japan, generalizability 

uncertain 

[7] Forecast EV charging 
period 

ELM, FFNN, and SVR 
enhanced by GWO, 

PSO, GA on 500 EVs in 
Japan 

GWO-based models 
surpassed others 

The optimization 
method may require 
validation with other 

datasets 
[8] Forecast session 

duration and power 
utilization 

RF, SVM, XGBoost, 
DNN with historical, 
traffic, weather, and 

event data 

Ensemble learning 
attained 9.9% SMAPE 
for duration and 11.6% 

for energy 

Findings may not 
generalize beyond the 

dataset. 

[9] Use ensemble machine 
learning to forecast the 

charging time. 

RF, XGBoost, CatBoost, 
LightGBM with SHAP 

on 500 EVs in Japan 

XGBoost demonstrated 
the highest accuracy, 
SHAP emphasized 
important variables 

Outcomes particular to 
Japan, not broadly 

applicable 

[10] Allow dynamic 
wireless charging 

Hybrid DWC system 
with Improved-DSDV 
protocol and magnetic 

coupling 

Dependable DWC with 
enhanced throughput 

and latency 

Scalability and 
deployment difficulties 

not tackled 

[11] Predict EV metrics 
utilizing ML in MPC 

Hybrid ML predicts 
and MPC to reduce 
electricity expenses 

Decreased peak load 
by 46.7% and expenses 

by 20.9% 

Concentrated on 
controlled studies, real-

world difficulties not 
discussed 

[12] Evaluate EV charging 
infrastructure 
dependability 

ML classifiers on 10 
years of multilingual 

customer reviews 

Government-owned 
stations had higher 

failure rates 

Constrained data-
sharing and region-
specific pertinency 

[13] Forecast EV charging 
time with 

metaheuristic 
optimization 

RF, CatBoost, and 
XGBoost enhanced by 

Ant Colony 
Optimization 

Attained R2 of 20.5% 
(training), 12.4% 

(testing) 

Requires enhancement 
in accuracy and cross-

validation 
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[14] Enhance charging to 
decrease emissions 

Heuristic algorithm for 
enhanced scheduling 

in Ontario 

Decreased emissions 
by 97% compared to 

the base case 

Findings may differ by 
regional creation 

profiles and emissions 
[15] Enhance EV charging 

stations with 
renewables 

MOPSO and TOPSIS 
for design with wind, 

PV, and storing 

Enhanced optimization 
and quicker calculation 

Constrained to Inner 
Mongolia, 

generalizability 
uncertain 

While the current study has made important progress in enhancing EV charging mechanisms, 
numerous existing techniques fail to efficiently handle the charging procedure's complexity and 
dynamics. Conventional methods frequently oversimplify interactions between features or the 
absence of generalizability across circumstances. The Dual-Level Voting Boost (DLVB) algorithm 
introduced in this research offers a promising solution to these constraints. By integrating a dual-
layer ensemble learning method, DLVB efficiently addresses the complexities of EV charging 
optimization, providing higher prediction accuracy and efficiency than conventional models. This 
method fills important gaps in existing techniques, paving the manner for more effective and 
trustworthy EV charging control mechanisms. 

III. Methodology 

The Dual-Level Voting Boost (DLVB) algorithm is a novel technique for improving electric 
vehicle (EV) charging that predicts whether a session will be effective depending on a variety of input 
features. The algorithm integrates numerous machine learning models organized into two levels, 
with each contributing to the entire prediction via majority voting. The primary level utilizes simpler 
models for rapid and comprehensive learning, whereas the second level utilizes intricate models for 
precise decision-making. This structured method, improved by weighted voting, enables superior 
predictive accuracy and resilience. 

3.1. Data Collection 

The dataset, namely "EV Charging Session Optimization Dataset," was created using real-world 
electric vehicle (EV) charging data collected from different charging stations and EV management 
mechanisms. Each entry in this dataset indicates a single charging session, with comprehensive data 
regarding the charging procedure and environment. Important features comprise Initial Battery 
Level (%), which denotes the initial level of charge; Charging Rate (kW), which details the power 
provided during charging; Max Charging Power (kW), which specifies the maximum power the EV 
can handle; and Ambient Temperature (°C), which highlights the impacts of outside temperature on 
effectiveness. The dataset also includes Charging Mode (Auto/Manual) to distinguish between 
automatic and manual controls, Vehicle Battery Capacity (kWh) for total energy storage, Grid Load 
(Low/High) to indicate grid request, and Charging Priority (High/Low) to indicate user or system 
choice. The Charging Efficiency (%) reflects the efficiency of the charging session, whereas the Target 
feature denotes whether the session was "Optimized" or "Not Optimized." The "EV Charging Session 
Optimization Dataset" was safely stored in CSV format for easy access during data preprocessing, 
evaluation, and machine learning model training. The data-gathering method highlighted accuracy 
and variety to offer a strong basis for machine learning growth. Figure 2 shows the flow diagram of 
the proposed DLVB algorithm. 
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Figure 2. Flow diagram of proposed DLVB algorithm. 

3.2. Data Preprocessing Steps 

3.2.1. Loading and Cleaning the Dataset 

The first phase is to load the dataset, which contains important attributes like the beginning 
battery level, charging rate, maximum charging power, ambient temperature, and so on. This phase 
is critical for comprehending the structure and maintaining data integrity. The dataset is checked for 
missing or inconsistent data points that may skew the outcomes. Any such inconsistencies are 
addressed by either eliminating the impacted records or utilizing imputation methods. 

3.2.2. Encoding Categorical Features 

Certain features, like Charging Mode, Grid Load, and Charging Priority, are categorical and 
must be converted to numerical values for model compatibility. This conversion is carried out 
utilizing label encoding, which allocates a distinctive integer to each category: 𝑥௘௡௖௢ௗ௘ௗ ൌ 𝐿𝑎𝑏𝑒𝑙𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔൫𝑥௖௔௧௘௚௢௥௜௖௔௟൯ (1) 
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Transforming these variables allows the models to manage them as numerical inputs, enabling 
superior learning. 

3.2.3. Normalizing Numerical Features 

Standardizing numerical features is critical for achieving consistent performance across multiple 
machine-learning models. StandardScaler is employed to scale the data so that each feature has a 
mean of 0 and a standard deviation of 1: 𝑥௡௢௥௠௔௟௜௭௘ௗ = 𝑥 − 𝜇σ  (2) 

Where 𝜇 signifies the mean and 𝜎 the standard deviation of each feature. This normalization 
benefits models that are sensitive to the scale of input data, such as K-Nearest Neighbors (KNN) and 
Random Forest (RF). 

3.2.4. Data Splitting 

The data is divided into training and testing subsets, typically in an 80/20 ratio. The training set 
is employed to fit the models, and the testing set assesses the algorithm's effectiveness: 𝑇𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎 = 0.8 × 𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑇𝑒𝑠𝑡 𝑑𝑎𝑡𝑎 = 0.2 × 𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 

(3) 

3.3. First-Level Ensemble of Classifiers 

3.3.1. Selection of Basic Classifiers 

The initial level of the DLVB algorithm uses simpler classifiers to gain an initial comprehension 
of the data. They comprise: 

• Decision Tree (C1): Recognized for its clear interpretation and capacity to model intricate 
relationships. 

• Logistic Regression (C2): Suitable for binary classification with probabilistic outcomes. 
• K-Nearest Neighbors (KNN, C3): A non-parametric model generates predictions depending on 

the proximity of data points. 

Each of these classifiers is trained on the training dataset and independently provides 
predictions 𝑃஼ଵ,𝑃஼ଶ 𝑎𝑛𝑑 𝑃஼ଷ. 
3.3.2. Majority Voting Mechanism 

The initial result is determined by combining the predictions from the first-level classifiers 
through a majority voting system: 𝑃ி௜௥௦௧ି௅௘௩௘௟ሺ𝑥ሻ =  𝑀𝑜𝑑𝑒(𝑃஼ଵ(𝑥ሻ,𝑃஼ଶ(𝑥ሻ,𝑃஼ଷ(𝑥ሻ) (4) 

This method guarantees that the decision represents the consensus of the basic models, thus 
offering a dependable preliminary classification. 

3.3.3. Calculating Importance Score α1 

The importance score is computed to determine how well the first-level ensemble performs. This 
score is calculated using the ensemble's accuracy: αଵ =  𝐿𝑜𝑔( 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐹𝑖𝑟𝑠𝑡 − 𝐿𝑒𝑣𝑒𝑙1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐹𝑖𝑟𝑠𝑡 − 𝐿𝑒𝑣𝑒𝑙) (5) 

A higher α1 shows superior performance and therefore greater impact in the last combined 
prediction. 
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3.4. Weight Adjustment for Misclassified Examples 

3.4.1. Adjusting Weights 

Following the first-level ensemble's predictions, the weights of misclassified instances are 
adjusted to highlight their significance at the next level. This guarantees that the second-level models 
concentrate more on difficult cases. The weight update formula for an inaccurately classified example 
i is: 𝑤௜ᇱ =  𝑤௜ . 𝑒𝑥𝑝(αଵ)) (6) 

This mechanism aids in the training of second-level classifiers, improving total accuracy by 
tackling prior misclassified data. 

3.5. Second-Level Ensemble of Classifiers 

3.5.1. Selection of Complex Classifiers 

The second-level ensemble consists of more advanced classifiers that improve the predictions 
further. They comprise: 

• Random Forest (C4): A powerful ensemble technique that uses numerous decision trees to 
generate more reliable predictions. 

• Support Vector Machine (C5): Efficient in high-dimensional spaces and situations where classes 
are separated by a hyperplane. 

• Naive Bayes (C6): A probabilistic classifier depending on Bayes' theorem is renowned for its 
effectiveness and simplicity. 
These classifiers are trained to utilize the training dataset and the updated weights, 

concentrating on the examples that were misclassified at the first level. 

3.5.2. Second-Level Majority Voting 

Similar to the initial level, the predictions from these classifiers are merged via majority voting 
to create a second-level prediction. 𝑃ௌ௘௖௢௡ௗି௅௘௩௘௟(𝑥) =  𝑀𝑜𝑑𝑒(𝑃஼ସ(𝑥),𝑃஼ହ(𝑥),𝑃஼଺(𝑥)) (7) 

3.5.3. Computing Importance Score (α2) 

The second-level ensemble's effectiveness is assessed utilizing a significance score α2, which is 
calculated similarly to the initial level. αଶ =  𝐿𝑜𝑔( 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑆𝑒𝑐𝑜𝑛𝑑 − 𝐿𝑒𝑣𝑒𝑙1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑆𝑒𝑐𝑜𝑛𝑑 − 𝐿𝑒𝑣𝑒𝑙) (8) 

3.6. Final Combined Predictions 

3.6.1. Weighted Voting for Final Prediction 

To generate a final prediction for a novel input, weighted voting is used to integrate the first- 
and second-level predictions. The weights are depending on the significance scores α1 and α2: 𝑃ி௜௡௔௟(𝑥) =  𝑆𝑖𝑔𝑛(αଵ.𝑃ி௜௥௦௧ି௅௘௩௘௟(𝑥) + αଶ.𝑃ௌ௘௖௢௡ௗି௅௘௩௘௟(𝑥)) (9) 

This combination guarantees that the final prediction draws on the advantages of both ensemble 
levels. The first level presents a wide, rapid evaluation, whereas the second level offers detailed 
knowledge depending on intricate models. The weighted voting mechanism guarantees that the most 
dependable predictions have the most impact, resulting in a reliable result that optimizes EV charging 
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control dependent on input features. Pseudocode 1 outlines the step-by-step process of the Dual-
Level Voting Boost (DLVB) technique. 

Pseudocode 1: Dual-Level Voting Boost (DLVB) 

Handle missing data, encode categorical features, and normalize numerical values. 

Divide into training and testing sets. 

Train classifiers: Decision Tree (C1), Logistic Regression (C2), KNN (C3). 

Execute majority voting for predictions. 

Compute importance score α1. 

Rise weights of misclassified samples for the next level. 

Train classifiers: Random Forest (C4), SVM (C5), Naive Bayes (C6). 

Execute majority voting for predictions. 

Compute importance score α2. 

Utilize weighted voting depending on α1 and α2 for final prediction. 

IV. Performance Analysis 

4.1. Experimental Setup 

To assess the efficiency of the Dual-Level Voting Boost (DLVB) algorithm, experiments were 
carried out on a high-performance computing system. This configuration guarantees the capacity to 
manage huge amounts of data while also performing intricate functions effectively. Table 2 details 
the specifications, including the utilization of an Intel Core i7-1260P processor with a 12-core 
architecture able to efficiently handle parallel procedures. The system had 64 GB of RAM to 
accommodate data management and training procedures, as well as a clock speed of 2.1 GHz to allow 
for rapid computational functions. The experiments were carried out on a Windows 11 Home 
operating system, using Python 3.10 via Anaconda Spyder, which offers a reliable development 
context for scientific computing. 

Table 2. Experimental Setup. 

Component Specification 
Processor Model Intel Core i7-1260P 
CPU Type 12-Core Architecture 
Brand Aspire 3 
Memory (RAM) 64 GB 
Clock Speed 2.1 GHz 
Operating System Windows 11 Home 
L3 Cache Size 18 MB 
Software Python 3.10, Anaconda Spyder 

4.2. Comparative Analysis 

To show the DLVB algorithm's efficiency, it was compared to four famous classifiers: K-Nearest 
Neighbors (KNN), Random Forest (RF), Support Vector Machine (SVM), and Naive Bayes. To offer a 
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complete evaluation of predictive performance, the models were assessed utilizing five important 
performance metrics: accuracy, precision, recall, F1-score, and Matthew’s correlation coefficient 
(MCC).  

The equation for these metrics is demonstrated below: Accuracy is the percentage of correct 
predictions among all predictions provided: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (10) 

Where, TP represents True Positives, TN represents True Negatives, FP represents False Positives, 
and FN represents False Negatives. Precision denotes to the accuracy of positive predictions: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 (11) 

A higher precision recommends fewer false positives. Recall, represented as sensitivity, quantifies 
the model's capacity to compute all relevant cases (true positives): 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 (12) 

A higher recall denotes fewer false negatives. The F1 score is the harmonic mean of precision and 
recall, offering a balance between the two: 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (13) 

The Matthews Correlation Coefficient (MCC) assesses the competence of binary classifications by 
considering all four confusion matrix categories: 𝑀𝐶𝐶 =  (𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)ඥ(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 

(14) 

MCC values range from -1 to 1, with 1 denoting perfect prediction. Table 2 compares the 
performance metrics of each classifier. 

Table 3 shows the metrics for each model. The DLVB algorithm significantly excels across all 
metrics, demonstrating its capability to make precise, dependable, and well-balanced predictions 
when compared to its counterparts. 

Table 3. Performance Metrics Comparison. 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%) 
KNN 83 81 79 80 78 
RF 88 86 84 85 84 
SVM 85 83 82 82 80 
NB 80 78 76 77 75 
DLVB 95 94 93 94 92 

Table 3 shows how the DLVB algorithm outperforms the other classifiers. With an accuracy of 
95%, DLVB outperforms models such as RF, SVM, and KNN. DLVB's precision, recall, and F1-score 
all fall between 93 and 94%, indicating a strong capacity to reduce both false positives and false 
negatives. The MCC score of 92% suggests an excellent balance between true and false results, further 
confirming its overall resilience and dependability in predicting enhanced EV charging sessions. 
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Figure 3. Accuracy Comparison. 

Figure 3 shows the DLVB algorithm's high accuracy, which can be attributed to its distinctive 
two-tier ensemble structure. DLVB captures various patterns and relationships in the data by 
combining simple classifiers (Decision Tree, Logistic Regression, KNN) and intricate classifiers 
(Random Forest, SVM, Naive Bayes). This extensive learning enables the algorithm to generalize 
effectively and make highly precise predictions. 

 

Figure 4. Precision Comparison. 

Figure 4 demonstrates the DLVB algorithm's improved precision. The algorithm uses weighted 
voting to allocate importance scores (𝛼1 and 𝛼2) to predictions depending on ensemble level 
efficiency, resulting in high precision. This mechanism guarantees that only the most dependable 
findings from each level contribute substantially to the final prediction, thereby decreasing false 
positive rates and enhancing total precision. 
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Figure 5. Recall Comparison. 

Figure 5 demonstrates how the DLVB algorithm produces a high recall. This finding is because 
of the step in which misclassified examples from the first-level ensemble are prioritized for the 
second-level training phase. By adjusting the weights of misclassified data, DLVB improves its 
capacity to accurately detect true positives, guaranteeing that instances that may have been 
overlooked by simpler models are correctly predicted at the second level. 

 
Figure 6. F1-score Comparison. 

Figure 6 shows an F1-score comparison that demonstrates DLVB's balanced performance in 
terms of precision and recall. The dual-level voting tactic optimizes both metrics by combining 
insights from simple and intricate classifiers. The final result is a higher F1-score, which indicates the 
algorithm's capacity to efficiently manage both false positives and false negatives, rendering it 
suitable for real-world applications where both errors are expensive. 
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Figure 7. MCC Comparison. 

In Figure 7, DLVB's high MCC score demonstrates its total predictive power and balanced 
method. MCC is a useful metric since it takes into account all outcomes—true positives, true 
negatives, false positives, and false negatives—to provide a single measure of classification 
excellence. DLVB's better MCC score suggests that its predictions are not biased and have strong 
correlations with the real findings, showing consistent and trustworthy performance. 

Overall, the performance analysis shows that the DLVB algorithm surpasses conventional 
approaches like KNN, RF, SVM, and NB on all metrics. The dual-level ensemble structure, 
incorporated with weighted voting, allows DLVB to attain high accuracy, precision, recall, F1-score, 
and MCC. This makes it ideal for applications that need extremely precise predictions, like enhancing 
EV charging sessions. The thorough assessment confirms the efficiency of the DLVB algorithm, 
highlighting its resilience and flexibility. 

V. Conclusions 

The Dual-Level Voting Boost (DLVB) Algorithm was developed to tackle constraints in current 
predictive models for EV charging optimization. Conventional classification models frequently fail 
to capture intricate relationships in datasets with numerous interacting variables, like those 
encountered in EV charging settings. DLVB uses a two-tier ensemble technique to efficiently integrate 
simple and intricate classifiers, resulting in more extensive and precise forecasts. The technique's 
dual-level structure guarantees that the algorithm takes advantage of the quick-learning capacities of 
simpler models before refining these insights with more intricate algorithms, resulting in a balance 
of speed and accuracy. Experimental findings confirmed DLVB's superiority, surpassing common 
models including KNN, RF, SVM, and NB across important performance metrics, emphasizing its 
resilience and dependability in enhancing EV charging predictions. 

Drawbacks and Future Scope: While the DLVB Algorithm has numerous benefits, it is important to 
note some constraints. The main disadvantage of DLVB is its high computational intricacy. The two-
tier structure, incorporated with weighted voting, requires more training time and computational 
resources, rendering it inefficient for real-time or resource-constrained applications. Furthermore, the 
algorithm's dependence on parameter tuning for both ensemble levels and weight adjustments may 
add intricacy to execution. In the future, multiple improvements could be investigated to enhance 
the DLVB algorithm. Incorporating deep learning models into the second-level ensemble may 
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improve predictive accuracy, especially for intricate and large-scale datasets with more pronounced 
nonlinear relationships. The use of distributed and parallel computing methods may reduce 
computational load, rendering the algorithm more appropriate for real-time deployment. 
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